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t. Constraint programs with one or more matri
es of de
isionvariables are 
ommonly and naturally used to model real-world prob-lems. We 
all these matrix models and 
laim that they 
an be studiedbene�
ially as a 
lass. In support of this 
laim we present results in threeareas: the systematisation of formulating matrix models, the eliminationof row and 
olumn symmetries from matrix models, and the eÆ
ientimplementation of 
onstraints for 
hannelling between matri
es.1 Introdu
tionThough many 
ompanies have problems of vital 
ommer
ial importan
e that
ould be solved with a 
onstraint programming toolkit they do not do so be-
ause of a la
k of expertise in modeling problems as 
onstraint programs. Webelieve that we 
an bring the proven power of 
onstraint programming to a wideruser base, and thereby help improve industrial 
ompetitiveness, by systematisingsome of this expertise and embedding it in 
onstraint toolkits.A 
onstraint programming expert is able to re
ognise patterns that 
ommonlyarise in problems and mat
h them to patterns of problem formulation. Theexpert knows a range of patterns (or idioms) of solution te
hniques and knowshow to mat
h these to a variety of problem formulation patterns. To ta
klethe modelling bottlene
k, we need to identify, formalise, and do
ument thesepatterns of formulation and solution. We need to understand the properties ofthese patterns and to formulate heuristi
s on how to 
hoose between alternativeformulations and alternative solution te
hniques.We envision a world in whi
h formulation patterns are supported in mu
hthe same way that data stru
tures are 
urrently supported. Like data stru
tures,formulation patterns would be published in journals and 
atalogued in textbooksalong with analyses of their properties. Like textbooks on data stru
tures, text-books on formulation patterns would o�er heuristi
 guidan
e on how to 
hoosebetween alternative patterns. As with data stru
ture implementations, librariesof implementations of formulation patterns would be available along with heuris-ti
 guidan
e on how to 
hoose between alternative implementations. In mu
h the



28same way that high-level programming languages provide high-level data stru
-tures, high level 
onstraint languages would provide high-level patterns. And asintelligent programming language 
ompilers 
an 
hoose what implementation touse in 
ompiling a high-level data stru
ture, 
onstraint language 
ompilers woulddo the same for high-level formulation patterns.We have observed that one of the most 
ommon patterns, quite possibly themost 
ommon pattern, in 
onstraint programs is the matrix (of one or moredimensions) of de
ision variables. We 
all any model of a 
onstraint satisfa
tionproblem (CSP) that employs one or more su
h matri
es a matrix model. Forexample, a natural model of a sports s
heduling problem has a two-dimensionalmatrix of de
ision variables, ea
h of whi
h is assigned a value 
orresponding tothe mat
h played in a given week and period [22℄. In this 
ase, the matrix isobvious in the statement of the problem: we need a table of mat
hes. However,as we demonstrated elsewhere [7℄, many problems that are less obviously de�nedin terms of matri
es 
an be e�e
tively represented and eÆ
iently solved using amatrix model.There are also patterns that arise 
ommonly within matrix models and thispaper identi�es and studies two. The �rst 
ommon pattern is the matrix inwhi
h some (or all) of the rows are inter
hangeable and some (or all) of the
olumns are inter
hangeable. In other words, a solution is still a solution if 
ertainrows are inter
hanged and 
ertain 
olumns are inter
hanged. In many 
ases,problems are intra
table unless these so-
alled index symmetries are redu
ed.The se
ond 
ommon pattern in matrix models is 
hannelling. This is the use ofmultiple matri
es to en
ode information redundantly and 
hannelling 
onstraintsto maintain 
onsisten
y between the matri
es [21, 3, 18, 23℄.We 
laim that matrix models 
an be studied as a 
lass, and that by doingso we 
an dis
over powerful generalities about how to use matri
es of de
isionvariables to formulate and solve CSPs. The dis
overy of these generalities 
anlead to a methodology for formulating and solving matrix models that is moresystemati
 and (at least) partly automated. Most studies to date on the formu-lation of CSPs address the formulation of a parti
ular problem. We believe thatthe su

ess of this line of resear
h has provided suÆ
ient experien
e and enoughexamples of good formulations that we in the 
onstraint 
ommunity are now ina position where we 
an begin looking for generalisations.After supporting, in Se
. 2, our 
laim of the prevalen
e of matrix models, thispaper exempli�es the bene�ts of studying matrix models as a 
lass by presentingresults in three areas:Modelling:Ultimately we desire systemati
 methods for formulating matrixmodels for any of a wide range of problems and for 
hoosing between alternativemodels. We are a long way from a
hieving this ambitious goal. Se
. 3 lends sup-port to the feasibility of this goal, and takes a small �rst step towards a
hievingit, by showing how alternative matrix models 
an be developed somewhat sys-temati
ally from a high-level spe
i�
ation of a parti
ular optimisation problem.Symmetry Breaking: Se
. 4 surveys our results on how index symmetry
an be redu
ed by introdu
ing extra 
onstraints into a problem formulation.



