
A Meta-Heuristic for Subset ProblemsPierre Flener, Brahim Hnich, and Zeynep K�z�ltanComputer Science Division, Department of Information ScienceUppsala University, Box 513, S { 751 20 Uppsala, SwedenfPierre.Flener, Brahim.Hnich, Zeynep.Kiziltang@dis.uu.seAbstract. In constraint solvers, variable and value ordering heuristicsare used to �netune the performance of the underlying search and propa-gation algorithms. However, few guidelines have been proposed for whento choose what heuristic among the wealth of existing ones. Empiricalstudies have established that this would be very hard, as none of theseheuristics outperforms all the other ones on all instances of all problems(for an otherwise �xed solver). The best heuristic varies not only betweenproblems, but even between di�erent instances of the same problem. Tak-ing heed of the popular dictum \If you can't beat them, join them!" wedevise a practical meta-heuristic that automatically chooses, at run-time,the \best" available heuristic for the instance at hand. It is applicable toan entire class of NP-complete subset problems.1 Introduction If you can't beat them, join them!| AnonymousConstraint Satisfaction Problems (CSPs) | where appropriate values for theproblem variables have to be found within their domains, subject to some con-straints | represent many real life problems. Examples are production planningsubject to demand and resource availability, air tra�c control subject to safetyprotocols, transportation scheduling subject to initial and �nal location of thegoods and the transportation vehicles, etc. Many of these problems can be ex-pressed as constraint programs and then be solved using constraint solvers.Constraint solvers (such as sicstus clp(fd) [2] and opl [18]) are equippedwith constraint propagation algorithms based on consistency techniques suchas bounds consistency, plus a search algorithm such as forward-checking, andlabelling heuristics, one of which is the default. To enhance the performance ofa constraint program, a lot of research has been made in recent years to developnew heuristics concerning the choice of the next variable to branch on duringthe search and the choice of the value to be assigned to that variable, giving riseto variable and value ordering (VVO) heuristics. These heuristics signi�cantlyreduce the search space [16]. However, little is said about the application domainof these heuristics, so programmers �nd it di�cult to decide when to apply aparticular heuristic, and when not.

In order to understand our terminology, note that the phrase problem classhere refers to a whole set of related problems, while the term problem designatesa particular problem (within a class), and the word instance is about a particularoccurrence of a problem. (We here identify problems with their chosen models.)For example, planning is a problem class, travelling salesperson is a problemwithin that class, and visiting all capital cities of Europe is an instance of thatproblem. Much of (constraint) programming research is about pushing resultsfrom the instance level to the problem level, if not to the problem-class level, soas to get generic results.The di�culty of mapping the right heuristic to a given problem is mainlydue to the following. As shown by Tsang et al. [17], there is no universally bestsolver for all instances of all problems. Thus, we are only told that a particularsolver is \best" for the particular instances used by researchers to carry outtheir experiments. Therefore, as also noticed by Minton [14], the performance ofsolvers is instance-dependent, i.e., for a given problem a solver can perform wellfor some (distributions on the) instances, but very poorly on others.In such a case, conventional wisdom suggests joining the competitors, al-though we propose a novel way of interpreting this popular dictum: rather thanjoining e�orts with the competitors (by teaming up with some of them), we ad-vocate joining the e�orts of the competitors, thus \acquiring" some of them andbeing at the helm! But, how can this be done here, as a solver cannot know inwhat situation it is? The answer is to do the investigation at the level of problemclasses, and to enrich the solver accordingly.Assuming that we have a set H of VVO heuristics (including the default one),we take an empirical approach to completely pre-determine a meta-heuristicthat can decide which available heuristic in H \best" suits the instance to besolved, and this for any instance of any problem of the considered class. (Wehere use constraint solvers as blackboxes, thus �xing the propagation and searchalgorithms.) Such a meta-heuristic can then be added to the constraint solver.We here illustrate our approach with an NP-complete class of subset problems.This paper1 is organised as follows. In Section 2, we discuss a class of subsetproblems and show the generic �nite domain constraint store that results fromsuch problems. Then, in Section 3, we present our empirical approach and de-vise our meta-heuristic for subset problems. Finally, in Section 4, we conclude,compare with related work, and discuss our directions for future research.2 Subset Decision ProblemsWe assume that CSP models are initially written in a very expressive, purelydeclarative, typed, set-oriented constraint programming language, such as ouresra [6], which is designed to be higher-level than even opl [18]. We can auto-matically compile esra programs into lower-level �nite-domain constraint lan-guages such as clp(fd) or opl. The purpose of this paper is not to discuss howthis can be done, nor the syntax and semantics of esra.1 This paper is an extension of the unrefereed [11].

