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Abstract. This paper reconsiders the problems of discovering symmetries in
constraint satisfaction problems (CSPs). It proposes a compositional approach
which derives symmetries of the applications from primitive constraints. The key
insight is the recognition of the special role of global constraints in symmetry
detection. Once the symmetries of global constraints are available, it often be-
comes much easier to derive symmetries compositionally and efficiently. The pa-
per demonstrates the potential of this approach by studying several classes of
value and variable symmetries and applying the resulting techniques to two non-
trivial applications. The paper also discusses the potential of reformulations and
high-level modeling abstractions to strengthen symmetry discovery.

1 Introduction

Many applications in constraint satisfaction exhibit natural symmetries which may sig-
nificantly increase the difficulty of solving. It is thus not surprising that increased atten-
tion has been devoted to symmetry breaking in the last decade.

Recent research has mostly focused onbreaking symmetries, including general
symmetry-breaking schemes (e.g., SBDS [1, 14] and SBDD [8, 10]), their efficient im-
plementations (e.g., [21]), and their specialisations for specific applications (e.g., [3,
20]). There has also been a tendency to abstract some of the techniques from particu-
lar applications to classes of CSPs [25] or models [9]. However, this line of research
assumes that symmetries are given and ignores the tedious and error-prone task of dis-
covering them.

The detection of symmetries is a research avenue pioneered by Freuder [13] and
subsequently investigated by many others. Freuder introduced various forms of value
interchangeability and his goal was todiscoverand remove symmetries. Unfortunately,
it is not tractable to discover many, apparently simple, classes of symmetries in CSPs
arising in practical applications. However, see [5] for results on neighbourhood inter-
changeability, which is a much weaker form of symmetry than considered in this paper.

This research reconsiders the problem of discovering symmetries from a funda-
mentally different angle. The key insight is to recognise [24] that global (optimisation)



constraints [4, 22, 11] offer significant benefits for deriving symmetries composition-
ally and efficiently. Global constraints are a fundamental aspect of constraint program-
ming: They capture common combinatorial substructures of practical applications and
exploit the substructure semantics to obtain more effective filtering algorithms, linear
relaxations, and cooperation schemes between solvers.The main contribution of this
research is to show that, once the symmetries of global constraints are specified, it be-
comes much simpler to derive the symmetries of an application. This research can also
be seen as shifting the burden of discovering symmetries from users to solver designers
who are experts in the underlying combinatorics.

The purpose of this paper is to demonstrate the potential of this research direction.
The paper makes the following technical contributions:

1. It considers various classes of symmetries and shows how to derive symmetries
compositionally and efficiently, starting from global constraints. They include value
and variable symmetries, and symmetries in matrix models.

2. It shows how to apply these results to derive the symmetries of two non-trivial
applications: scene allocation and progressive party.

3. It shows how various problem reformulations can improve the accuracy of the
derivations and suggests a variety of modeling practices to improve symmetry de-
tection.

These technical results should be viewed as a first (small) step towards a comprehensive
automated tool for discovering symmetries. What is particularly interesting however is
their ability to handle non-trivial applications already, as well as the various research
directions they suggest for modeling languages and reformulation tools.

The rest of the paper is organised as follows. After some preliminaries, the paper
shows how constraint and function symmetries can be composed for various forms
of interchangeability. The techniques are then illustrated on two applications: scene
allocation and the progressive party problem. The next section discusses how problem
reformulations improve symmetry detection. Finally, symmetries in matrix models are
presented and illustrated.

2 Preliminaries

This section defines the main concepts used in this paper. The definitions are borrowed
from [25], which uses them for different purposes. The basic idea is to abstract the
set of constraints by a Boolean function which holds if all the constraints are satisfied.
Solutions are also represented as functions (assignments), namely from variables to the
set of values.

