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Abstract. Current-generation constraint programming languages are
considered by many, especially in industry, to be too low-level, diffi-
cult, and large. We argue that solver-independent, high-level relational
constraint modelling leads to a simpler and smaller language, to more
concise, intuitive, and analysable models, as well as to more efficient
and effective model formulation, maintenance, reformulation, and veri-
fication, and all this without sacrificing the possibility of efficient solv-
ing, so that even lazy or less competent modellers can be well assisted.
Towards this, we propose the ESRA relational constraint modelling lan-
guage, showcase its elegance on some well-known problems, and outline
a compilation philosophy for such languages.

1 Introduction

Current-generation constraint programming languages are considered by many,
especially in industry, to be too low-level, difficult, and large. Consequently, their
solvers are not in as widespread use as they ought to be, and constraint pro-
gramming is still fairly unknown in many application domains, such as molecular
biology. In order to unleash the proven powers of constraint technology and make
it available to a wider range of problem modellers, a higher-level, simpler, and
smaller modelling notation is needed.

In our opinion, even recent commercial languages such as oPL [20] do not go
far enough in that direction. Many common modelling patterns have not been
captured in special constructs. They have to be painstakingly spelled out each
time, at a high risk for errors, often using low-level devices such as reification.

There is much to be learned from formal methods and semantic modelling.
In recent years, modelling languages based on some logic with sets and rela-
tions have gained popularity in formal methods, witness the B [1] and 7z [18§]
specification languages, the ALLOY [11] object modelling language, and the Ob-
ject Constraint Language (O0CL) [23] of the Unified Modelling Language (UML)
[16]. In semantic data modelling this had been long advocated; most notably via
entity-relationship-attribute (ERA) diagrams.

* The authors’ names are ordered according to the Swedish alphabet.
** An extended abstract of this paper appears in the pre-proceedings of LOPSTR’03.



Sets and set expressions recently started appearing as modelling devices in
some constraint programming languages. Set variables are often implemented by
the set interval representation [8]. In the absence of such an explicit set concept,
modellers usually painstakingly represent a set variable as a sequence of 0/1
integer variables, as long as the domain of the set.

Relations have not received much attention yet in constraint programming
languages, except the particular case of a total function via the concept of array.
Indeed, a total function f can be represented in many ways, say as a 1D array
of variables over the range of f, indexed by its domain, or as a 2D array of 0/1
variables, indexed by the domain and range of f, or even with some redundancy.
Other than retrieving the (unique) image under a total function of a domain
element, there has been no support for relational expressions.

Matrix modelling [5] has been advocated as one way of capturing common
modelling patterns. Alternatively, it has been argued [6, 10] that functions, and
hence relations, should be supported by an abstract datatype (ADT). It is then
the compiler that must (help the modeller) choose a suitable representation, say
in a contemporary constraint programming language, for each instance of the
ADT, using empirically or theoretically gained modelling insights. We here claim,
as in [4], that a suitable first-order relational calculus is a good basis for a high-
level ADT-based constraint modelling language. It gives rise to very natural and
easy-to-maintain models of combinatorial problems. Even in the (temporary)
absence of a corresponding high-level search language, this generality does not
necessarily come at a loss in solving efficiency, as high-level relational models are
devoid of representation details so that the results of analysis can be exploited.

Our aims here are only to justify and present our new language, called ESRA,
to illustrate its elegance and the flexibility of its models by some examples, and
to argue that it can be compiled into efficient models in lower-level constraint
programming languages. The syntax, denotational semantics, and type system
of the proposed language are discussed in full detail in an online appendix [7]
and a prototype of the advocated compiler is currently under implementation.

The rest of this paper is organised as follows. In Section 2, we present our
relational language for modelling combinatorial problems and deploy it on three
real-life problems, before discussing its compilation. This allows us to list, in
Section 3, the benefits of relational modelling. Finally, in Section 4, we conclude
as well as discuss related and future work.

2 Relational Modelling with ESRA

In Section 2.1, we justify the design decisions behind our new ESRA modelling
language. Then, in Section 2.2, we introduce its concepts, syntax, type system,
and semantics. Next, in Section 2.3, we deploy ESRA on three real-life problems.
Finally, in Section 2.4, we discuss the design of our prototype compiler for ESRA.

