A Meta-Heuristic for Subset Problems

Pierre Flener, Brahim Hnich, and Zeynep Kiziltan

Computer Science Division, Department of Information Science
Uppsala University, Box 513, S — 751 20 Uppsala, Sweden
{Pierre.Flener, Brahim.Hnich, Zeynep.Kiziltan}@dis.uu.se

Abstract. In constraint solvers, variable and value ordering heuristics
are used to finetune the performance of the underlying search and propa-
gation algorithms. However, few guidelines have been proposed for when
to choose what heuristic among the wealth of existing ones. Empirical
studies have established that this would be very hard, as none of these
heuristics outperforms all the other ones on all instances of all problems
(for an otherwise fixed solver). The best heuristic varies not only between
problems, but even between different instances of the same problem. Tak-
ing heed of the popular dictum “If you can’t beat them, join them!” we
devise a practical meta-heuristic that automatically chooses, at run-time,
the “best” available heuristic for the instance at hand. It is applicable to
an entire class of NP-complete subset problems.

1 Introduction

If you can’t beat them, join them!
— Anonymous

Constraint Satisfaction Problems (CSPs) — where appropriate values for the
problem variables have to be found within their domains, subject to some con-
straints — represent many real life problems. Examples are production planning
subject to demand and resource availability, air traffic control subject to safety
protocols, transportation scheduling subject to initial and final location of the
goods and the transportation vehicles, etc. Many of these problems can be ex-
pressed as constraint programs and then be solved using constraint solvers.

Constraint solvers (such as s1csTUS CLP(FD) [2] and OPL [18]) are equipped
with constraint propagation algorithms based on consistency techniques such
as bounds consistency, plus a search algorithm such as forward-checking, and
labelling heuristics, one of which is the default. To enhance the performance of
a constraint program, a lot of research has been made in recent years to develop
new heuristics concerning the choice of the next variable to branch on during
the search and the choice of the value to be assigned to that variable, giving rise
to variable and value ordering (VVO) heuristics. These heuristics significantly
reduce the search space [16]. However, little is said about the application domain
of these heuristics, so programmers find it difficult to decide when to apply a
particular heuristic, and when not.

In order to understand our terminology, note that the phrase problem class
here refers to a whole set of related problems, while the term problem designates
a particular problem (within a class), and the word instance is about a particular
occurrence of a problem. (We here identify problems with their chosen models.)
For example, planning is a problem class, travelling salesperson is a problem
within that class, and visiting all capital cities of Europe is an instance of that
problem. Much of (constraint) programming research is about pushing results
from the instance level to the problem level, if not to the problem-class level, so
as to get generic results.

The difficulty of mapping the right heuristic to a given problem is mainly
due to the following. As shown by Tsang et al. [17], there is no universally best
solver for all instances of all problems. Thus, we are only told that a particular
solver is “best” for the particular instances used by researchers to carry out
their experiments. Therefore, as also noticed by Minton [14], the performance of
solvers is instance-dependent, i.e., for a given problem a solver can perform well
for some (distributions on the) instances, but very poorly on others.

In such a case, conventional wisdom suggests joining the competitors, al-
though we propose a novel way of interpreting this popular dictum: rather than
joining efforts with the competitors (by teaming up with some of them), we ad-
vocate joining the efforts of the competitors, thus “acquiring” some of them and
being at the helm! But, how can this be done here, as a solver cannot know in
what situation it is? The answer is to do the investigation at the level of problem
classes, and to enrich the solver accordingly.

Assuming that we have a set H of VVO heuristics (including the default one),
we take an empirical approach to completely pre-determine a meta-heuristic
that can decide which available heuristic in H “best” suits the instance to be
solved, and this for any instance of any problem of the considered class. (We
here use constraint solvers as blackboxes, thus fixing the propagation and search
algorithms.) Such a meta-heuristic can then be added to the constraint solver.
We here illustrate our approach with an NP-complete class of subset problems.

This paper! is organised as follows. In Section 2, we discuss a class of subset
problems and show the generic finite domain constraint store that results from
such problems. Then, in Section 3, we present our empirical approach and de-
vise our meta-heuristic for subset problems. Finally, in Section 4, we conclude,
compare with related work, and discuss our directions for future research.