Definition 1. A CSP is a triple 〈V, D,C〉, whereV denotes the set of variables,D
denotes the set of possible values for these variables, andC : (V → D) → Bool is a
constraint that specifies which assignments of values to the variables are solutions. A
solutionto a CSPP = 〈V,D, C〉 is a functionσ : V → D such thatC(σ) = true. The
set of solutions to a CSPP is denoted bySol(P).



Many practical problems involve the optimisation of objective functions and much
research in recent years has focused on applying filtering algorithms to prune the re-
sulting “optimisation” constraints (e.g., [23, 11]). In general, in existing languages and
systems, these optimisation constraints are expressed using auxiliary variables. How-
ever, it is more elegant from a modeling standpoint, and more effective when deriving
symmetries, to capture these functions directly.

Definition 2. A global functionover variablesV and valuesD is a functionf : (V →
D) → N .

A constraint optimisation problem (COP) consists of minimising an objective func-
tion subject to a set of constraints.

Definition 3. A COPis a quadrupleO = 〈V, D,C, f〉, whereP = 〈V, D, C〉 is a CSP
and f is a global function overV and D. Theoptimal valuef∗ of O is the minimal
value off taken by any solution toP, i.e.,

f∗ = min
σ∈Sol(P)

f(σ).

An optimal solutionof O is a solutionσ of P whose objective value is optimal, i.e.,
f(σ) = f∗. We useSol(O) to denoteSol(P) in the following.

The key idea behind this paper is that symmetries can be systematically derived
through composition of CSPs (or COPs). The next definition captures compositions of
CSPs formally.

Definition 4. Let P1 = 〈V, D, C1〉 andP2 = 〈V,D, C2〉 be two CSPs. Thecompo-
sition of P1 andP2, denoted byP1 ∧ P2, is the CSPP = 〈V, D,C1 ∧ C2〉, whose
solutions satisfySol(P) = Sol(P1) ∩ Sol(P2).

3 Value and Variable Interchangeability

There are many applications in resource allocation and scheduling where the exact val-
ues taken by the variables are not important. What is significant is which variables take
thesamevalues or, in other terms, how the variables are clustered. Other applications
exhibit weaker notions of value interchangeability, such as the concept of piecewise
value interchangeability where only subsets of values are interchangeable. As shown in
[25], these symmetries can be broken efficiently during search and it is thus particularly
important to discover them automatically.

Definition 5. Let P = 〈V, D,C〉 be a CSP.P is value-interchangeableif, for each
solutionσ ∈ Sol(P) and each bijectionb : D → D, the functionb ◦ σ ∈ Sol(P).

Example 1.Let V ⊇ {v1, v2, v3}. The CSPP = 〈V, D, allDifferent(v1, v2, v3)〉 is
value-interchangeable.

We now define piecewise value-interchangeability.



Definition 6. LetD = {D1, . . . , Dn} be a partition ofD. A bijectionb : D → D is
piecewise interchangeableoverD if ∀v ∈ Di : b(v) ∈ Di (1 ≤ i ≤ n).

Definition 7. LetP = 〈V, D, C〉 be a CSP andD be a partition ofD. P is piecewise-
value-interchangeable(PVI) overD if, for each solutionσ ∈ Sol(P) and each piecewise-
interchangeable bijectionb overD, b ◦ σ ∈ Sol(P).

Note that, ifP = 〈V,D, C〉 is value-interchangeable, then it is piecewise-value-
interchangeable over{D}. As a consequence, it is easy to compose these two forms of
symmetries.

Example 2.LetV ⊇ {v1, v2, v3}, D 3 1, and consider a constraintatmost(o, d, 〈v1, . . . , vk〉)
which holds for an assignmentσ if there are at mosto occurrences ofd in 〈σ(v1), . . . , σ(vk)〉.
The CSP〈V,D, atmost(2, 1, 〈v1, v2, v3〉)〉 is PVI over{{1}, D \ {1}}.

Value-interchangeability also applies to global functions, in which case the value of
a function must not change under various forms of bijection.

Definition 8. A global functionf : (V → D) → N is value-interchangeableif, for
each assignmentσ : V → D and each bijectionb : D → D, f(σ) = f(b ◦ σ).

