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hnologyUppsala University, Box 337, S { 751 05 Uppsala, Swedenfpierref,justin,agreng�it.uu.seAbstra
t. Current-generation 
onstraint programming languages are
onsidered by many, espe
ially in industry, to be too low-level, diÆ-
ult, and large. We argue that solver-independent, high-level relational
onstraint modelling leads to a simpler and smaller language, to more
on
ise, intuitive, and analysable models, as well as to more eÆ
ientand e�e
tive model formulation, maintenan
e, reformulation, and veri-�
ation, and all this without sa
ri�
ing the possibility of eÆ
ient solv-ing, so that even lazy or less 
ompetent modellers 
an be well assisted.Towards this, we propose the esra relational 
onstraint modelling lan-guage, show
ase its elegan
e on some well-known problems, and outlinea 
ompilation philosophy for su
h languages.1 Introdu
tionCurrent-generation 
onstraint programming languages are 
onsidered by many,espe
ially in industry, to be too low-level, diÆ
ult, and large. Consequently, theirsolvers are not in as widespread use as they ought to be, and 
onstraint pro-gramming is still fairly unknown in many appli
ation domains, su
h as mole
ularbiology. In order to unleash the proven powers of 
onstraint te
hnology and makeit available to a wider range of problem modellers, a higher-level, simpler, andsmaller modelling notation is needed.In our opinion, even re
ent 
ommer
ial languages su
h as opl [20℄ do not gofar enough in that dire
tion. Many 
ommon modelling patterns have not been
aptured in spe
ial 
onstru
ts. They have to be painstakingly spelled out ea
htime, at a high risk for errors, often using low-level devi
es su
h as rei�
ation.There is mu
h to be learned from formal methods and semanti
 modelling.In re
ent years, modelling languages based on some logi
 with sets and rela-tions have gained popularity in formal methods, witness the b [1℄ and z [18℄spe
i�
ation languages, the alloy [11℄ obje
t modelling language, and the Ob-je
t Constraint Language (o
l) [23℄ of the Uni�ed Modelling Language (uml)[16℄. In semanti
 data modelling this had been long advo
ated; most notably viaentity-relationship-attribute (ERA) diagrams.? The authors' names are ordered a

ording to the Swedish alphabet.?? An extended abstra
t of this paper appears in the pre-pro
eedings of LOPSTR'03.



Sets and set expressions re
ently started appearing as modelling devi
es insome 
onstraint programming languages. Set variables are often implemented bythe set interval representation [8℄. In the absen
e of su
h an expli
it set 
on
ept,modellers usually painstakingly represent a set variable as a sequen
e of 0/1integer variables, as long as the domain of the set.Relations have not re
eived mu
h attention yet in 
onstraint programminglanguages, ex
ept the parti
ular 
ase of a total fun
tion via the 
on
ept of array.Indeed, a total fun
tion f 
an be represented in many ways, say as a 1D arrayof variables over the range of f , indexed by its domain, or as a 2D array of 0/1variables, indexed by the domain and range of f , or even with some redundan
y.Other than retrieving the (unique) image under a total fun
tion of a domainelement, there has been no support for relational expressions.Matrix modelling [5℄ has been advo
ated as one way of 
apturing 
ommonmodelling patterns. Alternatively, it has been argued [6, 10℄ that fun
tions, andhen
e relations, should be supported by an abstra
t datatype (ADT). It is thenthe 
ompiler that must (help the modeller) 
hoose a suitable representation, sayin a 
ontemporary 
onstraint programming language, for ea
h instan
e of theADT, using empiri
ally or theoreti
ally gained modelling insights. We here 
laim,as in [4℄, that a suitable �rst-order relational 
al
ulus is a good basis for a high-level ADT-based 
onstraint modelling language. It gives rise to very natural andeasy-to-maintain models of 
ombinatorial problems. Even in the (temporary)absen
e of a 
orresponding high-level sear
h language, this generality does notne
essarily 
ome at a loss in solving eÆ
ien
y, as high-level relational models aredevoid of representation details so that the results of analysis 
an be exploited.Our aims here are only to justify and present our new language, 
alled esra,to illustrate its elegan
e and the 
exibility of its models by some examples, andto argue that it 
an be 
ompiled into eÆ
ient models in lower-level 
onstraintprogramming languages. The syntax, denotational semanti
s, and type systemof the proposed language are dis
ussed in full detail in an online appendix [7℄and a prototype of the advo
ated 
ompiler is 
urrently under implementation.The rest of this paper is organised as follows. In Se
tion 2, we present ourrelational language for modelling 
ombinatorial problems and deploy it on threereal-life problems, before dis
ussing its 
ompilation. This allows us to list, inSe
tion 3, the bene�ts of relational modelling. Finally, in Se
tion 4, we 
on
ludeas well as dis
uss related and future work.2 Relational Modelling with esraIn Se
tion 2.1, we justify the design de
isions behind our new esra modellinglanguage. Then, in Se
tion 2.2, we introdu
e its 
on
epts, syntax, type system,and semanti
s. Next, in Se
tion 2.3, we deploy esra on three real-life problems.Finally, in Se
tion 2.4, we dis
uss the design of our prototype 
ompiler for esra.2.1 Design De
isionsThe key design de
isions for our new relational 
onstraint modelling language |
alled esra for Exe
utable Symbolism for Relational Algebra | were as follows.2



