Writing A Compiler for the Finite Domain CSP
Modeling Language ESRA

Mats Norberg
14th March 2006

Abstract

Current generation constraint programming languages are considered
by many, especially in industry, to be too low-level, difficult, and large. A
high level relational constraint modeling language, called ESRA has been
constructed to solve this problem. This thesis is about the construction
of a compiler for a subset of this language. Due to time limitations I have
made certain assumptions on the language to make the task manage-
able. The compiler translates ESRA source models into SICStus Prolog,
a language which have a built in constraint solver, the library CLPFD
(Constraint Logic Programming, Finite Domains). ESRA uses an abstract
data type for mathematical relations. In order to translate ESRA models
into Prolog, a concrete representation of this data type must be chosen.
In this work I represent relations with iterated list structures contain-
ing decision variables in appropriate domains (integer domains for total
functions and boolean ones for non-functional relations). I also have to
translate quantified expressions into recursive procedure calls.

Mats Norberg

Examensarbete 20p 2006
Datavetenskapligt program 160p
Department of Information Technology
Uppsala University

Supervisor:
Pierre Flener

Examiner:
Justin Pearson

Sammanfattning

I detta examensarbete i villkorsteknik presenteras en kompilator for ett nytt
modelleringssprak for villkorslosare.

Bakgrund

Traditionella villkorsprogrammeringssprak anses vara for svaranvinda inom manga
tillimpningsomraden; sérskilt inom industrin. Nivan &r fér 1ag och ingaende
kunskaper i programmering krévs for att anvinda sadana verktyg. Ett alterna-
tiv ar att konstruera sirskilda modelleringssprik. Sadana sprak bor:

e Ha tillricklig uttryckskraft for att typiska villkorsproblem skall kunna for-
muleras inom spraket.

e Vara oberoende av vilken villkorsldsare vi anvander.

e Vara litt att anvinda, dven f6r icke-programmerare. Problem skall kunna
modelleras pa hog abstraktionsniva med hjilp av ett litet antal fundamen-
tala primitiv.

e Inte vara berdkningsfullstindigt, d.v.s. vi kan undvara sddana finesser
som rekursion, loopar och kvantifiering 6ver obegrinsade universa.

En mojlighet dr att bygga pa relationer. Detta leder till sa kallad relationsmod-
ellering, d.v.s. man formulerar en modell dér beslutsvariablerna dr (matema-
tiska) relationer. Villkoren kan d& uttryckas pé ett naturligt sétt med hjélp av
predikatlogik.

Ett sddant sprak har konstruerats vid Uppsala Universitet, Institutionen for
Informationsteknologi. Spréaket har givits namnet ESRA (Executable Symbolism
for Relational Algebra).

En kompilator fér ESRA

Om ESRA modeller ska kunna exekveras av en dator maste de forst kompileras
till ett sprak som en villkorslgsare kan forsta. Det finns villkorslésare f6r manga
programmeringssprak, t.ex. Java, C++, OCaml och SICStus Prolog. Vart val
foll pa SICStus Prolog. Anledningen till att vi valde just SICStus Prolog dr att
forskarna har har mycket erfarenhet av det spraket. Dessutom stéder SICStus
Prolog en mycket stor uppséttning globala villkor.

SICStus Prolog saknar variabler av relationstyp, sa en viktig del av projek-
tet Ar att representera relationsvariablerna med nagon form av datastrukturer.
Relationer kan representeras pa méanga olika sétt. I min kompilator viljer jag
att anvinda matrisrepresentationer dér varje relation representeras av en matris
av sanningsvirden. Kompilatorn skapar bara en uppsittning representationer
for varje modell och &r darfor deterministisk.

Under arbetets gang har jag stott pa olika problem att 16sa. Hur Gversétter
man till exempel kvantifierade formler i ett sprak utan loopar? Hur kommu-
nicerar man mellan delrutiner i ett sprak utan globala variabler? Jag har ocksa
uteslutit vissa detaljer i specifikationen av ESRA for att gora uppgiften enklare.

Den fardiga kompilatorn har testats gentemot 6 testmodeller och funnits
generera korrekt kod for dessa. Jag har ocksa gjort benchmarks for att testa
effektiviteten. I vissa fall var effektiviteten simre &n vad vi hoppats pa.

Fortsatt arbete

I fortsdttningen kommer andra individer att vidareutveckla kompilatorn. Det
finns mycket att gora.

Implementera de element som jag har utelamnat.

Gora kompilatorn icke-deterministisk och infora fler representationer for
relationer. D& blir det kompilatorns sak att hjilpa modelleraren att hitta
den mest optimala representationen for en viss klass modeller och instans-
data.