2 Subset Decision Problems

We assume that CSP models are initially written in a very expressive, purely
declarative, typed, set-oriented constraint programming language, such as our
ESRA [6], which is designed to be higher-level than even opPL [18]. We can auto-
matically compile ESRA programs into lower-level finite-domain constraint lan-
guages such as CLP(FD) or OPL. The purpose of this paper is not to discuss how
this can be done, nor the syntax and semantics of ESRA.

! This paper is an extension of the unrefereed [11].

In the class of subset (decision) problems, a subset S of a given finite set T'
has to be found, such that S satisfies an (open) constraint g, and an arbitrary
two distinct elements of S satisfy an (open) constraint p. In ESRA, we model this
as (a sugared version of) the following (open) program:

VT, S : set(a).
subset(T,S) <+ S CT Ag(S) A (subset)
Vi,j:a.i€SAjESAiE]— pij)

The only open symbols are type a and the constraints g and p (as C, €, and # are
primitives of ESRA, with the usual meanings). This program has as refinements
(closed) programs for many problems, such as finding a clique of a graph (see
below), set covering, knapsack, etc. For example, the (closed) program:

VYV,C : set(a).VE : set(a x a).
cliqgues((V, E),C) < C CV Asize(C,5) A (cligues)
Vi,j:a.i€cCNjECNI£]— (i,j)€E

is a refinement of subset, under the substitution:
VC : set(a) . g(C) > size(C,5)

VE :set(ax a).Vi,j:a.p(i,j) < (i,j) € E ()

where size is another primitive of ESRA, with the obvious meaning. It is a pro-
gram for a particular case of the cligue problem, namely finding a clique (or: a
maximally connected component) of an undirected graph (which is given through
its vertex set V and edge set E), such that the size of the clique is 5.

At a lower level of expressiveness, ESRA subset problems can be compiled into
finite-domain constraint programs. The chosen representation of a subset S of a
given finite set T (of n elements) is a mapping from 7' into Boolean variables (in
{0,1}), that is we conceptually maintain n couples (T}, B;) where the (initially
non-ground) Boolean B; expresses whether the (initially ground) element T; of
T is a member of S or not:

VTi:a.TiET—)(Bi(—)TiGS) (1)

This Boolean representation of sets is different from the set interval representa-
tion of CONJUNTO [8] and 0z [15], but both have been shown to create the same
O(2™) search space [8]. Moreover, the set interval representation does not allow
the definition of some (to us) desirable high-level primitives, such as universal
quantification over elements of non-ground sets.

Given this Boolean representation choice for sets, the open constraints g
and p of subset can easily be re-stated in terms of finite-domain constraints on
Boolean variables. As shown in [5], it is indeed easy to write constraint-posting
programs for €, C, size, and all other classical set operations.

We here pay special attention to the NP-complete class where g only con-
strains the size of the subset to be a certain constant, and where p is not true.’
? In formulas, atom B; is an abbreviation for atom B; = 1.

3 When g is true, subset problems can be reduced, in our representation, to 2-SAT
(satisfiability of sets of 2-literal clauses), which is in P.

Having a good (meta-)heuristic for one NP-complete problem () is of great prac-
tical interest, as some other NP problems can be reduced, in polynomial time
and without loss of properties, to @, so that the (meta-)heuristic is also usefully
applicable to them.

Restricting the size of the subset to be a given constant, say k, can be written
as the following n-ary constraint:

iB,- —k (2)

Let us now look at the remaining part of subset, which expresses that any two
distinct elements of the subset S of 7' must satisfy a constraint p:

SCTAVL,Tj:a. T, € SAT; € SAT; #T; — p(T;, Tj)
This implies:
VI, Tj:a. T e TANT; e TANT; € SAT; € SAT; # T — p(T,Tj)
which is equivalent to:
VI, Tj:a. T, e TAT; e TAT; T A —p(T;,Tj) —» -(T; € SAT; €S)
By (1), this can be rewritten as:
VI;,T; a0 T; € TAT; € T AT # T A —p(T;,T;) = —(B; A By)

Thus, for every two distinct elements T; and T} of T', with corresponding Boolean
variables B; and Bj, if p(T};,T;) does not hold, we just need to post the following
binary constraint:

—(B; A\ Bj) (3)

It is crucial to note that the actually posted finite-domain constraints are thus
not in terms of p, hence p can be any ESRA formula and our approach works for
our whole class of subset problems! Indeed, the reasoning above was made for
the (open) subset program rather than for a particular (closed) refinement such
as cliques.

