
Introdu
ing esra, a Relational Languagefor Modelling Combinatorial ProblemsPierre Flener, Justin Pearson, and Magnus �Agren ? ??Department of Information Te
hnologyUppsala University, Box 337, S { 751 05 Uppsala, Swedenfpierref,justin,agreng�it.uu.seAbstra
t. Current-generation
onstraint programming languages are
onsidered by many, espe
ially in industry, to be too low-level, diÆ-
ult, and large. We argue that solver-independent, high-level relational
onstraint modelling leads to a simpler and smaller language, to more
on
ise, intuitive, and analysable models, as well as to more eÆ
ientand e�e
tive model formulation, maintenan
e, reformulation, and veri-�
ation, and all this without sa
ri�
ing the possibility of eÆ
ient solv-ing, so that even lazy or less
ompetent modellers
an be well assisted.Towards this, we propose the esra relational
onstraint modelling lan-guage, show
ase its elegan
e on some well-known problems, and outlinea
ompilation philosophy for su
h languages.1 Introdu
tionCurrent-generation
onstraint programming languages are
onsidered by many,espe
ially in industry, to be too low-level, diÆ
ult, and large. Consequently, theirsolvers are not in as widespread use as they ought to be, and
onstraint pro-gramming is still fairly unknown in many appli
ation domains, su
h as mole
ularbiology. In order to unleash the proven powers of
onstraint te
hnology and makeit available to a wider range of problem modellers, a higher-level, simpler, andsmaller modelling notation is needed.In our opinion, even re
ent
ommer
ial languages su
h as opl [20℄ do not gofar enough in that dire
tion. Many
ommon modelling patterns have not been
aptured in spe
ial
onstru
ts. They have to be painstakingly spelled out ea
htime, at a high risk for errors, often using low-level devi
es su
h as rei�
ation.There is mu
h to be learned from formal methods and semanti
 modelling.In re
ent years, modelling languages based on some logi
 with sets and rela-tions have gained popularity in formal methods, witness the b [1℄ and z [18℄spe
i�
ation languages, the alloy [11℄ obje
t modelling language, and the Ob-je
t Constraint Language (o
l) [23℄ of the Uni�ed Modelling Language (uml)[16℄. In semanti
 data modelling this had been long advo
ated; most notably viaentity-relationship-attribute (ERA) diagrams.? The authors' names are ordered a

ording to the Swedish alphabet.?? An extended abstra
t of this paper appears in the pre-pro
eedings of LOPSTR'03.

Sets and set expressions re
ently started appearing as modelling devi
es insome
onstraint programming languages. Set variables are often implemented bythe set interval representation [8℄. In the absen
e of su
h an expli
it set
on
ept,modellers usually painstakingly represent a set variable as a sequen
e of 0/1integer variables, as long as the domain of the set.Relations have not re
eived mu
h attention yet in
onstraint programminglanguages, ex
ept the parti
ular
ase of a total fun
tion via the
on
ept of array.Indeed, a total fun
tion f
an be represented in many ways, say as a 1D arrayof variables over the range of f , indexed by its domain, or as a 2D array of 0/1variables, indexed by the domain and range of f , or even with some redundan
y.Other than retrieving the (unique) image under a total fun
tion of a domainelement, there has been no support for relational expressions.Matrix modelling [5℄ has been advo
ated as one way of
apturing
ommonmodelling patterns. Alternatively, it has been argued [6, 10℄ that fun
tions, andhen
e relations, should be supported by an abstra
t datatype (ADT). It is thenthe
ompiler that must (help the modeller)
hoose a suitable representation, sayin a
ontemporary
onstraint programming language, for ea
h instan
e of theADT, using empiri
ally or theoreti
ally gained modelling insights. We here
laim,as in [4℄, that a suitable �rst-order relational
al
ulus is a good basis for a high-level ADT-based
onstraint modelling language. It gives rise to very natural andeasy-to-maintain models of
ombinatorial problems. Even in the (temporary)absen
e of a
orresponding high-level sear
h language, this generality does notne
essarily
ome at a loss in solving eÆ
ien
y, as high-level relational models aredevoid of representation details so that the results of analysis
an be exploited.Our aims here are only to justify and present our new language,
alled esra,to illustrate its elegan
e and the
exibility of its models by some examples, andto argue that it
an be
ompiled into eÆ
ient models in lower-level
onstraintprogramming languages. The syntax, denotational semanti
s, and type systemof the proposed language are dis
ussed in full detail in an online appendix [7℄and a prototype of the advo
ated
ompiler is
urrently under implementation.The rest of this paper is organised as follows. In Se
tion 2, we present ourrelational language for modelling
ombinatorial problems and deploy it on threereal-life problems, before dis
ussing its
ompilation. This allows us to list, inSe
tion 3, the bene�ts of relational modelling. Finally, in Se
tion 4, we
on
ludeas well as dis
uss related and future work.2 Relational Modelling with esraIn Se
tion 2.1, we justify the design de
isions behind our new esra modellinglanguage. Then, in Se
tion 2.2, we introdu
e its
on
epts, syntax, type system,and semanti
s. Next, in Se
tion 2.3, we deploy esra on three real-life problems.Finally, in Se
tion 2.4, we dis
uss the design of our prototype
ompiler for esra.2.1 Design De
isionsThe key design de
isions for our new relational
onstraint modelling language |
alled esra for Exe
utable Symbolism for Relational Algebra | were as follows.2