We want to 
apture 
ommon modelling idioms in a new abstra
t datatype forrelations, so as to design a high-level and simple language. The 
onstru
ts of thelanguage must be orthogonal, so as to keep the language small. Computational
ompleteness is not aimed at, as long as the language is useful for elegantlymodelling a large number of 
ombinatorial problems.We fo
us on �nite, dis
rete domains. Relations are built from su
h domainsand sets are viewed as unary relations. Theoreti
al diÆ
ulties are sidesteppedby supporting only bounded quanti�
ation, but no negation and no sets of sets.The language has an ASCII syntax, mimi
king mathemati
al and logi
alnotation as 
losely as possible, as well as a LATEX-based syntax, espe
ially usedfor pretty-printing models in that notation.2.2 Con
epts, Syntax, Type System, and Semanti
s of esraFor reasons of spa
e, we only give an informal semanti
s. The interested reader isinvited to 
onsult [7℄ for a 
omplete des
ription of the language. Code examplesare provided out of the semanti
 
ontext of any parti
ular problem statement,just to illustrate the syntax, but a suggested reading in plain English is alwaysprovided. In Se
tion 2.3, we will a
tually start from plain English problem state-ments and show how they 
an be modelled in esra. Code ex
erpts are alwaysgiven in the pretty-printed form, but we indi
ate the ASCII notation for everysymbol where it ne
essarily di�ers. An esra model starts with a sequen
e of de
-larations of named domains (or types) as well as named 
onstants and de
isionvariables that are tied to domains. Then 
omes the obje
tive, whi
h is to �ndvalues for the de
ision variables within their domains so that some 
onstraintsare satis�ed and possibly some 
ost fun
tion takes an optimal value.The Type System. A primitive domain is a �nite, extensionally given set ofnew names or integers, 
omma-separated and en
losed as usual in 
urly bra
es.An integer domain 
an also be given intensionally as a �nite integer interval,by separating its lower and upper bounds with `: : :' (denoted in ASCII by `..'),without using 
urly bra
es. When these bounds 
oin
ide, the 
orresponding sin-gleton domain n : : : n or fng 
an be abbreviated to n. Context always determineswhether an integer n designates itself or the singleton domain fng. A domain
an also be given intensionally using set 
omprehension notation.The only prede�ned primitive domains are the sets N (denoted in ASCIIby `nat') and Z (denoted in ASCII by `int'), whi
h are 0 : : : sup and inf : : : suprespe
tively, where the prede�ned 
onstant identi�ers `inf' and `sup' stand for thesmallest negative and largest positive representable integers respe
tively. User-de�ned primitive domains are de
lared after the `dom' keyword and initialised in-line, using the `=' symbol, or at run-time, via a data�le, otherwise intera
tively.Example 1. The de
laration dom Varieties ;Blo
ksde
lares two domains 
alled Varieties and Blo
ks that are to be initialised atrun-time. Similarly, the de
larationdom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : g3



where g; s; w are integer-
onstant identi�ers (assumed previously de
lared, in away shown below), de
lares integer domains 
alled Players , Weeks , and Groupsthat are initialised in-line. Finally, the de
larationdom Even = fi j i 2 0 : : : 100 j i % 2 = 0gde
lares and initialises the domain Even of all even natural numbers up to 100.The usual binary in�x � domain 
onstru
tor (denoted in ASCII by `#') allowsthe 
onstru
tion of Cartesian produ
ts, so that relations 
an be de
lared of this
onstru
ted domain. Consider the relation domain A � B; then A and B mustbe domains, designating the parti
ipant sets of any relation in A�B.In order to 
apture frequently o

urring multipli
ity 
onstraints on relations,we o�er a parameterised binary in�x � domain 
onstru
tor. Consider the relationdomain A M1�M2 B. The 
onditions on A and B are as above. The optionalM1 and M2, 
alled multipli
ities, must be integer sets and have the followingsemanti
s: for every element a of A, the number of elements of B related to amust be in M1, while for every element b of B, the number of elements of Arelated to b must be in M2.1 An omitted multipli
ity stands for N.Example 2. The domain `Varieties r�k Blo
ks ' designates the set of all relationsin Varieties � Blo
ks where every variety o