Optimeringar av den genererade koden. T.ex. kan det vara mojligt att
reducera djupet i en néstlad iteration genom att anvinda nagot globalt
villkor, t.ex. “scalar product.”

Automatisk detektering och brytning av symmetrier.

Automatisk generering av implicerade villkor.

Contents

1

Introduction

1.1 Constraint Satisfaction Problems (CSPs)
1.2 The Relational Modeling Language ESRA
1.3 Solving CSPs in SICStus Prolog
1.4 The Goal of this Thesis

Assumptions on the Source Language (a Subset of ESRA)

2.1 General Assumptions Lo oo
2.2 Domains e
2.3 Declarations
2.4 Primitive Expressions L Lo oL
2.5 Application Expressions oL oL
2.6 Quantification
2.7 TheDataFile.

Sample Models

3.1 The Balanced Incomplete Block Design Problem
3.2 The Magic Square Problem
3.3 Then Queens Problem
3.4 The Social Golfer’s Problem
3.5 The Progressive Party Problem
3.6 The Warehouse Location Problem

Translation

4.1 Representing Domains
4.2 Representing Relations
4.3 The Translation Algorithm, some Preliminaries
4.4 Translation of Simple Expressions
4.5 Translation of Quantified Expressions
4.6 Translation of the Objective
4.7 TInput and Outputo
4.8 The Branch Tree
4.9 A Complete Example. L L.

The Compiler, the Final Product

5.1 Imstallation
5.2 The ESRA Libraries
5.3 Compiling and Running a Model
5.4 Using the Result APT

Testing and Benchmarking
6.1 Running the Test Suite
6.2 Some Benchmarks 0oL

Conclusion

7.1 Summary e e e e e e
7.2 Related Work
7.3 Future Work

8 Grammar

74

1 Introduction

1.1 Constraint Satisfaction Problems (CSPs)

Combinatorial problems and discrete optimization problems are becoming more
and more important in various application domains from industry to finance.
Important domains include scheduling, cost optimization, and financial problems
such as the portfolio optimization problem [5, 11]. Problems of this type are often
hard to solve efficiently. Typically they are NP-complete, which means that no
polynomial time algorithms are available for their solutions. One technique for
solving such problems is called constraint programming over finite domains [1].

Consider a finite set of variables, called decision variables, varying over finite
domains and a finite set of constraints on these variables, i.e. a set of formulas
expressible in first order predicate logic constraining the possible values of the
variables. A constraint satisfaction problem, or CSP in brief, is the task to find a
complete instantiation of the variables which satisfies all constraints. A special
class of CSPs is the constraint optimization problems or COPs in brief. In a
COP the goal is to optimize a function of the variables such that no constraint
is violated.

A software system capable of solving such problems is called a constraint
solver and the process of expressing a problem as a CSP is referred to as modeling
the problem. In order to model a problem as a CSP one has to define the
decision variables of the problem and their domains and express the constraints
in terms of the chosen variables. This of course can be done in many different
ways, some of them leading to more efficient solutions than others. The art
of modeling is generally not very well understood and is based on experience
rather than theory. A far sighted goal of constraint programming research is
to develop heuristics that can be used by the solver to chose the most efficient
model for a particular class of problems and instance data. But we are not there
yet.

Constraint, solvers first make an attempt to narrow the domains of the de-
cision variables by noting that certain values always violate some constraints.
This process is called constraint propagation and is very important for efficient
solving of CSPs. When the domains cannot be narrowed any more the solver
resorts to a search through the problem state space , i.e. the set of all possible
instantiations of the decision variables. When an inconsistent state is reached,
i.e. a state where some of the domains have become empty, the solver backtracks
to an earlier state and tries new values. This process continues until either a
solution is found or the entire state space becomes exhausted.

Constraint solvers can be implemented in various ways. Traditionally solvers
are built into general purpose programming languages, usually an extension to a
logic programming language. The advantage is of course that backtrack search is
already a part of such a language, which makes the solver easy to integrate with
the syntax and semantics of the language. Another approach, which is becoming
increasingly more common, is to implement the solver as a library within a
conventional programming language, for instance Java. The Koalog constraint
solver (see www.koalog.com/php/jcs.php) is a commercial Java class library
for solving CSPs. The CLPFD library [2] in SICStus Prolog is another example
which is treated in section 1.3.

Yet another approach is to develop a special solver independent modeling

language. This is a language which must be compiled into executable code in
some other language. Such languages allows the user to model his problem
on a much higher level of abstraction than most conventional languages does.
Typically such a language is declarative, and does not aim for computational
completeness. A commercial example of such a language is OPL [15, 14], a
trademark of ILOG, which works in conjunction with a solver written in C+-.
OPL allows the model itself to be separated from the instance data. This is
achieved by providing a separate data file, which provides values to variables
which has been declared in the model but not assigned any value. The separation
of model and data is highly desirable because it makes maintenance of a large
set of models and instances much more manageable.