We want to
apture
ommon modelling idioms in a new abstra
t datatype forrelations, so as to design a high-level and simple language. The
onstru
ts of thelanguage must be orthogonal, so as to keep the language small. Computational
ompleteness is not aimed at, as long as the language is useful for elegantlymodelling a large number of
ombinatorial problems.We fo
us on �nite, dis
rete domains. Relations are built from su
h domainsand sets are viewed as unary relations. Theoreti
al diÆ
ulties are sidesteppedby supporting only bounded quanti�
ation, but no negation and no sets of sets.The language has an ASCII syntax, mimi
king mathemati
al and logi
alnotation as
losely as possible, as well as a LATEX-based syntax, espe
ially usedfor pretty-printing models in that notation.2.2 Con
epts, Syntax, Type System, and Semanti
s of esraFor reasons of spa
e, we only give an informal semanti
s. The interested reader isinvited to
onsult [7℄ for a
omplete des
ription of the language. Code examplesare provided out of the semanti

ontext of any parti
ular problem statement,just to illustrate the syntax, but a suggested reading in plain English is alwaysprovided. In Se
tion 2.3, we will a
tually start from plain English problem state-ments and show how they
an be modelled in esra. Code ex
erpts are alwaysgiven in the pretty-printed form, but we indi
ate the ASCII notation for everysymbol where it ne
essarily di�ers. An esra model starts with a sequen
e of de
-larations of named domains (or types) as well as named
onstants and de
isionvariables that are tied to domains. Then
omes the obje
tive, whi
h is to �ndvalues for the de
ision variables within their domains so that some
onstraintsare satis�ed and possibly some
ost fun
tion takes an optimal value.The Type System. A primitive domain is a �nite, extensionally given set ofnew names or integers,
omma-separated and en
losed as usual in
urly bra
es.An integer domain
an also be given intensionally as a �nite integer interval,by separating its lower and upper bounds with `: : :' (denoted in ASCII by `..'),without using
urly bra
es. When these bounds
oin
ide, the
orresponding sin-gleton domain n : : : n or fng
an be abbreviated to n. Context always determineswhether an integer n designates itself or the singleton domain fng. A domain
an also be given intensionally using set
omprehension notation.The only prede�ned primitive domains are the sets N (denoted in ASCIIby `nat') and Z (denoted in ASCII by `int'), whi
h are 0 : : : sup and inf : : : suprespe
tively, where the prede�ned
onstant identi�ers `inf' and `sup' stand for thesmallest negative and largest positive representable integers respe
tively. User-de�ned primitive domains are de
lared after the `dom' keyword and initialised in-line, using the `=' symbol, or at run-time, via a data�le, otherwise intera
tively.Example 1. The de
laration dom Varieties ;Blo
ksde
lares two domains
alled Varieties and Blo
ks that are to be initialised atrun-time. Similarly, the de
larationdom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : g3

where g; s; w are integer-
onstant identi�ers (assumed previously de
lared, in away shown below), de
lares integer domains
alled Players , Weeks , and Groupsthat are initialised in-line. Finally, the de
larationdom Even = fi j i 2 0 : : : 100 j i % 2 = 0gde
lares and initialises the domain Even of all even natural numbers up to 100.The usual binary in�x � domain
onstru
tor (denoted in ASCII by `#') allowsthe
onstru
tion of Cartesian produ
ts, so that relations
an be de
lared of this
onstru
ted domain. Consider the relation domain A � B; then A and B mustbe domains, designating the parti
ipant sets of any relation in A�B.In order to
apture frequently o

urring multipli
ity
onstraints on relations,we o�er a parameterised binary in�x � domain
onstru
tor. Consider the relationdomain A M1�M2 B. The
onditions on A and B are as above. The optionalM1 and M2,
alled multipli
ities, must be integer sets and have the followingsemanti
s: for every element a of A, the number of elements of B related to amust be in M1, while for every element b of B, the number of elements of Arelated to b must be in M2.1 An omitted multipli
ity stands for N.Example 2. The domain `Varieties r�k Blo
ks ' designates the set of all relationsin Varieties � Blo
ks where every variety o

urs in exa
tly r blo
ks and everyblo
k
ontains exa
tly k varieties. These are also two examples where an integerabbreviates the singleton domain
ontaining it.In the absen
e of su
h fa
ilities for relations and their multipli
ities, a relationdomain would have to be de
lared using arrays, say. This may
onstitute a pre-mature
ommitment to a
on
rete data stru
ture, as the modeller may not knowyet, espe
ially prior to experimentation, whi
h parti
ular (array-based) represen-tation of a relation de
ision variable will lead to the most eÆ
ient solving. Theproblem
onstraints, in
luding the multipli
ities, would have to be enfor
ed fur-ther down in the model, based on the
hosen representation. If the experimentsrevealed that another representation should be tried, the modeller would have to�rst painstakingly rewrite the de
laration of the de
ision variable as well as allthe
onstraints on it. Our ADT view of relations over
omes this
aw; it is nowthe
ompiler that must (help the modeller)
hoose a suitable representation forea
h instan
e of the ADT by using empiri
ally or theoreti
ally gained modellinginsights. Furthermore, multipli
ities need not be
ome
ounting
onstraints, butare su