Therefore, the finite-domain constraint store for any subset problem of the
considered class is over a set of (only) Boolean variables and contains an instance-
dependent number of binary constraints of the form (3) (if p is not true) as well
as a summation constraint of the form (2).* Our results are thus “best” applied
only in the NP class where p is not true and g is only a size constraint. Extending
our results to other contents of g is only a matter of time, but the considered
class is NP-complete and thereby our results are already significant.

* Having obtained what is largely a binary CSP (over Boolean variables) is a mere
coincidence, and irrelevant to our approach.

3 A Meta-Heuristic for Subset Decision Problems

We now present our approach for devising a meta-heuristic for the entire pre-
sented class of subset problems, describe the used experimental setting, and show
how to use the obtained results to devise a meta-heuristic for that class.

3.1 Approach Taken

On the one hand, we are able to map all subset problems of the considered class
into a generic finite-domain constraint store, parameterised by the number n of
Boolean variables involved (i.e., the size of the given set), the subset size k, and
the number b of binary constraints of the form (3).> On the other hand, an ever
increasing set 7 of VVO heuristics for CSPs is being proposed.

Our approach is to first measure the median cost (in CPU time and in num-
ber of backtracks) of each heuristic, for a fixed finite-domain solver, on a large
number of instances with different values for (n,k,b). Then we try and deter-
mine the range of instances (in terms of (n, k, b)) for every heuristic in which it
performs “best,” so as to devise a meta-heuristic that always picks the “best”
heuristic in A for any instance. Note that these measures, and hence the meta-
heuristic, are thus entirely made off-line and once-and-for-all, for all instances
of all problems of the whole (and large) subset problem class. Compared to a
hardwired choice of a heuristic, the run-time overhead of the meta-heuristic for a
particular instance will only consist of counting the number b of actually posted
binary constraints of the form (3) and then looking up which heuristic to use.
For all but the most trivial instances, this overhead is negligible, because the
calculations are easy.

Our approach rests on the assumption that all instances of the same (n, k, b)
family® will benefit from the heuristic chosen for the instance that had the me-
dian cost. More analytical and empirical work is of course needed to better un-
derstand and model the variance in behaviour inside a family, and to understand
whether (n, k, b) is an effective characterisation of subset problem instances.

To illustrate the idea, let us assume that we have just two heuristics, H; and
H, say. If we keep n and b constant, we can measure the costs of both heuristics
for all values of k. The illustrative plot (from made-up data) in Figure 1 suggests
the following meta-heuristic:

if £ € 1..3 then choose H;
if k£ € 3..5 then choose H»
if k£ € 5..n then choose H;

However, in our case, the problem is more difficult because we have three varying
dimensions rather than just one, namely n, k, and b.

% It is the instance data that determine, after posting all constraints, the value of b.
6 A family (of instances) is not to be confused with a class (of problems).

median-cost

Fig. 1. Typical median-cost curve in terms of k for two heuristics

3.2 Experimental Setting

Heuristics Chosen. For the purpose of this paper, we focused on three VVO
heuristics only, as we would just like to show here that the principle works.
More VVO heuristics can easily be added to the experiments, if given more
time. We also generated random instances in a coarse way (by not considering
all possible combinations of {n,k,b) up to a given n); again, given more time,
instances generated in a more fine-grained way could be used instead and help
make our results more precise. Finally, we calculated the median cost of only 5
instances for each (n, k,b) family, in order to offset the impact of exceptionally
hard instances and failed searches; given more time, many more instances should
be generated for each (n,k,b). We used the following three VVO heuristics:

— The default VVO heuristic, here named Hy, labels the leftmost variable in
the sequence of variables provided, and the domain of the chosen variable is
explored in ascending order.

— The static VVO heuristic, here named Hs, pre-orders the variables in as-
cending order, according to the number of constraints in which a variable is
involved, and then labels the variables according to that order by assigning
the value 1 (for true) first (as we need only consider the Boolean domain).