One problem with OPL is that it forces the modeler to chose concrete rep-
resentations of the instance data and decision variables. In OPL the data are
stores as arrays. Another more abstract approach is to provide an ADT' based
view based on the mathematical concept of relations. This leads for instance to
relational modeling languages, see [4] for a discussion of the benefits of relational
modeling. It is now the responsibility of the compiler to chose most efficient rep-
resentations of the abstract data types based on some heuristics [9, 17], relieving
the modeler from this task.

1.2 The Relational Modeling Language ESRA

The research group ASTRAZ (http://www.it.uu.se/research/group/astra)
at Uppsala University, has developed a relational modeling language called
ESRA®. This section serves as a brief introduction to this language. Fur a
full discussion see [4] for a general introduction and [3] for a technical discus-
sion of the syntax and semantics of ESRA. There is also a predecessor of ESRA
based on functional variables, here called functional ESRA. There already exists
a compiler, written in Java, compiling functional ESRA into OPL [17]. See also [9]
for a general discussion of how to represent functional variables and heuristics
for choosing the most suitable one for a certain class of problems and instance
data. This MSc thesis is an extension of this work to relational ESRA.

The language is based on the concept of relations. A relation between two
finite sets A and B is a set of ordered pairs (a,b) where a € A and b € B. More
generally a relation between n sets Aj, Ao, ..., A, is a set of ordered tuples, or
tuples in brief, (a1, as,...,a,) such that a1 € A1,as € Ag, ..., a, € A,.

We also introduces the concept of multiplicity or cardinality constraint on a
relation. The notation

var R: A"™x" B

where m and n are non negative integers, declares R as a relation between the
sets A and B, such that every element in A is related to exactly m elements
in B, while every element in B is related to exactly n elements in A. As a
generalization we may allow m and n to be sets. The expression

var R: A MixM2 B

L Abstract Data Type
2 Analysis, Synthesis, and Transformation/Reformulation of Algorithms
3Executable Symbolism for Relational Algebra,

where M; and Ms are finite, non negative integer sets, declares R as a relation
between A and B such that each element in A is related to m elements in B,
where my € M7, and each element in B is related to ms elements in A, where
mo € M.

The constraints are expressed by a relational calculus based on predicate
logic with counting. Rather than giving a formal specification here I will clarify
the language with an example. For a full specification see [3].

Consider the balanced incomplete block design problem. Let V be any set
of v elements, called varieties. A balanced incomplete block design (BIBD) is a
bag of b subsets of V, called blocks, each of size k (constraint Ci), such that
each pair of distinct varieties occurs together in exactly A blocks (Cs), with
2 < k < v. An implied constraint is that each variety occurs in the same number
of blocks (C3), namely » = A(v — 1)/(k — 1). A BIBD is parameterized by a 5-
tuple (v, b,r, k, A). Originally intended for the design of statistical experiments,
BIBDs also have applications in cryptography and other domains, for instance
the portfolio optimization problem [11]. See Problem 28 at http://www.csplib.
org for more information. I now present an ESRA model for this problem.

dom Varieties, Blocks

cst r,k, A eN

var BIBD € Varieties "x* Blocks
solve

V(v1 < vy € Varieties) count(\)(j € Blocks | BIBD(v1,j) A BIBD(vs, 7))

Let me step through this model line by line. The line

dom Varieties, Blocks

declares the domains Varieties of varieties and Blocks of blocks as instance
data. The actual domains must be supplied via a data file at run time. The
next line

cst rok, €N

declares 3 run time initialized natural number constants (the two remaining
BIBD parameters v and b are implicitly given as the cardinalities of Varieties
and Blocks). Now the instance data are done with; next I declare the single
relational decision variable BIBD.

var BIBD € Varieties "x* Blocks

This line declares a relation between Varieties and Blocks with multiplicity
constraints r and k. The interpretation of the atom BIBD(v,b) is that variety
v is in block b. Note that the multiplicities on the relation BIBD automatically
takes care of constraints C7 and C3. This way to express cardinality constraints
declaratively is a very powerful feature of ESRA. The declarations are now done
with and the constraints follow after the keyword ‘solve’. Consider the line

V(v1 < vy € Varieties) count(\)(j € Blocks | BIBD(v1,) A BIBD(vs, 7))

This is a counting expression nested within a universal quantifier. Let me
describe the counting expression first. The formula

count(A)(j € Blocks | BIBD(vy1,5) A BIBD(va, 7))

means: there’s exactly A values of j € Blocks such that BIBD(vy, j)ABIBD (va, j)),
i.e. there’s exactly A blocks in Blocks that contain both v; and vo. Finally when
putting back the counting expression under the universal quantifier we get the
meaning: for all pairs of distinct varieties v; and wvo, there’s exactly A blocks
containing both v; and vy. This is just constraint Cy which concludes the dis-
cussion of the BIBD problem.