29Channelling Constraints: Se
. 5 identi�es four 
ommon patterns of 
han-nelling 
onstraints and dis
usses their eÆ
ient implementation.2 The Prevalen
e of Matrix ModelsIn order to as
ertain the prevalen
e of matrix models we have surveyed the 31problems spe
i�ed (in English) in CSPlib (www.
splib.org) on 1 August 2002.This has revealed that at least 27 of the 31 have natural matrix models, mostof them already published and arguably the most natural models. Despite thesmall size of this sample, this seems to indi
ate that the 
orresponding problem
lass is signi�
ant and thus indeed deserves spe
ial study.Most of the CSPlib problems are assignment problems, where some set V of\related" de
ision variables takes values within the set W of values, subje
t tosome 
onstraints. This is almost equivalent to the 
onstraint satisfa
tion prob-lem itself, ex
ept that the de
ision variables need to be related in some sense,in
luding that they take their values within the same domain, so that they 
anbe 
olle
ted in an index set for a matrix. Assignment problems 
an be naturallymodelled as matrix models, where a relation in V �W is en
oded and sought,subje
t to the given 
onstraints. This point is elaborated in the next se
tionwhere we see how a variety of matrix models 
an be formulated for a parti
ularassignment problem.The other CSPlib problems are permutation problems and set partitioningproblems, whi
h 
an be en
oded as assignment problems so that they also admitmatrix models, as well as planning problems, whi
h do not admit (natural)matrix models, and problems with just one de
ision variable, whi
h admit no(non-degenerate) matrix models.Another indi
ation of the prevalen
e of matrix models is the observation thatall models in mixed integer programming and integer linear programming use a2-dimensional matrix of de
ision variables.3 Formulation with Matrix ModelsThis se
tion demonstrates that matrix models 
an be derived somewhat system-ati
ally from a high-level problem spe
i�
ation. In parti
ular, models that arereadily exe
uted with 
urrent 
onstraint te
hnology are derived from a spe
i�
a-tion that is not. The demonstration 
arefully 
onsiders the de
isions involved inderiving alternative matrix models for the Balan
ed A
ademi
 Curri
ulum Prob-lem (BACP), a problem proposed in [2℄ and further studied in [13℄. A similar,somewhat systemati
 derivation of matrix models and implied 
onstraints alsohas been performed for the SONET problem, whi
h is more 
omplex than theBACP [10℄. Elsewhere [7℄ we show in mu
h less detail how a variety of problems
an be formulated with matrix models.The BACP involves assigning a given set of 
ourses to periods in whi
hthey will be taught in su
h a way to satisfy 
ertain 
onstraints. An instan
eof the problem 
onsists of a �nite set 
alled 
ourses; a �nite set f1; : : : ; ng



30 Inputs: 
ourses : set(int)periods : set(int)
reditmin; 
reditmax; 
oursemin; 
oursemax : int
redit : 
ourses �! intprereq : the powerset of 
ourses� 
oursesOutputs: CUR : 
ourses �! periodsMinimise: maxp2periods(P
2CUR�1(p) 
redit(
) )Constraints:Credit load: 8p 2 periods � 
reditmin �P
2CUR�1(p) 
redit(
) � 
reditmaxCourse load: 8p 2 periods � 
oursemin � jCUR�1(p)j � 
oursemaxPrerequisite: 8h
1; 
2i 2 prereq � CUR(
1) < CUR(
2)Fig. 1. A high-level spe
i�
ation of the BACP using fun
tions.
alled periods; a fun
tion, 
redit, that maps every 
ourse to its 
redit value; abinary relation, prereq, on the set of 
ourses su
h that h
1; 
2i 2 prereq indi
atesthat 
ourse 
1 is a prerequisite for 
ourse 
2; and four non-negative integers,
reditmin, 
reditmax, 
oursemin and 
oursemax. A solution to the probleminstan
e maps every 
ourse to a period su
h that three 
onstraints are met:
redit load 
onstraint The 
redit load of any period, whi
h is the sum of the
redits of all 
ourses assigned to the period, is no less than 
reditmin andno greater than 
reditmax.
ourse load 
onstraint The 
ourse load of any period, whi
h is the total num-ber of 
ourses assigned to the period, is no less than 
oursemin and nogreater than 
oursemax.prerequisite 
onstraint If 
ourse 
1 is a prerequisite to 
ourse 
2 then 
1 isassigned to a period that is stri
tly less than that to whi
h 
2 is assigned.This is the BACP satisfa
tion problem. In the BACP optimisation problemthe goal is to �nd a solution that minimises the maximum 
redit load for allperiods.3.1 A High-Level Spe
i�
ation of the BACP Using Fun
tionsA high-level spe
i�
ation of the BACP is shown in Fig. 1. In addition to theinput stru
tures (i.e., those that en
ode the problem instan
e), the spe
i�
ationuses one more stru
ture to 
apture the desired output. The output stru
turerepresents the desired 
urri
ulum and is a total fun
tion CUR from 
ourses intoperiods, whi
h 
aptures that every 
ourse will be assigned exa
tly one period.With these input and output stru
tures it is now straightforward to expressthe obje
tive fun
tion and the three 
onstraints of the problem. The 
redit loadof any period p isP
2CUR�1(p) 
redit(
), where CUR�1(p) denotes the set of all
ourses assigned to period p. So, we 
an express the obje
tive as that of �ndingthe fun
tion CUR that minimisesmaxp2periods( X
2CUR�1(p) 
redit(
) ) :