2.1 Design Decisions

The key design decisions for our new relational constraint modelling language —
called ESRA for Ezecutable Symbolism for Relational Algebra — were as follows.



We want to capture common modelling idioms in a new abstract datatype for
relations, so as to design a high-level and simple language. The constructs of the
language must be orthogonal, so as to keep the language small. Computational
completeness is not aimed at, as long as the language is useful for elegantly
modelling a large number of combinatorial problems.

We focus on finite, discrete domains. Relations are built from such domains
and sets are viewed as unary relations. Theoretical difficulties are sidestepped
by supporting only bounded quantification, but no negation and no sets of sets.

The language has an ASCII syntax, mimicking mathematical and logical
notation as closely as possible, as well as a IANTEX-based syntax, especially used
for pretty-printing models in that notation.

2.2 Concepts, Syntax, Type System, and Semantics of ESRA

For reasons of space, we only give an informal semantics. The interested reader is
invited to consult [7] for a complete description of the language. Code examples
are provided out of the semantic context of any particular problem statement,
just to illustrate the syntax, but a suggested reading in plain English is always
provided. In Section 2.3, we will actually start from plain English problem state-
ments and show how they can be modelled in ESRA. Code excerpts are always
given in the pretty-printed form, but we indicate the ASCII notation for every
symbol where it necessarily differs. An ESRA model starts with a sequence of dec-
larations of named domains (or types) as well as named constants and decision
variables that are tied to domains. Then comes the objective, which is to find
values for the decision variables within their domains so that some constraints
are satisfied and possibly some cost function takes an optimal value.

The Type System. A primitive domain is a finite, extensionally given set of
new names or integers, comma-separated and enclosed as usual in curly braces.
An integer domain can also be given intensionally as a finite integer interval,
by separating its lower and upper bounds with ‘..." (denoted in ASCII by ‘. .’),
without using curly braces. When these bounds coincide, the corresponding sin-
gleton domain n ...n or {n} can be abbreviated to n. Context always determines
whether an integer n designates itself or the singleton domain {n}. A domain
can also be given intensionally using set comprehension notation.

The only predefined primitive domains are the sets N (denoted in ASCII
by ‘nat’) and Z (denoted in ASCII by ‘int’), which are 0...sup and inf...sup
respectively, where the predefined constant identifiers ‘inf” and ‘sup’ stand for the
smallest negative and largest positive representable integers respectively. User-
defined primitive domains are declared after the ‘dom’ keyword and initialised in-
line, using the ‘=" symbol, or at run-time, via a datafile, otherwise interactively.

Ezample 1. The declaration
dom Varieties, Blocks

declares two domains called Varieties and Blocks that are to be initialised at
run-time. Similarly, the declaration

dom Players =1...g%s, Weeks =1...w, Groups =1...¢g



where g, s, w are integer-constant identifiers (assumed previously declared, in a
way shown below), declares integer domains called Players, Weeks, and Groups
that are initialised in-line. Finally, the declaration

dom Even ={i|i€0...100 | i % 2 =0}

declares and initialises the domain Even of all even natural numbers up to 100.

The usual binary infix X domain constructor (denoted in ASCII by ‘#’) allows
the construction of Cartesian products, so that relations can be declared of this
constructed domain. Consider the relation domain A x B; then A and B must
be domains, designating the participant sets of any relation in A x B.

In order to capture frequently occurring multiplicity constraints on relations,
we offer a parameterised binary infix x domain constructor. Consider the relation
domain A MixM2 B. The conditions on A and B are as above. The optional
My and M, called multiplicities, must be integer sets and have the following
semantics: for every element a of A, the number of elements of B related to a
must be in M7, while for every element b of B, the number of elements of A
related to b must be in M. An omitted multiplicity stands for N.

Example 2. The domain  Varieties "x* Blocks’ designates the set of all relations
in Varieties X Blocks where every variety occurs in exactly r blocks and every
block contains exactly k& varieties. These are also two examples where an integer
abbreviates the singleton domain containing it.

