
Compiling High-Level Type Constructorsin Constraint ProgrammingPierre Flener, Brahim Hnich, and Zeynep K�z�ltanComputer Science Division, Department of Information ScienceUppsala University, Box 513, S { 751 20 Uppsala, SwedenfPierre.Flener, Brahim.Hnich, Zeynep.Kiziltang@dis.uu.seAbstract. We propose high-level type constructors for constraint pro-gramming languages, so that constraint satisfaction problems can bemodelled in very expressive ways. We design a practical set constraintlanguage, called esra, by incorporating these ideas on top of opl. A setof rewrite rules achieves compilation from esra into opl, yielding pro-grams that are often very similar to those that a human opl modellerwould (have to) write anyway, so that there is no loss in solving e�ciency.1 IntroductionOptimisation problems | where appropriate values for the problem variablesmust be found within their domains, subject to some constraints, such thatsome cost function on these variables takes an optimal value | are ubiquitousin industry. Examples are production planning subject to demand and resourceavailability so that pro�t is maximised, air tra�c control subject to safety pro-tocols so that
ight times are minimised, transportation scheduling subject toinitial and �nal location of the goods and the transportation vehicles so thatdelivery time and fuel expenses are minimised, etc. A particular case are deci-sion problems, where there is no cost function that must take an optimal value.They are collectively known as constraint satisfaction problems (CSPs). Many ofthese problems can be declaratively expressed as constraint programs and thenbe solved using constraint solvers.However, e�ective constraint programming (or: modelling) is very di�cult,even for application domain experts, and hence time-consuming. Moreover, manyof these problems are ill-behaved, in the sense that it can be shown that solvingthem requires an amount of time that is worse than polynomial in the size ofthe input data, hence making solving times prohibitively long.To address the programming-time problem, ever more expressive and declara-tive constraint programming languages are being designed, providing traditionalalgebraic notations (such as sums and products over indexed expressions) anduseful datatypes (such as sets, arrays, and enumerations) to enable a more nat-ural expression of the constraints, freeing the programmer thus more and morefrom traditional (and often low-level) computing obligations, such as the writingof iterative/recursive code or the encoding of concepts as numbers.

To address the solving-time problem, the default behaviour of the solver canbe modi�ed and implied constraints can be posted so as to reduce the searchspace. Such optional (but often necessary) practice is however a concessionthat fully declarative constraint programming is still far away, and the ques-tion whether procedural search statements can be automatically added uponanalysis of the constraints remains essentially open (but see [7, 10]).Concerns about the solving time also require trade-o�s about expressiveness:the programming language must after all be executable (though need not becomputationally complete) and its programs should ideally execute quickly (and�nitely). For instance, set constraint languages may well allow the formulation ofconstraints over sets (such as clps [1], conjunto [8], np-spec [3], oz [11], andflogg [4]), hence providing enormous expressiveness, but if they cannot be com-piled into acceptably fast code, then the advantage of decreased programmingtime is neutralised by the disadvantage of increased solving time.Starting from the very expressive (and fast) opl (Optimisation Program-ming Language) [16], we here design an even more expressive (and equally fast)language, called esra, and show how it is compiled into opl. Like opl, the esralanguage is strongly typed, and a sugared version of what is essentially a �rst-order logic language. Unlike opl, the esra language supports more advancedtypes, such as mappings, and allows variables of these types as well as of typeset, making it a set constraint language.This paper is organised as follows. In Section 2, we present a motivatingexample. We can then introduce, in Section 3, the syntax of our esra language,as well as explain, in Section 4, the semantics of esra by showing how it iscompiled into opl. Finally, in Section 5, we conclude, compare with relatedwork, and discuss our directions of future work.2 A Motivating ExampleWe now argue that it is possible to improve the expressiveness of even opl. Aftergiving a (published) opl model for a motivating example, we identify expres-siveness problems with opl, propose a more expressive model in our language,called esra, and show that the opl model into which it compiles is very similarto the one initially given. To make this paper self-contained, no prior knowledgeof opl is assumed here and we explain all its features that are used here.In the Warehouse Location problem [16], a company considers opening ware-houses on some candidate locations in order to supply its existing stores. Eachpossible warehouse has the same maintenance cost, and a capacity designatingthe maximum number of stores that it can supply (C1). Each store must be sup-plied by exactly one open warehouse (C2). The supply cost to a store dependson the warehouse. The objective is to determine which warehouses to open, andwhich of these warehouses should supply the various stores, such that the sumof the maintenance and supply costs is minimised.