Example 3.LetV ⊇ {v1, . . . , v5} and consider global functions of the formnbDistinct
(v1, . . . , vk) which, given an assignmentσ, return the number of distinct values in
〈σ(v1), . . . , σ(vk)〉. The global functionnbDistinct(v1, . . . , v5) is value-interchangeable.

Definition 9. Let D be a partition ofD. A global functionf : (V → D) → N
is piecewise-value-interchangeableoverD if, for each assignmentσ : V → D and
piecewise-interchangeable bijectionb overD, f(σ) = f(b ◦ σ).

These concepts can be generalised to COPs.

Definition 10. LetO = 〈V,D, C, f〉 be a COP.O is value-interchangeableif, for each
solutionσ ∈ Sol(O) and each bijectionb : D → D, b ◦ σ ∈ Sol(O) and f(σ) =
f(b ◦ σ).

Definition 11. Let O = 〈V, D,C, f〉 be a COP andD be a partition ofD. O is
piecewise-value-interchangeableoverD if, for each solutionσ ∈ Sol(O) and each
piecewise-interchangeable bijectionb overD, b ◦ σ ∈ Sol(O) andf(σ) = f(b ◦ σ).

In the following, we often assume fixed setsV andD in examples for simplicity
and talk directly about the composition and interchangeability of constraints, since they
are essentially equivalent to their CSP counterparts.

It is also important to emphasise that all results presented in the next sections have
direct counterparts for variable interchangeability. This is due to the fact that the def-
inition of variable interchangeability is essentially similar to value interchangeability.
Consider the simplest definition of variable interchangeability.

Definition 12. LetP = 〈V, D, C〉 be a CSP.P is variable-interchangeableif, for each
solutionσ ∈ Sol(P) and each bijectionb : V → V , the functionσ ◦ b ∈ Sol(P).

The difference is the composition order ofσ and the bijection (which also has a
different signature).



4 Composition of Constraint Symmetries

Value symmetries arise in many applications and can be broken efficiently during search.
Unfortunately, there is no general efficient algorithm for computing interchangeable
values in CSPs [13]. The key insight is that symmetries can be compositionally inferred
from global constraints. More precisely, given two constraints (or CSPs)C1 andC2,
the symmetries of their compositionC1 ∧ C2 can be inferred automatically from the
symmetries ofC1 andC2. The following result is immediate.

Proposition 1. LetP1 = 〈V, D, C1〉 andP2 = 〈V, D,C2〉 be two value-interchangeable
CSPs. Then, their compositionP1 ∧ P2 is value-interchangeable.

The following example illustrates the result.

Example 4.Let V ⊇ {v1, . . . , v6} and letC1 andC2 be the constraintsallDifferent
(v1, v2, v3) andallDifferent(v4, v5, v6). ThenC1 ∧ C2 is value-interchangeable.

Note that constraints in practice only “constrain” a subset of the variables, although
they are formally defined over all variables. The next result specifies how to compose
piecewise-value-interchangeable CSPs.

Proposition 2. LetP1 = 〈V,D, C1〉 andP2 = 〈V,D, C2〉 be two CSPs. Assume that
Pi is piecewise-value-interchangeable over partitionDi of D (1 ≤ i ≤ 2). Then the
compositionP1 ∧ P2 is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 6= ∅}.

Proof. First observe thatD is a partition ofD. Now letb be a piecewise-interchangeable
bijection overD. We show thatb is piecewise-interchangeable overD1. Indeed, con-
sider a setD1 ∈ D1 and a valued ∈ D1. By definition ofD, there existsD2 ∈ D2

such thatI = D1 ∩ D2 and d ∈ I. Sinceb is piecewise-interchangeable overD,
b(d) ∈ I ⊆ D1 andb is piecewise-interchangeable overD1. Similarly, we can show
thatb is piecewise-interchangeable overD2. As a consequence, ifσ ∈ Sol(P1 ∧ P2),
thenb ◦ σ ∈ Sol(P1) andb ◦ σ ∈ Sol(P2). Hence,b ◦ σ ∈ Sol(P1 ∧ P2).