In the class of subset (decision) problems, a subset S of a given �nite set Thas to be found, such that S satis�es an (open) constraint g, and an arbitrarytwo distinct elements of S satisfy an (open) constraint p. In esra, we model thisas (a sugared version of) the following (open) program:8T; S : set(�) :subset(T; S)$ S � T ^ g(S) ^8i; j : � : i 2 S ^ j 2 S ^ i 6= j ! p(i; j) (subset)The only open symbols are type � and the constraints g and p (as�, 2, and 6= areprimitives of esra, with the usual meanings). This program has as re�nements(closed) programs for many problems, such as �nding a clique of a graph (seebelow), set covering, knapsack, etc. For example, the (closed) program:8V;C : set(�) : 8E : set(�� �) :clique5(hV;Ei; C)$ C � V ^ size(C; 5) ^8i; j : � : i 2 C ^ j 2 C ^ i 6= j ! hi; ji 2 E (clique5)is a re�nement of subset, under the substitution:8C : set(�) : g(C)$ size(C; 5)8E : set(�� �) : 8i; j : � : p(i; j)$ hi; ji 2 E (�)where size is another primitive of esra, with the obvious meaning. It is a pro-gram for a particular case of the clique problem, namely �nding a clique (or: amaximally connected component) of an undirected graph (which is given throughits vertex set V and edge set E), such that the size of the clique is 5.At a lower level of expressiveness, esra subset problems can be compiled into�nite-domain constraint programs. The chosen representation of a subset S of agiven �nite set T (of n elements) is a mapping from T into Boolean variables (inf0; 1g), that is we conceptually maintain n couples hTi; Bii where the (initiallynon-ground) Boolean Bi expresses whether the (initially ground) element Ti ofT is a member of S or not: 28Ti : � : Ti 2 T ! (Bi $ Ti 2 S) (1)This Boolean representation of sets is di�erent from the set interval representa-tion of conjunto [8] and oz [15], but both have been shown to create the sameO(2n) search space [8]. Moreover, the set interval representation does not allowthe de�nition of some (to us) desirable high-level primitives, such as universalquanti�cation over elements of non-ground sets.Given this Boolean representation choice for sets, the open constraints gand p of subset can easily be re-stated in terms of �nite-domain constraints onBoolean variables. As shown in [5], it is indeed easy to write constraint-postingprograms for 2, �, size, and all other classical set operations.We here pay special attention to the NP-complete class where g only con-strains the size of the subset to be a certain constant, and where p is not true.32 In formulas, atom Bi is an abbreviation for atom Bi = 1.3 When g is true, subset problems can be reduced, in our representation, to 2-SAT(satis�ability of sets of 2-literal clauses), which is in P.

Having a good (meta-)heuristic for one NP-complete problem Q is of great prac-tical interest, as some other NP problems can be reduced, in polynomial timeand without loss of properties, to Q, so that the (meta-)heuristic is also usefullyapplicable to them.Restricting the size of the subset to be a given constant, say k, can be writtenas the following n-ary constraint: nXi=1 Bi = k (2)Let us now look at the remaining part of subset, which expresses that any twodistinct elements of the subset S of T must satisfy a constraint p:S � T ^ 8Ti; Tj : � : Ti 2 S ^ Tj 2 S ^ Ti 6= Tj ! p(Ti; Tj)This implies:8Ti; Tj : � : Ti 2 T ^ Tj 2 T ^ Ti 2 S ^ Tj 2 S ^ Ti 6= Tj ! p(Ti; Tj)which is equivalent to:8Ti; Tj : � : Ti 2 T ^ Tj 2 T ^ Ti 6= Tj ^ :p(Ti; Tj)! :(Ti 2 S ^ Tj 2 S)By (1), this can be rewritten as:8Ti; Tj : � : Ti 2 T ^ Tj 2 T ^ Ti 6= Tj ^ :p(Ti; Tj)! :(Bi ^Bj)Thus, for every two distinct elements Ti and Tj of T , with corresponding Booleanvariables Bi and Bj , if p(Ti; Tj) does not hold, we just need to post the followingbinary constraint: :(Bi ^ Bj) (3)It is crucial to note that the actually posted �nite-domain constraints are thusnot in terms of p, hence p can be any esra formula and our approach works forour whole class of subset problems! Indeed, the reasoning above was made forthe (open) subset program rather than for a particular (closed) re�nement suchas clique5.Therefore, the �nite-domain constraint store for any subset problem of theconsidered class is over a set of (only) Boolean variables and contains an instance-dependent number of binary constraints of the form (3) (if p is not true) as wellas a summation constraint of the form (2).4 Our results are thus \best" appliedonly in the NP class where p is not true and g is only a size constraint. Extendingour results to other contents of g is only a matter of time, but the consideredclass is NP-complete and thereby our results are already signi�cant.4 Having obtained what is largely a binary CSP (over Boolean variables) is a merecoincidence, and irrelevant to our approach.