In the absence of such facilities for relations and their multiplicities, a relation
domain would have to be declared using arrays, say. This may constitute a pre-
mature commitment to a concrete data structure, as the modeller may not know
yet, especially prior to experimentation, which particular (array-based) represen-
tation of a relation decision variable will lead to the most efficient solving. The
problem constraints, including the multiplicities, would have to be enforced fur-
ther down in the model, based on the chosen representation. If the experiments
revealed that another representation should be tried, the modeller would have to
first painstakingly rewrite the declaration of the decision variable as well as all
the constraints on it. Our ADT view of relations overcomes this flaw; it is now
the compiler that must (help the modeller) choose a suitable representation for
each instance of the ADT by using empirically or theoretically gained modelling
insights. Furthermore, multiplicities need not become counting constraints, but
are succinctly and conveniently captured in the declaration.

We view sets as unary relations. So A M, where A is a domain and M an
integer set, constructs the domain of all subsets of A whose cardinality is in M.

For total and partial functions the left-hand multiplicity M; is 1...1 and
0...1 respectively. In order to dispense with these left-hand multiplicities for
total and partial functions, we offer the usual — and #— (denoted in ASCII

! Note that our syntax is the opposite of the UML one, say, where the multiplicities are
written in the other order, with the same semantics. That convention can however
not be usefully upgraded to Cartesian products of arity higher than 2.



by ‘=>” and ‘+>’) domain constructors respectively, as shorthands. They may still
have right-hand multiplicities though.

For injections, surjections, and bijections, the right-hand multiplicity M is
0...1,1...sup, and 1...1 respectively. Rather than elevating these particular
cases of functions to first-class concepts with an invented specific syntax in ESRA,
we prefer keeping our language lean and close to mathematical notation.

Ezample 3. The domain ‘(Players x Weeks) —*** Groups’ designates the set
of all total functions from Players x Weeks into Groups such that every group
is related to exactly sw player-week pairs. Note the nesting in this domain:
the Cartesian product Players x Weeks is the left-hand argument of the outer
Cartesian product.

We provide no support for multisets and sequences. Note that a multiset can
be modelled as a total function from its domain into N, giving the multiplicity
of each element. Similarly, a sequence of length n can be modelled as a total
function from 1...n into its domain, telling which element is at each position.
This does not mean that the representation of multisets and sequences is fixed (to
the one of total functions), because, as we shall see in Section 2.4, the relations
(and thus total functions) of a model need not have the same representation.

Modelling the Instance Data and Decision Variables. All declarations
are strongly typed in ESRA. All identifier declarations denote variables that are
universally quantified over the entire model, with the constants expected to be
ground before search begins while the decision variables can still be unbound.

Like the user-defined primitive domains, constants help describe the instance
data of a problem. A constant identifier is declared after the ‘cst’ keyword and is
tied to its domain by ‘€’ (denoted in ASCII by ‘in’), meaning set membership,
or by *’ (which is often used in mathematics and logic for ‘C’), meaning set
inclusion. Constants are initialised in-line, using the ‘=’ symbol, or at run-time,
via a datafile, otherwise interactively. Run-time initialisation provides a neat
separation of problem models and problem instances.

Ezample 4. The declaration ‘cst r, k, A\ € N’ declares three natural number con-
stants that are to be initialised at run-time. As already seen in Example 2, the
availability of total functions makes arrays unnecessary. The declaration

cst CrewSize : Guests — N, SpareCapacity : Hosts — N

declares that the given crew sizes of the guests as well as the given spare capac-
ities of the hosts are natural numbers, to be provided at run-time.

A decision-variable identifier is declared after the ‘var’ keyword and is tied
to its domain by “:’ or ‘€’.

Ezample 5. The declaration ‘var BIBD : Varieties "x* Blocks’ declares a rela-
tion called BIBD of the domain of Example 2. Replacing the : by € would rather
declare a particular pair of that domain.
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Modelling the Cost Function and the Constraints. Fzpressions and first-
order logic formulas are constructed in the usual way.

For numeric expressions the arguments are either integers or identifiers of the
domain N or Z, including the predefined constants ‘inf’ and ‘sup’. Usual unary
(—, ‘abs’ for absolute value, and ‘card’ for the cardinality of a set expression),
binary infix (+, —, %, / for integer quotient, and % for integer remainder), and
aggregate (3, denoted in ASCII by ‘sum’) arithmetic operators are available. A
sum is indexed by local variables ranging over finite sets, which may be filtered
on-the-fly by a condition given after the ‘|’ symbol (read ‘such that’).

