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Abstract. We discuss the consistency of constraints for which the set of
solutions can be recognised by an automaton. Such an automaton induces
a decomposition of the constraint into a conjunction of constraints. The
so far most general result is that if the constraint hypergraph of such a
decomposition is Berge-acyclic, then the decomposition provides hyper-
arc consistency. We focus on constraint networks that have α-acyclic or
centred-cyclic hypergraph representations and show the necessary con-
ditions to achieve hyper-arc consistency in these cases.
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1 Introduction

Global constraints are an important component in many modern constraint
solvers. A global constraint does two things: from the modelling perspective,
it allows a modeller to express commonly occurring combinatorial structures;
from the solving perspective, it comes with a filtering algorithm that removes
impossible domain values during search. There are global constraints for many
combinatorial structures, such as scheduling [1, 3], packing [14], staff schedul-
ing [13], and so on [8].

Although modern constraint solvers have many global constraints, often a
constraint that one is looking for is not there. In the past, the choices where
either to reformulate the problem or to write one’s own filtering algorithm.

In [7], a framework is given where a global constraint can be specified in a
relatively simple and high-level way by a (deterministic or non-deterministic)
finite automaton. The idea is to describe what it means for the constraint to
be satisfied in terms of the accepting paths of the automaton. Based on the
automaton, the framework decomposes the specified new global constraint into
a conjunction of already implemented (global) constraints. These constraints
collectively give the semantics of the specified global constraint and provide the
filtering.

It is so far known [6, 7] that if the constraint graph of a decomposition (in-
duced by an automaton) is Berge-acyclic [9], then the decomposition automat-
ically provides hyper-arc consistency, that is the decomposition achieves all the
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filtering that is possible. Beside Berge-acyclicity, another ten patterns of con-
straint hypergraph structure are identified in the current on-line version of the
Global Constraint Catalogue [8],1 but little is known about the filtering strength
of the (automaton-induced) decompositions that satisfy these structures.

In this paper, we show how an α-acyclic constraint hypergraph (see Sec-
tion 3) can be modified to provide hyper-arc consistency. Moreover, we show
that by adding implied constraints the so-called centred-cyclic networks of [8]
can also be modified to provide hyper-arc consistency (see Section 4). This cov-
ers five of the ten open hypergraph patterns (namely α-acyclic(2), α-acyclic(3),
centred-cyclic(1), centred-cyclic(2), and centred-cyclic(3)) and almost doubles
the number of automaton-induced decompositions in the current on-line version
of the Global Constraint Catalogue [8] that are now known to provide hyper-
arc consistency. The Global Constraint Catalogue contains at the moment 15
α-acyclic and 19 centred-cyclic constraints.

It was already observed in [6] that an α-acyclic constraint hypergraph can be
made hyper-arc consistent by making all the constraints pairwise consistent (see
Definition 6), but no algorithm was given. Here we show the connection (see
Theorem 1) between achieving pairwise consistency and doing a reachability
analysis on an automaton.

There is also a large body of related work (e.g., [10–12,20]) on decomposing
global constraints to achieve hyper-arc consistency. The work in this paper can
be seen as a more systematic approach to providing hyper-arc consistency via
decompositions.

2 Background: The automaton Constraint

The automaton(A, V ) constraint [7] holds if the constraint described by the
automaton A holds for the sequence of decision variables V , that is if A accepts
the sequence of values of V . We define the automaton constraint in three stages:
first its particular case that is also known as the regular constraint [19], and then
two orthogonal extensions, namely predicate automata and counter automata.

2.1 Modelling Constraints with Automata

Definition 1. A deterministic finite-state automaton (DFA) is a tuple
〈Q,Σ, S, F, δ〉 where Q is the set of states; Σ is the alphabet; S is a subset of Q
denoting the start states; F is a subset of Q denoting the accepting states; and δ
is a function from Q×Σ to Q denoting the transition function. If δ(ρ, σ) = ρ′,
then we say that there is a transition from state ρ to state ρ′ that consumes
alphabet symbol σ; this is often written as:

ρ
σ−→ ρ′

1 See http://www.emn.fr/z-info/sdemasse/gccat/sec3.6.5.html

http://www.emn.fr/z-info/sdemasse/gccat/sec3.6.5.html
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Fig. 1. A deterministic finite state automaton for the regular expression 1∗2(1+2+3)∗

A sequence σ1σ2 · · ·σn−1σn of alphabet symbols is accepted by the automaton if
there is a chain of transitions

ρ0
σ1−→ ρ1

σ2−→ . . .
σn−1−−−→ ρn−1

σn−−→ ρn

such that ρ0 ∈ S and ρn ∈ F .