3 A Meta-Heuristic for Subset Decision ProblemsWe now present our approach for devising a meta-heuristic for the entire pre-sented class of subset problems, describe the used experimental setting, and showhow to use the obtained results to devise a meta-heuristic for that class.3.1 Approach TakenOn the one hand, we are able to map all subset problems of the considered classinto a generic �nite-domain constraint store, parameterised by the number n ofBoolean variables involved (i.e., the size of the given set), the subset size k, andthe number b of binary constraints of the form (3).5 On the other hand, an everincreasing set H of VVO heuristics for CSPs is being proposed.Our approach is to �rst measure the median cost (in CPU time and in num-ber of backtracks) of each heuristic, for a �xed �nite-domain solver, on a largenumber of instances with di�erent values for hn; k; bi. Then we try and deter-mine the range of instances (in terms of hn; k; bi) for every heuristic in which itperforms \best," so as to devise a meta-heuristic that always picks the \best"heuristic in H for any instance. Note that these measures, and hence the meta-heuristic, are thus entirely made o�-line and once-and-for-all, for all instancesof all problems of the whole (and large) subset problem class. Compared to ahardwired choice of a heuristic, the run-time overhead of the meta-heuristic for aparticular instance will only consist of counting the number b of actually postedbinary constraints of the form (3) and then looking up which heuristic to use.For all but the most trivial instances, this overhead is negligible, because thecalculations are easy.Our approach rests on the assumption that all instances of the same hn; k; bifamily6 will bene�t from the heuristic chosen for the instance that had the me-dian cost. More analytical and empirical work is of course needed to better un-derstand and model the variance in behaviour inside a family, and to understandwhether hn; k; bi is an e�ective characterisation of subset problem instances.To illustrate the idea, let us assume that we have just two heuristics, H1 andH2 say. If we keep n and b constant, we can measure the costs of both heuristicsfor all values of k. The illustrative plot (from made-up data) in Figure 1 suggeststhe following meta-heuristic:if k 2 1::3 then choose H1if k 2 3::5 then choose H2if k 2 5::n then choose H1However, in our case, the problem is more di�cult because we have three varyingdimensions rather than just one, namely n, k, and b.5 It is the instance data that determine, after posting all constraints, the value of b.6 A family (of instances) is not to be confused with a class (of problems).

 1 2 3 4 5 6

m
ed

ian
-c

os
t

k

H1
H2

Fig. 1. Typical median-cost curve in terms of k for two heuristics3.2 Experimental SettingHeuristics Chosen. For the purpose of this paper, we focused on three VVOheuristics only, as we would just like to show here that the principle works.More VVO heuristics can easily be added to the experiments, if given moretime. We also generated random instances in a coarse way (by not consideringall possible combinations of hn; k; bi up to a given n); again, given more time,instances generated in a more �ne-grained way could be used instead and helpmake our results more precise. Finally, we calculated the median cost of only 5instances for each hn; k; bi family, in order to o�set the impact of exceptionallyhard instances and failed searches; given more time, many more instances shouldbe generated for each hn; k; bi. We used the following three VVO heuristics:{ The default VVO heuristic, here named H1, labels the leftmost variable inthe sequence of variables provided, and the domain of the chosen variable isexplored in ascending order.{ The static VVO heuristic, here named H2, pre-orders the variables in as-cending order, according to the number of constraints in which a variable isinvolved, and then labels the variables according to that order by assigningthe value 1 (for true) �rst (as we need only consider the Boolean domain).{ The dynamic VVO heuristic, here named H3, says that the next variable ischosen in a way that maximises the sum of the promises [7] of its values, andthat it is labelled with the minimum promising value.