Example 5.Let D = {1, . . . , 10} and letC1 andC2 be the constraintsatmost(1, 1,
〈v1, . . . , v5〉) andatmost(2, 2, 〈v1, . . . , v5〉) which are PVI overD1 = {{1}, {2, . . . , 10}}
andD2 = {{2}, {1, 3, . . . , 10}} respectively. The compositionC1 ∧ C2 is PVI over

D = {{1}, {2}, {3, . . . , 10}}.

It is important to emphasise that the derivation of symmetries using propositions 1
and 2 is polynomial in|D|. As a consequence, the compositional symmetry analysis of
a CSP is polynomial in|D| and the number of constraints. Of course, it is not guaran-
teed to be precise, i.e., it may not report all symmetries in the application. However,
whenever global constraints are used to model an application, the symmetries appear
naturally and the loss of precision is often avoided. Furthermore, we discuss this later
in the paper how reformulations may help in addressing this issue.



5 Composition of Function Symmetries

This section shows how to compose function symmetries from global functions. It also
shows how to infer symmetries in COPs and how function symmetries can be used to
infer symmetries on numerical constraints.

Proposition 3. Let f1 andf2 be two global functions of signature(V → D) → N . If
f1 andf2 are value-interchangeable, then so aref1 ? f2, where? ∈ {+,−,×}.

Of course, the result can be generalised to other operators.

Example 6.Let V ⊇ {v1, . . . , v6} and letf1 andf2 be the global functionsnbDistinct
(v1, v2, v3) andnbDistinct(v4, v5, v6). Then, the global function3f1 + 4f2 is value-
interchangeable.

Proposition 4. Letf1 : (V → D) → N andf2 : (V → D) → N be two global func-
tions. If f1 andf2 are piecewise-value-interchangeable overD1 andD2 respectively,
thenf1 ? f2, where? ∈ {+,−,×}, is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 6= ∅}.

We now show how to derive symmetries for COPs by considering both the con-
straint and the objective function.

Proposition 5. Let O = 〈V, D,C, f〉 be a COP and P = 〈V, D, C〉. If P and f
are value-interchangeable, thenO is value-interchangeable. IfP is piecewise-value-
interchangeable over partitionD1 of D andf is piecewise-value-interchangeable over
partitionD2 of D, thenO is piecewise-value-interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 6= ∅}.

In many applications, constraints are built from global functions and arithmetic op-
erators. The next proposition shows how to derive symmetries for such constraints.

Proposition 6. Let f : (V → D) → N be a global function andD be a partition
of D. If f is piecewise-value-interchangeable overD, then the CSP〈V,D, f ≈ 0〉 is
piecewise-value-interchangeable overD as well, where≈ ∈ {>,≥, =, 6=,≤, <}.

6 Scene Allocation

We now illustrate how these results can be used to detect value symmetries on the scene-
allocation problem, which consists of producing a movie at minimal cost by deciding
when to shoot scenes. Each scene involves a number of actors and at most 5 scenes a
day can be filmed. All actors of a scene must be present on the day the scene is shot. The
actors have fees representing the amount to be paid per day they spend in the studio.
The goal of the application is to minimise the production costs and an optimal solution
is an assignment of scenes to days which minimises the production costs. On some
reasonably small instances, a state-of-the-art MIP solver took about 2 minutes and a CP



range Scenes = ...;
range Days = ...;
range Actors = ...;
int fee[Actors] = ...;
{Scenes } S[Actors] = ...;
var Days shoot[Scenes];

minimise
sum(a in Actors)

fee[a]*nbDistinct(all(s in S[a]) shoot[s])
subject to

atmost(5,Days,shoot);

Fig. 1. The Scene Allocation Model

solver took about 8 minutes for solving the problem. By removing value symmetries
during search, the execution time of the CP solver fell to below 10 seconds [26].