One often uses pictures to define finite-state automata. For example, in Fig-
ure 1, we define an automaton with two states, Q = {ρs, ρt}, represented by
circles, and an alphabet of three symbols, Σ = {1, 2, 3}, on the transitions. A
start state is indicated by an arrow from the ‘start’ symbol, and an accepting
state is represented by a double circle. The transition function is represented
by the labelled arrows, that is δ(ρ, σ) = ρ′ if there is an arrow from ρ to ρ′

labelled with σ. For each state, there is one outgoing arrow per alphabet sym-
bol; any missing arrow is assumed to go to an implicit non-accepting state, on
which there is a self-looping arrow for every symbol of the alphabet, so that no
accepting state is reachable from that state. For example, in Figure 1, the miss-
ing transition from state ρs on symbol 3 goes to such an implicit non-accepting
state.

The symbol sequences accepted by an automaton form a regular language.
Hence any constraint (on a sequence of decision variables) whose extensional
definition forms a regular language can be described by an automaton. In fact,
any constraint on a finite sequence of decision variables that range over finite
domains can be described by an automaton, since every finite language is a
regular language. For instance, the automaton in Figure 1 accepts the language
of the regular expression 1∗2(1 + 2 + 3)∗.

The automaton constraint discussed so far can be implemented either via
a specialised propagator [19], or via decomposition into a conjunction of con-
straints [7]. For a given automaton, define a new constraint T (ρ, ρ′, σ) exten-
sionally by the following set:

{〈ρ, ρ′, σ〉 | ρ σ−→ ρ′} (1)

That is, T (ρ, ρ′, σ) is satisfied whenever there is a transition from state ρ to
state ρ′ that consumes symbol σ. An automaton constraint on a sequence of n
decision variables, v1, . . . , vn, is then decomposed into the following conjunction
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Fig. 2. A k-ary predicate automaton (with k = 2) for the <lex constraint

of n+ 2 constraints, called the transition constraints:

q0 ∈ S ∧ T (q0, q1, v1) ∧ · · · ∧ T (qn−1, qn, vn) ∧ qn ∈ F (2)

where q0, q1, . . . , qn−1, qn are new decision variables, called the state variables,
with domain Q. For contrast, we call v1, . . . , vn the problem variables.

The implementation of [7] actually works unchanged for non-deterministic
finite-state automata, but we have elected to restrict our focus to deterministic
ones, in order to ease the notation.

2.2 Modelling Constraints with Predicate Automata

The automata in [7] are more powerful than those in [19]: when used to describe
constraints, the labels can be predicates, and all predicates must be satisfied on
an accepting path.

The definition presented here is parametrised by a suitable set of predicates.
Let Predk be a set of k-ary predicates in some suitable language. That is, a
predicate takes a vector, V, of k values and it is either true or false.

Definition 2. A k-ary-predicate DFA is a tuple 〈Q,Σ, φ, S, F, δ〉, where Q, Σ,
S, F , and δ are exactly as for a deterministic finite-state automaton, and φ is a
function from Σ to Predk. A sequence of k-ary vectors of values V1V2 · · · Vn−1Vn
is accepted by the automaton if there exists a chain of transitions

ρ0
σ1−→ ρ1

σ2−→ . . .
σn−1−−−→ ρn−1

σn−−→ ρn

such that ρ0 ∈ S, ρn ∈ F , and φ(σi)(Vi) is true for all 1 ≤ i ≤ n. Such a chain
of transitions will often be written as