— The dynamic VVO heuristic, here named Hj, says that the next variable is
chosen in a way that maximises the sum of the promises [7] of its values, and
that it is labelled with the minimum promising value.

The default VVO heuristic does not introduce any overhead. The static one has
a pre-processing overhead, while the dynamic one is the most costly one, as it
incorporates calculations at each labelling step. We tested the effect of these
heuristics by fixing the propagation and search algorithms, namely by using the
ones of SICSTUS CLP(FD) [2].

Instance Characterisation. The finite-domain constraint store for any subset
problem is over a set of Boolean variables and contains an instance-dependent
number of binary constraints as well as a summation constraint. For binary
CSPs, a family of instances is usually characterised by a tuple (n,m,p1,p2) [17],
where n is the number of variables, m is the (assumed constant) domain size
for all variables, p; is the (assumed constant) constraint density, and p, is the
(assumed constant) tightness of the individual constraints.

In our experiments, the variable count n is the number of Boolean variables;
we varied it over the interval 10..200, by increments of 10. The domain size m is
fixed to 2 as we only consider the Boolean domain {0, 1} in subset problems, so
that m can be discarded. The constraint density p; is W, where b is the
number of actually posted binary constraints; rather than varying b (as initially
advocated), we varied the values of p;, using the interval 0.1..1, by increments
of 0.1, as this also leads to an interval of b values. Since the considered binary
constraints are of the form —(B; A Bj), their tightness is always equal to 2
and need thus not be varied. The tightness of the summation constraint however
varies, as it is (Z) /2™, where k is the desired size of the subset; instead of varying
the values of ps, we varied (as initially advocated) the values of k, over the
interval 1..n, by increments of 1, as this also leads to an interval of p, values.
In any case, varying p; by a constant increment over the interval 0..1 would
have missed out on a lot of values for k; indeed, when k ranges over the integer
interval 1..n, the corresponding values of p> do not exhibit a constant increment

within 0..1. Hence we used (n,p;, k) to characterise instance families.

Experiments. Having thus chosen the intervals and increments for the param-
eters describing the characteristics of families of instances of subset problems,
we randomly generated many different instances and then used the three chosen
heuristics in order to find the first solution or prove that there is no solution.
Some of the instances were obviously too difficult to solve or disprove within a
reasonable amount of time. Consequently, to save time in our experiments, we
used a time-out on the CPU time. Hence our meta-heuristic can currently not
select the “best” available heuristic for a given instance family when all three
heuristics timed out on the 5 instances we generated.

The obtained results are reported, in Table 1, as (n,p1,k, c1, ¢2,c3) tuples,
where ¢; is (here) the median CPU-time for heuristic i. The scale of the timings,
as well as the used hardware and software platforms are irrelevant, as we are only
interested in the relative behaviour of the heuristics. We can see that indeed no
heuristic outperforms all other heuristics, or is outperformed by all the others,
or never outperforms all the others. Moreover, the collected costs look very

Lolpf k[af of

100(0.2| 6 40| 970/2030

110]0.2{22|time-out 20(1880

130{0.3|18|time-out|10250|5150

Table 1. Tabulated results of the experiments

unpredictable and have many outlyers. This confirms Minton’s and Tsang et al.’s
results, and also shows that human intuition may break down here (especially
when dealing with blackbox solvers).

In order to analyse the effects of each heuristic on different instances, we
drew various charts from Table 1, for example by keeping n and p; constant
and plotting the costs for each k. Figure 2 shows an example of the CPU-time
behaviours of the three heuristics on the instances where n = 110 and p; = 0.4.

From the results of the empirical study, we can already conclude the following,
regarding subset problems:

— As k gets smaller, for a given p; and n, the default VVO heuristic almost
always outperforms the others.

— As k gets larger, for a given p; and n, the performance of the default VVO
heuristic degenerates, but the static and dynamic VVO heuristics behave
much more gracefully (see Figure 2).

— Even though it is very costly to apply the dynamic VVO heuristic, it some-
times outperforms the other two heuristics.

— For some of the instances, all the heuristics failed to find a solution, or prove
the non-existence of solutions, within a reasonable amount of time.