It is also interesting to quote [25] here: “It should be apparent that the exact days
assigned to the scenes have no importance in this application and are fully interchange-
able. What is important is how the scenes are clustered together. Our approach does not
aim at discovering this fact; rather it focuses on how to exploit it to eliminate the sym-
metries it induces.”The main contribution of this paper is entirely orthogonal: it shows
how the value interchangeability of the scene allocation problem can be automatically
derived from the properties of the constraints.

Consider Figure 1 which depicts an OPL-like model for scene allocation, where
the instance data is given in a separate file as typical. The first three lines specify
the various ranges for scenes, days, and actors. The next two lines specify the fee of
each actor and the set of scenesS[a] which actora plays in. The next line specifies
the variables andshoot[s] represents the day assigned to scenes . The constraint
atmost(5,Days,shoot) is a global cardinality constraint which specifies that at
most 5 scenes can be shot every day. The objective function sums the fees of each actor,
each actor being paid her fee for each different day in which one of her scenes is shot.
Indeed, the expressionall(s in S[a]) shoot[s] collects the variables associ-
ated with the scenes of actora in an array of variables, which is used in the function
nbDistinct . Observe now that constraintatmost(5,Days,shoot) is value-
interchangeable. The global functionnbDistinct is also value-interchangeable (see
Example 3). By Proposition 3, the objective function is value-interchangeable. Hence,
by Proposition 5, the scene-allocation model in Figure 1 is value-interchangeable. In
summary, as mentioned earlier, once the value symmetries of the global objects are
known, it is possible to derive value symmetries of the entire model using the results of
this paper.

It is also useful to stress the benefits of global constraints. The value symmetries
derived on the model above are dramatically more complicated to detect on the MIP
model. Indeed, the values are not even explicit in that model, which encodes the scene
assignment in terms of 0/1 variables.



range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {

forall(g in Parties)
allDifferent(all(p in Periods) b[g,p]);

forall(p in Periods)
weightedAtmost(size,

all(g in Parties) b[g,p],
cap);

forall(i in Parties, j in Parties: j>i)
meetAtmost(all(p in Periods) b[i,p],

all(p in Periods) b[j,p],
1);

};

Fig. 2. The Progressive Party Model

7 Progressive Party Problem

The progressive party problem is a traditional benchmark which is often used to com-
pare constraint programming, mathematical programming, and local search. Figure 2
depicts an OPL-like model for this problem, which is a direct translation of the Comet
model in [18]. The first three lines specify the ranges, i.e., the boats, the parties, and the
periods. The next two lines specify the size of the parties and the capacities of the boats.
The variables are declared next and assign a boatb[g,p] to partyg at periodp. The
first set of constraints specifies that a party never visits the same boat twice. The second
set of constraints are weighted cardinality constraints which specify that the sizes of
the parties visiting a boat during a period cannot exceed the boat capacity. The final set
of constraints are again cardinality constraints specifying that two parties meet at most
once: a constraintmeetAtmost(〈v1, . . . , vp〉, 〈w1, . . . , wp〉, k) holds for an assignment
σ if #{i ∈ 1..p | σ(vi) = σ(wi)} ≤ k. Observe that theallDifferent constraints are
value-interchangeable. ThemeetAtmostconstraints are also value-interchangeable. The
interesting part in this model are theweightedAtmostconstraints. A constraint

weightedAtmost(〈s1, . . . , sn〉, 〈v1, . . . , vn〉, 〈c1, . . . , cm〉)

holds for an assignmentσ if ∀k ∈ 1..m :
∑

i∈Sk
si ≤ ck whereSk = {i ∈ 1..n | σ(vi) =

k}. This constraint is piecewise-value-interchangeable overD = {D1, . . . , Dm}, where
Dk = {i ∈ 1..m | ci = ck}. As a consequence, our compositional derivation auto-
matically infers that boats with the same capacity are piecewise-value-interchangeable.
Note that a similar derivation for the variables infers that parties with the same sizes are
piecewise-variable-interchangeable.