1.3 Solving CSPs in SICStus Prolog
1.3.1 Prolog and cLPFD

Prolog is a logic programming language, originally designed for processing of
natural languages. To understand this report the reader should have a thorough
understanding of this language. SICStus Prolog is a trademark of SICS * (http:
//wwu.sics.se), a commercial implementation of the Prolog language. The
library cLPFD, Constraint Logic Programming over Finite Domains, is a sub
system of SICStus Prolog [2], including a constraint solver. Because I will
make frequent use of this library throughout this document I will give a brief
introduction in this section.

Solving a CSP in SICStus Prolog consists of two phases. First we have to
model the problem by posting constraints to the solver; this is the initialization
phase. In the second phase, the labeling phase, we invoke the solver usually by
a call to the labeling/2 predicate. The solver will attempt to find a solution to
the CSP. When a solution is found it is printed and the user may try to find
alternative solutions by backtracking. Prolog answers no if there are no more
solutions. Now I give a description of all CLPFD predicates and constraints I
will use throughout the report. The reader will find additional documentation
on line http://www.sics.se/sicstus.

1.3.2 Decision Variables and their Domains

Decision variables are tied to domains. CLPFD has no complex or aggregate
decision variables, so all decision variables range over integer sets, denoted by
range expressions which are either intervals or enumerated sets like {1,2,3}. An
interval expression, e.g. 1..10, denotes the set of all integers between the lower
and upper endpoint respectively. There are also infinite intervals, e.g. 1..sup and
inf..7, where sup and inf stand for plus infinity and minus infinity respectively.
Sets are also denoted by enumeration of elements with the usual mathematical
syntax, e.g. {1, 4, 7, 11, -5}. We ties range expression to the decision variable
X by the goal: ‘X : Range’. To declare X as a natural number variable use the
following goal:

4Swedish Institute for Computer Science

Val is an integer, List is a list of integers or decision variables, Count
an integer or a decision variable, and RelOp is a relational symbol as in
section 1.3.3. True if N is the number of elements of List that are equal
to Val and N RelQOp Count.

As an example suppose Xs is a list of boolean values, zeros and ones, and we
want to state the conjunction of all values. The following goal makes the trick:

length(Xs, NumElements),
sum(Xs, #=, NumElements).

The explanation is that the sum is equal to the number of elements if and only
if each element is equal to one.

1.3.5 Labeling

When all constraints have been stated (posted) it is time to ask the solver to
start a backtrack search for a solution to the problem. This is often achieved
by a call to the built in predicate labeling/2. Consider first a pure CSP with
decision variables in the list Xs. The goal

labeling([], Xs).

starts a backtrack search for the solution. When a solution has been found it
is printed by the system and the user is prompted for (at the toplevel only)
backtracking to find alternative solutions. Now consider a COP with the ob-
jective function bound to the variable M and the decision variables we are doing
labeling on in the list Xs. The goal

labeling([maximize(M)], Xs).
tries to find a solution where M is maximized. The goal
labeling([minimize(M)], Xs).

searches a solution where M is minimized.

1.4 The Goal of this Thesis

The goal of this MSc thesis is to develop a compiler for relational ESRA, com-
piling models into executable SICStus Prolog programs. The compiler shall use
a binary matrix representation of relational variables with an optimization for
total functions. I was given free hand making any reasonable simplifying as-
sumption on the source language which would help me to complete the task.
The compiler is implemented in Objective Caml, a functional programming lan-
guage in the ML family [10] using a parser already developed by Magnus Agren.

In the rest of the thesis I first give a detailed definition of the source language
actually implemented, section 2. Some examples of ESRA models can be found
in section 3. In section 4 a detailed account of the actual translation algorithm
is given. Section 5 is a short summary of how to use the final program. Finally
some tests and benchmarks are presented in section 6.

11

2 Assumptions on the Source Language (a Subset
of ESRA)

The purpose of this section is to define the source language of the compiler.
All differences between the source language and the full ESRA specification are
presented here.

2.1 General Assumptions

Most assumptions on the source language appear throughout the rest of this
major section, but there are some outstanding issues that don’t fit elsewhere.
These issues are addressed in this sub section.