urs in exa
tly r blo
ks and everyblo
k 
ontains exa
tly k varieties. These are also two examples where an integerabbreviates the singleton domain 
ontaining it.In the absen
e of su
h fa
ilities for relations and their multipli
ities, a relationdomain would have to be de
lared using arrays, say. This may 
onstitute a pre-mature 
ommitment to a 
on
rete data stru
ture, as the modeller may not knowyet, espe
ially prior to experimentation, whi
h parti
ular (array-based) represen-tation of a relation de
ision variable will lead to the most eÆ
ient solving. Theproblem 
onstraints, in
luding the multipli
ities, would have to be enfor
ed fur-ther down in the model, based on the 
hosen representation. If the experimentsrevealed that another representation should be tried, the modeller would have to�rst painstakingly rewrite the de
laration of the de
ision variable as well as allthe 
onstraints on it. Our ADT view of relations over
omes this 
aw; it is nowthe 
ompiler that must (help the modeller) 
hoose a suitable representation forea
h instan
e of the ADT by using empiri
ally or theoreti
ally gained modellinginsights. Furthermore, multipli
ities need not be
ome 
ounting 
onstraints, butare su

in
tly and 
onveniently 
aptured in the de
laration.We view sets as unary relations. So A M , where A is a domain and M aninteger set, 
onstru
ts the domain of all subsets of A whose 
ardinality is in M .For total and partial fun
tions the left-hand multipli
ity M1 is 1 : : : 1 and0 : : : 1 respe
tively. In order to dispense with these left-hand multipli
ities fortotal and partial fun
tions, we o�er the usual �! and 6�! (denoted in ASCII1 Note that our syntax is the opposite of the uml one, say, where the multipli
ities arewritten in the other order, with the same semanti
s. That 
onvention 
an howevernot be usefully upgraded to Cartesian produ
ts of arity higher than 2.4



by `->' and `+>') domain 
onstru
tors respe
tively, as shorthands. They may stillhave right-hand multipli
ities though.For inje
tions, surje
tions, and bije
tions, the right-hand multipli
ity M2 is0 : : : 1, 1 : : : sup, and 1 : : : 1 respe
tively. Rather than elevating these parti
ular
ases of fun
tions to �rst-
lass 
on
epts with an invented spe
i�
 syntax in esra,we prefer keeping our language lean and 
lose to mathemati
al notation.Example 3. The domain `(Players �Weeks) �!s�w Groups ' designates the setof all total fun
tions from Players �Weeks into Groups su
h that every groupis related to exa
tly sw player-week pairs. Note the nesting in this domain:the Cartesian produ
t Players �Weeks is the left-hand argument of the outerCartesian produ
t.We provide no support for multisets and sequen
es. Note that a multiset 
anbe modelled as a total fun
tion from its domain into N, giving the multipli
ityof ea
h element. Similarly, a sequen
e of length n 
an be modelled as a totalfun
tion from 1 : : : n into its domain, telling whi
h element is at ea
h position.This does not mean that the representation of multisets and sequen
es is �xed (tothe one of total fun
tions), be
ause, as we shall see in Se
tion 2.4, the relations(and thus total fun
tions) of a model need not have the same representation.Modelling the Instan
e Data and De
ision Variables. All de
larationsare strongly typed in esra. All identi�er de
larations denote variables that areuniversally quanti�ed over the entire model, with the 
onstants expe
ted to beground before sear
h begins while the de
ision variables 
an still be unbound.Like the user-de�ned primitive domains, 
onstants help des
ribe the instan
edata of a problem. A 
onstant identi�er is de
lared after the `
st' keyword and istied to its domain by `2' (denoted in ASCII by `in'), meaning set membership,or by `:' (whi
h is often used in mathemati
s and logi
 for `�'), meaning setin
lusion. Constants are initialised in-line, using the `=' symbol, or at run-time,via a data�le, otherwise intera
tively. Run-time initialisation provides a neatseparation of problem models and problem instan
es.Example 4. The de
laration `
st r; k; � 2 N' de
lares three natural number 
on-stants that are to be initialised at run-time. As already seen in Example 2, theavailability of total fun
tions makes arrays unne
essary. The de
laration
st CrewSize : Guests �! N; SpareCapa
ity : Hosts �! Nde
lares that the given 
rew sizes of the guests as well as the given spare 
apa
-ities of the hosts are natural numbers, to be provided at run-time.A de
ision-variable identi�er is de
lared after the `var' keyword and is tiedto its domain by `:' or `2'.Example 5. The de
laration `var BIBD : Varieties r�k Blo
ks ' de
lares a rela-tion 
alled BIBD of the domain of Example 2. Repla
ing the : by 2 would ratherde
lare a parti
ular pair of that domain.5