31The 
redit load 
onstraint is expressed as a set of inequalities. The number of
ourses of ea
h period p is represented by the 
ardinality of the set of 
oursesthat have p as an image under CUR; by restri
ting this with inequalities we 
anspe
ify the 
ourse load 
onstraint. Finally, if 
ourse 
1 is a prerequisite of 
ourse
2, then we enfor
e a stri
t ordering on their 
orresponding images.3.2 Choi
e of Matri
esStarting from our high-level spe
i�
ation of the BACP, a spa
e of matrix mod-els 
an be generated when 
onsidering the de
isions involved in modelling thefun
tion CUR and the 
onstraints on it. In general, a desired total fun
tion Ffrom a given set V into a given set W 
an be represented by di�erent matri
esof de
ision variables, among whi
h are:{ F1 : a 1d matrix F1 indexed by V and ranging over W . The interpretationof F1 [i℄ = j is that F (i) = j.{ F2 : a 2d 0/1 matrix F2 indexed by V and W together with a 
onstraint forea
h row5 restri
ting the sum of the Booleans to be 1. The interpretation ofF2 [i; j℄ = 1 is that F (i) = j.{ F1+2 : F1 and F2 
an be used simultaneously and linked through the 
han-nelling 
onstraint Vi2V;j2W F1 [i℄ = j $ F2 [i; j℄ = 1.For the BACP it is diÆ
ult to 
ompare these three implementations of CURat this point. Though F1+2 uses more variables and introdu
es a 
hannelling
onstraint, we shall see that it that it is advantageous when 
onsidering the easeof 
onstraint formulation.3.3 Constraint FormulationsWe now analyze some possible formulations of ea
h of the 
onstraints and theobje
tive fun
tion.Credit load 
onstraint. Let us 
onsider how the 
redit load 
onstraint 
anbe expressed in ea
h of our three matrix models.Using the fa
ilities of 
urrent 
onstraint programming languages we know ofno straightforward way to express the 
redit load for a given period using onlythe CUR1 matrix. We therefore drop the matrix CUR1 on its own as a possiblemodel of the fun
tion CUR.Using the matrix CUR2 , the 
redit load of period p 
an be expressed asP
2
ourses 
redit(
) � CUR2 [
; p℄. The obje
tive fun
tion also needs to refer tothe 
redit load of ea
h period. Experts re
ognise this pattern of repeated expres-sions and know that transforming a problem formulation by introdu
ing newvariables to stand in pla
e of 
ommon expressions 
an often in
rease problemsolving eÆ
ien
y. (For example, this is 
ru
ial to the su

ess of a formulationof the Golomb ruler problem [20℄). One reason for this in
reased eÆ
ien
y is5 In a 2-dimensional matrix we 
onsider the �rst index to indi
ate the row and these
ond to indi
ate the 
olumn.



32be
ause the transformation 
an redu
e the arity of the 
onstraints, whi
h 
anlead to in
reased propagation during sear
h. This variable-introdu
ing transfor-mation has been systematised and in
orporated into CGRASS [11℄, a systemthat automati
ally transforms formulations of CSPs.Performing this transformation, we introdu
e a new variable to represent the
redit load of ea
h period. Taken together, these new variables form a 1d matrixof variables, 
all it LOAD, that is indexed by periods and 
onstrained by8p 2 periods � LOAD[p℄ = X
2
ourses
redit(
) � CUR2 [
; p℄ : (1)The 
redit load 
onstraint 
an now be imposed simply by making the domain ofea
h variable in LOAD to be the range 
reditmin::
reditmax.Obje
tive fun
tion. The introdu
tion of the LOAD matrix also fa
ilitatesthe statement of the obje
tive:minimise maxp2periods(LOAD[p℄) : (2)Alternatively it 
an be expressed as minimise C where C is a variable 
on-strained to be no smaller than all elements of LOAD:8p 2 periods � LOAD[p℄ � C : (3)Course load 
onstraint. In CUR2 , ea
h 
olumn p (denoted by CUR2 p)
ontains a Boolean variable for ea
h 
ourse 
 indi
ating whether 
 is taught inperiod p. So, to enfor
e the 
ourse load 
onstraint, the number of 1's (
ourses)in ea
h 
olumn (period) p has to be restri
ted to be between 
oursemin and
oursemax. There are two possible formulations. The �rst uses the global 
ar-dinality 
onstraint g