2.1.1 Syntactic Issues
There’s only a few points where I disagree with the syntax of full ESRA.

e Identifiers must begin with a letter of either case (may start with lower
case). The rest of the identifier consists of letters, digits or underscores.
Quoted ascii strings are not supported. Moreover so called symbolic con-
stants, enumerations or atoms or whatever they are called, are not sup-
ported.

e Using a naked #, ->or +> in relational domain expressions is not allowed.
The square brackets in [#] etc are mandatory. The reason is that the
inclusion of the naked operators makes the grammar unparsable. So for
instance the expression D -> D is illegal but D [->] D is correct.

e In expressions like forall (i:D) (<formula>) or sum(i:D) (<expression>),
there are mandatory parentheses around <formula> and <expression>.
Trying to discard these parentheses makes the grammar unparsable.

2.1.2 No Set Comprehensions

In the full ESRA specification, there are so called set comprehensions, that is a
set given by a filtering condition on a variable. For instance {i € D|i < 10}
is a set comprehension meaning all elements in D which are less than ten. Set
comprehensions are not supported!. Implementing set comprehensions require
some loop constructions, similar to the ones used to implement quantified ex-
pressions. My original intention was to support set comprehensions but now
I’'m left with no more time so I have to forbid them.

The card/1 operator to take the cardinality of a set is most typically used
in conjunction with set comprehensions, so I decided to omit this operator as
well. There is a way to simulate the card/1 operator using a sum expression.
For instance

card {i:D | F(i) < 100}
may be replaced by
sum(i:D | F(i) < 100) (1).

The trick is to sum a number of ones, one for each element in {i:D | F(i) <
1003}.

12

2.2 Domains
2.2.1 Primitive Domains

Primitive domains contain primitive values only. I recognize two kinds of primi-
tive values: integers and booleans. In particular tuples are not primitive values.
Integers and booleans must not be intermixed with each other in the same do-
main. A primitive domain is thus either a subset of the integers or a subset
of the booleans {true, false}. Observe that the atoms inf and sup are not
integers. They just represent the lower and upper endpoints of an unbounded
interval.

Primitive domains must not contain decision wvariables , but may contain
run time initialized constants (see 2.3.2) and expressions depending on such
values. I say that domains are ground , i.e. they are fully instantiated at run
time before the problem is passed to the solver.

A primitive domain may be denoted extensionally as a list of values enclosed
in braces, for instance {1, 5, 7, -1}. It may also be given intensionally as
an interval with lower and upper endpoints separated by ’..?, for instance
1..sup. The atoms ’int’ and ’nat’ are syntax sugar for inf..sup and 0. .sup
respectively. The singleton interval n. .n may be abbreviated to n, but only when
it is used as a multiplicity set. It is not allowed for an interval to have an upper
bound that is less than its lower bound. The bounds of an interval must either
be ground integer values or one of the atoms inf and sup.

To illustrate the rules I now give examples of several correct and incorrect
primitive domain expressions.
{1, 7, 5, -11, 2}
Correct! This is a domain containing 5 integers.
{1, g, 5, -11%d, 2}

Correct under the assumption that g and d has previously been declared as
integer constants.

{true, false}
Correct! This is the boolean domain .
{1, 2, sup, -12}
Tllegal! This domain contains the illegal atom ’sup’.
{1, 5, true}
Tllegal! This domain is inhomogeneous .
1..false
Tllegal! The atom ’false’ is not allowed as end point to an interval.
{1..10}
Syntax error! Interval expression must not be enclosed in braces.
{1, (2,3), 4}

Tllegal! This domain contains a tuple.

13

2.2.2 Relational Domains

Relational domains are constructed from primitive domains by the binary infix
operator [#] and the unary suffix operator []. To define their semantics I must
first define the notion of a multiplicity set. A multiplicity set is just a finite
domain of ground non-negative integer values.

Assume that M1, M2 are multiplicity sets and D1, D2 are primitive domains.
The relational domain

D1 [M1#M2] D2

is the domain of relations in the cartesian product of D1 and D2, such that each
element in D1 is related to m1 elements in D2 where m1 € M1 and each element
in D2 is related to m2 elements in D1 where m2 € M2.

Agsume that D is a primitive domain and M is a multiplicity set. The set
domain

D[M]

is the domain of subsets of D with cardinalities in M.

T also introduce some handy short notations. [#], [->] and [+>] are syntax
sugar for [0..sup # O..sup]l, [1 # 0..sup] and [{0,1} # O..sup] respec-
tively. These are the domains of unconstrained relations, total functions and
partial functions respectively.

Now I have to worry a bit about what happens when these expressions are
nested. What is the meaning of (D1[#1D2) [#]1 (D3[#1D4)? Obviously it
makes no sense to interprete this as a set of relations between relations because
ESRA has no higher order objects, so I have to interprete it as the set of rela-
tions in the four fold cartesian product D1 x D2 x D3 x D4. The parentheses
in relational expressions should not have any essential semantic significance.
Parentheses however are important for the parser. The operator [#] associates
from left to right so D1 [#] D2 [#] D3 parses as (D1 [#] D2) [#] D3. So
what significance has the parse tree if I am going to flatten it out anyway?