in
tly and
onveniently
aptured in the de
laration.We view sets as unary relations. So A M , where A is a domain and M aninteger set,
onstru
ts the domain of all subsets of A whose
ardinality is in M .For total and partial fun
tions the left-hand multipli
ity M1 is 1 : : : 1 and0 : : : 1 respe
tively. In order to dispense with these left-hand multipli
ities fortotal and partial fun
tions, we o�er the usual �! and 6�! (denoted in ASCII1 Note that our syntax is the opposite of the uml one, say, where the multipli
ities arewritten in the other order, with the same semanti
s. That
onvention
an howevernot be usefully upgraded to Cartesian produ
ts of arity higher than 2.4

by `->' and `+>') domain
onstru
tors respe
tively, as shorthands. They may stillhave right-hand multipli
ities though.For inje
tions, surje
tions, and bije
tions, the right-hand multipli
ity M2 is0 : : : 1, 1 : : : sup, and 1 : : : 1 respe
tively. Rather than elevating these parti
ular
ases of fun
tions to �rst-
lass
on
epts with an invented spe
i�
 syntax in esra,we prefer keeping our language lean and
lose to mathemati
al notation.Example 3. The domain `(Players �Weeks) �!s�w Groups ' designates the setof all total fun
tions from Players �Weeks into Groups su
h that every groupis related to exa
tly sw player-week pairs. Note the nesting in this domain:the Cartesian produ
t Players �Weeks is the left-hand argument of the outerCartesian produ
t.We provide no support for multisets and sequen
es. Note that a multiset
anbe modelled as a total fun
tion from its domain into N, giving the multipli
ityof ea
h element. Similarly, a sequen
e of length n
an be modelled as a totalfun
tion from 1 : : : n into its domain, telling whi
h element is at ea
h position.This does not mean that the representation of multisets and sequen
es is �xed (tothe one of total fun
tions), be
ause, as we shall see in Se
tion 2.4, the relations(and thus total fun
tions) of a model need not have the same representation.Modelling the Instan
e Data and De
ision Variables. All de
larationsare strongly typed in esra. All identi�er de
larations denote variables that areuniversally quanti�ed over the entire model, with the
onstants expe
ted to beground before sear
h begins while the de
ision variables
an still be unbound.Like the user-de�ned primitive domains,
onstants help des
ribe the instan
edata of a problem. A
onstant identi�er is de
lared after the `
st' keyword and istied to its domain by `2' (denoted in ASCII by `in'), meaning set membership,or by `:' (whi
h is often used in mathemati
s and logi
 for `�'), meaning setin
lusion. Constants are initialised in-line, using the `=' symbol, or at run-time,via a data�le, otherwise intera
tively. Run-time initialisation provides a neatseparation of problem models and problem instan
es.Example 4. The de
laration `
st r; k; � 2 N' de
lares three natural number
on-stants that are to be initialised at run-time. As already seen in Example 2, theavailability of total fun
tions makes arrays unne
essary. The de
laration
st CrewSize : Guests �! N; SpareCapa
ity : Hosts �! Nde
lares that the given
rew sizes of the guests as well as the given spare
apa
-ities of the hosts are natural numbers, to be provided at run-time.A de
ision-variable identi�er is de
lared after the `var' keyword and is tiedto its domain by `:' or `2'.Example 5. The de
laration `var BIBD : Varieties r�k Blo
ks ' de
lares a rela-tion
alled BIBD of the domain of Example 2. Repla
ing the : by 2 would ratherde
lare a parti
ular pair of that domain.5

Modelling the Cost Fun
tion and the Constraints. Expressions and �rst-order logi
 formulas are
onstru
ted in the usual way.For numeri
 expressions the arguments are either integers or identi�ers of thedomain N or Z, in
luding the prede�ned
onstants `inf' and `sup'. Usual unary(�, `abs' for absolute value, and `
ard' for the
ardinality of a set expression),binary in�x (+, �, �, = for integer quotient, and % for integer remainder), andaggregate (P, denoted in ASCII by `sum') arithmeti
 operators are available. Asum is indexed by lo
al variables ranging over �nite sets, whi
h may be �lteredon-the-
y by a
ondition given after the `j' symbol (read `su
h that').Sets obey the same rules as domains. So, for set expressions, the argumentsare either (intensionally or extensionally) given sets or set identi�ers, in
ludingthe prede�ned sets N and Z. Only the binary in�x domain
onstru
tor � andits spe
ialisations �! and 6�! are available as operators.Finally fun
tion expressions are built by applying a fun
tion identi�er to anargument tuple. We have found no use yet for any other operators (but see thedis
ussion of future work in Se
tion 4).Example 6. The numeri
 expressionXg2Guests j S
hedule(g;p)=hCrewSize(g)denotes the sum of the
rew sizes of all the guests that are s
heduled to visit hosth at period p, assuming this expression is within the s
ope of the lo
al variablesh and p. The nested fun
tion expression CrewSize(g) stands for the size of the
rew of guest g, whi
h is a natural number a