ρ0
φ(σ1)(V1)−−−−−−→ ρ1

φ(σ2)(V2)−−−−−−→ . . .
φ(σn−1)(Vn−1)−−−−−−−−−−→ ρn−1

φ(σn)(Vn)−−−−−−→ ρn

Again, we often define k-ary predicate automata by pictures. The convention
is similar to normal regular automata, except that the transition labels are pred-
icates. We assume that each distinct predicate is associated with a distinct sym-
bol of the alphabet Σ (as in Figure 1), and that the function φ from symbols is
defined by the predicate labels in the picture. For example, in Figure 2, the func-
tion φ could be defined by lambda expressions as follows: φ(1) = λx, y : x = y,
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φ(2) = λx, y : x < y, and φ(3) = λx, y : x > y. Consider the binary con-
straint (k = 2) that vector A be lexicographically less than vector B, which
is denoted by A <lex B. For A = 〈1, 2, 5, 6〉 and B = 〈1, 3, 4, 7〉, the sequence
〈1, 1〉〈2, 3〉〈5, 4〉〈6, 7〉 of binary vectors, obtained by zipping A and B together, is
accepted by the binary predicate automaton in Figure 2 because the transition
chain

ρs
1=1−−→ ρs

2<3−−→ ρt
5>4−−→ ρt

6<7−−→ ρt

ends in the accepting state ρt.
Given a predicate automaton 〈Q,Σ, φ, S, F, δ〉, the automaton 〈Q,Σ, S, F, δ〉

is referred to as the underlying automaton of the predicate automaton. For ex-
ample, the automaton in Figure 1 is the underlying automaton of the predicate
automaton in Figure 2.

In [7], constraints defined by predicate automata are implemented with the
help of reification. The constraint T defined in (1) is used for the following
transition constraints:

q0 ∈ S ∧ T (q0, q1, s1) ∧ · · · ∧ T (qn−1, qn, sn) ∧ qn ∈ F (3)

These transition constraints are like (2), but are expressed for new decision
variables s1, . . . , sn, which are connected as follows to the problem variables
via the predicates and reification: given an n-length sequence V1, . . . ,Vn of k-
ary vectors of problem variables, we add the following constraints, called the
signature constraints: ∧

σ∈Σ
(si = σ ⇔ φ(σ)(Vi)) (4)

for all 1 ≤ i ≤ n, where the si are called the signature variables, with domain
Σ. Hence Predk contains whatever can be implemented as reified constraints in
the underlying constraint solver. For example, in Figure 2, the binary predicate
automaton on the two vectors A = 〈a1, . . . , an〉 and B = 〈b1, . . . , bn〉 requires
the transition constraints (3) and the signature constraints

(si = 1⇔ ai = bi) ∧ (si = 2⇔ ai < bi) ∧ (si = 3⇔ ai > bi)

for all 1 ≤ i ≤ n.

2.3 Modelling Constraints with Counter Automata

While the class of constraints that can be described by (predicate) automata
is very large (currently, 63 of the 354 constraints of the on-line version of the
Global Constraint Catalogue [8] are described that way), it is often the case
that (predicate) automata are very large or specific to a problem instance. The
second extension in [7] is the use of counters that are initialised at the start
and evolve through counter-updating operations coupled to the transitions of
the automaton. Such counter automata allow the capture of non-regular lan-
guages and yield (even for regular languages) automata that are much smaller
if not instance-independent (and currently enable another 57 constraints of the
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catalogue to be described succinctly or generically). The two extensions are or-
thogonal and can be composed, so we define this second extension in isolation.

Again, we give a definition that is parametric on the class of counter-updating
functions. Let Cupdate` be a set of `-ary counter-updating functions. That is,
given a function ψ ∈ Cupdate` and a vector of counters C ∈ N`, we have that
ψ(C) is a new vector in N`.