int MaintCost = ...;int NbStores = ...;enum Warehouses ...;range Stores 0..NbStores-1;int Capacity[Warehouses] = ...;int SupplyCost[Stores,Warehouses] = ...;var int OpenWarehouses[Warehouses] in 0..1;var Warehouses Supplier[Stores];minimizesum(I in Stores) SupplyCost[I,Supplier[I]]+ sum(J in Warehouses) MaintCost * OpenWarehouses[J]subject to {forall(I in Stores)OpenWarehouses[Supplier[I]]=1;forall(J in Warehouses)(sum(I in Stores) (Supplier[I]=J)) <= Capacity[J];}; Fig. 1. Published opl model of the Warehouse Location problem2.1 An opl Model of the Warehouse Location ProblemThis problem can be modelled in opl as in Figure 1, which is (a renaming ofStatement 12.1) published in [16]. Instance data MaintCost and NbStores areintegers read in at run-time, and so are the enumeration Warehouses of candi-date warehouse locations, the (1-dimensional) array Capacity with the integercapacities of the warehouses, and the (2-dimensional) array SupplyCostwith theinteger supply costs to the stores from the warehouses. The type Stores is aninteger range denoting the existing stores. The set of warehouses to be opened ismodelled as an array OpenWarehouses[Warehouses] of Boolean variables, suchthat OpenWarehouses[W] is 1 if warehouse W is open. Also, the desired mappingfrom Stores into Warehouses is modelled by an array Supplier[Stores] ofvariables ranging in Warehouses, such that Supplier[S] is W when warehouseW supplies store S; this representation choice captures the \exactly one" part ofconstraint C2. The minimize statement expresses that the addition of the sum ofthe supply costs and the sum of the maintenance costs (for the actually openedwarehouses) must be minimal. The �rst forall statement expresses the \open"part of constraint C2, while the second forall statement captures C1. A nestedconstraint, such as (Supplier[I]=J), is seen as 1 if true, and 0 if false.Let us analyse this opl model. Since set variables are not available,1 themodeller had to �nd another way of expressing that a subset of the warehousesis to be found. The classical ILP (integer linear programming) way of modellinga subset of a given set as an array of Boolean variables was used. Therefore, amapping from the set of stores into the entire set of warehouses had to be sought,1 Like ILOG Solver, OPL only supports ground sets, over any type (not just integers).OPL sets are thus only available for instance data, but not for domain variables,and OPL set operations thus only serve the pre-processing of instance data.

1: int MaintCost = ...;2: int NbStores = ...;3: enum Warehouses ...;4: range Stores 0..NbStores-1;5: int Capacity[Warehouses] = ...;6: int SupplyCost[Stores,Warehouses] = ...;7: var {Warehouses} OpenWarehouses;8: var Stores->OpenWarehouses Supplier;9: minimize10: sum(I->J in Supplier) SupplyCost[I,J]11: + card(OpenWarehouses) * MaintCost12: subject to {13: forall(J in OpenWarehouses)14: count(I in Stores: I->J in Supplier) <= Capacity[J];15: }; Fig. 2. An esra model of the Warehouse Location probleminstead of a mapping from the set of stores into a subset of the set of warehouses.This rather low-level data modelling forced a new way of perceiving the prob-lem, leading to a rather awkward modelling of its cost function and constraints.Indeed, in the cost function, the sum of the maintenance costs has to be over allthe warehouses, with the Booleans of OpenWarehouses being reinterpreted asweights, instead over just the open warehouses. Also, the �rst forall constraintis entirely due to the inability of the data modelling to express that a mappingfrom a given set to a subset of another given set has to be sought. The secondforall constraint is above reproach, however.2.2 An esra Model of the Warehouse Location ProblemOur esra language allows CSP modelling at an even higher level of abstractionthan opl. Introducing (among others) set and mapping variables, constraintsover sets and mappings, a card function returning the cardinality of a set, anda count operator counting the number of times a relation holds, we propose theesra model in Figure 2 as a more expressive formalisation of the WarehouseLocation problem. (Line numbers were added for future reference.) The variabledeclarations elegantly express that OpenWarehouses is a subset of Warehouses,and that Supplier is a mapping from Stores into OpenWarehouses, and thiswithout the modeller having had to worry about their internal representations.A more natural formulation of the cost function and constraint C1 arises fromthis, as well as a complete capture of constraint C2 by the data modelling.The opl model generated from that esra model is given in Figure 3. (Linenumbers were added for future reference.) Note the similarity of this opl modelwith the opl model in Figure 1. The declaration parts are the same, and so arethe optimisation parts (except that our generated opl model exploits distribu-tivity of multiplication over addition). In the constraint parts, the �rst forallconstraints are identical, while the second forall constraints di�er a bit because