ording to Example 4.Atoms are built from numeri
 expressions with the usual
omparison pred-i
ates, su
h as the binary in�x =, 6=, and � (denoted in ASCII by =, !=, and=< respe
tively). Atoms also in
lude the prede�ned `true' and `false', as well asreferen
es to the elements of a relation. We have found no use yet for any otherpredi
ates. Note that `2' is unne
essary as x 2 S is equivalent to S(x).Example 7. The atom BIBD(v1; i) stands for the truth value of variety v1 beingrelated to blo
k i in the BIBD relation of Example 5.Formulas are built from atoms. The usual binary in�x
onne
tives (^, _,),(, and,, denoted in ASCII by `/\', `\/', `=>', `<=', and `<=>' respe
tively) andquanti�ers (8 and 9, denoted in ASCII by `forall' and `exists' respe
tively)are available. A quanti�ed formula is indexed by lo
al variables ranging over�nite sets, whi
h may be �ltered on-the-
y by a
ondition given after the `j'symbol (read `su
h that'). As we provide a ri
h (enough) set of predi
ates, models
an be formulated positively, making the negation
onne
tive unne
essary. Theusual typing and pre
eden
e rules for operators and
onne
tives apply. All binaryoperators asso
iate to the left.Example 8. The formula8(p 2 Periods ; h 2 Hosts)0� Xg2Guests j S
hedule(g;p)=hCrewSize(g)1A � SpareCapa
ity (h)6

onstrains the spare
apa
ity of any host boat h not to be ex
eeded at any periodp by the sum of the
rew sizes of all the guest boats that are s
heduled to visithost boat h at period p.A generalisation of the 9 quanti�er turns out to be very useful. We de�ne
ount(Multipli
ity)(x 2 Set j Condition)to hold if and only if the
ardinality of the set
omprehension fx 2 Set j Conditiongis in the integer set Multipli
ity . So `9(x 2 Set j Condition)' is a
tually synta
ti
sugar for `
ount(1 : : : sup)(x 2 Set j Condition)'.Example 9. The formula8(v1 < v2 2 Varieties)
ount(�)(i 2 Blo
ks j BIBD(v1; i) ^ BIBD(v2; i))says that ea
h pair of ordered varieties v1 and v2 o

urs together in exa
tly �blo
ks, via the BIBD relation. Regarding the ex
erpt `v1 < v2 2 Varieties ',note that multiple lo
al variables
an be quanti�ed at the same time, and thata
ondition on them may then be pushed forward in the usual way.Example 10. Re
alling from Ex. 3 that S
hedule returns groups, the formula8(p1 < p2 2 Players)
ount(0 : : : 1)(v 2Weeks j S
hedule(p1; v) = S
hedule(p2; v))says that there is at most one week where any two ordered players p1 and p2 ares
heduled to play in the same group.A
ost fun
tion is a numeri
 expression that has to be optimised. The
on-straints on the de
ision variables of a model are a
onjun
tion of formulas, using^ as the
onne
tive. The obje
tive of a model is either to solve its
onstraints:solve Constraintsor to minimise the value of its
ost fun
tion subje
t to its
onstraints:minimise CostFun
tion su
h that Constraintsor similarly for maximising. A model
onsists of a sequen
e of domain,
onstant,and de
ision-variable de
larations followed by an obje
tive, without separators.Example 11. Putting together
ode fragments from Examples 1, 4, 5, and 9, weobtain the model of Figure 2 two pages ahead, dis
ussed in Se
tion 2.3.The grammar of esra is des
ribed in Figure 1. For brevity and ease of read-ing, we have omitted most synta
ti
 sugar options as well as the rules for iden-ti�ers, names, and numbers. The notation hntis� stands for a sequen
e of zeroor more o

urren
es of the non-terminal hnti, separated by symbol s. Similarly,hntis+ stands for one or more o

urren
es of hnti, separated by s. The type rulesensure that the equality predi
ates = and 6= are only applied to expressions ofthe same type, that the other
omparison predi
ates, su
h as �, are only appliedto numeri
 expressions, and so on. Only one feature of the language has not beendes
ribed yet, namely proje
tions. We prefer doing so in the semanti

ontextof the Progressive Party problem in Se
tion 2.3.7

hModeli ::= hDe
li+ hObje
tiveihDe
li ::= hDomDe
li j hCstDe
li j hVarDe
lihDomDe
li ::= dom hIdi [= hSeti ℄hCstDe
li ::=
st hIdi [= hTuplei j hSeti ℄ (in j :) hSetExprihVarDe
li ::= var hIdi (in j :) hSetExpri hProjClausei/\�hProjClausei ::= where hIdi((hSeti j),+) : hSetExprihObje
tivei ::= solve hFormulaij (minimise j maximise) hNumExpri su
h that hFormulaihExpri ::= hIdi j hNamei j hTuplei j hNumExpri j hSetExpri j hFun
Appli j (hExpri)hNumExpri ::= hIdi j hInti j hNati j inf j sup j hFun
Applij hNumExpri (+ j - j * j / j %) hNumExprij (- j abs) hNumExprij
ard hSetExprij sum (hQuantExpri) (hNumExpri)hSetExpri ::= hSeti j hSetExpri [hSeti℄j hSetExpri ([[hSeti℄#[hSeti℄℄ j #) hSetExprij hSetExpri ([->[hSeti℄℄ j -> j [+>[hSeti℄℄ j +>) hSetExprihSeti ::= hIdi j int j natj { hTuplei,� } j { hComprExpri }j hNumExpri..hNumExpri j hNumExprihComprExpri ::= hExpri | (hIdTuplei&+ in hSetExpri)/\+ [| hFormulai ℄hFun
Appli ::= hIdi hTupleihTuplei ::= (hExpri,+) j hExprihFormulai ::= true j false j hRelApplij hFormulai (/\ j \/ j => j <= j <=>) hFormulaij hExpri (< j =< j = j >= j > j !=) hExprij forall (hQuantExpri) (hFormulai)j
ount (hSeti) (hQuantExpri)hRelAppli ::= hIdi hTupleihQuantExpri ::= ((hRelQvarsi j hIdTuplei&+) in hSetExpri),+ [| hFormulai ℄hRelQvarsi ::= hExpri (< j =< j = j >= j > j !=) hExprihIdTuplei ::= hIdi j (hIdi,+)Fig. 1. The grammar of esra8