Modelling the Cost Fun
tion and the Constraints. Expressions and �rst-order logi
 formulas are 
onstru
ted in the usual way.For numeri
 expressions the arguments are either integers or identi�ers of thedomain N or Z, in
luding the prede�ned 
onstants `inf' and `sup'. Usual unary(�, `abs' for absolute value, and `
ard' for the 
ardinality of a set expression),binary in�x (+, �, �, = for integer quotient, and % for integer remainder), andaggregate (P, denoted in ASCII by `sum') arithmeti
 operators are available. Asum is indexed by lo
al variables ranging over �nite sets, whi
h may be �lteredon-the-
y by a 
ondition given after the `j' symbol (read `su
h that').Sets obey the same rules as domains. So, for set expressions, the argumentsare either (intensionally or extensionally) given sets or set identi�ers, in
ludingthe prede�ned sets N and Z. Only the binary in�x domain 
onstru
tor � andits spe
ialisations �! and 6�! are available as operators.Finally fun
tion expressions are built by applying a fun
tion identi�er to anargument tuple. We have found no use yet for any other operators (but see thedis
ussion of future work in Se
tion 4).Example 6. The numeri
 expressionXg2Guests j S
hedule(g;p)=hCrewSize(g)denotes the sum of the 
rew sizes of all the guests that are s
heduled to visit hosth at period p, assuming this expression is within the s
ope of the lo
al variablesh and p. The nested fun
tion expression CrewSize(g) stands for the size of the
rew of guest g, whi
h is a natural number a

ording to Example 4.Atoms are built from numeri
 expressions with the usual 
omparison pred-i
ates, su
h as the binary in�x =, 6=, and � (denoted in ASCII by =, !=, and=< respe
tively). Atoms also in
lude the prede�ned `true' and `false', as well asreferen
es to the elements of a relation. We have found no use yet for any otherpredi
ates. Note that `2' is unne
essary as x 2 S is equivalent to S(x).Example 7. The atom BIBD(v1; i) stands for the truth value of variety v1 beingrelated to blo
k i in the BIBD relation of Example 5.Formulas are built from atoms. The usual binary in�x 
onne
tives (^, _, ),(, and,, denoted in ASCII by `/\', `\/', `=>', `<=', and `<=>' respe
tively) andquanti�ers (8 and 9, denoted in ASCII by `forall' and `exists' respe
tively)are available. A quanti�ed formula is indexed by lo
al variables ranging over�nite sets, whi
h may be �ltered on-the-
y by a 
ondition given after the `j'symbol (read `su
h that'). As we provide a ri
h (enough) set of predi
ates, models
an be formulated positively, making the negation 
onne
tive unne
essary. Theusual typing and pre
eden
e rules for operators and 
onne
tives apply. All binaryoperators asso
iate to the left.Example 8. The formula8(p 2 Periods ; h 2 Hosts)0� Xg2Guests j S
hedule(g;p)=hCrewSize(g)1A � SpareCapa
ity (h)6




onstrains the spare 
apa
ity of any host boat h not to be ex
eeded at any periodp by the sum of the 
rew sizes of all the guest boats that are s
heduled to visithost boat h at period p.A generalisation of the 9 quanti�er turns out to be very useful. We de�ne
ount(Multipli
ity)(x 2 Set j Condition)to hold if and only if the 
ardinality of the set 
omprehension fx 2 Set j Conditiongis in the integer set Multipli
ity . So `9(x 2 Set j Condition)' is a
tually synta
ti
sugar for `
ount(1 : : : sup)(x 2 Set j Condition)'.Example 9. The formula8(v1 < v2 2 Varieties) 
ount(�)(i 2 Blo
ks j BIBD(v1; i) ^ BIBD(v2; i))says that ea
h pair of ordered varieties v1 and v2 o

urs together in exa
tly �blo
ks, via the BIBD relation. Regarding the ex
erpt `v1 < v2 2 Varieties ',note that multiple lo
al variables 
an be quanti�ed at the same time, and thata 
ondition on them may then be pushed forward in the usual way.Example 10. Re
alling from Ex. 3 that S
hedule returns groups, the formula8(p1 < p2 2 Players) 
ount(0 : : : 1)(v 2Weeks j S
hedule(p1; v) = S
hedule(p2; v))says that there is at most one week where any two ordered players p1 and p2 ares
heduled to play in the same group.A 
ost fun
tion is a numeri
 expression that has to be optimised. The 
on-straints on the de
ision variables of a model are a 
onjun
tion of formulas, using^ as the 
onne
tive. The obje
tive of a model is either to solve its 
onstraints:solve Constraintsor to minimise the value of its 
ost fun
tion subje
t to its 
onstraints:minimise CostFun
tion su
h that Constraintsor similarly for maximising. A model 
onsists of a sequen
e of domain, 
onstant,and de
ision-variable de
larations followed by an obje
tive, without separators.Example 11. Putting together 
ode fragments from Examples 1, 4, 5, and 9, weobtain the model of Figure 2 two pages ahead, dis
ussed in Se
tion 2.3.The grammar of esra is des
ribed in Figure 1. For brevity and ease of read-ing, we have omitted most synta
ti
 sugar options as well as the rules for iden-ti�ers, names, and numbers. The notation hntis� stands for a sequen
e of zeroor more o