 proposed by R�egin [17℄:8p 2 periods � g

(1;CUR2 p; [
oursemin; 
oursemax℄); (4)whi
h restri
ts the number of o

urren
es of the value 1 to be between 
ourseminand 
oursemax. The se
ond uses linear 
onstraints that restri
t the o

urren
esof the value 1 in ea
h 
olumn as follows:8p 2 periods � 
oursemin � X
2
oursesCUR2 [
; p℄ � 
oursemax : (5)Even though matrix CUR1 was not suitable for the 
redit load 
omputation,the 
ourse load 
onstraint 
an be formulated with a global 
ardinality 
onstraintby restri
ting the number of times a value p appears in CUR1 to be between
oursemin and 
oursemax:8p 2 periods � g

(p;CUR1 ; [
oursemin; 
oursemax℄) : (6)Prerequisite 
onstraint. If 
ourse 
1 is a prerequisite of 
ourse 
2 we mustensure that the period assigned to 
ourse 
1 is stri
tly less than that assigned to
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2. Using CUR2 , the period assigned to a 
ourse 
 is Pp2periods CUR2 [
; p℄ � p.Hen
e, a possible formulation of the prerequisite 
onstraint 
an be a
hievedthrough the linear 
onstraints:8h
1; 
2i 2 prereq � Xp2periodsCUR2 [
1; p℄ � p < Xp2periodsCUR2 [
2; p℄ � p : (7)In a model with F1+2 , we 
an use CUR1 to state the prerequisite 
onstraintmore 
ompa
tly. The period assigned to a 
ourse 
 is simply CUR1 [
℄, so we 
anstate the 
onstraint as:8h
1; 
2i 2 prereq � CUR1 [
1℄ < CUR1 [
2℄ : (8)Sin
e the 
onstraints in (8) are of lower arity than those in (7), it might be moreeÆ
ient to use (8) in a F1+2 model.3.4 Dis
ussion of Matrix ModelsThroughout this modelling exer
ise, we have seen that alternate matrix modelsof the BACP 
an be generated in a systemati
 manner by walking through thespa
e of modeling de
isions 
on
erning the 
hoi
e of matri
es and the 
hoi
e of
onstraint formulations on these matri
es and by taking into 
onsideration thesolution methods to be employed. Though, as we have seen, some formulation
hoi
es 
an be made at the modeling time, others require experimentation.In [13℄, some of the matrix models of the BACP have been 
ompared exper-imentally on three real-life instan
es. Here we dis
uss the performan
e of thethree most su

essful models, Models A, B and C, as de�ned in this table:Model A Model B Model CMatri
es F1+2 F1+2 CUR2Credit load 
onstraint (1) (1) (1)Obje
tive fun
tion (3) (3) (3)Course load 
onstaint (6) (5) (5)Prerequisite 
onstraint (8) (8) (7)Solver CP CP + ILP ILPModel A was exe
uted with the 
onstraint programming system OPL andModel C was exe
uted with the integer linear programming system CPLEX.Model B was exe
uted with a hybrid fa
ility of OPL that performs a CP-stylesear
h but invokes CPLEX at ea
h node of the sear
h tree to produ
e a lowerbound by using a linear relaxation on all linear 
onstraints in the model. Noti
ethat 
onstraints (1), (3), (5), (7) and (8) are linear, but (2), (4) and (6) arenot. Hen
e, other than the 
hannelling 
onstraint, all of the 
onstraints used inModel B are linear.To �nd an optimal solution Model A is the fastest on all instan
es. To proveoptimality, while Model B is the fastest on two instan
es and Model C is thefastest on the third. Model A di�ers from Model B by using a global 
onstraintfor the 
ourse load 
onstraint instead of a linear formulation and by using a CP