dom Varieties ;Blo
ks
st r; k; � 2 Nvar BIBD : Varieties r�k Blo
kssolve8(v1 < v2 2 Varieties)
ount(�)(i 2 Blo
ks j BIBD(v1; i) ^ BIBD(v2; i))Fig. 2. A pretty-printed esra model for BIBDsdom Varieties, Blo
ks
st r, k, lambda in natvar BIBD : Varieties [r#k℄ Blo
kssolveforall (v1 < v2 in Varieties)
ount (lambda) (i in Blo
ks | BIBD(v1,i) /\ BIBD(v2,i))Fig. 3. An esra model for BIBDs2.3 ExamplesWe now show
ase the elegan
e and
exibility of our language on three real-life problems, namely Balan
ed In
omplete Blo
k Designs, the So
ial Golfersproblem, and the Progressive Party problem.Balan
ed In
omplete Blo
k Designs. Let V be any set of v elements,
alledvarieties. A balan
ed in
omplete blo
k design (BIBD) is a multiset of b subsetsof V ,
alled blo
ks, ea
h of size k (
onstraint C1), su
h that ea
h pair of distin
tvarieties o

urs together in exa
tly � blo
ks (C2), with 2 � k < v. Implied
onstraints are that ea
h variety o

urs in the same number of blo
ks (C3),namely r = �(v � 1)=(k � 1), as well as that bk = vr and � < r. A BIBD isthus parameterised by a 5-tuple hv; b; r; k; �i of parameters, not all of whi
h areindependent. Originally intended for the design of statisti
al experiments, BIBDsalso have appli
ations in
ryptography and other domains. See Problem 28 atwww.
splib.org for more information.The instan
e data
an be de
lared as the two domainsVarieties and Blo
ks , ofimpli
it sizes v and b respe
tively, as well as the three natural-number
onstantsr, k, and �, as in Examples 1 and 4. A unique de
ision variable, BIBD ,
anthen be de
lared using the relational domain in Example 5, thereby immediatelytaking
are of the
onstraints C1 and C3. The remaining
onstraint C2
an bemodelled as in Example 9. Figure 2 shows the resulting pretty-printed esramodel, while Figure 3 shows it in ASCII notation.The So
ial Golfers Problem. In a golf
lub, there are n players, ea
h ofwhom play golf on
e a week (
onstraint C1) and always in g groups of size s(C2), hen
e n = gs. The obje
tive is to determine whether there is a s
hedule ofw weeks of play for these golfers, su
h that there is at most one week where anytwo distin
t players are s
heduled to play in the same group (C3). An implied
onstraint is that every group o

urs exa
tly sw times a
ross the s
hedule (C4).See Problem 10 at www.
splib.org for more information.9

st g; s; w 2 Ndom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gvar S
hedule : (Players �Weeks) �!s�w Groupssolve8(p1 < p2 2 Players)
ount(0 : : : 1)(v 2Weeks j S
hedule(p1; v) = S
hedule(p2; v))^ 8(h 2 Groups ; v 2Weeks)
ount(s)(p 2 Players j S
hedule(p; v) = h)Fig. 4. A pretty-printed esra model for the So
ial Golfers problemThe instan
e data
an be de
lared as the three natural-number
onstants g,s, and w, via `
st g; s; w 2 N', as well as the three domains Players , Weeks ,and Blo
ks , as in Example 1. A unique de
ision variable, S
hedule ,
an then bede
lared using the fun
tional domain in Example 3, thereby immediately taking
are of the
onstraints C1 (be
ause of the totality of the fun
tion) and C4. The
onstraint C3
an be modelled as in Example 10. The
onstraint C2
an be statedusing the
ount quanti�er, as seen in the pretty-printed esra model of Figure 4.The Progressive Party Problem. The problem is to timetable a party ata ya
ht
lub. Certain boats are designated as hosts, while the
rews of theremaining boats are designated as guests. The
rew of a host boat remainson board throughout the party to a
t as hosts, while the
rew of a guest boattogether visits host boats over a number of periods. The spare
apa
ity of anyhost boat is not to be ex
eeded at any period by the sum of the
rew sizes ofall the guest boats that are s
heduled to visit it then (
onstraint C1). Any guest
rew
an visit any host boat in at most one period (C2). Any two distin
t guest
rews
an visit the same host boat in at most one period (C3). See Problem 13at www.
splib.org for more information.The instan
e data
an be de
lared as the three domains Guests, Hosts, andPeriods , via `dom Guests ;Hosts;Periods ', as well as the two
onstant fun
-tions SpareCapa
ity and CrewSize , as in Example 4. A unique de
ision variable,S
hedule ,
an then be de
lared via `var S
hedule : (Guests�Periods) �! Hosts '.The
onstraint C1
an now be modelled as in Example 8. The
onstraint C2
ouldbe enfor
ed as follows:8(g 2 Guests ; h 2 Hosts)
ount(0 : : : 1)(p 2 Periods j S
hedule(g; p) = h)but the same e�e
t
an be a
hieved more su