Definition 3. An `-ary counter DFA is a tuple 〈Q,Σ, C0, S, F, δ〉 where Q, Σ,
S, and F are exactly as for a deterministic finite-state automaton; vector C0
has the initial values of the ` counters; and δ is a function from Q × Σ to
Q×Cupdate`. If δ(ρ, σ) = (ρ′, ψ) and ψ(C) = C′, then we write

(ρ, C) σ−→ (ρ′, C′)

A sequence σ1σ2 · · ·σn−1σn of alphabet symbols and the `-ary vector of counters
C are accepted by the automaton if there is a chain of transitions

(ρ0, C0)
σ1−→ (ρ1, C1)

σ2−→ . . .
σn−1−−−→ (ρn−1, Cn−1)

σn−−→ (ρn, C)

such that ρ0 ∈ S and ρn ∈ F .

Unlike the counter automata in theoretical computer science (see, e.g., [18]),
the counter automata here do not have access to the values of the counters during
a run, but the values of the counters are updated by the transitions. This allows
quite complicated constraints to be specified, especially constraints that concern
the cardinality of certain sets.

In [7], counter automata are decomposed into transition constraints that are
slightly extended to include information about the values of the counters. Define
a new constraint T (ρ, ρ′, C, C′, σ) extensionally by the following set:

{〈ρ, ρ′, C, C′, σ〉 | (ρ, C) σ−→ (ρ′, C′)}

An automaton constraint on a sequence of n problem variables, v1, . . . , vn, and
a vector of ` counters, C, is then decomposed into the following conjunction of
n+ 3 transition constraints:

q0 ∈ S∧T (q0, q1, C0, C1, v1)∧· · ·∧T (qn−1, qn, Cn−1, Cn, vn)∧qn ∈ F ∧C = Cn (5)

where q0, q1, . . . , qn−1, qn are state variables, with domain Q, while
C0, C1, . . . , Cn−1, Cn are vectors of integer decision variables, called counter vari-
ables, and C0 has the initial values of the counters.

3 α-Acyclic Automata

We represent a constraint as a pair R(S), where S is a tuple of decision variables
〈w1, . . . , wn〉 and R is a set of tuples of length n from some given domain. The
tuple S is often referred to as the scope of the constraint. We assume that in
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Fig. 3. Part of the constraint hypergraph of a predicate-automaton-induced decompo-
sition (with k = 1)

all scopes all variables are distinct. A solution to a constraint R(S) is some
assignment to variables, w1 = d1, . . . , wn = dn, such that the tuple 〈d1, . . . , dn〉
belongs to R. A constraint problem is a conjunction of constraints. A solution
to a constraint problem is an assignment to all its variables that satisfies all its
constraints simultaneously.

Given a constraint R(S) and a domain Di for each variable wi, a supporting
tuple for a value dk in the domain Dk of variable wk is a tuple 〈d1, . . . , dk, . . . , dn〉
satisfying R such that for all i 6= k the value di is in Di. A given set of domains
is said to be hyper-arc consistent [2] for a constraint, if for every variable and
every domain value there is a supporting tuple. Informally, every element di of a
domain Di participates in some solution to the constraint. The implementation
in [7] of the transition constraints prunes the domains of the variables until
hyper-arc consistency is achieved. A given set of domains is said to be hyper-
arc consistent for a constraint problem or a set of constraints if every value in
the domain of every variable participates in some solution. In general, hyper-arc
consistency of the individual constraints of a problem is not sufficient to ensure
hyper-arc consistency of the whole problem.

A hypergraph [9] is a pair (V,E) where E is a set of subsets of V . Given a
conjunction of constraints R1(S1)∧ · · · ∧Rm(Sm), the set of scopes can be con-
sidered as a hypergraph (∪mi=1Si, {Si}mi=1), where the tuples Si are considered as
sets. For example, the conjunction of constraints T (q0, q1, x1)∧T (q1, q2, x2) cor-
responds to the hypergraph ({q0, q1, q2, x1, x2}, {{q0, q1, x1}, {q1, q2, x2}}). Such
a hypergraph is referred to as a constraint hypergraph. In Figure 3, there is
part of the constraint hypergraph of the transition constraints (3) and signature
constraints (4) of a predicate-automaton-induced decomposition with k = 1.