8 Reformulations

The symmetry derivations presented earlier can often be strengthened by model refor-
mulations which can be seen as adaptations to constraint satisfaction of “presolve” tech-
niques used in mixed-integer programming [16]. We present two first reformulations,
aggregation and projection.

8.1 Aggregation

The symmetry derivations presented earlier may be suboptimal as the following exam-
ple indicates.

Example 7.Let V ⊇ {v1, . . . , v3} andD ⊇ {1, 2}. ConstraintC1 = atmost(2, 1,
〈v1, v2, v3〉) is PVI overD = {{1}, D\{1}}. ConstraintC2 = atmost(2, 2, 〈v1, v2, v3〉)
is PVI overD = {{2}, D \ {2}}. By Proposition 2,C1 ∧ C2 is PVI overD =
{{1}, {2}, D \ {1, 2}}. However,C1 ∧ C2 is also PVI overD = {{1, 2}, D \ {1, 2}},
which is stronger.

This precision loss can be remedied by modeling the problem more globally using,
say, a global cardinality constraint [23]. Again, the observation is thatglobal constraints
are fundamental tools to derive stronger symmetries.

Example 8.Consider a global cardinality constraintatmost(〈o1, . . . , ok〉, 〈d1, . . . , dk〉,
〈v1, . . . , vn〉) which holds for an assignmentσ if there exist at mostoi occurrences of
di in 〈σ(v1), . . . , σ(vn)〉 (1 ≤ i ≤ k). It is PVI over{D1, . . . , Dk, D\(D1∪· · ·∪Dk)}
whereDi = {dj | oj = oi & 1 ≤ j ≤ k} (1 ≤ i ≤ k). For instance,
atmost(〈1, 2, 1〉, 〈1, 2, 3〉, 〈v1, . . . , vn〉) is PVI over{{1, 3}, {2}, D \ {1, 2, 3}} since
D1 = D3 = {1, 3}.

Of course, a more global modeling of the problem will likely also lead to better
propagation.As a consequence, automated tools for symmetry detection (and model-
ing in general) should provide aggregation operators exploiting the semantics of con-
straints.They can be specified as follows.

Definition 13. LetC1 andC2 be two constraints of signatureC = (V → D) → Bool.
A compositional aggregatoris a binary operator⊗ of signature(C × C) → C such that
C1 ⊗ C2 is a single global constraint equivalent toC1 ∧ C2.

Example 9.Let V ⊇ {v1, v2, v3}, D ⊇ {1, 2} and constraintsC1 = atmost(2, 1,
〈v1, v2, v3〉) andC2 = atmost(2, 2, 〈v1, v2, v3〉). A compositional aggregator ofC1

andC2 may return the constraintatmost(〈2, 2〉, 〈1, 2〉, 〈v1, . . . , v3〉).

8.2 Projection

Projections, the second class of reformulations considered in this paper, are important
in many applications. On the one hand, they are often useful when a general model
(e.g., a round-robin sport-scheduling model) is specialised to a specific problem (e.g.,



the ACC basketball schedule for the 2004 season) by introducing, among others, some
fixed decisions. On the other hand, they are useful in deriving dynamic symmetries, i.e.,
symmetries not present in the original problem but arising after a number of variable
assignments. The following example illustrates the significance of projections when
deriving symmetries.

Example 10.LetV = {v1, . . . , v5}, letC1 be the constraintatmost(〈3, 2〉, 〈1, 2〉, 〈v1, . . . , v5〉)
andC2 bev1 = 1. The CSP〈V,D, C1∧C2〉 is derived to be PVI overD = {{1}, {2}, D\
{1, 2}} sinceC1 is PVI over{{1}, {2}, D\{1, 2}} andC2 is PVI over{{1}, D\{1}},
which is as strong as possible. However, considerV ′ = V \ {v1} and the constraint
C defined asatmost(〈2, 2〉, 〈1, 2〉, 〈v2, . . . , v5〉). The CSP〈V ′, D, C〉 is PVI overD =
{{1, 2}, D \ {1, 2}}.