in
tly by introdu
ing the proje
tionof the S
hedule fun
tion on the guests:where S
hedule(Guests ;) : Periods �!0:::1 HostsThis proje
tion
lause has to be adjoined to the de
laration above of the S
hedulede
ision variable, and is automati
ally
ompiled into the more
omplex
on-straint above. Finally, the
onstraint C3
an be
aptured as follows:8(g1 < g2 2 Guests)
ount(0 : : : 1)(p 2 Periods j S
hedule(g1; p) = S
hedule(g2; p))Figure 5 shows the resulting pretty-printed esra model.10

dom Guests ; Hosts ; Periods
st SpareCapa
ity : Hosts �! N; CrewSize : Guests �! Nvar S
hedule : (Guests � Periods) �! Hostswhere S
hedule(Guests ;) : Periods �!0:::1 Hostssolve8(p 2 Periods ; h 2 Hosts) Pg2Guests j S
hedule(g;p)=hCrewSize(g)! � SpareCapa
ity (h)8̂(g1 < g2 2 Guests)
ount(0 : : : 1)(p 2 Periods j S
hedule(g1; p) = S
hedule(g2; p))Fig. 5. A pretty-printed esra model for the Progressive Party problem2.4 Compiling Relational ModelsA prototype
ompiler for esra is
urrently under development. It is being writ-ten in o
aml (www.o
aml.org) and
ompiles an esra model into a SICStusProlog [3℄ �nite-domain
onstraint program. This
hoi
e of the target languageis motivated by its ex
ellent
olle
tion of global
onstraints and by our
ollabo-ration with its developers on designing new global
onstraints. We have severalstatements of interest for developing
ompilers of esra into other target lan-guages. We already have an esra-to-opl
ompiler for a restri
tion of esra tofun
tions [24, 10℄. The esra language is so high-level that it is very small
om-pared to su
h target languages, espe
ially in the number of ne
essary primitive
onstraints. The full panoply of features of these target languages
an, and must,be deployed during
ompilation. In parti
ular, the implementation of de
ision-variable indi
es is well-understood.In order to bootstrap this prototype qui
kly, we
hose the initial simplis-ti
 strategy of representing every relational variable by a table of 0/1 integervariables, indexed by its parti
ipating sets. This
ompiler is thus deterministi
.The plan is then to add alternatives to this unique representation rule, de-pending on the multipli
ities and other
onstraints on the relation, a
hievinga non-deterministi

ompiler. The modeller is then invited to experiment withher (real-life) instan
es and the resulting
ompiled programs, so as to determinewhi
h one is the `best'. If the
ompiler is provided with those instan
es, then it
an be extended to automate su
h experiments and rankings.Eventually, more intelligen
e will be built into the
ompiler via heuristi
s(su
h as those of [10℄) for the
ompiler to rank the resulting
ompiled programsby de
reasing likelihood of eÆ
ien
y, without any re
ourse to experiments. In-deed, depending on the multipli
ities and other
onstraints on a relation,
ertainrepresentations thereof
an be shown to be better than others, under
ertain as-sumptions on the solver, and this either theoreti
ally (see, e.g., [22℄ for bije
tionsand [10℄ for inje
tions) or empiri
ally (see, e.g., [17℄ for bije
tions).Our ultimate aim is of
ourse to design an a
tual solver for relational
on-straints, without going through
ompilation. Work in this dire
tion has begun.11

3 Bene�ts of Relational ModellingIn our experien
e, and as observable in Se
tion 2.3, a relational
onstraint mod-elling language leads to more
on
ise and intuitive models, as well as to moreeÆ
ient and e�e
tive model formulation and veri�
ation. Due to esra being asmaller language than
onventional
onstraint languages, we believe it is easierto learn and master, making it a good
andidate for a tea
hing medium. All this
ould entail a better dissemination of
onstraint te
hnology.Relational languages seem a good trade-o� between generality and spe
i�
ity,enabling eÆ
ient solving despite more generality. Relations are a single, pow-erful
on
ept for elegantly modelling many aspe
ts of
ombinatorial problems.Also, there are not too many di�erent, and even standard, ways of representingrelations and relational expressions. Known and future modelling insights, su
has those in [10, 17, 22℄,
an be built into the
ompiler(s), so that even lazy or less
ompetent modellers
an bene�t from them. Modelling is unen
umbered by earlyif not uninformed
ommitments to representation
hoi
es. Low-level modellingdevi
es su
h as rei�
ation and higher-order
onstraints
an be en
apsulated asimplementation devi
es. The number of de
ision variables being redu
ed, thereis even hope that dire
tly solving the
onstraints at the high relational level
anbe faster than solving their
ompiled lower-level
ounterparts. All this illustratesthat more generality need not mean poorer performan
e.Relational models are more amenable to maintenan
e when the
ombinato-rial problem
hanges, be
ause most of the tedium is taken
are of by the
ompiler,so that even lazy or less
ompetent modellers are well assisted. Model mainte-nan
e at the relational level redu
es to adapting to the new problem, with allrepresentation (and solving) issues left to the
ompiler. Little work is involvedhere when a multipli
ity
hange entails a preferable representation
hange for arelation. Maintenan
e
an even be ne
essary when the statisti
al distribution ofthe problem instan
es that are to be solved
hanges [15℄. If information on thenew distribution is given to the
ompiler, a simple re
ompilation will take
areof the maintenan
e.Relational models are at a more suitable level for possibly automated modelreformulation, su
h as via the inferen
e and sele
tion of suitable implied
on-straints, with again the
ompiler assisting in the more mundane aspe
ts. In theBIBD and So
ial Golfers examples, we have observed that multipli
ities providea ni
e framework for dis
overing and stating some implied
onstraints be
ausethe language makes the modeller think about making these multipli
ities expli
it,even if they were not in the original problem formulation.Relational models are more amenable to
onstraint analysis. Dete
ted prop-erties as well as properties
ons
iously introdu
ed during
ompilation into lower-level programs, su
h as symmetry or bije
tiveness,
an then be taken into a