It is well-known [15] that the structure of the constraint hypergraph can
determine how easy it is to solve a constraint problem. Here we review some
of these well-known results and apply them to automaton-induced constraint
decompositions.
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v1 v2 v3 v4

E1 E2

Fig. 4. A simple constraint hypergraph

For any hypergraph (V,E), we say that it is connected if for every pair of
vertices s, t ∈ V , there exists a sequence of edges e1, . . . , e` such that s ∈ e1,
t ∈ e`, and for all 1 ≤ i < ` we have that ei ∩ ei+1 is non-empty.

Definition 4. A Berge cycle [4, 9] is a sequence S1, x1, S2, x2, . . . , Sn, xn, Sn+1

in a hypergraph H such that: x1, . . . , xn are distinct vertices of H; S1, . . . , Sn
are distinct edges of H; the edges Sn+1 and S1 are equal; for all 1 ≤ i ≤ n we
have that xi is in Si ∩ Si+1; and n is greater than or equal to 2.

A hypergraph is considered Berge-cyclic if it has a Berge cycle; it is considered
Berge-acyclic otherwise.

Example 1. The hypergraph in Figure 4 is Berge-cyclic because it contains the
Berge cycle E1, v2, E2, v3, E1. The hypergraph in Figure 3 is Berge-acyclic.

In general, if there is a pair of edges of a hypergraph that share more than
one node, then the hypergraph is Berge-cyclic.

It is well known that a sufficient method for achieving hyper-arc consistency
for a constraint set with a Berge-acyclic constraint hypergraph is to ensure each
constraint of the hypergraph is hyper-arc consistent [16,17].

In the on-line version of the Global Constraint Catalogue [8], there are cur-
rently 38 of 120 constraint automata that induce Berge-acyclic constraint hy-
pergraphs. Nevertheless, it can be seen from Figure 5 that, in general, if an au-
tomaton has counters, then the resulting hypergraph is Berge-cyclic. However,
it is possible for an automaton with one counter and only one state to be trans-
formed the decomposition into a constraint hypergraph that is Berge-acyclic by
projecting away the state variables [5]; we will see later on (in Theorem 1) that
this is a special case of a more general result. Next, we generalise the known
results to a wider class of automata with counters.

We need some technical definitions; more details and examples can be found
in [4]. Without loss of generality, in the rest of the paper, we only consider
constraint satisfaction problems whose constraint hypergraph is connected and
reduced. The reduction of a hypergraph is obtained by removing each edge that
is properly contained in another edge. A hypergraph is called reduced if it is
equal to its reduction.

The set of partial edges generated by a set M is obtained by intersecting the
edges in set E of a hypergraph (V,E) with a set of vertices M ⊂ V , that is,
the set of edges {e ∩M | e ∈ E} \ {∅}. This set of partial edges is said to be a
vertex-generated set of partial edges. We sometimes refer to the original edges
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v1 v2 vn
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s1 s2 sn

c0 = 0 c1 cn = ith
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Fig. 5. Part of the constraint hypergraph induced by the counter automaton of the
ith pos different from zero(ith, pos, 〈v1, . . . , vn〉) constraint, with counters c and d [8]

as full edges, in order to establish a clear difference with partial edges when it is
needed.

Definition 5. Let H be a connected, reduced set of partial (or full) edges of
some hypergraph, and let G and F be edges of H. Define Q to be G∩F . We say
that Q is an articulation set of H if the result of removing Q from every edge of
H, that is {e \Q | e ∈ F} \ {∅}, is not a connected set of partial edges.

The concept of an articulation set is a generalisation of an articulation point
in a graph. For example, in Figure 4, the set Q = E1 ∩E2 is an articulation set.

A block of a reduced hypergraph is a connected vertex-generated set of par-
tial edges with no articulation set. A block is said to be trivial if it contains
zero or one edge. A reduced hypergraph is said to be α-acyclic if all its blocks
are trivial [4]. Intuitively, a hypergraph is α-acyclic if removing articulation sets
leaves the hypergraph disconnected; vertex-generated sets have to be consid-
ered so that the right edges are taken into account when looking at connected
components.

Example 2. Consider again the hypergraph in Figure 4. It it is a reduced hyper-
graph since none of its edges are properly contained in any other edge. The set of
edges {E1, E2} is a connected set of full edges, but if we remove the articulation
set Q = E1 ∩ E2 = {v2, v3} from them, then we obtain the set of partial edges
{F \ {v2, v3} | F ∈ {E1, E2}} \ {∅} = {v1, v4}. Thus the only blocks are {E1}
and {E2}. Since each block contains at most one edge, these blocks are trivial.