urren
es of the non-terminal hnti, separated by symbol s. Similarly,hntis+ stands for one or more o

urren
es of hnti, separated by s. The type rulesensure that the equality predi
ates = and 6= are only applied to expressions ofthe same type, that the other 
omparison predi
ates, su
h as �, are only appliedto numeri
 expressions, and so on. Only one feature of the language has not beendes
ribed yet, namely proje
tions. We prefer doing so in the semanti
 
ontextof the Progressive Party problem in Se
tion 2.3.7



hModeli ::= hDe
li+ hObje
tiveihDe
li ::= hDomDe
li j hCstDe
li j hVarDe
lihDomDe
li ::= dom hIdi [ = hSeti ℄hCstDe
li ::= 
st hIdi [ = hTuplei j hSeti ℄ ( in j : ) hSetExprihVarDe
li ::= var hIdi ( in j : ) hSetExpri hProjClausei/\�hProjClausei ::= where hIdi( ( hSeti j ),+ ) : hSetExprihObje
tivei ::= solve hFormulaij ( minimise j maximise ) hNumExpri su
h that hFormulaihExpri ::= hIdi j hNamei j hTuplei j hNumExpri j hSetExpri j hFun
Appli j ( hExpri )hNumExpri ::= hIdi j hInti j hNati j inf j sup j hFun
Applij hNumExpri ( + j - j * j / j % ) hNumExprij ( - j abs ) hNumExprij 
ard hSetExprij sum ( hQuantExpri ) ( hNumExpri )hSetExpri ::= hSeti j hSetExpri [hSeti℄j hSetExpri ( [[hSeti℄#[hSeti℄℄ j # ) hSetExprij hSetExpri ( [->[hSeti℄℄ j -> j [+>[hSeti℄℄ j +> ) hSetExprihSeti ::= hIdi j int j natj { hTuplei,� } j { hComprExpri }j hNumExpri..hNumExpri j hNumExprihComprExpri ::= hExpri | ( hIdTuplei&+ in hSetExpri )/\+ [ | hFormulai ℄hFun
Appli ::= hIdi hTupleihTuplei ::= (hExpri,+) j hExprihFormulai ::= true j false j hRelApplij hFormulai ( /\ j \/ j => j <= j <=> ) hFormulaij hExpri ( < j =< j = j >= j > j != ) hExprij forall ( hQuantExpri ) ( hFormulai )j 
ount ( hSeti ) ( hQuantExpri )hRelAppli ::= hIdi hTupleihQuantExpri ::= ( ( hRelQvarsi j hIdTuplei&+ ) in hSetExpri ),+ [ | hFormulai ℄hRelQvarsi ::= hExpri ( < j =< j = j >= j > j != ) hExprihIdTuplei ::= hIdi j ( hIdi,+ )Fig. 1. The grammar of esra8



dom Varieties ;Blo
ks
st r; k; � 2 Nvar BIBD : Varieties r�k Blo
kssolve8(v1 < v2 2 Varieties) 
ount(�)(i 2 Blo
ks j BIBD(v1; i) ^ BIBD(v2; i))Fig. 2. A pretty-printed esra model for BIBDsdom Varieties, Blo
ks
st r, k, lambda in natvar BIBD : Varieties [r#k℄ Blo
kssolveforall (v1 < v2 in Varieties)
ount (lambda) (i in Blo
ks | BIBD(v1,i) /\ BIBD(v2,i))Fig. 3. An esra model for BIBDs2.3 ExamplesWe now show
ase the elegan
e and 
exibility of our language on three real-life problems, namely Balan
ed In
omplete Blo
k Designs, the So
ial Golfersproblem, and the Progressive Party problem.Balan
ed In
omplete Blo
k Designs. Let V be any set of v elements, 
alledvarieties. A balan
ed in
omplete blo
k design (BIBD) is a multiset of b subsetsof V , 
alled blo
ks, ea
h of size k (
onstraint C1), su
h that ea
h pair of distin
tvarieties o

urs together in exa
tly � blo
ks (C2), with 2 � k < v. Implied
onstraints are that ea
h variety o