3.3 The Meta-Heuristic

Designing the Meta-Heuristic. Using the obtained table as a lookup table,
it is straightforward to devise a (non-adaptive) meta-heuristic that first mea-
sures the parameters (n, p1, k) of the given instance, and then uses the (nearest)
corresponding entry in the table to determine which heuristic to actually run on
this instance. Considering the simplicity of these measures, the (constant) run-
time overhead is negligible, especially that it nearly always pays off anyway. The
meta-heuristic thus gives rise to an instance-independent program that is guar-
anteed to run, for any instance, (almost exactly) as fast as the fastest considered
heuristic for its instance family.

Default VvO JLE—
Static VVO -
Dynamic VWO ----------

45 B E

3.5 . A —

Log10[median-cost]

L
12 14

Fig. 2. Median cost in terms of k for the three heuristics on n = 110 and p; = 0.4

Improving the Meta-Heuristic. A very important observation is that, for
many (n,p1, k) families, all instances can be shown to have no solution, so that
the best heuristic is to fail immediately, and there is no need to even choose
between the actual heuristics in the lookup table. This is here the case when the

following holds:
n k
(5)-0 < (2)

where n is the number of Boolean variables, b is the number of binary constraints
of the form —(B; A Bj), and k is the size of the desired subset. Note that b also is
the number of 2-combinations of Boolean variables that cannot simultaneously
be 1 (which here stands for true), so (Z) — b is the number of 2-combinations
of Boolean variables that can simultaneously be 1. As k also is the number of
Boolean variables that must simultaneously be 1, we have that (§) combinations
of Boolean variables must be simultancously 1. Therefore, if (}) — b is strictly
less than (g), then no solution exists.

This can be exploited by overwriting some entries in the lookup table, or, bet-
ter, by reducing the number of experiments and then adding the corresponding
fail entries to the lookup table. This leads to our meta-heuristic being sometimes
strictly (and possibly significantly) faster than all the underlying heuristics, if
not faster than any other heuristic! This only became possible because we (need
to) detect the family to which the current instance belongs.

Propagation Algorithms Search Algorithms

{Problem Class Dependent Composition
“..__Constraint Store

Random Binary Solvers

Instance Generatpr

Solving Cost Statistig

Problem and/or

Bounds and Increments

Meta—Compositior)!«— e it
for n, m, p1, p2 i

/" Instance-Independent.,
, ,

; Problem-Independent }
\._ Problem~-Class-Dependent
S Solver .7

Fig. 3. Proposed extension to the classical quest for solvers

We have furthermore made a regression analysis to derive an evaluation func-
tion, instead of using the full look-up table. This does not speed up the resulting
programs, but the size of the solver shrinks dramatically, as the look-up table
does not have to be incorporated.

Methodological Contribution. The classical approach (shown in full lines
in Figure 3) to detecting good solvers starts by composing several solvers from
available propagation algorithms, search algorithms, and heuristics. Random in-
stances of binary CSPs are then generated for a given problem and/or given
bounds and increments for the (n,m,p;,p:) parameters that govern binary
CSPs. Running the composed solvers for the generated instances yields solving-
cost statistics, which are always evaluated manually.

Our approach (shown in dashed lines in Figure 3) extends this scenario
by making the obtained statistics an input to a new process, namely meta-
composition of solvers, so as to build a problem-and-instance-independent but
problem-class-dependent solver that is guaranteed to outperform all the other

ones. Also, instances are here just generated for the considered problem-class-
specific CSP (which is not necessarily a binary CSP).

4 Conclusion

4.1 Summary

We have shown how to map an entire class of NP-complete CSPs to a generic
constraint store, and we have devised a class-specific but problem-independent
meta-heuristic that chooses a suitable instance-specific heuristic. This work is
thus a continuation of Tsang et al’s research [17] on mapping heuristics to
application domains, and an incorporation of Minton’s and Tsang et al.’s findings
about the sensitivity of heuristics to (distributions of) instances. The key insight
is that we can analyse and exploit the form (and number) of the actually posted
constraints for a problem class, rather than considering the constraint store a
black box and looking for optimisation opportunities elsewhere.

The importance and contribution of this work is to have shown that some
form of heuristic, even if “only” a brute-force-designed and simple meta-heuristic,
can be devised for an entire problem class, without regard to its problems or their
instances. Our restriction to the (NP-complete) class of subset problems where g
only constrains the size of the subset and p is not true was just made to simplify
our presentation, as we only aimed at proving the existence of meta-heuristics
for (useful) problem classes.