Example 3. Consider again the hypergraph in Figure 5. It is a reduced hy-
pergraph. It has many articulation sets, for example {s1}, {s2}, . . . , {sn},
{q1, c1, d1}, {q2, c2, d2}, . . . , {qn−1, cn−1, dn−1}. In order to verify that the hy-
pergraph is α-acyclic, all its blocks must be checked for triviality. For example,
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removing the articulation set {s1} from the hypergraph disconnects the partial
edge F1 \ {s1}, which is a trivial block, from the rest of the hypergraph, which
then still has many articulation sets. Removing any of the articulation sets of
the form {qi, ci, di} results in two disconnected components that both have ar-
ticulation sets and hence are not blocks. So, any vertex-generated set of partial
edges is either not a block or a trivial block.

In the case of constraint sets with α-acyclic constraint hypergraphs, it is not
straightforward to achieve hyper-arc consistency. But it can be done by using
techniques from database theory [4].

Again we need some technical definitions. Given a constraint R(〈w1, . . . , wn〉)
and a tuple of distinct variables 〈v1, . . . , vk〉 with k < n such that for all i
the variable vi is equal to some variable wj in 〈w1, . . . , wn〉, the projection of
R(〈w1, . . . , wn〉) onto 〈v1, . . . , vk〉, denoted by proj〈v1,...,vk〉(R), is the restriction
of R to the variables 〈v1, . . . , vk〉. Given a pair of variable tuples, x = 〈x1, . . . , xj〉
and y = 〈y1, . . . , y`〉, let x ∩ y denote the tuple that only contains the variables
in the set-theoretic intersection, such that they appear in the same order as they
appear in x or y.

Definition 6. A pair of constraints, R1(S1) and R2(S2), are said to be pairwise
consistent if projS1∩S2

R1 is equal to projS1∩S2
R2. A set of constraints is said to

be pairwise consistent if every constraint pair in that set is pairwise consistent.

Let {R1(S1), . . . , Rm(Sm)} be a set of constraints with an α-acyclic con-
straint hypergraph that are pairwise consistent, and let R(S) be the constraint
representing the set of solutions of the conjunction of these constraints, where
S is a tuple containing all the variables in S1, . . . , Sm. It can be shown [4] that
for all i the projection projSi

R(S) is equal to Ri(Si). Thus, all tuples in the
constraints Ri(Si) participate in a solution. This, unlike for general constraint
problems, makes the solutions very easy to compute. In particular, if all the
constraints are hyper-arc consistent, then the conjunction of the constraints is
hyper-arc consistent.

Theorem 1. Consider the transition constraints (5) from a counter-automaton-
induced constraint decomposition:

q0 ∈ S ∧ T (q0, q1, C0, C1, v1) ∧ · · · ∧ T (qn−1, qn, Cn−1, Cn, vn) ∧ qn ∈ F ∧ C = Cn

Maintaining these transition constraints pairwise consistent is equivalent to do-
ing reachability analysis on the corresponding automaton.

Proof. The transition constraint T (qi−1, qi, Ci−1, Ci, vi) codes the transition re-
lation of the automaton. Achieving pairwise consistency on the pair q0 ∈ S and
T (q0, q1, C0, C1, v1) forces the domain of q1 and C1 to include only states and
counter values that are reachable after consuming one alphabet symbol of the
automaton. Thus T (q0, q1, C0, C1, v1) can be replaced by a constraint T0, which is
a sub-constraint of T that only contains the tuples corresponding to transitions
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that can happen in one step. Assume that hyper-arc consistency and pairwise
consistency have been achieved up to step i by the constraints:

q0 ∈ S ∧ T (q0, q1, C0, C1, v1) ∧ · · · ∧ T (qi−1, qi, Ci−1, Ci, vi)

By induction, the domains of qi and Ci are all states and counter values that
are reachable after i transitions in the automaton. Thus, achieving pairwise
consistency on the pair Ti(qi−1, qi, Ci−1, Ci, vi) and T (qi, qi+1, Ci, Ci+1, vi+1) gives
a new constraint Ti+1 that contains only the subset of the tuples of Ti that can
take part in a chain of transitions of length i+ 1.