a: int MaintCost = ...;b: int NbStores = ...;c: enum Warehouses ...;d: range Stores 0..NbStores-1;e: int Capacity[Warehouses] = ...;f: int SupplyCost[Stores,Warehouses] = ...;g: var int OpenWarehouses[Warehouses] in 0..1;h: var Warehouses Supplier[Stores];i: minimizej: sum(I in Stores) SupplyCost[I,Supplier[I]]k: + (sum(J in Warehouses) OpenWarehouses[J]) * MaintCostl: subject to {m: forall(I in Stores)n: OpenWarehouses[Supplier[I]]=1;o: forall(J in Warehouses)p: OpenWarehouses[J]=1 =>q: (sum(I in Stores) (Supplier[I]=J)) <= Capacity[J];r: };s: display(I in Warehouses: OpenWarehouses[I]=1) <I>;Fig. 3. Generated opl model of the Warehouse Location problemthe original opl model iterates over all warehouses whereas the proposed esramodel iterates only over the open warehouses (in fact, we could have chosen thesame iteration in the esra model, but we believe that it is more natural to beonly interested in checking the capacity constraints on the open warehouses).Furthermore, the generated opl model has a display part to pretty-print theresult. The (time and space) execution behaviours are identical.3 The Syntax of esraWe now explain the design decisions behind esra, introduce its syntax, andmotivate the need for some useful high-level type constructors.3.1 Design DecisionsSince opl is arguably the most expressive constraint programming languageavailable nowadays, we decided to minimise our e�orts for compiling esra intosome executable form by using opl as target language. Also, since it is arguablynot frequently possible to improve on the expressiveness of opl, a natural choicewas to make esra a conservative extension of opl, so that entire passages ofesra programs can be literally copied during compilation. Just like the designersof opl, we do not really care whether our esra language is complete (in anysense) or not, our main driving force being rather the design of a language thatis practical for modelling at least some classes of (real-life) CSPs.