The default VVO heuristic does not introduce any overhead. The static one hasa pre-processing overhead, while the dynamic one is the most costly one, as itincorporates calculations at each labelling step. We tested the e�ect of theseheuristics by �xing the propagation and search algorithms, namely by using theones of sicstus clp(fd) [2].Instance Characterisation. The �nite-domain constraint store for any subsetproblem is over a set of Boolean variables and contains an instance-dependentnumber of binary constraints as well as a summation constraint. For binaryCSPs, a family of instances is usually characterised by a tuple hn;m; p1; p2i [17],where n is the number of variables, m is the (assumed constant) domain sizefor all variables, p1 is the (assumed constant) constraint density, and p2 is the(assumed constant) tightness of the individual constraints.In our experiments, the variable count n is the number of Boolean variables;we varied it over the interval 10::200, by increments of 10. The domain size m is�xed to 2 as we only consider the Boolean domain f0; 1g in subset problems, sothat m can be discarded. The constraint density p1 is bn(n�1)=2 , where b is thenumber of actually posted binary constraints; rather than varying b (as initiallyadvocated), we varied the values of p1, using the interval 0:1::1, by incrementsof 0:1, as this also leads to an interval of b values. Since the considered binaryconstraints are of the form :(Bi ^ Bj), their tightness is always equal to 34and need thus not be varied. The tightness of the summation constraint howevervaries, as it is �nk�=2n, where k is the desired size of the subset; instead of varyingthe values of p2, we varied (as initially advocated) the values of k, over theinterval 1::n, by increments of 1, as this also leads to an interval of p2 values.In any case, varying p2 by a constant increment over the interval 0::1 wouldhave missed out on a lot of values for k; indeed, when k ranges over the integerinterval 1::n, the corresponding values of p2 do not exhibit a constant incrementwithin 0::1. Hence we used hn; p1; ki to characterise instance families.Experiments. Having thus chosen the intervals and increments for the param-eters describing the characteristics of families of instances of subset problems,we randomly generated many di�erent instances and then used the three chosenheuristics in order to �nd the �rst solution or prove that there is no solution.Some of the instances were obviously too di�cult to solve or disprove within areasonable amount of time. Consequently, to save time in our experiments, weused a time-out on the CPU time. Hence our meta-heuristic can currently notselect the \best" available heuristic for a given instance family when all threeheuristics timed out on the 5 instances we generated.The obtained results are reported, in Table 1, as hn; p1; k; c1; c2; c3i tuples,where ci is (here) the median CPU-time for heuristic i. The scale of the timings,as well as the used hardware and software platforms are irrelevant, as we are onlyinterested in the relative behaviour of the heuristics. We can see that indeed noheuristic outperforms all other heuristics, or is outperformed by all the others,or never outperforms all the others. Moreover, the collected costs look very

n p1 k c1 c2 c3...100 0:2 6 40 970 2030...110 0:2 22 time-out 20 1880...130 0:3 18 time-out 10250 5150...Table 1. Tabulated results of the experimentsunpredictable and have many outlyers. This con�rms Minton's and Tsang et al.'sresults, and also shows that human intuition may break down here (especiallywhen dealing with blackbox solvers).In order to analyse the e�ects of each heuristic on di�erent instances, wedrew various charts from Table 1, for example by keeping n and p1 constantand plotting the costs for each k. Figure 2 shows an example of the CPU-timebehaviours of the three heuristics on the instances where n = 110 and p1 = 0:4.From the results of the empirical study, we can already conclude the following,regarding subset problems:{ As k gets smaller, for a given p1 and n, the default VVO heuristic almostalways outperforms the others.{ As k gets larger, for a given p1 and n, the performance of the default VVOheuristic degenerates, but the static and dynamic VVO heuristics behavemuch more gracefully (see Figure 2).{ Even though it is very costly to apply the dynamic VVO heuristic, it some-times outperforms the other two heuristics.{ For some of the instances, all the heuristics failed to �nd a solution, or provethe non-existence of solutions, within a reasonable amount of time.3.3 The Meta-HeuristicDesigning the Meta-Heuristic. Using the obtained table as a lookup table,it is straightforward to devise a (non-adaptive) meta-heuristic that �rst mea-sures the parameters hn; p1; ki of the given instance, and then uses the (nearest)corresponding entry in the table to determine which heuristic to actually run onthis instance. Considering the simplicity of these measures, the (constant) run-time overhead is negligible, especially that it nearly always pays o� anyway. Themeta-heuristic thus gives rise to an instance-independent program that is guar-anteed to run, for any instance, (almost exactly) as fast as the fastest consideredheuristic for its instance family.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14