First I have to introduce the idea of the primary functor of a relational
domain expression. It is just the root of the parse tree. So for instance the
primary functor of (D1 [->] D2) [#] (D3 [->] D4) is [#]. I say that a non-
trivial cardinality constraint is attached to a [M1#M2] operator, if one of the
multiplicity sets is different from the (¢rivial) set 0..sup. A cardinality constraint
of 0..sup (the naturals) is called a trivial constraint, because it is really not a
constraint at all.

Now I make the following assumptions on relational domains:

e Each relational domain expression may be completely factorized into a
cartesian product of primitive domains.

e Non trivial cardinality constraints may only be given to the primary func-
tor of the relational domain parse tree.

e The relational domain parse tree is conceptually flattened to a depth of
two levels. I will refer to the primitive domains on the left side of the

14

primary functor as the left hand side domains or for short the LHS do-
mains. Similarly the domains to the right of the primary functor are the
right hand side domains or RHS domains. I will call the number of LHS
domains the left arity of the relational domain. Similarly the number of
RHS domains is the right arity of the relational domain. A relational do-
main is a domain of total functions if the left hand side multiplicity set is

(1.

The reasons for flattening out the sub structure of the relational domain parse
tree are threefold. Firstly I am not quite sure what this sub structure should
mean in a language without tuple values. Secondly I do not think such a sub
structure is really needed for relational modeling. Thirdly by ignoring such sub
structure the task of implementation is vastly simplified.

With this simplification any relational domain can be compiled into a quadru-
ple (LeftDoms, m1, m2, RightDoms) where LeftDoms and RightDoms, the LHS
and RHS domains respectively, are lists of primitive domains.

I now give some examples of correct and illegal relational domain expressions.
D1 [2#1] D2

Correct! This is a domain of relations in D1 x D2 which relates each element
in D1 with exactly two elements in D2 and each element in D2 with exactly 1
element in D1.

1..10 [->] nat

Correct! This is a domain of total functions from 1..10 to nat.
(1..5 [2#] D) [->] nat

Tllegal! A non trivial cardinality constraint on a non primary functor.
1..10[nat]

Correct! This is the domain of all sub sets of 1..10.

2.3 Declarations

The purpose of declarations in any formal language, is to bind identifiers to their
domains (or types). In my implementation of ESRA I require that identifiers be
declared before they are used. By this assumption it is possible to implement
the compiler in one pass and I need not to worry about circular dependency
of constant definitions.Only one identifier may be declared in the same declara-
tion. In ESRA there are 3 kinds of declarations: domain, constant and variable
declarations.

15

2.3.1 Domain Declarations

A domain declaration binds an identifier to a domain expression. A domain
expression may later be referred to by this identifier. In the specification of
the full ESRA language it is allowed to declare an un specified domain identifier
which is to be bound at run time. This is not allowed in this implementation.
The only form of domain declaration which is recognized by the compiler is
therefore

dom <identifier> = <domain expression>

Note that domain declarations begin with the keyword *dom’. It is also forbid-
den to bind an identifier to a relational domain. I now give examples of correct
and illegal domain declarations.

dom Warehouses = 1..5

Correct!

dom Warehouses = {’London’, ’Stockholm’, ’Berlin’}
Tllegal! Enumerated (or symbolic) constants are not supported.
dom Stores
Tllegal! Does not bind the identifier to a domain at compile time.
dom Relations = Warehouses [#] Stores

Tllegal! Binds a relational domain.

The reasons for these assumptions are again simplicity (and time shortage).
Allowing domains to be instantiated at run time makes static type checking
impossible. I disallow the case of relational domain binding for technical reasons,
it complicates the flattening of the parse tree in my one pass compiler. To
overcome these limitations it is necessary to let all domains be represented at
run time by an object. The compiler may only refer to a domain by its name
because the actual domain is unknown at compile time. A dynamic type check
is now necessary each time a relation typed to this domain is referred to. I leave
this work to the next developer.

2.3.2 Constant Declarations

A constant declaration binds a constant to an identifier. Constant declarations
begin with the keyword ’cst?’. There are two types of constants in ESRA. First
constants which are known at compile time. These must be bound in line by a
declaration like this:

cst <identifier> = <value> : <domain>

16

This declaration binds the identifier to its domain at the same time as it is given
its value. A consistency check is made by the compiler to ensure that the value
does not violate the domain. from this point on the compiler knows the value
of the constant and can substitute the value for the identifier whenever it is
referred to.