Sets obey the same rules as domains. So, for set expressions, the arguments
are either (intensionally or extensionally) given sets or set identifiers, including
the predefined sets N and Z. Only the binary infix domain constructor x and
its specialisations — and #/— are available as operators.

Finally function expressions are built by applying a function identifier to an
argument tuple. We have found no use yet for any other operators (but see the
discussion of future work in Section 4).

Ezample 6. The numeric expression

Z CrewSize(g)

g€ Guests | Schedule(g,p)=h

denotes the sum of the crew sizes of all the guests that are scheduled to visit host
h at period p, assuming this expression is within the scope of the local variables
h and p. The nested function expression CrewSize(g) stands for the size of the
crew of guest g, which is a natural number according to Example 4.

Atoms are built from numeric expressions with the usual comparison pred-
icates, such as the binary infix =, #, and < (denoted in ASCII by =, !=, and
=< respectively). Atoms also include the predefined ‘true’ and ‘false’, as well as
references to the elements of a relation. We have found no use yet for any other
predicates. Note that ‘€’ is unnecessary as = € S is equivalent to S(z).

Ezample 7. The atom BIBD(vy,1) stands for the truth value of variety v; being
related to block i in the BIBD relation of Example 5.

Formulas are built from atoms. The usual binary infix connectives (A, V, =,
<, and &, denoted in ASCII by ‘//\’, ‘\/’, ‘=>’, ‘<=") and ‘<=>’ respectively) and
quantifiers (V and 3, denoted in ASCII by ‘forall’ and ‘exists’ respectively)
are available. A quantified formula is indexed by local variables ranging over
finite sets, which may be filtered on-the-fly by a condition given after the ‘|’
symbol (read ‘such that’). As we provide a rich (enough) set of predicates, models
can be formulated positively, making the negation connective unnecessary. The
usual typing and precedence rules for operators and connectives apply. All binary
operators associate to the left.

Ezample 8. The formula

V(p € Periods, h € Hosts) Z CrewSize(g) | < SpareCapacity(h)
g€ Guests | Schedule(g,p)=h



constrains the spare capacity of any host boat h not to be exceeded at any period
p by the sum of the crew sizes of all the guest boats that are scheduled to visit
host boat h at period p.

A generalisation of the 3 quantifier turns out to be very useful. We define

count( Multiplicity)(xz € Set | Condition)

to hold if and only if the cardinality of the set comprehension {z € Set | Condition}
is in the integer set Multiplicity. So ‘I(x € Set | Condition)’ is actually syntactic
sugar for ‘count(1...sup)(z € Set | Condition)’.

Example 9. The formula
V(v < vy € Varieties) count(\)(i € Blocks | BIBD (vy,i) A BIBD(v2,1))

says that each pair of ordered varieties v; and vs occurs together in exactly A
blocks, via the BIBD relation. Regarding the excerpt ‘vy < wvs € Varieties’,
note that multiple local variables can be quantified at the same time, and that
a condition on them may then be pushed forward in the usual way.

Ezample 10. Recalling from Ex. 3 that Schedule returns groups, the formula
V(p1 < p2 € Players) count(0...1)(v € Weeks | Schedule(py,v) = Schedule(pa, v))

says that there is at most one week where any two ordered players p; and po are
scheduled to play in the same group.

A cost function is a numeric expression that has to be optimised. The con-
straints on the decision variables of a model are a conjunction of formulas, using
A as the connective. The objective of a model is either to solve its constraints:

solve Constraints
or to minimise the value of its cost function subject to its constraints:
minimise CostFunction such that Constraints

or similarly for maximising. A model consists of a sequence of domain, constant,
and decision-variable declarations followed by an objective, without separators.

Ezample 11. Putting together code fragments from Examples 1, 4, 5, and 9, we
obtain the model of Figure 2 two pages ahead, discussed in Section 2.3.