urs in the same number of blo
ks (C3),namely r = �(v � 1)=(k � 1), as well as that bk = vr and � < r. A BIBD isthus parameterised by a 5-tuple hv; b; r; k; �i of parameters, not all of whi
h areindependent. Originally intended for the design of statisti
al experiments, BIBDsalso have appli
ations in 
ryptography and other domains. See Problem 28 atwww.
splib.org for more information.The instan
e data 
an be de
lared as the two domainsVarieties and Blo
ks , ofimpli
it sizes v and b respe
tively, as well as the three natural-number 
onstantsr, k, and �, as in Examples 1 and 4. A unique de
ision variable, BIBD , 
anthen be de
lared using the relational domain in Example 5, thereby immediatelytaking 
are of the 
onstraints C1 and C3. The remaining 
onstraint C2 
an bemodelled as in Example 9. Figure 2 shows the resulting pretty-printed esramodel, while Figure 3 shows it in ASCII notation.The So
ial Golfers Problem. In a golf 
lub, there are n players, ea
h ofwhom play golf on
e a week (
onstraint C1) and always in g groups of size s(C2), hen
e n = gs. The obje
tive is to determine whether there is a s
hedule ofw weeks of play for these golfers, su
h that there is at most one week where anytwo distin
t players are s
heduled to play in the same group (C3). An implied
onstraint is that every group o

urs exa
tly sw times a
ross the s
hedule (C4).See Problem 10 at www.
splib.org for more information.9




st g; s; w 2 Ndom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gvar S
hedule : (Players �Weeks) �!s�w Groupssolve8(p1 < p2 2 Players) 
ount(0 : : : 1)(v 2Weeks j S
hedule(p1; v) = S
hedule(p2; v))^ 8(h 2 Groups ; v 2Weeks) 
ount(s)(p 2 Players j S
hedule(p; v) = h)Fig. 4. A pretty-printed esra model for the So
ial Golfers problemThe instan
e data 
an be de
lared as the three natural-number 
onstants g,s, and w, via `
st g; s; w 2 N', as well as the three domains Players , Weeks ,and Blo
ks , as in Example 1. A unique de
ision variable, S
hedule , 
an then bede
lared using the fun
tional domain in Example 3, thereby immediately taking
are of the 
onstraints C1 (be
ause of the totality of the fun
tion) and C4. The
onstraint C3 
an be modelled as in Example 10. The 
onstraint C2 
an be statedusing the 
ount quanti�er, as seen in the pretty-printed esra model of Figure 4.The Progressive Party Problem. The problem is to timetable a party ata ya
ht 
lub. Certain boats are designated as hosts, while the 
rews of theremaining boats are designated as guests. The 
rew of a host boat remainson board throughout the party to a
t as hosts, while the 
rew of a guest boattogether visits host boats over a number of periods. The spare 
apa
ity of anyhost boat is not to be ex
eeded at any period by the sum of the 
rew sizes ofall the guest boats that are s
heduled to visit it then (
onstraint C1). Any guest
rew 
an visit any host boat in at most one period (C2). Any two distin
t guest
rews 
an visit the same host boat in at most one period (C3). See Problem 13at www.
splib.org for more information.The instan
e data 
an be de
lared as the three domains Guests, Hosts, andPeriods , via `dom Guests ;Hosts;Periods ', as well as the two 
onstant fun
-tions SpareCapa
ity and CrewSize , as in Example 4. A unique de
ision variable,S
hedule , 
an then be de
lared via `var S
hedule : (Guests�Periods) �! Hosts '.The 
onstraint C1 
an now be modelled as in Example 8. The 
onstraint C2 
ouldbe enfor
ed as follows:8(g 2 Guests ; h 2 Hosts) 
ount(0 : : : 1)(p 2 Periods j S
hedule(g; p) = h)but the same e�e
t 
an be a
hieved more su

in
tly by introdu
ing the proje
tionof the S
hedule fun
tion on the guests:where S
hedule(Guests ; ) : Periods �!0:::1 HostsThis proje
tion 
lause has to be adjoined to the de
laration above of the S
hedulede
ision variable, and is automati
ally 
ompiled into the more 
omplex 
on-straint above. Finally, the 
onstraint C3 
an be 
aptured as follows:8(g1 < g2 2 Guests) 
ount(0 : : : 1)(p 2 Periods j S
hedule(g1; p) = S
hedule(g2; p))Figure 5 shows the resulting pretty-printed esra model.10