Lo
g1

0[
m

ed
ian

-c
os

t]

k

Default VVO
Static VVO
Dynamic VVO

Fig. 2. Median cost in terms of k for the three heuristics on n = 110 and p1 = 0:4Improving the Meta-Heuristic. A very important observation is that, formany hn; p1; ki families, all instances can be shown to have no solution, so thatthe best heuristic is to fail immediately, and there is no need to even choosebetween the actual heuristics in the lookup table. This is here the case when thefollowing holds: �n2�� b < �k2�where n is the number of Boolean variables, b is the number of binary constraintsof the form :(Bi^Bj), and k is the size of the desired subset. Note that b also isthe number of 2-combinations of Boolean variables that cannot simultaneouslybe 1 (which here stands for true), so �n2� � b is the number of 2-combinationsof Boolean variables that can simultaneously be 1. As k also is the number ofBoolean variables that must simultaneously be 1, we have that �k2� combinationsof Boolean variables must be simultaneously 1. Therefore, if �n2� � b is strictlyless than �k2�, then no solution exists.This can be exploited by overwriting some entries in the lookup table, or, bet-ter, by reducing the number of experiments and then adding the correspondingfail entries to the lookup table. This leads to our meta-heuristic being sometimesstrictly (and possibly signi�cantly) faster than all the underlying heuristics, ifnot faster than any other heuristic! This only became possible because we (needto) detect the family to which the current instance belongs.

Search Algorithms

Composition

Solvers

Heuristics

InstancesRandom Binary

for n, m, p1, p2

Problem and/or
Bounds and Increments

Instance−Independent

Solver

Problem−Independent

Solving Cost Statistics

Problem−Class−Dependent

Meta−Composition

Propagation Algorithms

Problem Class Dependent
Constraint Store

Instance Generator

Fig. 3. Proposed extension to the classical quest for solversWe have furthermore made a regression analysis to derive an evaluation func-tion, instead of using the full look-up table. This does not speed up the resultingprograms, but the size of the solver shrinks dramatically, as the look-up tabledoes not have to be incorporated.Methodological Contribution. The classical approach (shown in full linesin Figure 3) to detecting good solvers starts by composing several solvers fromavailable propagation algorithms, search algorithms, and heuristics. Random in-stances of binary CSPs are then generated for a given problem and/or givenbounds and increments for the hn;m; p1; p2i parameters that govern binaryCSPs. Running the composed solvers for the generated instances yields solving-cost statistics, which are always evaluated manually.Our approach (shown in dashed lines in Figure 3) extends this scenarioby making the obtained statistics an input to a new process, namely meta-composition of solvers, so as to build a problem-and-instance-independent butproblem-class-dependent solver that is guaranteed to outperform all the other