Considering the availability of such a meta-heuristic, programmers can be
encouraged to model their CSPs as subset problems rather than in a different
way (if this possibility arises at all). Indeed, they then do not have to worry
about which heuristic to choose, nor do they have to implement it, nor do they
have to document the resulting program with a disclaimer stating for which
(distribution of) instances it will run “best.” All these non-declarative issues
can thus be taken care of by the solver, leaving only the declarative issue of
modelling the CSP to the programmers, thus extending the range and size of
CSPs that they can handle efficiently. Further advances along these lines will
bring us another step closer to the holy grail of programming (for CSPs).

4.2 Related Work

This work follows the call of Tsang et al. for mapping combinations of solver
components to application domains [17]. However, we here focused on just one
application domain (or: class of problems), as well as on just the effect of VVO
heuristics while keeping the solver otherwise constant.

Also closely related to our work is Minton’s MULTI-TAC system [14], which
automatically synthesises an instance-distribution-specific solver, given a high-
level model of some CSP and a set of training instances (or a generator thereof).
His motivation also was that heuristics depend on the distribution of instances.
However, we differ from his approach in various ways:

— While good performance of a solver synthesised by MULTI-TAC is only guar-
anteed for the actual distribution of the given training instances, we advocate
the off-line brute-force approach of generating all possible instance families
for a given problem class and analysing their run-time behaviours towards
the identification of a suitable meta-heuristic that is guaranteed to choose
the “best” available heuristic for any considered instance.

— While MULTI-TAC uses a synthesis-time brute-force approach to generate
candidate problem-specific heuristics, we only choose our heuristics from
(variations of) already published ones.

— While it is the responsibility of a MULTI-TAC user to also provide training
instances (or an instance generator plus the desired distribution parameters)
in order to synthesise an instance-distribution-specific program, our kind of
meta-heuristic can be pre-computed once and for all, in a problem-and-
instance-independent way for an entire class of problems, and the user thus
need not provide more than a high-level problem model.

— While MULTI-TAC features very long synthesis/compilation times for each
problem, our approach is to eliminate them by pre-computing the results for
entire problem classes.

A similar comparison can be made with Ellman’s DA-MSA system [3].

Our work differs from the problem complexity (as opposed to algorithm com-
plexity) work of Williams and Hogg [19] as follows. Whereas they propose an
analytical approach of charting the search space, under any search algorithm,
towards predicting the location of hard instances and the fluctuations in solving
cost, we propose an analytical approach of first charting the constraint store
and then actually determining, with an empirical approach, the same things,
also under any search algorithm. Furthermore, their kind of analysis has to be
repeated for every problem, while our approach can be deployed onto an entire
problem class.

4.3 Future Work

As our approach rests on the assumption that all instances of an (n,p;, k) (or,
equivalently, (n, k, b)) family will benefit from the same heuristic, namely the one
chosen for the instance that had the median cost, more analytical and empirical
work is needed to better understand and model the variance in behaviour inside
a family, and to understand whether (n,k,b) is an effective characterisation of
subset, problem instances.

We currently investigate the design of adaptive meta-heuristics [1,9] that
choose a (possibly different) heuristic after each labelling iteration, based on the
current, sub-problem, rather than sticking to the same initially chosen heuristic
all the way. The hope is that the performance would increase even more. In [12],
we explain why the heuristic Hs of this paper often outperforms all the other
considered ones (and many others) when there is a solution. This allowed us to
design, in [13], a first adaptive meta-heuristic for subset problems, and we now
try to integrate it with the (non-adaptive) meta-heuristic ideas of this paper.

We should also produce solving-cost statistics in a more finegrained way (with
more than 5 instances of more (n,p;, k) families until some realistic upper bound
for n) and involve more known heuristics, so as to finetune the lookup-table for
our meta-heuristic. Our principle of joining heuristics into a meta-heuristic, for
a given problem class, can be generalised to all solver components, leading to a
joining of entire solvers into a meta-solver, for a given problem class (as already
shown in Figure 3). All this is just a matter of having the (CPU) time to do so.