The grammar of ESRA is described in Figure 1. For brevity and ease of read-
ing, we have omitted most syntactic sugar options as well as the rules for iden-
tifiers, names, and numbers. The notation (nt)s* stands for a sequence of zero
or more occurrences of the non-terminal (nt), separated by symbol s. Similarly,

(nt)er stands for one or more occurrences of (nt), separated by s. The type rules
ensure that the equality predicates = and # are only applied to expressions of
the same type, that the other comparison predicates, such as <, are only applied
to numeric expressions, and so on. Only one feature of the language has not been
described yet, namely projections. We prefer doing so in the semantic context
of the Progressive Party problem in Section 2.3.



(Model) ::= (Decl)* (Objective)

(Decly ::= (DomDecl) | (CstDecl) | ( VarDecl)

(DomDecly ::= dom (Id) | = (Set) ]

(CstDecl) = cst (Id) [ = (Tuple) | (Set)] (in | : ) (SetExpr)
(VarDecl) == var (Id) (in | : ) (SetBzpr) (ProjClause)’\’
(ProjClause) ::= where (Id)( ( (Set) | )" ) : (SetEzpr)

(Objective) ::= solve (Formula)
| (minimise | maximise ) (NumEzpr) such that (Formula)
(Bzpr) ::= (Id) | (Name) | (Tuple) | (NumEzpr) | (SetEzpr) | (FuncAppl) | ( {(Ezpr) )
(NumEgzpr) ::= (Id) | (Int) | (Nat) | inf | sup | (FuncAppl)
| (NumBEzpr) (+|-1|*|/|%) (NumEzpr)
| (-|abs) (NumEzpr)
| card (SetEzpr)
| sum ( (QuantEzpr) ) ( (NumEzpr) )

(SetEzpr) ::= (Set) | (SetEzpr) [(Set)]
| (SetEzpr) ( [[{Set)]#[(Set)]1 | # ) (SetEzpr)
| (SetEzpr) ( [->[(Set)]1 | => | [+>[(Set)]] | +> ) (SetEzpr)
(Set) ::== (Id) | int | nat
| { (Tuple)’” } | { (ComprEzpr) }
| (NumFEzpr)..{NumEzpr) | (NumEzpr)

(ComprEzpr) ::= (Ezpr) | ( (IdTuple)&+ in (SetEzpr) )/\+ [ | (Formula) ]
(FuncApply ::= (Id) {Tuple)
(Tuple) ::= ((Ea:pr)’+) | (Ezpr)

(Formula) := true | false | (RelAppl)
| (Formula) ( /\|\/|=>]<=] (
| (Bopr (<] =<|=|>=|>| 1=) (Bupr)
| forall ( (QuantEzpr) ) ( (Formula))
| count ( (Set) ) ( (QuantEzpr) )

<=
|

(RelAppl) ::= (Id) (Tuple)
(QuantEzpr) = ( ( (RelQuars) | (IdTuple)‘g‘Jr ) in (SetEzpr) )’Jr [ | (Formula) |
(RelQuars) = (Ezpr) (< |=<|=|>=]|>| =) (Ezpr)

(IdTuple) == (Id) | ¢ (Id)*" )

Fig. 1. The grammar of ESRA
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dom Varieties, Blocks

cst r,k,A €N
var BIBD : Varieties "x* Blocks
solve

V(vi < v2 € Varieties) count(\)(i € Blocks | BIBD(v1,t) A BIBD(v2,1))
Fig. 2. A pretty-printed ESRA model for BIBDs

dom Varieties, Blocks
cst r, k, lambda in nat
var BIBD : Varieties [r#k] Blocks
solve
forall (vl < v2 in Varieties)
count (lambda) (i in Blocks | BIBD(v1,i) /\ BIBD(v2,i))

Fig. 3. An ESRA model for BIBDs

2.3 Examples

We now showcase the elegance and flexibility of our language on three real-
life problems, namely Balanced Incomplete Block Designs, the Social Golfers
problem, and the Progressive Party problem.