esra is an extension of opl because we introduce useful high-level typeconstructors and allow the set operators of opl in set constraints.2 esra is thusdesigned to be more expressive than even opl, and we will show that this canbe done without compromising on e�ciency.These design decisions allow us to bene�t, as a side-e�ect, from the factthat the opl syntax elegantly hides that opl actually is a logic language. In-deed, typed quanti�cations are replaced by C-like type and variable declarations,conjunction is denoted by a semi-colon (the usual notation in imperative pro-gramming for sequential composition), etc. It is unfortunate that plain logicnotation is considered repulsive by many programmers, so e�orts indeed mustbe undertaken to give them a language with the look and feel of other languages.3.2 SyntaxIgnoring search issues, an esra program consists of a declaration part, followedby an optional optimisation part, and a constraint part, as described next.In the declaration part, the syntax of opl is applied to declare user-de�nedtypes, as well as typed instance data and variables. Instance data can be ini-tialised in the usual opl ways, at compile-time or at run-time. The primitivetypes are the integers (int), enumerations (enum), and strings (string) of opl.The type constructors are the ranges (range), records (struct), arrays (array),and sets (fg) (over any type) of opl, as well as new ones (described in the nextsub-section), namely a binary constructor (written -> and used in an in�x way)for mappings between sets, a unary constructor (perm) for permutations of sets,and a binary constructor (seq) for sequences of bounded length over sets. Con-trary to opl, there can even be declarations of variables of type set in esra. Forlack of space, we refer to [6] for the BNF grammar of the declaration part. Seelines 1 to 8 of Figure 2 for a sample declaration part.In the optimisation part and constraint part, the syntax of opl is again used,this time to express the cost function that has to be optimised, and to postconstraints. The main primitive constraints, relations, and expressions are theusual ones for (integer) arithmetic, (Boolean) logic, and sets. Powerful aggrega-tion operators such as summation (sum) and universal quanti�cation (forall)are available, making more general iteration/recursion mechanisms largely un-necessary. Contrary to opl, the set operators (in, subset, union, inter, card,etc) can also be used in esra constraints. Existential quanti�cation (exists)and counting (count) are also new. We again refer to [6] for the BNF grammarof the optimisation and constraint parts. See lines 9 to 11, and lines 12 to 15,in Figure 2 for sample optimisation and constraint parts.3.3 Useful High-Level Type ConstructorsIt is generally recognised that the highest-level data structures are:2 As our e�ort is not sponsored by ILOG, we do not infringe on copyrights by choosinga radically new name (esra) for our language, rather than something like opl+.

{ sequences : element containers where the union operation is associative, withelement order and element repetition being relevant;{ bags (or multisets): sequences where the union operation is commutative,making element order irrelevant;{ sets : bags where the union operation is idempotent, making element repeti-tion irrelevant.Sequences, bags, and sets are of possibly unbounded cardinality. Their usage isrecommended for the high-level modelling of problems. At lower levels of ab-straction, these data structures can be represented in a variety of ways, usingtrees, bit vectors, pointers, etc. As we are (here) not interested in sequentialaccess to sequence elements nor in sequences of unbounded cardinality, we aban-don sequences in favour of (�xed-size) arrays, with direct access to elements.Similarly, we are (for the time being) not concerned with bags and in�nite sets,and ignore them as modelling devices.So, equipped with (�nite) sets and arrays, what can a problem modellerdo? More precisely, are there any useful recurring modelling idioms that can becaptured in new ways? Following D.R. Smith [12], we claim that many problemsare of either of the following four classes: 3{ SUBSET : Find a subset of a given set. For example, �nding a clique of agraph amounts to �nding a subset of its vertex set.{ MAPPING : Find a mapping from a given set to another given set. Forexample, the colouring of the countries of a map, such that any two neighbourcountries have di�erent colours, �ts this class.{ PERMUTATION : Find an array that represents a permutation of a givenset. For example, scheduling jobs according to precedence constraints is apermutation problem.{ SEQUENCE : Find an array that represents a sequence, of bounded cardi-nality, of elements drawn from a given set. For example, a (variant of the)travelling salesperson problem can be modelled this way, with a set of citiesbeing ordered into a route, such that every city is visited at least once.Going beyond Smith's classi�cation now, we recognise that many real-life prob-lems are actually hybrid in nature, so that we also need to support any combi-nation of the four classes above. For instance, the Warehouse Location problemis a hybrid of SUBSET and MAPPING , because a mapping has to be foundfrom the given set of stores into a subset of the given set of warehouses.The four classes above are thus actually not classes of stand-alone problems,but rather give rise to powerful high-level type constructors, of which several canbe used in the same program. The syntax and (informal) meaning of their usagein variable declarations is as follows:{ var fTg S: Set S is a subset of set T. A superset of T must be known (i.e.,either T is a set or T is a subset of a known set). The internal representationof sets is hidden from the modeller, without losing in power. For instance:3 Smith actually identi�es seven classes, but we discarded one here, as it is not appli-cable to CSPs, and we twice merged two of his classes into one.