ones. Also, instances are here just generated for the considered problem-class-speci�c CSP (which is not necessarily a binary CSP).4 Conclusion4.1 SummaryWe have shown how to map an entire class of NP-complete CSPs to a genericconstraint store, and we have devised a class-speci�c but problem-independentmeta-heuristic that chooses a suitable instance-speci�c heuristic. This work isthus a continuation of Tsang et al.'s research [17] on mapping heuristics toapplication domains, and an incorporation of Minton's and Tsang et al.'s �ndingsabout the sensitivity of heuristics to (distributions of) instances. The key insightis that we can analyse and exploit the form (and number) of the actually postedconstraints for a problem class, rather than considering the constraint store ablack box and looking for optimisation opportunities elsewhere.The importance and contribution of this work is to have shown that someform of heuristic, even if \only" a brute-force-designed and simple meta-heuristic,can be devised for an entire problem class, without regard to its problems or theirinstances. Our restriction to the (NP-complete) class of subset problems where gonly constrains the size of the subset and p is not true was just made to simplifyour presentation, as we only aimed at proving the existence of meta-heuristicsfor (useful) problem classes.Considering the availability of such a meta-heuristic, programmers can beencouraged to model their CSPs as subset problems rather than in a di�erentway (if this possibility arises at all). Indeed, they then do not have to worryabout which heuristic to choose, nor do they have to implement it, nor do theyhave to document the resulting program with a disclaimer stating for which(distribution of) instances it will run \best." All these non-declarative issuescan thus be taken care of by the solver, leaving only the declarative issue ofmodelling the CSP to the programmers, thus extending the range and size ofCSPs that they can handle e�ciently. Further advances along these lines willbring us another step closer to the holy grail of programming (for CSPs).4.2 Related WorkThis work follows the call of Tsang et al. for mapping combinations of solvercomponents to application domains [17]. However, we here focused on just oneapplication domain (or: class of problems), as well as on just the e�ect of VVOheuristics while keeping the solver otherwise constant.Also closely related to our work is Minton's multi-tac system [14], whichautomatically synthesises an instance-distribution-speci�c solver, given a high-level model of some CSP and a set of training instances (or a generator thereof).His motivation also was that heuristics depend on the distribution of instances.However, we di�er from his approach in various ways:

{ While good performance of a solver synthesised by multi-tac is only guar-anteed for the actual distribution of the given training instances, we advocatethe o�-line brute-force approach of generating all possible instance familiesfor a given problem class and analysing their run-time behaviours towardsthe identi�cation of a suitable meta-heuristic that is guaranteed to choosethe \best" available heuristic for any considered instance.{ While multi-tac uses a synthesis-time brute-force approach to generatecandidate problem-speci�c heuristics, we only choose our heuristics from(variations of) already published ones.{ While it is the responsibility of a multi-tac user to also provide traininginstances (or an instance generator plus the desired distribution parameters)in order to synthesise an instance-distribution-speci�c program, our kind ofmeta-heuristic can be pre-computed once and for all, in a problem-and-instance-independent way for an entire class of problems, and the user thusneed not provide more than a high-level problem model.{ While multi-tac features very long synthesis/compilation times for eachproblem, our approach is to eliminate them by pre-computing the results forentire problem classes.A similar comparison can be made with Ellman's da-msa system [3].Our work di�ers from the problem complexity (as opposed to algorithm com-plexity) work of Williams and Hogg [19] as follows. Whereas they propose ananalytical approach of charting the search space, under any search algorithm,towards predicting the location of hard instances and the
uctuations in solvingcost, we propose an analytical approach of �rst charting the constraint storeand then actually determining, with an empirical approach, the same things,also under any search algorithm. Furthermore, their kind of analysis has to berepeated for every problem, while our approach can be deployed onto an entireproblem class.4.3 Future WorkAs our approach rests on the assumption that all instances of an hn; p1; ki (or,equivalently, hn; k; bi) family will bene�t from the same heuristic, namely the onechosen for the instance that had the median cost, more analytical and empiricalwork is needed to better understand and model the variance in behaviour insidea family, and to understand whether hn; k; bi is an e�ective characterisation ofsubset problem instances.We currently investigate the design of adaptive meta-heuristics [1, 9] thatchoose a (possibly di�erent) heuristic after each labelling iteration, based on thecurrent sub-problem, rather than sticking to the same initially chosen heuristicall the way. The hope is that the performance would increase even more. In [12],we explain why the heuristic H2 of this paper often outperforms all the otherconsidered ones (and many others) when there is a solution. This allowed us todesign, in [13], a �rst adaptive meta-heuristic for subset problems, and we nowtry to integrate it with the (non-adaptive) meta-heuristic ideas of this paper.