34solver instead of a hybrid one. Model A outperforms Model B in �nding optimalsolutions be
ause it performs more inferen
e and thus prunes more of the sear
hspa
e. Model B outperforms Model A in proving optimality be
ause of the linearrelaxation, whi
h bounds and guides the sear
h. Model B di�ers from Model Cby 
hannelling into CUR1 and using 
onstraints of lower arity to enfor
e theprerequisite 
onstraint. It also employs a hybrid solver rather than an ILP one.Model B outperforms Model C in proving optimality on two instan
es be
auseit improves the linear relaxation by pruning more of the sear
h spa
e due toimproved propagation resulting from using 
onstraints of lower arity and the useof a CP solver. However, due to the overhead 
aused by the in
rease in numberof variables and 
hannelling 
onstraints, Model C is faster on one instan
e.4 Breaking Row and Column SymmetryA 
ommon pattern in matrix models is that some (or all) of the rows of the matrixare inter
hangeable and/or some (or all) of the 
olumns or inter
hangeable. Inother words, inter
hanging 
ertain rows and/or 
ertain 
olumns of an assignmentdoes not e�e
t whether or not it is a solution. In many 
ases, problems areintra
table unless these symmetries are redu
ed. We survey our results on howthese symmetries 
an be eliminated by introdu
ing extra 
onstraints into theproblem formulation. Full details, in
luding a proof of Theorem 1, appear in [6℄.Symmetry o

urs when obje
ts within the model are indistinguishable. Forexample, 
onsider the tournament s
heduling problem (problem 026 of CSPlibat www.
splib.og) in whi
h a mat
h must be s
heduled in every period of everyweek. As the 
onstraints of the problem do not distinguish among the weeksor among the periods, the members of ea
h of these sets are inter
hangeable.A natural model of this problem is to have a 2-d matrix of variables, indexedby weeks and periods, in whi
h ea
h variable is assigned a mat
h. Hen
e, thismodel has both row and 
olumn symmetry. As it is the values of the matrix'sindi
es that exhibit the symmetry, we refer to this as index symmetry, a termthat generalises beyond two dimensions.Many examples of index symmetry have been observed [7℄, su
h as in modelsfor the balan
ed in
omplete blo
k design problem (prob028 of CSPlib), the steelmill slab design problem [7℄, the so
ial golfers problem (prob010 of CSPlib), thetemplate design problem (prob002 of CSPlib), the progressive party problem(prob013 at CSPlib), and the ra
k 
on�guration problem (prob031 of CSPlib).There are several ways of dealing with symmetry in 
onstraint programming.The one that we adopt here is to add to the initial model 
onstraints that breaksymmetries [4, 16℄. This method is best explained by thinking about symmetry
lasses (or orbits as they are 
alled in group theory), whi
h are obtained by par-titioning the set of all assignments to de
ision variables su
h that the membersof ea
h partition are symmetri
 with ea
h other. One 
an redu
e or eliminatethese symmetries by adding extra 
onstraints to the model that are satis�ed bysome, but not all, members of ea
h symmetry 
lass of the model. If exa
tly onemember of ea
h symmetry 
lass satis�es the added 
onstraints then all symme-



35tries have been broken. As is usually done, the 
onstraints that we add enfor
ean order on the symmetri
 obje
ts. It is also possible to 
ombine this approa
hto breaking index symmetry with another, as Gent and Smith [19℄ have done.Let us begin by 
onsidering a 2-d matrix in whi
h either all the rows areindistinguishable or all the 
olumns are indistinguishable. To break all row (
ol-umn) symmetries, we 
an order the rows (
olumns) lexi
ographi
ally. The rows(
olumns) in a 2-d matrix are lexi
ographi
ally ordered if ea
h row (
olumn) islexi
ographi
ally larger than the previous. As a lexi
ographi
al ordering is total,adding a lexi
ographi
al ordering 
onstraint to the rows (
olumns) breaks allrow (
olumn) symmetries.Now 
onsider a 2-d matrix in whi
h all the rows are indistinguishable and allthe 
olumns are indistinguishable. It is reasonable to 
onje
ture that in this 
aseall symmetries 
ould be broken by imposing lexi
ographi
 ordering 
onstraintson both rows and 
olumns. We have proven that simultaneously meeting bothlexi
ographi
 
onstraints is always possible.Theorem 1. Every symmetry 
lass for a 2-dimensional matrix with row and
olumn symmetry always has a member whose rows and 
olumns are both lexi-
ographi
ally ordered.Though we 
an for
e lexi
ographi
 ordering on both rows and 
olumns,unfortunately|and perhaps surprisingly|this does not break all symmetries.For example, observe that the following three members of a row/
olumn sym-metry 
lass have lexi
ographi
ally ordered rows and 
olumns:0� 0 0 10 1 11 0 01A( swap rows 2 & 3swap 
olumns 1 & 2) 0� 0 0 10 1 01 0 11A( swap rows 1 & 2swap 
olumns 2 & 3) 0� 0 0 10 1 01 1 01AThough we do not have a pra
ti
al way to break all row and 
olumn symme-tries in all 
ases,6 we have identi�ed three 
onditions, whi
h arise naturally and
ommonly, su
h that for ea
h we 
an break all row and 
olumn symmetries byintrodu
ing a linear number of easily-imposed 
onstraints, su
h as lexi
ographi
ordering of rows and 
olumns. In 
ases where lexi
ographi
 ordering does notbreak all row and 
olumn symmetries we have given experimental results show-ing that sometimes it does break enough symmetries to make an intra
tableinstan
e tra
table.More dimensions:Though this se
tion has only 
onsidered index symmetryon 2-d matri
es, we have shown that these results extend to matri
es in anynumber of dimensions in whi
h there is symmetry on any subset of the indi
es.Partial symmetry: Some matrix models have index symmetry that is onlypartial in that only some subsets of an index's values are inter
hangeable. Forexample, in one model of the ra
k design problem only those 
olumns that 
orre-spond to ra
ks of the same type are inter
hangeable with ea
h other. To handle6 Following the approa
h of Crawford et. al. [4℄, we have shown how all row and 
olumnsymmetries in an n by m matrix 
an be broken by imposing n! �m!�1 lexi
ographi
ordering 
onstraints, but 
learly this is not pra
ti
al.