var {Vertices} Clique;...forall(A,B in Clique) <A,B> in Edges;is the core of a model of the clique problem.{ var V->W M: Mapping M is from set V into set W. Supersets of V and W must beknown. The internal representation of mappings is hidden from the modeller,access being restricted as in an abstract datatype. For instance:var Countries->Colours M;...forall(A,B in Countries) <A,B> in Neighbours => M[A]<>M[B];is the core of a model of the map colouring problem.{ var perm(S) A: Array A represents a permutation of set S. A superset of Smust be known. For instance:var perm(Jobs) Sched;...forall(I,J in 1..card(Sched)) <Sched[I],Sched[J]> in Prec => I<J;is the core of a model of the job scheduling problem.{ var seq(S,K) A: Array A represents a sequence, of bounded cardinality K,of elements drawn from set S. A superset of S must be known. For instance:int MaxCities = ...;var seq(Cities,MaxCities) Route;...forall(City in Cities) City in Route;is the core of a model of our travelling salesperson problem.The SUBSET class can be usefully generalised to nSUBSETS , where the aimis to �nd a maximum of n subsets of the given set. For instance, the WarehouseLocation problem can also be seen as �nding, for each warehouse, the set ofstores to which it delivers, i.e., �nding card(Warehouses) subsets of Stores.(Note that these subsets must be disjoint and that their union must be Stores;however, this is not a partitioning problem, as some of the subsets may be empty,denoting the fact that some warehouses are not to be opened.)4 The Semantics of esraWe now explain the semantics of the esra language, by exhibiting the archi-tecture of a compiler (into opl), and showing that the main modules of thatarchitecture can be easily implemented by a set of esra-to-opl rewrite rules.Finally, we give another example of the power of our approach, by modifyingthe Warehouse Location problem, re-modelling it straightforwardly in esra, butobtaining a less intelligible and longer opl program through compilation.

Decomposer

Composer

optimisation part
ESRA ESRA

constraint part
ESRA

declaration part

ESRA to OPL

declaration converter converter

ESRA to OPL

OPL program
generated

more OPL constraints
OPL optimisation part

OPL display part
OPL declaration part

some OPL constraints

ESRA program

Fig. 4. Architecture of the esra compiler4.1 Architecture of our esra CompilerThe architecture of our esra compiler is shown in Figure 4. First, the Decom-poser separates an esra program into its declaration, optimisation, and con-straint parts. Next, the esra-to-opl Declaration Converter rewrites all esradeclarations into opl declarations, and possibly into some opl constraints andopl display statements (see Section 4.2 for details). Also, the esra-to-opl Con-verter rewrites the esra optimisation and constraint parts into an opl opti-misation part and more opl constraints, using the declaration part (again seeSection 4.2 for details). Finally, the Composer assembles the generated opl pro-gram by suitably concatenating the obtained opl statements.

The Decomposer and Composer modules are trivial, and are not discussedhere. The converter modules are explained next.4.2 esra-to-opl Rewrite RulesWe use conditional rewrite rules, here written as follows:L) R j Cmeaning that, if condition C holds, then expression L is rewritten into R.As a running example, we show how each line of the esra model in Figure 2is compiled into some line(s) of the opl model in Figure 3. For reasons of space,we here only exhibit the rules that are needed to make this paper self-su�cient.We refer to [6] for the complete set of rules.esra-to-opl Declaration Converter. The declarations of esra that involvetypes not supported (in the same way) by opl (namely sets, mappings, permuta-tions, and sequences) are rewritten into opl declarations, and possibly into someopl constraints and display statements. All other declarations literally becomeopl declarations. For instance, lines a-f are identical to lines 1 to 6.For set variable declarations, one of the rules is as follows:var fTg S;) var int S[T] in 0..1; display(I in T: S[I]=1) <I>;j T is a known setA set S of known super-set T is thus represented, in this case, as an array ofBoolean variables, indexed by T. This Boolean representation of sets is morememory-consuming than the set interval representation of conjunto [8] andoz [11], but both have been shown to create the same O(2n) search space [8].Moreover, the set interval representation does not allow the de�nition of some (tous) desirable high-level primitives, such as universal quanti�cation over elementsof non-ground sets. This is why we have resorted to the Boolean representation,which is only naive in appearance. A display statement is also generated, in orderto pretty-print S. For instance, line 7 is rewritten into lines g and s becauseWarehouses is declared in line 3 as an enumeration.For mapping variable declarations, one of the rules is as follows:var V->W M;) var T M[V]; forall(I in V) W[M[I]]=1;j V is a known set, and W is a set variable of known super-set TThe mapping M is thus represented as an array of variables drawn from T, indexedby V. Furthermore, we post the constraint that every actually mapped elementof T must be a member of W. For instance, line 8 is rewritten into lines h, m, n.However, if a mapping is between set variables, then the rule is as follows:

var V->W M;) var int M[S,T] in 0..1;forall(I in S, J in T) M[I,J]=1 => V[I]=1 & W[J]=1;forall(I in S) V[I]=1 => (sum(J in T) (M[I,J]=1))=1;j V and W are set variables of known super-sets S and T, respectivelyThe mapping M is thus represented as a two-dimensional array of Booleans,indexed by S and T. Furthermore, we post the constraint that every actual pair<I,J> of M forces I and J to be members of V and W, respectively. Finally, we postthe constraint that every element of V must be mapped to exactly one element ofW, because modelling the mapping as a Boolean matrix does not by itself enforcethis. This rule will be used in Section 4.3.For each declaration involving n sets, there are 2n rewrite rules, dependingon whether each set is itself a variable or not.esra-to-opl Converter. Expressions and constraints of esra that involvetypes not supported (in the same way) by opl (namely sets, mappings, permu-tations, and sequences) are rewritten into opl. The set operations of opl (suchas union, inter, in, subset) are thus now also allowed in constraints, ratherthan only in the pre-processing of instance data. Similarly for the expressionsand constraints of esra that do not exist in opl (such as card, count, exists).For sums over mappings, one of the rules is as follows:sum(I->J in M) F(I,J)) sum(I in V) F(I,M[I])j V is a known set, W is a set variable of known super-set T,and M is a mapping from V into Wbecause, in this case, the mapping M is represented by an array of elements drawnfrom T, indexed by V. For instance, line 10 is rewritten into line j.For the cardinality of a set, one of the rules is as follows:card(S)) sum(I in T) S[I]j S is a set variable of known super-set Tbecause, in this case, the set S is represented by a Boolean array, indexed by T.For instance, line 11 is rewritten into line k.For membership in a mapping, one of the rules is as follows:I->J in M) M[I]=Jj V is a known set, W is a set variable of known super-set T,and M is a mapping from V into Wbecause, in this case, the mapping M is represented by an array of elements drawnfrom T, indexed by V, and the set W is represented by a Boolean array, indexedby T. For instance, part of line 14 is rewritten into part of line q.For count expressions over sets, one of the rules is as follows:

count(I in S: C)) sum(I in S) C j S is a known setbecause, in this case, the set S is known. For instance, part of line 14 is rewritteninto part of line q.For universal quanti�cation over sets, one of the rules is as follows:forall(I in S) P(I);) forall(I in T) S[I]=1 => P(I);j S is a set variable of known super-set Tbecause, in this case, the set S is represented by a Boolean array, indexed by T.For instance, line 13 is rewritten into lines o and p.4.3 Modifying the Warehouse Location ProblemSuppose we modify the Warehouse Location problem as follows (with modi�ca-tions being highlighted in italics): A company considers opening warehouses onsome candidate locations in order to supply its existing stores, as well as possiblyclosing some of these stores, but such that a certain minimum number of storesremains open (C3). Each possible warehouse has the same maintenance cost, anda capacity designating the maximum number of stores that it can supply (C1).Each store that is not closed must be supplied by exactly one open warehouse(C 02). The supply cost to a store depends on the warehouse. The objective is todetermine which warehouses to open and which stores not to close, and which ofthese warehouses should supply the various stores that are not closed, such thatthe sum of the maintenance and supply costs is minimised.In other words, we now look for a mapping of a subset of the stores into asubset of the warehouses. Figure 5 shows an esra model of this problem.The opl model generated from that esra model is shown in Figure 6. Notethat the second rule for compiling mapping variables was used here. Compar-ing it with the original opl models in Figures 1 and 3, we observe not onlythat new variable declarations and constraints were added, but also that someexisting variable declarations and constraints had to be modi�ed, with the over-all code becoming quite complex. However, the higher-level of abstraction ofesra allowed a very straightforward re-modelling, where only new variable dec-larations and constraints were added, compared to the original esra model inFigure 2, with the overall code still matching the informal problem speci�cationvery closely. This became possible because an esra modeller need not worryhow mappings and subsets are internally represented.5 ConclusionSummary. Our contributions in this paper are (i) the proposal of high-leveltype constructors for constraint programming languages, so that CSPs can bemodelled in more straightforward ways; (ii) the design of a practical set con-straint language, called esra, incorporating these ideas; and (iii) the develop-ment of rewrite rules achieving a compilation from esra into opl.