Balanced Incomplete Block Designs. Let V' be any set of v elements, called
varieties. A balanced incomplete block design (BIBD) is a multiset of b subsets
of V, called blocks, each of size k (constraint Cy), such that each pair of distinct
varieties occurs together in exactly A blocks (Cs), with 2 < k < v. Implied
constraints are that each variety occurs in the same number of blocks (Cs),
namely r = A(v — 1)/(k — 1), as well as that bk = vr and A < r. A BIBD is
thus parameterised by a 5-tuple (v, b, 7, k, A) of parameters, not all of which are
independent. Originally intended for the design of statistical experiments, BIBDs
also have applications in cryptography and other domains. See Problem 28 at
www.csplib.org for more information.

The instance data can be declared as the two domains Varieties and Blocks, of
implicit sizes v and b respectively, as well as the three natural-number constants
r, k, and )\, as in Examples 1 and 4. A unique decision variable, BIBD, can
then be declared using the relational domain in Example 5, thereby immediately
taking care of the constraints C; and C3. The remaining constraint Cs can be
modelled as in Example 9. Figure 2 shows the resulting pretty-printed ESRA
model, while Figure 3 shows it in ASCII notation.

The Social Golfers Problem. In a golf club, there are n players, each of
whom play golf once a week (constraint Cy) and always in g groups of size s
(C%), hence n = gs. The objective is to determine whether there is a schedule of
w weeks of play for these golfers, such that there is at most one week where any
two distinct players are scheduled to play in the same group (C3). An implied
constraint is that every group occurs exactly sw times across the schedule (Cy).
See Problem 10 at www.csplib.org for more information.



cst g,s,w €N

dom Players =1...gxs, Weeks =1...w, Groups =1...¢g

var Schedule : (Players x Weeks) —°*" Groups

solve
V(p1 < p2 € Players) count(0...1)(v € Weeks | Schedule(p1,v) = Schedule(p2,v))
A VY(h € Groups,v € Weeks) count(s)(p € Players | Schedule(p,v) = h)

Fig. 4. A pretty-printed ESRA model for the Social Golfers problem

The instance data can be declared as the three natural-number constants g,
s, and w, via ‘cst g,s,w € N, as well as the three domains Players, Weeks,
and Blocks, as in Example 1. A unique decision variable, Schedule, can then be
declared using the functional domain in Example 3, thereby immediately taking
care of the constraints C; (because of the totality of the function) and Cy4. The
constraint C3 can be modelled as in Example 10. The constraint C5 can be stated
using the count quantifier, as seen in the pretty-printed ESRA model of Figure 4.

The Progressive Party Problem. The problem is to timetable a party at
a yacht club. Certain boats are designated as hosts, while the crews of the
remaining boats are designated as guests. The crew of a host boat remains
on board throughout the party to act as hosts, while the crew of a guest boat
together visits host boats over a number of periods. The spare capacity of any
host boat is not to be exceeded at any period by the sum of the crew sizes of
all the guest boats that are scheduled to visit it then (constraint Cy). Any guest
crew can visit any host boat in at most one period (C3). Any two distinct guest
crews can visit the same host boat in at most one period (C5). See Problem 13
at www.csplib.org for more information.

The instance data can be declared as the three domains Guests, Hosts, and
Periods, via ‘dom Guests, Hosts, Periods’, as well as the two constant func-
tions SpareCapacity and CrewSize, as in Example 4. A unique decision variable,
Schedule, can then be declared via ‘var Schedule : (Guests x Periods) — Hosts’.
The constraint C; can now be modelled as in Example 8. The constraint Cs could
be enforced as follows:

V(g € Guests,h € Hosts) count(0...1)(p € Periods | Schedule(g,p) = h)

but the same effect can be achieved more succinctly by introducing the projection
of the Schedule function on the guests:

where Schedule(Guests,_) : Periods —s°-' Hosts

This projection clause has to be adjoined to the declaration above of the Schedule
decision variable, and is automatically compiled into the more complex con-
straint above. Finally, the constraint C3 can be captured as follows:

V(g1 < g2 € Guests) count(0...1)(p € Periods | Schedule(g,,p) = Schedule(ga,p))

Figure 5 shows the resulting pretty-printed ESRA model.