Example 4. Consider the ith pos different from zero(ith, pos, 〈v1, . . . , vn〉) [8]
constraint, where ith is a constant, pos is a decision variable, and 〈v1, . . . , vn〉
is a sequence of decision variables. The constraint ith pos different from zero
is satisfied when the element in the position pos of the sequence v, that is
the element vpos, is the ith non-zero element of the sequence. For example,
ith pos different from zero(2, 4, 〈0, 1, 0, 3, 5〉) is satisfied. Its predicate automa-
ton with two counters is shown in Figure 6 and part of its constraint hypergraph
is shown in Figure 5. The signature constraints are defined as si = 0 ⇔ vi 6= 0
and si = 1 ⇔ vi = 0. For example, given the values ith = 2 and pos = 4, the
sequence 〈0, 1, 0, 3, 5〉 is accepted by the following chain of transitions:

(ρs, 〈c = 0, d = 0〉) 1−→ (ρs, 〈c = 0, d = 1〉) 0−→ (ρs, 〈c = 1, d = 2〉) 1−→

(ρs, 〈c = 1, d = 3〉) 0−→ (ρs, 〈c = 2, d = 4〉) 0−→ (ρs, 〈c = 2, d = 4〉)

As in the proof of Theorem 1, we denote the pairwise consistent transition re-
lations obtained from the reachability analysis by Ti. The automaton has only
one state, ρs, hence for any i the constraint Ti(qi−1, qi, 〈ci−i, di−1〉, 〈ci, di〉, si) is
satisfied only when qi−1 = qi = ρs.

Next, we analyse the counters c and d. The analysis of values of the coun-
ters ci can be separated into two disjoint cases: ci−1 ≥ ith and ci−1 < ith. For
the first case, when ci−1 ≥ ith, the counters c and d are never updated be-
cause the guard c < ith of the counter updates is not satisfied. In consequence,
T (qi−1, qi, 〈ci−i, di−1〉, 〈ci, di〉, si) is satisfied whenever ci = ci−1 and di = di−1,
regardless of the value of si. For the second case, when ci−1 < ith, we have two
cases depending on the value of the signature variable si ∈ {0, 1}. When si = 0
both counters are updated. Thus T (qi−1, qi, 〈ci−i, di−1〉, 〈ci, di〉, si) is satisfied
whenever ci = ci−1 + 1 and di = di−1 + 1. When si = 1 only d is updated,
while c remains unchanged. Then T (qi−1, qi, 〈ci−i, di−1〉, 〈ci, di〉, si) is satisfied if
ci = ci−1 and di = di−1.

The constraints derived from the previous reachability analysis can be im-
plemented straightforwardly to achieve hyper-arc consistency for the constraint
ith pos different from zero. Note that these constraints must be enforced during
search in order to maintain pairwise consistency.
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ρs : φstart

where φ : ith = c, pos = d

vi = 0, {c < ith⇒ d = d+ 1}1

vi 6= 0, {c < ith⇒ (d = d+ 1, c = c+ 1)}
0

Fig. 6. Predicate automaton of the ith pos different from zero(ith, pos, 〈v1, . . . , vn〉)
constraint, with counters c and d [8]. The labels 0 and 1 correspond to the values of
the signature variables.

M

q0 q1 qn

s1 s2 sn

v1 v2 vn

F1 F2 Fn

T1 T2 Tn

Fig. 7. Constraint hypergraph induced by the predicate automaton of the
maximum(M, 〈v1, . . . , vn〉) constraint

4 Centred-Cyclic Automata

We now analyse another type of constraint hypergraph that appears in the on-
line version of the Global Constraint Catalogue [8], namely centred-cyclic hyper-
graphs. We say that the constraint hypergraph of a predicate-automaton-induced
decomposition is centred-cyclic if its signature constraints share at least one vari-
able (vertex); see Figure 7 for an example. We show that it is possible to ensure
hyper-arc consistency for this kind of constraint hypergraph. It can be verified
that a centred-cyclic hypergraph is not α-acyclic. Thus, to achieve hyper-arc
consistency, new methods have to be used.