Other meta-heuristics for different classes of subset problems will be devised,
for cases where g has other constraints than the size of the subset. The studied
class of subset problems can be generalised into the class of s-subset problems
(where a maximum of s subsets of a given set have to be found, subject to some
constraints) [10]. Another extension is the coverage of (s-)subset optimisation
problems, instead of just the decision problems studied here.

Finally, we are planning to investigate other classes of problems, namely map-
ping problems (where a mapping between two given sets has to be found, subject
to some constraints) [4], permutation problems (where a sequence representing
a permutation of a given set has to be found, subject to some constraints) [4],
and sequencing problems (where sequences of bounded size over the elements of
a given set have to be found, subject to some constraints) [6], or any combina-
tions thereof [6], in order to derive further meta-heuristics. These will be built
into the compiler of our ESRA constraint modelling language [6], which is more
expressive than even OPL [18]. This will help us fulfill our design objective of
also making ESRA more declarative than OpL, namely by allowing the omission
of a VVO heuristic, without compromising on efficiency compared to reasonably
competent programimers.

Acknowledgements

This research is partly funded under grant number 221-99-369 of TFR (the
Swedish Research Council for Engineering Sciences). Many thanks to our col-
league Dag Soérbom for his help with the regression analysis, and to Edward
Tsang (University of Essex, UK) for his invaluable comments. We are also grate-
ful to the referees for their useful suggestions (if not misunderstandings).

References

1. J.E. Borrett, E.P.K. Tsang, and N.R. Walsh. Adaptive constraint satisfaction: The
quickest-first principle. In Proc. of ECAI’96, pp. 160-164. John Wiley & Sons, 1996.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In: H. Glaser, P. Hartel, and H. Kuchen (eds), Proc. of PLILP’97, pp. 191—
206. LNCS 1292. Springer-Verlag, 1997.

3. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system for
interactive reformulation of design optimization strategies. Research in Engineering
Design 10(1):30-61, 1998.

4. P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logic
programs. In Proc. of ASE’98, pp. 168-176. IEEE Computer Society Press, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. P. Flener, B. Hnich, and Z. Kiziltan. Towards schema-guided compilation of set

constraint programs. In B. Jayaraman and G. Rossi (eds), Proc. of DPS’99, pp.
59-66. Tech. Rep. 200, Math. Dept., Univ. of Parma, Italy, 1999.

P. Flener, B. Hnich, and Z. Kiziltan. Compiling high-level type constructors in
constraint programming. In: I.V. Ramakrishnan (ed), Proc. of PADL’01. LNCS,
this volume. Springer-Verlag, 2001.

P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proc. of ECAI’92, pp. 31-35. John Wiley & Sons, 1992.

C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1(3):191-244, 1997.

J.M. Gratch and S.A. Chien. Adaptive problem-solving for large scale scheduling
problems: A case study. J. of Artificial Intelligence Research 4:365-396, 1996.

B. Hnich and Z. Kiziltan. Generating programs for k-subset problems. In P. Alexan-
der (ed), Proc. of the ASE’99 Doctoral Symposium. 1999.

B. Hnich, Z. Kiziltan, and P. Flener. A meta-heuristic for subset decision problems.
In: K.R. Apt, E. Monfroy, and F. Rossi (eds), Proc. of the 2000 ERCIM/CompuLog
Workshop on Constraint Programming. 2000.

Z. Kiziltan, P. Flener, and B. Hnich. A labelling heuristic for subset problems.
Submitted for review. Available via http://www.dis.uu.se/~pierref/astra/.

Z. Kiziltan and P. Flener. An adaptive meta-heuristic for subset problems. Sub-
mitted for review. Available via http://www.dis.uu.se/~pierref/astra/.

S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1-2):7-43, 1996.

T. Miiller. Solving set partitioning problems with constraint programming. In Proc.
of PAPPACT’98, pp. 313-332. The Practical Application Company, 1998.

E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the perfor-
mance of a range of algorithm and heuristic combinations. In Proc. of AISB’95,
pp- 203-216. IOS Press, 1995.

P. Van Hentenryck. The opL Optimization Programming Language. The MIT Press,
1999.

C.P. Williams and T. Hogg. Exploiting the deep structure of constraint problems.
Artificial Intelligence 70:73-117, 1994.