10



dom Guests, Hosts, Periods
cst SpareCapacity : Hosts — N, CrewSize : Guests — N
var Schedule : (Guests X Periods) — Hosts

where Schedule(Guests, ) : Periods —°+' Hosts
solve

V(p € Periods, h € Hosts) ( CrewSize(g)) < SpareCapacity (h)

g€ Guests | Schedule(g,p)=h
A
V(g1 < g2 € Guests) count(0...1)(p € Periods | Schedule(g1,p) = Schedule(gz, p))

Fig. 5. A pretty-printed ESRA model for the Progressive Party problem

2.4 Compiling Relational Models

A prototype compiler for ESRA is currently under development. It is being writ-
ten in OCAML (www.ocaml.org) and compiles an ESRA model into a SICStus
Prolog [3] finite-domain constraint program. This choice of the target language
is motivated by its excellent collection of global constraints and by our collabo-
ration with its developers on designing new global constraints. We have several
statements of interest for developing compilers of ESRA into other target lan-
guages. We already have an ESRA-to-OPL compiler for a restriction of ESRA to
functions [24,10]. The ESRA language is so high-level that it is very small com-
pared to such target languages, especially in the number of necessary primitive
constraints. The full panoply of features of these target languages can, and must,
be deployed during compilation. In particular, the implementation of decision-
variable indices is well-understood.

In order to bootstrap this prototype quickly, we chose the initial simplis-
tic strategy of representing every relational variable by a table of 0/1 integer
variables, indexed by its participating sets. This compiler is thus deterministic.

The plan is then to add alternatives to this unique representation rule, de-
pending on the multiplicities and other constraints on the relation, achieving
a non-deterministic compiler. The modeller is then invited to experiment with
her (real-life) instances and the resulting compiled programs, so as to determine
which one is the ‘best’. If the compiler is provided with those instances, then it
can be extended to automate such experiments and rankings.

Eventually, more intelligence will be built into the compiler via heuristics
(such as those of [10]) for the compiler to rank the resulting compiled programs
by decreasing likelihood of efficiency, without any recourse to experiments. In-
deed, depending on the multiplicities and other constraints on a relation, certain
representations thereof can be shown to be better than others, under certain as-
sumptions on the solver, and this either theoretically (see, e.g., [22] for bijections
and [10] for injections) or empirically (see, e.g., [17] for bijections).

Our ultimate aim is of course to design an actual solver for relational con-
straints, without going through compilation. Work in this direction has begun.
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3 Benefits of Relational Modelling

In our experience, and as observable in Section 2.3, a relational constraint mod-
elling language leads to more concise and intuitive models, as well as to more
efficient and effective model formulation and verification. Due to ESRA being a
smaller language than conventional constraint languages, we believe it is easier
to learn and master, making it a good candidate for a teaching medium. All this
could entail a better dissemination of constraint technology.

Relational languages seem a good trade-off between generality and specificity,
enabling efficient solving despite more generality. Relations are a single, pow-
erful concept for elegantly modelling many aspects of combinatorial problems.
Also, there are not too many different, and even standard, ways of representing
relations and relational expressions. Known and future modelling insights, such
as those in [10,17,22], can be built into the compiler(s), so that even lazy or less
competent modellers can benefit from them. Modelling is unencumbered by early
if not uninformed commitments to representation choices. Low-level modelling
devices such as reification and higher-order constraints can be encapsulated as
implementation devices. The number of decision variables being reduced, there
is even hope that directly solving the constraints at the high relational level can
be faster than solving their compiled lower-level counterparts. All this illustrates
that more generality need not mean poorer performance.

Relational models are more amenable to maintenance when the combinato-
rial problem changes, because most of the tedium is taken care of by the compiler,
so that even lazy or less competent modellers are well assisted. Model mainte-
nance at the relational level reduces to adapting to the new problem, with all
representation (and solving) issues left to the compiler. Little work is involved
here when a multiplicity change entails a preferable representation change for a
relation. Maintenance can even be necessary when the statistical distribution of
the problem instances that are to be solved changes [15]. If information on the
new distribution is given to the compiler, a simple recompilation will take care
of the maintenance.

Relational models are at a more suitable level for possibly automated model
reformulation, such as via the inference and selection of suitable implied con-
straints, with again the compiler assisting in the more mundane aspects. In the
BIBD and Social Golfers examples, we have observed that multiplicities provide
a nice framework for discovering and stating some implied constraints because
the language makes the modeller think about making these multiplicities explicit,
even if they were not in the original problem formulation.