36su
h a situation one 
an add 
onstraints that enfor
e a lexi
ographi
 orderingwithin ea
h subset of rows (or 
olumns) that are inter
hangeable.Value symmetry: Many CSP models have value symmetry in that somevariables have indistinguishable domain elements. For example, the so
ial golfersproblem requires that a set of golfers be partitioned in a parti
ular way. Thegolfers, whi
h in many models of the problem are the domains of the variables,are indistinguishable. We have shown how a model with value symmetry 
an betransformed into a model that has index symmetry instead of value symmetry.Our te
hniques for breaking variable symmetry 
an then be used and our ex-perimental results show that this 
an be a highly-e�e
tive method for handlingvalue symmetry.Enfor
ing lexi
ographi
 ordering: The utility of redu
ing index symme-tries by introdu
ing lexi
ographi
 ordering 
onstraints depends upon having amethod to enfor
e these 
onstraints eÆ
iently during sear
h. Elsewhere [9℄ wehave introdu
ed the �rst linear time algorithm for in
rementally enfor
ing gen-eralised ar
 
onsisten
y on a lexi
ographi
 ordering 
onstraint. We have shownthat some problem instan
es 
an be solved many times faster by using this al-gorithm over its 
ompetitors.In summary, index symmetry and value symmetry are 
ommon patterns inmatrix models and the ability to solve many problems requires greatly redu
ingthe number of symmetries. We have shown that imposing a lexi
ographi
 or-dering on ea
h dimension of a multi-dimensional matrix 
an always be used toredu
e index symmetry and|sin
e we have shown that value symmetry 
an bemapped to index symmetry|value symmetry as well. In some spe
ial 
ases wehave identi�ed methods for breaking all index symmetries. In our future work, weintend to look at ways of identifying row and 
olumn symmetry automati
ally,and at methods for redu
ing symmetries even more eÆ
iently and 
ompletely.5 Channelling ConstraintsAnother 
ommon pattern that arises within matrix models is the use of multi-ple matri
es that represent the same information redundantly and 
hannelling
onstraints that enfor
e 
onsisten
y among the representations [3℄. Despite thein
rease in the number of variables and 
onstraints, there are a number of ben-e�ts of 
hannelling, whi
h are identi�ed in this se
tion.5.1 Types of Channelling ConstraintsThere are a variety of types (or patterns) of 
hannelling 
onstraints, ea
h 
har-a
terised by a s
hema. The s
hemas di�er in the type of matri
es involved andthe 
onstraints imposed on them. This se
tion presents four of these s
hemasand explains why ea
h is useful.The �rst type of 
hannelling 
onstraint7 is very useful in permutation prob-lems, a 
ommon and well-studied problem pattern that arises in many assign-7 This is provided by ILOG Solver's \inverse" 
onstraint.