ountduring
ompilation, espe
ially using tra
tability results [21℄.There would be further bene�ts to a relational modelling language if it wereadopted as a standard front-end language for solvers. Indeed, models and instan
edata would then be solver-independent and
ould be shared between solvers. This12

would fa
ilitate fair and homogeneous solver
omparisons, say via new standardben
hmarks, as well as foster
ompetition in �ne-tuning the
ompilers.4 Con
lusionSummary. We have argued that solver-independent, high-level relational
on-straint modelling leads to a simpler and smaller language; to more
on
ise, in-tuitive, and analysable models; as well as to more eÆ
ient and e�e
tive modelformulation, maintenan
e, reformulation, and veri�
ation; and all this withoutsa
ri�
ing the possibility of eÆ
ient solving, so that even lazy or less
ompetentmodellers
an be well assisted. Towards this, we have proposed the esra rela-tional modelling language, show
ased its elegan
e on some well-known problems,and outlined a
ompilation philosophy for su
h languages.Related Work. We have here generalised and re-engineered our work [6, 24,10℄ on a prede
essor of esra, now
alled Fun
tional-esra, that only supportsfun
tion variables, by pursuing the plan outlined in [4℄.This resear
h owes a lot to previous work on relational modelling in formalmethods and on ERA-style semanti
 data modelling, espe
ially to the alloyobje
t modelling language [11℄, whi
h itself gained mu
h from the z spe
i�
ationnotation [18℄ (and learned from uml/o
l how not to do it). Contrary to ERAmodelling, we do not distinguish between attributes and relations.In
onstraint programming, the
ommer
ial opl [20℄ stands out as a medium-level modelling language and a
tually gave the impetus to design esra:
on-sult [4℄ for a
omparison of elegant esra models with more awkward (published)opl
ounterparts that do not provide all the bene�ts of Se
tion 3. Experimentalhigher-level
onstraint modelling languages have been proposed, su
h as ali
e[13℄, CLP (Fun(D)) [9℄, ea
l [19℄, n
l [25℄, and np-spe
 [2℄. Our esra shareswith them the quest for a pra
ti
al de
larative modelling language based ona strongly-typed fuller �rst-order logi
 than Horn
lauses, possibly with fun
-tions or relations, while dispensing with su
h hard-to-properly-implement andrarely-ne
essary (for
onstraint modelling) luxuries as re
ursion, negation, andunbounded quanti�
ation. However, esra goes beyond them, by advo
ating anabstra
t-datatype view of relations, so that their representations need not be�xed in advan
e, as well as an elegant notation for multipli
ity
onstraints. Wela
k the spa
e here for a deeper
omparison with these languages.Future Work. Most of our future work has already been listed in Se
tions 2.4and 3 about the
ompiler design and long-term bene�ts of relational modelling,su
h as the generation of implied
onstraints and the breaking of symmetries.We have argued that our esra language is very small. This is mostly be
ausewe have not yet identi�ed the need for any other operators or predi
ates. Anex
eption to this is the need for transitive
losure relation
onstru
tors. Wehave not yet fully worked out the details, but aim at modelling the well-knownTravelling Salesperson (TSP) problem as in Figure 6, where the transitive
losureof the bije
tion Next on Cities is denoted by Next�. This general me
hanismavoids the introdu
tion of an ad ho
 `
ir
uit'
onstraint as in ali
e [13℄. As we13