Relational models are more amenable to constraint analysis. Detected prop-
erties as well as properties consciously introduced during compilation into lower-
level programs, such as symmetry or bijectiveness, can then be taken into account
during compilation, especially using tractability results [21].

There would be further benefits to a relational modelling language if it were
adopted as a standard front-end language for solvers. Indeed, models and instance
data would then be solver-independent and could be shared between solvers. This
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would facilitate fair and homogeneous solver comparisons, say via new standard
benchmarks, as well as foster competition in fine-tuning the compilers.

4 Conclusion

Summary. We have argued that solver-independent, high-level relational con-
straint modelling leads to a simpler and smaller language; to more concise, in-
tuitive, and analysable models; as well as to more efficient and effective model
formulation, maintenance, reformulation, and verification; and all this without
sacrificing the possibility of efficient solving, so that even lazy or less competent
modellers can be well assisted. Towards this, we have proposed the ESRA rela-
tional modelling language, showcased its elegance on some well-known problems,
and outlined a compilation philosophy for such languages.

Related Work. We have here generalised and re-engineered our work [6, 24,
10] on a predecessor of ESRA, now called Functional-ESRA, that only supports
function variables, by pursuing the plan outlined in [4].

This research owes a lot to previous work on relational modelling in formal
methods and on ERA-style semantic data modelling, especially to the ALLOY
object modelling language [11], which itself gained much from the 7 specification
notation [18] (and learned from UML/0CL how not to do it). Contrary to ERA
modelling, we do not distinguish between attributes and relations.

In constraint programming, the commercial OPL [20] stands out as a medium-
level modelling language and actually gave the impetus to design ESRA: con-
sult [4] for a comparison of elegant ESRA models with more awkward (published)
OPL counterparts that do not provide all the benefits of Section 3. Experimental
higher-level constraint modelling languages have been proposed, such as ALICE
[13], CLP(Fun(D)) [9], EACL [19], NCL [25], and NP-SPEC [2]. Our ESRA shares
with them the quest for a practical declarative modelling language based on
a strongly-typed fuller first-order logic than Horn clauses, possibly with func-
tions or relations, while dispensing with such hard-to-properly-implement and
rarely-necessary (for constraint modelling) luxuries as recursion, negation, and
unbounded quantification. However, ESRA goes beyond them, by advocating an
abstract-datatype view of relations, so that their representations need not be
fixed in advance, as well as an elegant notation for multiplicity constraints. We
lack the space here for a deeper comparison with these languages.

Future Work. Most of our future work has already been listed in Sections 2.4
and 3 about the compiler design and long-term benefits of relational modelling,
such as the generation of implied constraints and the breaking of symmetries.
We have argued that our ESRA language is very small. This is mostly because
we have not yet identified the need for any other operators or predicates. An
exception to this is the need for transitive closure relation constructors. We
have not yet fully worked out the details, but aim at modelling the well-known
Travelling Salesperson (TSP) problem as in Figure 6, where the transitive closure
of the bijection Next on Cities is denoted by Next*. This general mechanism
avoids the introduction of an ad hoc ‘circuit’ constraint as in ALICE [13]. As we
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dom Cities
cst Distance : (Cities X Cities) — N
var Nezt : Cities —' Cities

minimise Y. Distance(c, Next(c))
c€ Cities
such that V(c1&c2 € Cities) Next™(c1) = c2

Fig. 6. A pretty-printed ESRA model for the Travelling Salesperson problem

do not aim at a complete modelling language, we can be very conservative in
what missing features shall be added to ESRA when they are identified.

In [14], a type system is derived for binary relations that can be used as an
input to specialised filtering algorithms. This kind of analysis can be integrated
into the relational solver we have in mind. Also, a graphical language could
be developed for the data modelling, including the multiplicity constraints on
relations, so that only the cost function and the constraints would need to be
textually expressed. Finally, a search language, such as SALSA [12] or the one
of oPL [20], but at the level of relational modelling, should be adjoined to the
constraint modelling language proposed here, so that more expert modellers can
express their own search heuristics.
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