int MaintCost = ...;int NbStores = ...;enum Warehouses ...;range Stores 0..NbStores-1;int Capacity[Warehouses] = ...;int SupplyCost[Stores,Warehouses] = ...;int MinNbStores = ...;var {Stores} RemainingStores;var {Warehouses} OpenWarehouses;var RemainingStores->OpenWarehouses Supplier;minimizesum(I->J in Supplier) SupplyCost[I,J]+ card(OpenWarehouses) * MaintCostsubject to {card(RemainingStores) > MinNbStores;forall(J in OpenWarehouses)count(I in Stores: I->J in Supplier) <= Capacity[J];}; Fig. 5. An esra model of the modi�ed Warehouse Location problemWe have shown that the resulting opl programs are often very similar to oplmodels written by human modellers. The key issue is of course that it is easier towrite the esra model, because esra o�ers higher-level abstractions than opl.Interestingly, this result comes at no cost to solving e�ciency, precisely becausethese abstractions can be automatically mapped into opl statements that ahuman opl modeller would (have to) write anyway.Because based on opl, our esra language is computationally incomplete,but this does not disturb us, as we just aim at speeding up the modelling (andsolving) of at least some classes of (real-life) CSPs. This philosophy is in line withthe current trend on domain-speci�c tools, such as the PlanWare [2] systemfor planning problems, or the primitives of opl [16] for scheduling and resourceallocation problems.Related Work. Several set constraint languages exist (such as clps [1], con-junto [8], np-spec [3], oz [11], and flogg [4]), but none of them seems asexpressive (or fast) as our proposal, for lack of the rich data and constraintmodelling mechanisms of opl, and as none of them features all the additionaltype constructors we advocate here. The �rst three languages are limited to con-straints on sets of initially known cardinality, and some of them do not supportoptimisation problems.A language-independent computer-assisted constraint programming architec-ture was proposed [15], but it does not support set constraints.Taking a completely di�erent approach, D.R. Smith developed the programsynthesisers kids [12, 13], DesignWare [14], and PlanWare [2], which semi-automatically compile high-level speci�cations written in refine into applicativeprograms. When applied to speci�cations of CSPs, these systems excel (at help-

int MaintCost = ...;int NbStores = ...;enum Warehouses ...;range Stores 0..NbStores-1;int Capacity[Warehouses] = ...;int SupplyCost[Stores,Warehouses] = ...;int MinNbStores = ...;var int RemainingStores[Stores] in 0..1;var int OpenWarehouses[Warehouses] in 0..1;var int Supplier[Stores,Warehouses] in 0..1;minimizesum(I in Stores, J in Warehouses) SupplyCost[I,J] * Supplier[I,J]+ (sum(J in Warehouses) OpenWarehouses[J]) * MaintCostsubject to {forall(I in Stores, J in Warehouses)Supplier[I,J]=1 => RemainingStores[I]=1 & OpenWarehouses[J]=1;forall(I in Stores)RemainingStores[I]=1 => (sum(J in Warehouses) Supplier[I,J]) = 1;(sum(I in Stores) RemainingStores[I]) > MinNbStores;forall(J in Warehouses)OpenWarehouses[J]=1 => (sum(I in Stores) (Supplier[I,J]=1)) <= Capacity[J];};display(I in Stores: RemainingStores[I]=1) <I>;display(I in Warehouses: OpenWarehouses[I]=1) <I>;display(I in Stores, J in Warehouses: Supplier[I,J]=1) <I,J>;Fig. 6. Generated opl model of the modi�ed Warehouse Location probleming) in the generation of high-speed problem-speci�c solvers, which have beendeployed numerous times in industry, as they often outperform operations re-search or constraint programming solvers. Signi�cant amounts of theorem prov-ing and (computer-assisted) program optimisation are performed. These synthe-sisers support possibly in�nite sequences, bags, and sets, and allow thus moreexpressive modelling than esra.Our work is a result of adapting the fundamental ideas of kids and its suc-cessors to the generation of constraint programs (see [5] for an early report).Future Work. In order to ful�ll our design intention of making esra also moredeclarative than opl, we are currently investigating the compile-time generationof also a (procedural) opl search part by analysis of a (declarative) esra modelthat has no such search part. First-generation constraint solvers were black boxesand thus did not allow the formulation of model-speci�c labelling heuristics. Thecurrent second-generation solvers, such as the one for opl, provide an elaboratenotation for expressing such heuristics. As necessary as this may be, doing soremains more of an art than a science. We thus see no reason not to quietlyprepare a third generation, where model-speci�c search parts in such a notationare actually synthesised. See [7, 10] for �rst results.