This example indicates that more symmetries may be available on subproblems
when some variables are projected out. Moreover, since the assignment of values to
variables is the fundamental operation of many search procedures, projections are an
important tool to derive symmetries dynamically.As a consequence, symmetry detection
tools should ideally include projection operators exploiting the semantics of primitive
constraints.

Definition 14. Let C be a constraint of signatureC = (V → D) → Bool, andV ′ =
V \ {v}. A projection operatorfor C wrt v = d is a function↑v=d of signatureC → C′,
whereC′ = (V ′ → D) → Bool, satisfying

Sol(〈V,D, C ∧ v = d〉) = Sol(〈V, D, C ↑v=d ∧v = d〉.

The key intuition here is that constraintC ↑v=d is only expressed in terms of vari-
ables inV ′ and does not add or remove any solution to the original problem.

9 Symmetries in Matrix Models

This section considers the derivation of variable symmetries in matrix models, which
have been found useful in a variety of applications involving symmetries. In particular,
we show how the techniques presented earlier apply to the detection of column symme-
tries in matrix models. (The derivation of row symmetries is similar.) Figure 3 presents
a specification of the progressive party problem using matrix modeling. It is essentially
similar to the model presented earlier but uses matrices and rows of matrices directly in
constraints. We now show how to systematically derive column-interchangeability on
this model.

Formally, a matrixM of variables can be modelled as a bijectionX × Y → V ,
whereX are the row indices ofM , Y its column indices, andV its set of variables. For
clarity, we use traditional notations:M [i, j] denotes the variable in rowi and in column
j, M [i] row i, andM [∗, j] columnj. We assume that all matrices are defined over row
indicesX and column indicesY .

Definition 15. A matrix-CSP(MCSP) is a triple〈M, D,C〉, whereM is a matrix of
variables,D denotes the set of values for these variables, andC : (M → D) → Bool



range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {

forall(g in Parties)
allDifferent(b[g]);

weightedAtmost(size,b,cap);
forall(i in Parties, j in Parties: j>i)

meetAtmost(b[i],b[j],1);
};

Fig. 3. The Progressive Party Matrix Model

specifies which assignments of values to the variables are solutions. Asolution to an
MCSPP = 〈M, D,C〉 is a functionσ : M → D such thatC(σ) = true. The set of
solutions toP is denoted bySol(P).

The next definitions specify column interchangeability, a “global” form of variable
interchangeability.

Definition 16. A column permutationfor a matrixM is a functionρ : M → M such
that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some bijectionb : Y → Y .

Definition 17. An MCSPP = 〈M,D, C〉 is column-interchangeableif, for each so-
lution σ ∈ Sol(P) and each column permutationρ : M → M , the functionσ ◦ ρ ∈
Sol(P).

Proposition 7. LetP1 = 〈M,D, C1〉 andP2 = 〈M, D,C2〉 be two column-interchangeable
MCSPs. Then, their compositionP1 ∧ P2 is column-interchangeable.

Example 11.Consider the matrix model in Figure 3. The constraintsallDifferent and
meetAtmostare column-interchangeable. Indeed, the variable (resp. pair) order is not
significant inallDifferent(resp.meetAtmost) and both are applied on rows of the matrix.
The globalweightedAtmostconstraint is column-interchangeable, since it applies the
same constraint to all columns. It is an aggregation of

forall(p in Periods)
weightedAtmost(size,b[*,p],cap);

which cannot be shown column-interchangeable compositionally.

We conclude this section by generalising the results to piecewise interchangeability.



Definition 18. Let Y be a partition overY . A piecewise column permutationoverY
for a matrixM is a functionρ : M → M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some piecewise-interchangeable bijectionb overY.