dom Cities
st Distan
e : (Cities � Cities) �! Nvar Next : Cities �!1 Citiesminimise P
2CitiesDistan
e(
;Next(
))su
h that 8(
1&
2 2 Cities) Next�(
1) =
2Fig. 6. A pretty-printed esra model for the Travelling Salesperson problemdo not aim at a
omplete modelling language, we
an be very
onservative inwhat missing features shall be added to esra when they are identi�ed.In [14℄, a type system is derived for binary relations that
an be used as aninput to spe
ialised �ltering algorithms. This kind of analysis
an be integratedinto the relational solver we have in mind. Also, a graphi
al language
ouldbe developed for the data modelling, in
luding the multipli
ity
onstraints onrelations, so that only the
ost fun
tion and the
onstraints would need to betextually expressed. Finally, a sear
h language, su
h as salsa [12℄ or the oneof opl [20℄, but at the level of relational modelling, should be adjoined to the
onstraint modelling language proposed here, so that more expert modellers
anexpress their own sear
h heuristi
s.A
knowledgements. This work is partially supported by grant 221-99-369of VR, the Swedish Resear
h Coun
il, and by institutional grant IG2001-67 ofSTINT, the Swedish Foundation for International Cooperation in Resear
h andHigher Edu
ation. We thank Ni
olas Beldi
eanu, Mats Carlsson, Maria Fox,Brahim Hni
h, Daniel Ja
kson, Fran�
ois Laburthe, Derek Long, Gerrit Renker,Christian S
hulte, and Mark Walla
e for stimulating dis
ussions, as well as the
onstru
tive reviewers of a previous version of this paper.Referen
es1. J.-R. Abrial. The b-Book: Assigning Programs to Meanings. CUP, 1996.2. M. Cadoli, L. Palopoli, A. S
haerf, and D. Vasile. np-spe
: An exe
utable spe
i�
a-tion language for solving all problems in NP. In: G. Gupta (ed), Pro
. of PADL'99,pp. 16{30. LNCS 1551. Springer-Verlag, 1999.3. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended �nite domain
onstraintsolver. In Pro
. of PLILP'97, pp. 191{206. LNCS 1292. Springer-Verlag, 1997.4. P. Flener. Towards relational modelling of
ombinatorial optimisation problems.In: Ch. Bessi�ere (ed), Pro
. of the IJCAI'01 Workshop on Modelling and SolvingProblems with Constraints, 2001. At www.lirmm.fr/�bessiere/ws ij
ai01/.5. P. Flener, A.M. Fris
h, B. Hni
h, Z. K�z�ltan, I. Miguel, and T. Walsh. Ma-trix modelling: Exploiting
ommon patterns in
onstraint programming. InPro
. of the Int'l Workshop on Reformulating CSPs, held at CP'02. At www-users.
s.york.a
.uk/�fris
h/Reformulation/02/.6. P. Flener, B. Hni
h, and Z. K�z�ltan. Compiling high-level type
onstru
tors in
onstraint programming. In: I.V. Ramakrishnan (ed), Pro
. of PADL'01, pp. 229{244. LNCS 1990. Springer-Verlag, 2001.14

7. P. Flener, J. Pearson, and M. �Agren. The Syntax, Semanti
s, and Type System ofesra. At www.it.uu.se/resear
h/group/astra/, April 2003.8. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a pra
ti
al language. Constraints 1(3):191{244, 1997.9. T.J. Hi
key. Fun
tional
onstraints in CLP languages. In: F. Benhamou and A.Colmerauer (eds), Constraint Logi
 Programming: Sele
ted Resear
h, pp. 355{381.The MIT Press, 1993.10. B. Hni
h. Fun
tion Variables for Constraint Programming. PhD The-sis, Department of Information S
ien
e, Uppsala University, 2003. Atpubli
ations.uu.se/theses/91-506-1650-1/.11. D. Ja
kson, I. Shlyakhter, and M. Sridharan. A mi
romodularity me
hanism. InPro
. of FSE/ESEC'01, Software Engineering Notes 26(5):62{73, 2001.12. F. Laburthe and Y. Caseau. salsa: A language for sear
h algorithms. Constraints7:255{288, 2002.13. J.-L. Lauri�ere. A language and a program for stating and solving
ombinatorialproblems. Arti�
ial Intelligen
e 10(1):29{127, 1978.14. D. Lesaint. Inferring
onstraint types in
onstraint programming. In: P. Van Hen-tenry
k (ed), Pro
. of CP'02, pp. 462{476. LNCS 2470. Springer-Verlag, 2002.15. S. Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: A
asestudy. Constraints 1(1{2):7{43, 1996.16. J. Rumbaugh, I. Ja
obson, and G. Boo
h. The Uni�ed Modeling Language Refer-en
e Manual. Addison-Wesley, 1999.17. B.M. Smith. Modelling a permutation problem. Resear
h Report 18, S
hool ofComputing, University of Leeds, UK, 2000.18. J.M. Spivey. The z Notation: A Referen
e Manual (se
ond edition). Prenti
e, 1992.19. E. Tsang, P. Mills, R. Williams, J. Ford, and J. Borrett. A
omputer-aided
on-straint programming system. In: J. Little (ed), Pro
. of PACLP'99, pp. 81{93. ThePra
ti
al Appli
ation Company, 1999.20. P. Van Hentenry
k.The opl Optimization Programming Language. The MIT Press,1999.21. P. Van Hentenry
k, P. Flener, J. Pearson, and M. �Agren. Tra
table symmetrybreaking for CSPs with inter
hangeable values. In Pro
. of IJCAI'03, MorganKaufmann Publishers, 2003.22. T. Walsh. Permutation problems and
hannelling
onstraints. In Pro
. of LPAR'01,pp. 377{391. LNCS 2250. Springer-Verlag, 2001.23. J. Warmer and A. Kleppe. The Obje
t Constraint Language: Pre
ise Modeling withuml. Addison-Wesley, 1999.24. S. Wrang. Implementation of the esra Constraint Modelling Language. Master'sThesis in Computing S
ien
e 223, Department of Information Te
hnology, UppsalaUniversity, Sweden, 2002. At ftp.
sd.uu.se/pub/papers/masters-theses/.25. J. Zhou. Introdu
tion to the
onstraint language n
l. J. of Logi
 Programming45(1{3):71{103, 2000.
15