dom Guests ; Hosts ; Periods
st SpareCapa
ity : Hosts �! N; CrewSize : Guests �! Nvar S
hedule : (Guests � Periods) �! Hostswhere S
hedule(Guests ; ) : Periods �!0:::1 Hostssolve8(p 2 Periods ; h 2 Hosts) Pg2Guests j S
hedule(g;p)=hCrewSize(g)! � SpareCapa
ity (h)8̂(g1 < g2 2 Guests) 
ount(0 : : : 1)(p 2 Periods j S
hedule(g1; p) = S
hedule(g2; p))Fig. 5. A pretty-printed esra model for the Progressive Party problem2.4 Compiling Relational ModelsA prototype 
ompiler for esra is 
urrently under development. It is being writ-ten in o
aml (www.o
aml.org) and 
ompiles an esra model into a SICStusProlog [3℄ �nite-domain 
onstraint program. This 
hoi
e of the target languageis motivated by its ex
ellent 
olle
tion of global 
onstraints and by our 
ollabo-ration with its developers on designing new global 
onstraints. We have severalstatements of interest for developing 
ompilers of esra into other target lan-guages. We already have an esra-to-opl 
ompiler for a restri
tion of esra tofun
tions [24, 10℄. The esra language is so high-level that it is very small 
om-pared to su
h target languages, espe
ially in the number of ne
essary primitive
onstraints. The full panoply of features of these target languages 
an, and must,be deployed during 
ompilation. In parti
ular, the implementation of de
ision-variable indi
es is well-understood.In order to bootstrap this prototype qui
kly, we 
hose the initial simplis-ti
 strategy of representing every relational variable by a table of 0/1 integervariables, indexed by its parti
ipating sets. This 
ompiler is thus deterministi
.The plan is then to add alternatives to this unique representation rule, de-pending on the multipli
ities and other 
onstraints on the relation, a
hievinga non-deterministi
 
ompiler. The modeller is then invited to experiment withher (real-life) instan
es and the resulting 
ompiled programs, so as to determinewhi
h one is the `best'. If the 
ompiler is provided with those instan
es, then it
an be extended to automate su
h experiments and rankings.Eventually, more intelligen
e will be built into the 
ompiler via heuristi
s(su
h as those of [10℄) for the 
ompiler to rank the resulting 
ompiled programsby de
reasing likelihood of eÆ
ien
y, without any re
ourse to experiments. In-deed, depending on the multipli
ities and other 
onstraints on a relation, 
ertainrepresentations thereof 
an be shown to be better than others, under 
ertain as-sumptions on the solver, and this either theoreti
ally (see, e.g., [22℄ for bije
tionsand [10℄ for inje
tions) or empiri
ally (see, e.g., [17℄ for bije
tions).Our ultimate aim is of 
ourse to design an a
tual solver for relational 
on-straints, without going through 
ompilation. Work in this dire
tion has begun.11



3 Bene�ts of Relational ModellingIn our experien
e, and as observable in Se
tion 2.3, a relational 
onstraint mod-elling language leads to more 
on
ise and intuitive models, as well as to moreeÆ
ient and e�e
tive model formulation and veri�
ation. Due to esra being asmaller language than 
onventional 
onstraint languages, we believe it is easierto learn and master, making it a good 
andidate for a tea
hing medium. All this
ould entail a better dissemination of 
onstraint te
hnology.Relational languages seem a good trade-o� between generality and spe
i�
ity,enabling eÆ
ient solving despite more generality. Relations are a single, pow-erful 
on
ept for elegantly modelling many aspe
ts of 
ombinatorial problems.Also, there are not too many di�erent, and even standard, ways of representingrelations and relational expressions. Known and future modelling insights, su
has those in [10, 17, 22℄, 
an be built into the 
ompiler(s), so that even lazy or less
ompetent modellers 
an bene�t from them. Modelling is unen
umbered by earlyif not uninformed 
ommitments to representation 
hoi
es. Low-level modellingdevi
es su
h as rei�
ation and higher-order 
onstraints 
an be en
apsulated asimplementation devi
es. The number of de
ision variables being redu
ed, thereis even hope that dire
tly solving the 
onstraints at the high relational level 
anbe faster than solving their 
ompiled lower-level 
ounterparts. All this illustratesthat more generality need not mean poorer performan
e.Relational models are more amenable to maintenan
e when the 
ombinato-rial problem 
hanges, be
ause most of the tedium is taken 
are of by the 
ompiler,so that even lazy or less 
ompetent modellers are well assisted. Model mainte-nan
e at the relational level redu
es to adapting to the new problem, with allrepresentation (and solving) issues left to the 
ompiler. Little work is involvedhere when a multipli
ity 
hange entails a preferable representation 
hange for arelation. Maintenan
e 
an even be ne
essary when the statisti
al distribution ofthe problem instan
es that are to be solved 
hanges [15℄. If information on thenew distribution is given to the 
ompiler, a simple re
ompilation will take 
areof the maintenan
e.Relational models are at a more suitable level for possibly automated modelreformulation, su
h as via the inferen
e and sele
tion of suitable implied 
on-straints, with again the 
ompiler assisting in the more mundane aspe
ts. In theBIBD and So
ial Golfers examples, we have observed that multipli
ities providea ni
e framework for dis
overing and stating some implied 
onstraints be
ausethe language makes the modeller think about making these multipli
ities expli
it,even if they were not in the original problem formulation.Relational models are more amenable to 
onstraint analysis. Dete
ted prop-erties as well as properties 
ons
iously introdu
ed during 
ompilation into lower-level programs, su
h as symmetry or bije
tiveness, 
an then be taken into a