A centred-cyclic constraint decomposition has two groups of constraints: the
transition constraints and the signature constraints. Considered alone, the tran-
sition constraints are Berge-acylic, while the signature constraints are α-acyclic.
In fact, if the signature constraints share exactly one variable, then they will
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be Berge-acyclic, and hyper-arc consistency alone of the signature constraints is
enough to achieve hyper-arc consistency of the signature constraints. So, using
results from the previous section, it is possible to achieve hyper-arc consistency
on each group separately, but this is not enough to achieve hyper-arc consis-
tency of the whole decomposition. The transition constraints and the signature
constraints only overlap in the sequence of signature variables s1, . . . , sn.

In order to ensure hyper-arc consistency for the whole hypergraph, the projec-
tion of both subproblems onto their common variables must be the same: that
is, the set of possible values for the sequence of signature variables s1, . . . , sn
must be a solution to both the signature constraints and the transition con-
straints. Thus it is sufficient to add to the decomposition an implied constraint
I(〈s1, . . . , sn〉) that is satisfied by a sequence of signature values 〈σ1, . . . , σn〉 if
and only if the corresponding transition sequence is allowed by the automaton
and the signature constraints. This constraint must be enforced during search in
order to prune sequences of values that are not allowed by either the signature
constraints or the transition constraints, thus maintaining hyper-arc consistency.

Theorem 2. Given an automaton-induced decomposition, the constraint
I(〈s1, . . . , sn〉) can be computed directly from the underlying automaton.

Proof. Assuming that each predicate of the automaton is satisfiable for some
assignment of the problem variables, the signature constraints (4) allow all pos-
sible values for each signature variable si. So the only restrictions on the values
of the signature variables come from the transition constraints (3).

The transition constraints, together with the condition that q0 and qn re-
spectively belong to the start and accepting state sets, restrict the intermediate
values to correspond to a chain of transitions from a start state to an accepting
state. Thus the constraint I must restrict the values of the signature variables to
correspond to the edge labels of accepting chains of transitions of the underlying
automaton.

We now illustrate Theorem 2 on an example taken from [8].

Example 5. The constraint maximum(M,V) constraints the decision variable M
to be the maximum of the sequence of decision variables V. Its predicate automa-
ton is given in Figure 8 and induces the constraint hypergraph in Figure 7, which
is centred-cyclic. Since the automaton has no counters, the constraint hypergraph
of the transition constraints is Berge-acyclic, as is the constraint hypergraph of
the signature constraints, since they only share one variable, namely M . Thus,
from Theorem 2, the constraint I corresponds to chains of transitions from ‘start’
to the accepting state ρ1 in the underlying automaton given in Figure 9. Every
sequence of signature values must contain a value other than 1, because every
accepting path in Figure 9 has to pass through a transition labelled with a 2. In
practice, it had been observed [5] that the Maximum constraint behaved as if it
was hyper-arc-consistent. In this particular case, since there is only one impos-
sible assignment for the signature variables, after any si was assigned the value
of 1, hyper-arc-consistency was achieved.
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ρ0start ρ1
M = x

M > x M > x

M = x

Fig. 8. Automaton of the maximum(M,V) constraint

ρ0start ρ1
2

1 1

2

Fig. 9. Underlying automaton of the maximum(M,V) constraint

This result can be generalised to cases where the signature constraints share
more than one variable.

5 Conclusion

We have used the notions and results of hypergraphs and relational databases
to derive properties of constraints given their hypergraph. In particular, we have
shown that a constraint satisfaction problem whose hypergraph is α-acyclic can
be modified in order to achieve hyper-arc consistency. Also, we have shown a
way to decompose centred-cyclic constraints and evaluate their consistency. We
will now investigate the remaining five hypergraph constraint patterns currently
identified in the on-line version of the Global Constraint Catalogue [8]. Moreover,
we will study the impact of these results in practice.
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