The other kind of constants ESRA support are run time instantiated con-
stants. Such constants must be instantiated at run time from a data file. The
syntax for declaring a run time constant is:

cst <identifier> : <domain>

This binds the identifier to its domain. The compiler does not know the value
of such constants, so it will have to refer to them by name.

Constants can be relations. There is no syntax for in line declaration of a
relation, so these have to be declared as run time constants. This is just good
because it makes it possible to separate the model from its instance data.

I now give examples of some correct and some illegal constant declarations.

cst g = 10 : nat
Correct! Binds the value 10 to g.
cst g = -10 : nat
Tllegal! Domain error, -10 is not in nat
cst SypplyCost : (Warehouses [#] Stores) [->] nat

Correct! Declares instance data array for the warehouse location problem. Note
that the parentheses are really necessary here.

cst Capacity = 8 : Warehouses [->] nat

Tllegal! A relational constant must not be assigned a value in line.

2.3.3 Variable Declarations

A variable declaration allocates a decision variable and binds it to a domain.
Variable declarations begin with the keyword ’var’. The syntax for a variable
declaration is:

var <identifier> : <domain>
Examples:
var v : 1..10
Correct)!
var Supplies : Warehouses [#1] Stores

Correct! Declares a binary relation between Warehouses and Stores. This
relation is many to one according to the cardinality constraint. FEach store
can be supplied by one warehouse only but each warehouse may supply several
stores.

17

2.4 Primitive Expressions

Primitive expressions are built from identifiers and integer and boolean con-
stants and variables interconnected by binary and unary operators. Quantified
expressions and application expressions are not treated in this section.

2.4.1 Type Rules

There is only two kinds of primitive values: integer values and boolean values.
ESRA is a typed language which means that I will not accept a value with a
certain type to be used in the wrong context. Integer values are either integer
constants like 103, or declared variables and constants belonging to an integer
domain. A variable belonging to the boolean domain might be used in any
context, requiring a boolean value. An integer variable however must not be
used in a boolean context.

In the examples that follows I assume that identifiers starting with b are
boolean while those starting with n are integers.

bl = 301
Incorrect! A boolean can’t be compared to an integer.
(12 < 7) * 58
Incorrect! 12<7 is a boolean value and cannot be multiplied by an integer.

2.4.2 Numeric Expressions

Primitive numeric expressions are built from identifiers and integer constants
using one of the numeric operators +, -, *, /, % (remainder) and abs (ab-
solute value). The first five of these are binary infix operators while abs is a
unary prefix operator. The type rules (see 2.4.1) must be respected. The result
of these operations is itself a numeric value and may be used in other numeric
expressions. Normal precedence rules from mathematics are respected as is
grouping sub expressions by parentheses. In the following examples identifiers
starting with 'n’ are integer variables.

123 * (n1 - 2)
Correct!

abs(nx*ny - 4*x(n+l1)) - n
Correct)!

2*¥nl1 - true

Tllegal! Type error.

18

2.4.3 Comparison Expressions

Primitive comparison expressions are built from identifiers, integer and boolean

constants using one of the comparison operators =, '=, <, =<, >, and >=.
Note that ‘less than or equal to’ is denoted by ‘=<’ as in Prolog. Integer as well
as boolean values can be compared using = and !=. I do not support equality or

inequality between complex values such as tuples and sets. Only integers can be
compared with the operators <, >, =< and >=. The result of a comparison is
always a boolean value which cannot participate in numeric expressions. In the
following examples identifiers starting with *n’ are integer variables and those
starting with other letters are of non integer types.

n1*33 =< 0
Correct!
true > 0

Tllegal! Type error.
{1, 2, 3} = s

Tllegal! Set expressions cannot be compared.
(2,3) = (6,7)

Tllegal! Tuples cannot be compared.

2.4.4 Propositional Expressions

ESRA supports all the usual connectives of propositional logic except negation.
I also support these connectives. Although negation is not supported it can be
simulated by using an implication since the formula not F is equivalent to false
=> F. A (primitive) propositional expression is built from identifiers, integer
and boolean constants and the operators /\ (conjunction), \/ (disjunction), =>,
<= (implication) and <=> (equivalence). All comparison operators have higher
precedence than the propositional operators (see the grammar in section 8). In
the examples that follow, I assume that identifiers starting with b are booleans
while those starting with n are integers.

n=5 => abs(nl-n1) =< 100
Correct!

n => nn*x5 < 0
Tllegal! Type error.

(false => b1) /\ (b2 \/ b3)

Correct! Emulating negation of b1.

19

2.5 Application Expressions
2.5.1 Total, Partial and Functional Applications

Relations are said to be applied to their arguments. An application is said to
be total if the number of arguments is the same as the total arity of the relation
(see section 2.2.2 for a discussion of arity). Suppose R is binary relation between
the sets A and B. The atom R(a,b), where a € A and b € B, is true if and only
if (a,b) is in R. Total applications create boolean values.