We should also produce solving-cost statistics in a more �negrained way (withmore than 5 instances of more hn; p1; ki families until some realistic upper boundfor n) and involve more known heuristics, so as to �netune the lookup-table forour meta-heuristic. Our principle of joining heuristics into a meta-heuristic, fora given problem class, can be generalised to all solver components, leading to ajoining of entire solvers into a meta-solver, for a given problem class (as alreadyshown in Figure 3). All this is just a matter of having the (CPU) time to do so.Other meta-heuristics for di�erent classes of subset problems will be devised,for cases where g has other constraints than the size of the subset. The studiedclass of subset problems can be generalised into the class of s-subset problems(where a maximum of s subsets of a given set have to be found, subject to someconstraints) [10]. Another extension is the coverage of (s-)subset optimisationproblems, instead of just the decision problems studied here.Finally, we are planning to investigate other classes of problems, namelymap-ping problems (where a mapping between two given sets has to be found, subjectto some constraints) [4], permutation problems (where a sequence representinga permutation of a given set has to be found, subject to some constraints) [4],and sequencing problems (where sequences of bounded size over the elements ofa given set have to be found, subject to some constraints) [6], or any combina-tions thereof [6], in order to derive further meta-heuristics. These will be builtinto the compiler of our esra constraint modelling language [6], which is moreexpressive than even opl [18]. This will help us ful�ll our design objective ofalso making esra more declarative than opl, namely by allowing the omissionof a VVO heuristic, without compromising on e�ciency compared to reasonablycompetent programmers.AcknowledgementsThis research is partly funded under grant number 221-99-369 of TFR (theSwedish Research Council for Engineering Sciences). Many thanks to our col-league Dag S�orbom for his help with the regression analysis, and to EdwardTsang (University of Essex, UK) for his invaluable comments. We are also grate-ful to the referees for their useful suggestions (if not misunderstandings).References1. J.E. Borrett, E.P.K. Tsang, and N.R. Walsh. Adaptive constraint satisfaction: Thequickest-�rst principle. In Proc. of ECAI'96, pp. 160{164. JohnWiley & Sons, 1996.2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended �nite domain constraintsolver. In: H. Glaser, P. Hartel, and H. Kuchen (eds), Proc. of PLILP'97, pp. 191{206. LNCS 1292. Springer-Verlag, 1997.3. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system forinteractive reformulation of design optimization strategies. Research in EngineeringDesign 10(1):30{61, 1998.4. P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logicprograms. In Proc. of ASE'98, pp. 168{176. IEEE Computer Society Press, 1998.

5. P. Flener, B. Hnich, and Z. K�z�ltan. Towards schema-guided compilation of setconstraint programs. In B. Jayaraman and G. Rossi (eds), Proc. of DPS'99, pp.59{66. Tech. Rep. 200, Math. Dept., Univ. of Parma, Italy, 1999.6. P. Flener, B. Hnich, and Z. K�z�ltan. Compiling high-level type constructors inconstraint programming. In: I.V. Ramakrishnan (ed), Proc. of PADL'01. LNCS,this volume. Springer-Verlag, 2001.7. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.In Proc. of ECAI'92, pp. 31{35. John Wiley & Sons, 1992.8. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a practical language. Constraints 1(3):191{244, 1997.9. J.M. Gratch and S.A. Chien. Adaptive problem-solving for large scale schedulingproblems: A case study. J. of Arti�cial Intelligence Research 4:365{396, 1996.10. B. Hnich and Z. K�z�ltan. Generating programs for k-subset problems. In P. Alexan-der (ed), Proc. of the ASE'99 Doctoral Symposium. 1999.11. B. Hnich, Z. Kiziltan, and P. Flener. A meta-heuristic for subset decision problems.In: K.R. Apt, E. Monfroy, and F. Rossi (eds), Proc. of the 2000 ERCIM/CompuLogWorkshop on Constraint Programming. 2000.12. Z. K�z�ltan, P. Flener, and B. Hnich. A labelling heuristic for subset problems.Submitted for review. Available via http://www.dis.uu.se/�pierref/astra/.13. Z. K�z�ltan and P. Flener. An adaptive meta-heuristic for subset problems. Sub-mitted for review. Available via http://www.dis.uu.se/�pierref/astra/.14. S. Minton. Automatically con�guring constraint satisfaction programs: A casestudy. Constraints 1(1{2):7{43, 1996.15. T. M�uller. Solving set partitioning problems with constraint programming. In Proc.of PAPPACT'98, pp. 313{332. The Practical Application Company, 1998.16. E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.17. E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the perfor-mance of a range of algorithm and heuristic combinations. In Proc. of AISB'95,pp. 203{216. IOS Press, 1995.18. P. Van Hentenryck.The opl Optimization Programming Language. The MIT Press,1999.19. C.P. Williams and T. Hogg. Exploiting the deep structure of constraint problems.Arti�cial Intelligence 70:73{117, 1994.