37ment, s
heduling, and sequen
ing problems. In a permutation problem a set ofn variables must be assigned distin
t values from a domain of size n. Su
h aproblem 
an be modelled by a matrix X of n variables, taking distin
t valuesfrom f1; : : : ; ng. For instan
e, in the n-queens problem ea
h X [i℄ represents thequeen on row i, and the value assigned represents the 
olumn on whi
h thatqueen is pla
ed. Sin
e the queens are to be on di�erent 
olumns, and there arein total n 
olumns, the queens are to be assigned distin
t values from 1 : : : n.In a permutation problem, every variable is assigned a value and every value inthe domain of the variables is assigned a variable. Hen
e, as observed in [18℄,one 
an enfor
e the distin
tness 
onstraint by introdu
ing a dual matrix Y of nvariables taking values from f1; : : : ; ng, and asserting the 
hannelling 
onstraint^v;w2f1;:::;ngX [v℄ = w $ Y [w℄ = v : (9)Matri
es X and Y are duals of ea
h other in that the roles of the variablesand the values are inter
hanged. Even though ar
-
onsisten
y on the 
hannelling
onstraint is not as tight as ar
-
onsisten
y on an alldi�erent 
onstraint on theelements of X [23℄, in pra
ti
e 
hannelling 
onstraints may signi�
antly redu
ethe run-time with a slight in
rease in the number of ba
ktra
ks [18℄. Furthermore,the use of dual matri
es opens the possibility of using both sets of variables assear
h variables, whi
h 
an sometimes redu
e sear
h [18℄.A se
ond type of 
hannelling that is often used is 1-d to 1-d 
hannelling ofthe form X [v℄ = w ! Y [w℄ = 1. For instan
e, the 
hannelling in a model ofthe warehouse lo
ation problem is of this form [21℄. The assignment of storesto warehouses is modelled as a 1-d matrix X , indexed by the set of stores V ,taking values from the set of warehousesW . The set of warehouses to be openedis modelled as a 1-d 0/1 matrix Y indexed by the set of warehouses W . If awarehouse is supplying a store then that warehouse must be open. Thus, we
hannel between the matri
es as follows:^v2V;w2WX [v℄ = w ! Y [w℄ = 1 :The main purpose of this type of 
hannelling is to fa
ilitate the statement ofthe problem 
onstraints based on the obje
ts that are assigned (e.g., stores inthe warehouse problem), as well as the 
onstraints based on the values thatare assigned to any of obje
ts (e.g., warehouses being opened in the warehouseproblem).A third type of 
hannelling, whi
h is similar to the se
ond type, arises whenan assignment problem is modelled by a 2-d 0/1 matrix with an additional 
on-straint that every obje
t is assigned exa
tly one value, and the values beingassigned are also represented. For instan
e, the assignment of stores to ware-houses 
an also be modelled by a 2-d 0/1 matrix X indexed by the set of storesV and the set of warehouses W . The 
hannelling 
onstraint in this 
ase is^v2V;w2WX [v; w℄ = 1! Y [w℄ = 1 :



38 A fourth type of 
hannelling links a 1-d matrix and a 2-d with 
hannellingof the form X [i℄ = j $ Y [i; j℄ = 1. For instan
e, the 
hannelling in the F1+2model of BACP is of this form. In one model, the assignment of 
ourses toperiods is modelled as a 1-d matrix X , indexed by the set of 
ourses V , takingvalues from the set of periodsW . In the other model, the assignment is modelledas a 2-d 0/1 matrix Y , indexed by the set of 
ourses V and the set of periodsW . The 
ombined model is obtained by 
hannelling the models as follows:^v2V;w2WX [v℄ = w $ Y [v; w℄ = 1 :This fourth type of 
hannelling also is used to turn value symmetry intovariable symmetry. If a 1-d matrix of variables take values from a set of indis-tinguishable values, we 
an 
onvert value symmetry into variable symmetry by
hannelling into a 2-d matrix of 0/1 variables whose �rst dimension is the sameas the original matrix and se
ond dimension 
orresponds to the set of values.This allows us to employ the te
hniques for breaking variable-symmetry to ta
klethe value symmetry.As seen, in many 
ases 
hannelling is useful, and thus is frequently used. Con-sequently, the eÆ
ient implementation of 
hannelling 
onstraints is importantand so we now turn our attention to how we 
an eÆ
iently maintain generalisedar
-
onsisten
y on 
hannelling 
onstraints.5.2 Generalised Ar
 Consisten
y on Channelling ConstraintsEa
h 
hannelling 
onstraint is a 
onjun
tion where ea
h 
onjun
t is of the formE ! E0 or ea
h is of the form E $ E0. Ea
h of E and E0 is an equation of theform V ar = 
, where V ar is an indexed variable (that is, a variable in a matrix)and 
 is a 
onstant.The insight in how to enfor
e generalised ar
-
onsisten
y (GAC) on any 
han-nelling 
onstraint of the above forms 
omes from two observations:Proposition 1. No two 
onjun
ts of a 
hannelling 
onstraint have variables in
ommon.Proposition 2. Let fC1; : : : ; Cng be a set of 
onstraints su
h that no two havea variable in 
ommon and let C be the 
onstraint C1 ^ � � � ^ Cn. ConstraintC is GAC if and only if either (a) every variable o

urring in C has an emptydomain, or (b) no variable o

urring in C has an empty domain and ea
h memberof C1; : : : ; Cn is GAC.By these observations, the task of maintaining GAC on a 
hannelling 
on-straint of the form E ! E0 (resp. E $ E0) 
an be de
omposed into a �nite setof tasks of maintaining GAC on an impli
ation (resp. bi-impli
ation) 
onstraint.We shall not dis
uss the algorithms for maintaining GAC on an impli
ation orbi-impli
ation 
onstraint as they are straightforward and are provided by most
onstraint toolkits.