Definition 19. LetY be a partition overY . An MCSPP = 〈M, D,C〉 is piecewise-
column-interchangeableoverY if, for each solutionσ ∈ Sol(P) and each piecewise
column permutationρ overY, the functionσ ◦ ρ ∈ Sol(P).

Proposition 8. LetP1 = 〈M, D,C1〉 andP2 = 〈M, D, C2〉 be two piecewise-column-
interchangeable MCSPs overY1 andY2 respectively. Then, their compositionP1 ∧P2

is piecewise-column-interchangeable over

Y = {Y1 ∩ Y2 | Y1 ∈ Y1 & Y2 ∈ Y2 & Y1 ∩ Y2 6= ∅}.
These results naturally generalise to matrix-COPS.

10 Conclusion

This paper reconsidered the problem of discovering symmetries in constraint satisfac-
tion problems by exploiting one of the fundamental aspects of constraint program-
ming: the ability of global constraints to capture combinatorial substructures. The paper
showed that, once the symmetries of global constraints are specified, various classes of
symmetries can be derived precisely and efficiently in a compositional fashion. The
paper studied value and variable interchangeability, as well as column and row inter-
changeability in matrix models. It also stressed the benefits of traditional reformulations
such as aggregation and projection to strengthen symmetry detection. The potential of
this approach was demonstrated on two non-trivial applications.

It is important to stress that symmetries can be discoveredfully automaticallyin this
way. While a human modeller is usually aware ofsomesymmetries in a model, such as
full column- or row-interchangeability of a matrix CSP, the discovery of more, if not
all, symmetries can be tedious and error-prone, especially forpiecewiseinterchange-
abilities. The latter usually change from one problem instance to the next, so it is safer
and faster to let the system discover symmetries. Another strong motivation for the au-
tomatic discovery of symmetries is that dynamic symmetries can be discovered as well,
using projection operators, as outlined in Section 8.2.

In practice, an implementation of the ideas in this paper would feature a database
with the value and variable interchangeability results of each global constraint and
global function. In fact, there is not even a need to consider only global constraints and
global functions. For example, the CSPP = 〈V, D, v1 < v2〉, whereV ⊃ {v1, v2},
is piecewise variable-interchangeable over the partition{{v1}, {v2}, V \ {v1, v2}} of
V , by application of the variable-interchangeability counterparts of Definition 9 and
Propositions 4 and 6. Another example is the piecewise value-interchangeability of
constraintC2 in Example 10. Work in these directions has begun [7]. Such a system
will only be limited by the strength of its reformulation operators, as too weak such



operators prevent all the (static or dynamic) symmetries from being discovered or lead
to insufficiently strong partitions upon piecewise interchangeabilities.

The work of [24] is closely related to ours: (piecewise)variableinterchangeabilities
are discovered compositionally from the model, using the intrinsic interchangeabilities
of the constraints rather than their extensional definitions. It is observed that this method
works particularly well in the presence of global constraints, as the sets of a variable
partition are then likely to have more than two elements, unlike with binary constraints.
Our work extends this work by also considering (piecewise)value interchangeabili-
ties, (global) functions, and constraintoptimisationproblems, as well as by making
the composition results more precise and by presenting reformulation operators. The
notion of symmetrical constraint [19] corresponds to our notion of a constraint with
(non-piecewise)variable interchangeability. Dynamic symmetries have been consid-
ered in the context of neighbourhood interchangeability [6, 17]; further investigations
have been within the planning domain [12] and in [15].

It is also interesting to relate this research to the automatic modeling project of [2],
which uses compositional refinement to transform abstract specifications into constraint
programs. Since these transformations may introduce symmetries, [2] proposes to an-
notate the refinement rules with the symmetries so that they can be broken subsequently.
Our bottom-upderivation approach is entirely orthogonal to theirtop-downrefinement
approach: It could in fact be applied as a first step to deduce properties of models before
refinement. Both works also address the need for more automation for non-experts, a
feature which is currently lacking in constraint programming when compared to MIP
technology.
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