ountduring 
ompilation, espe
ially using tra
tability results [21℄.There would be further bene�ts to a relational modelling language if it wereadopted as a standard front-end language for solvers. Indeed, models and instan
edata would then be solver-independent and 
ould be shared between solvers. This12



would fa
ilitate fair and homogeneous solver 
omparisons, say via new standardben
hmarks, as well as foster 
ompetition in �ne-tuning the 
ompilers.4 Con
lusionSummary. We have argued that solver-independent, high-level relational 
on-straint modelling leads to a simpler and smaller language; to more 
on
ise, in-tuitive, and analysable models; as well as to more eÆ
ient and e�e
tive modelformulation, maintenan
e, reformulation, and veri�
ation; and all this withoutsa
ri�
ing the possibility of eÆ
ient solving, so that even lazy or less 
ompetentmodellers 
an be well assisted. Towards this, we have proposed the esra rela-tional modelling language, show
ased its elegan
e on some well-known problems,and outlined a 
ompilation philosophy for su
h languages.Related Work. We have here generalised and re-engineered our work [6, 24,10℄ on a prede
essor of esra, now 
alled Fun
tional-esra, that only supportsfun
tion variables, by pursuing the plan outlined in [4℄.This resear
h owes a lot to previous work on relational modelling in formalmethods and on ERA-style semanti
 data modelling, espe
ially to the alloyobje
t modelling language [11℄, whi
h itself gained mu
h from the z spe
i�
ationnotation [18℄ (and learned from uml/o
l how not to do it). Contrary to ERAmodelling, we do not distinguish between attributes and relations.In 
onstraint programming, the 
ommer
ial opl [20℄ stands out as a medium-level modelling language and a
tually gave the impetus to design esra: 
on-sult [4℄ for a 
omparison of elegant esra models with more awkward (published)opl 
ounterparts that do not provide all the bene�ts of Se
tion 3. Experimentalhigher-level 
onstraint modelling languages have been proposed, su
h as ali
e[13℄, CLP (Fun(D)) [9℄, ea
l [19℄, n
l [25℄, and np-spe
 [2℄. Our esra shareswith them the quest for a pra
ti
al de
larative modelling language based ona strongly-typed fuller �rst-order logi
 than Horn 
lauses, possibly with fun
-tions or relations, while dispensing with su
h hard-to-properly-implement andrarely-ne
essary (for 
onstraint modelling) luxuries as re
ursion, negation, andunbounded quanti�
ation. However, esra goes beyond them, by advo
ating anabstra
t-datatype view of relations, so that their representations need not be�xed in advan
e, as well as an elegant notation for multipli
ity 
onstraints. Wela
k the spa
e here for a deeper 
omparison with these languages.Future Work. Most of our future work has already been listed in Se
tions 2.4and 3 about the 
ompiler design and long-term bene�ts of relational modelling,su
h as the generation of implied 
onstraints and the breaking of symmetries.We have argued that our esra language is very small. This is mostly be
ausewe have not yet identi�ed the need for any other operators or predi
ates. Anex
eption to this is the need for transitive 
losure relation 
onstru
tors. Wehave not yet fully worked out the details, but aim at modelling the well-knownTravelling Salesperson (TSP) problem as in Figure 6, where the transitive 
losureof the bije
tion Next on Cities is denoted by Next�. This general me
hanismavoids the introdu
tion of an ad ho
 `
ir
uit' 
onstraint as in ali
e [13℄. As we13



dom Cities
st Distan
e : (Cities � Cities) �! Nvar Next : Cities �!1 Citiesminimise P
2CitiesDistan
e(
;Next(
))su
h that 8(
1&
2 2 Cities) Next�(
1) = 
2Fig. 6. A pretty-printed esra model for the Travelling Salesperson problemdo not aim at a 
omplete modelling language, we 
an be very 
onservative inwhat missing features shall be added to esra when they are identi�ed.In [14℄, a type system is derived for binary relations that 
an be used as aninput to spe
ialised �ltering algorithms. This kind of analysis 
an be integratedinto the relational solver we have in mind. Also, a graphi
al language 
ouldbe developed for the data modelling, in
luding the multipli
ity 
onstraints onrelations, so that only the 
ost fun
tion and the 
onstraints would need to betextually expressed. Finally, a sear
h language, su
h as salsa [12℄ or the oneof opl [20℄, but at the level of relational modelling, should be adjoined to the
onstraint modelling language proposed here, so that more expert modellers 
anexpress their own sear
h heuristi
s.A
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