39Thus, using existing 
onstraint toolkit fa
ilities it is easy to implement a
hannelling 
onstraint by expli
itly posting an impli
ation or bi-impli
ation 
on-straint for every 
onjun
t in the 
onstraint. However, the spa
e and run timerequired by this implementation will be proportional to the number of 
onjun
ts.Noti
e that the number of 
onjun
ts 
an be quite large. For example, for a per-mutation involving n elements, the 
hannelling 
onstraint (9) has n2 
onjun
ts.We have implemented a generi
 
hannelling 
onstraint whose input is as
hema of the form E ! E0 or E $ E0. Rather than instantiate the s
hema togenerate all the 
onjun
ts, it uses a generi
 demon that performs the appropri-ate a
tion whenever the domain of a variable among the (impli
itly represented)
onjun
ts is modi�ed. The time and spa
e required by this s
hemati
 implemen-tation is independent of the number of 
onjun
ts in the 
hannelling 
onstraint.This s
hemati
 implementation dramati
ally improves the run time of the
hannelling 
onstraint, whi
h is re
e
ted in the eÆ
ien
y of models that use
hannelling. As an example, 
onsider Langford's problem (prob024 in CSPlib),parameterised by (k; n). This permutation problem is to 
ompose a sequen
e
ontaining exa
tly k o

urren
es of ea
h integer from 1 to n so that ea
h o

ur-ren
e of the number m is exa
tly m positions from the last. An eÆ
ient modelrepresents the permutations with primal and dual matri
es and 
hannelling ofthe form of (9). On the instan
e (4; 16) a naive implementation, whi
h imposes4096 bi-impli
ations, takes 635.6 se
onds to prove that there is no solution.Though exa
tly the nodes are explored with an eÆ
ient s
hemati
 
hannelling
onstraint, it only takes 32.9 se
onds. On the instan
e (4, 17) the results are2259.6 and 107.9 se
onds respe
tively.6 Con
lusionsWe have identi�ed the matrix of de
ision variables as a 
ommon pattern in
onstraint programming and one, we 
laim, whose study would reveal powerfulgeneralisations. In support of this 
laim we have shown how alternative matrixmodels of the BACP 
an be derived in a somewhat systemati
 manner and howtwo 
ommon patterns within matrix models|index symmetry and 
hannelling
onstraints|
an be handled. Stepping ba
k, let us now see how these are �rststeps towards a world in whi
h the formulation bottlene
k is redu
ed or elimi-nated and also see what other steps are ne
essary.From the somewhat systemati
 derivation of matrix models for the BACPone 
an see that formulations for similar problems 
ould be derived in a similarmanner. By examining a range of su
h derivations one 
ould formulate general,more systemati
, patterns of formulation. Ultimately we would like to automatethis pro
ess in the form of a 
ompiler that translates a high-level spe
i�
ationinto stru
tures|su
h as matri
es of de
ision variables|that are supported by
urrent 
onstraint programming toolkits. The �eld is beginning to make progressin this dire
tion through the development of systems su
h as CGRASS [11℄,ESRA [5, 8℄, F [12℄ and NP-SPEC [1℄.



40 A 
losely-related problem is the design of an appropriate high-level 
onstraintlanguage. As suggested by our high-level spe
i�
ation of the BACP, we envisiona language that supports sets, fun
tions and relations as well as related 
on
eptssu
h as partitions, proje
tions, subsets, and relational 
omposition and transpo-sition. ESRA [5, 8℄, F [12℄ and OPL [21℄ 
an be seen as providing a step in thisdire
tion.We have identi�ed index symmetry as a pattern that is 
ommon in matrixmodels and have developed methods of redu
ing it. Though these methods haveproved to be e�e
tive in a range of problems, we suspe
t that more 
ompletemethods will be required to e�e
tively solve 
ertain other problems. More am-bitiously, we envision a system that 
an identify symmetries automati
ally and
hoose appropriate methods of redu
ing them. Whilst identifying symmetry is
omputationally expensive in general, it is mu
h easier to identify index symme-try. Finally, an ideal reformulation system would also be able to 
hoose variableand value orderings for sear
h that do not adversely intera
t with the symmetry-breaking 
onstraints it introdu
es.We have identi�ed 
hannelling as a 
onstraint pattern that arises frequentlyin matrix models. This 
an be taken mu
h further by addressing these additionalquestions: What other 
onstraint patterns arise frequently in matrix models?Computationally, what is the best way to handle these 
onstraints? Linguisti-
ally, what is the best way to pa
kage these patterns in a 
onstraint modellinglanguage?Our long-term aim is to advan
e the 
apability of modelling tools to thepoint where programming with today's tools looks like programming in assemblerlanguage.A
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