We also study the reformulation of esra models, by investigating the meritsof alternative opl representations of high-level data structures, by consideringthe integration of alternative models, and by examining the generation of impliedconstraints. See [9] for �rst results.AcknowledgementsThis research is partly funded under grant number 221-99-369 of TFR (theSwedish Research Council for Engineering Sciences). We are grateful to the ref-erees for their useful comments.References1. F. Ambert, B. Legeard, and E. Legros. Programmation en logique avec contraintessur ensembles et multi-ensembles h�er�editairement �nis. Techniques et Sciences In-formatiques 15(3):297{328, 1996.2. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-speci�c synthesis of high-performance schedulers. In Proc. of ASE'98, pp. 270{279.IEEE Computer Society Press, 1998.3. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. np-spec: An executable speci�ca-tion language for solving all problems in NP. In: G. Gupta (ed), Proc. of PADL'99,pp. 16{30. LNCS 1551. Springer-Verlag, 1999.4. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. On the representation and man-agement of �nite sets in CLP-languages. In: J. Ja�ar (ed), Proc. of JICSLP'98,pp. 40{54. The MIT Press, 1998.5. P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logicprograms. In Proc. of ASE'98, pp. 168{176. IEEE Computer Society Press, 1998.6. P. Flener and B. Hnich. The Syntax and Semantics of esra. astra Internal Report.Available via http://www.dis.uu.se/�pierref/astra/.7. P. Flener, B. Hnich, and Z. K�z�ltan. A meta-heuristic for subset problems. In: I.V.Ramakrishnan (ed), Proc. of PADL'01. LNCS, this volume. Springer-Verlag, 2001.8. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a practical language. Constraints 1(3):191{244, 1997.9. B. Hnich and P. Flener. High-level reformulation of constraint programs. Submittedfor review. Available via http://www.dis.uu.se/�pierref/astra/.10. Z. K�z�ltan, P. Flener, and B. Hnich. A labelling heuristic for subset problems.Submitted for review. Available via http://www.dis.uu.se/�pierref/astra/.11. T. M�uller. Solving set partitioning problems with constraint programming. In Proc.of PAPPACT'98, pp. 313{332. The Practical Application Company, 1998.12. D.R. Smith. The structure and design of global search algorithms. Tech. Rep.KES.U.87.12, Kestrel Institute, 1988.13. D.R. Smith. kids: A semi-automatic program development system. IEEE Trans.on Software Engineering 16(9):1024{1043, 1990.14. D.R. Smith. Toward a classi�cation approach to design. In Proc. of AMAST'96,pp. 62{84. LNCS 1101. Springer-Verlag, 1996.15. E. Tsang, P. Mills, R. Williams, J. Ford, and J. Borrett. A computer-aided con-straint programming system. In: J. Little (ed), Proc. of PACLP'99, pp. 81{93. ThePractical Application Company, 1999.16. P. Van Hentenryck.The opl Optimization Programming Language. The MIT Press,1999.