A partial application is a relational application on a subset of its parameters.
With R as above the meaning of the expression R(a), where a € A, is the set
{be B | R(a,b)}.

A functional application, finally, is an application of a total function on all
its LHS arguments (section 2.2.2). Suppose F is a total function from the set
A to the set B. The expression F(a), where a € A, evaluates to the unique
element b € B such that F(a,b). We say that a is mapped to b under F. There
are two issues with this terminology which I have to explain a bit more.

First one could argue that F(a) is a functional application even if F is a
partial function. Mathematically this is true, but I want to interpret F(a) as a
number and this is impossible if the F is allowed to be partial because then F(a)
may be the empty set. The empty set cannot appear in numeric expressions
and we have a big trouble. Therefore I don’t allow functional notation to be
used on partial functions.

Secondly a functional application is technically partial, but I nevertheless will
distinguish between partial and functional applications, so when I speak about
the former I will always mean a non-functional partial application, resulting
in a non-singleton set. Note that a functional application, when the function
has an integer range, is a numeric expression, that can itself be used in bigger
expressions.

2.5.2 Assumptions on Relations and Application Expressions

The following assumptions are fundamental for my implementation.

e Partial applications are not supported.

e Functional applications are supported on relational objects with a LHS
multiplicity {1} (see section 2.2.2), i.e. total functions. Functional appli-
cation must not be used on partial functions or on relations that are not
functions.

o All total functions are supposed to have a primitive range, i.e. the right
arity must be equal to 1. Relations with left multiplicity {1} but right
arity bigger than 1 are treated as if they where relations, in particular
functional application is forbidden on such objects. This rule is necessary
because such applications create tuple values which does not exist in this
implementation.

e A relation declared with a LHS multiplicity {1} and right arity 1 is always
a total function. For technical reasons I cannot allow total application to
be used with a function. Use functional application in this case!

20

e An unbounded domain, like 1..sup, is only allowed on the right hand side
of (see section 2.2.2) a total function with right arity 1. It is forbidden to
use unbounded intervals in all other cases.

e Each argument of a relational application must be a primitive value con-
sistent with the domain of the relation. For instance a relation declared
on the domain 1..10 [1#0..sup] 1..3 may be applied on (5, 2) but
not on (true, 9).

Now follows several examples of correct and illegal application expressions
and relation declarations to clarify the rules.

cst F : 1..10 [->] nat

Correct! A total function may have 'nat’ on the right side. This is just an
“array” of 10 natural numbers.

cst F : nat [->] 1..10

Tllegal! Unbounded domains are never allowed on the LHS. This would require
an infinite size representation which is impossible.

cst R : nat [nat#1] 1..10

Tllegal! There’s a 'nat’ on the left hand side. It might be possible to represent R
as an array, but I don’t allow it (time shortage! this is a special case I haven’t
treated — the “transposed function”).

var R : 1..10 [#] nat

Tllegal! The ’nat’ is only allowed on total functions. This cannot be represented
finitely.

cst F : 1..10 [->] (1..10 [#] 1..10)
Correct! Beware this is not treated as a function. Use relational notation here!
var F : 1..10 [->] nat

Correct! Yes, even variable functions may have an unbounded range. Beware
that this can cause a runtime error if the domains have not been narrowed to
finite by constraint propagation prior to the labeling phase.

dom D = 1..5
var R : D [#] D
var S : D[nat]
solve

S = R(5)

Tllegal! Partial application of R; set values cannot be compared.

dom D = 1..5
var F : D [1#] D
solve

F(4, 5)

21

Tllegal! F is a total function by multiplicity constraints. Use functional notation
here: F(4) = 5.

dom D = 1..5
var R : D [->] (D [#] D)
solve

R(1, 3, 2)

Correct! Relational notation is correct because R is not treated as a total
function. It has right arity 2. R(2) = (3, 4) is forbidden notation.

var R : {1,2} [#] 1..10
solve
R(1, 2, B)

Tllegal! To many arguments.

var F : 1..10 [->] 1..10
solve
F(2)*F(3) + 4 =< 100

Correct! The values of F are integers, hence they may be used in a numeric
expression.

var F : 1..10 [+>] 1..10
solve
F(5) =5

Tllegal! Functional notation illegal on partial functions because the type of
the function “image” is indeterminate (may be the empty set). Use relational
notation here: F(5, 5).

2.5.3 The Problem with Unbounded Domains

The presence of the keywords nat and sup in the source language presents
some difficulties to the implementor. This means that domains can be infinite
in certain circumstances. It was clear early on that nat often occurs on the
RHS of function declarations (see for instance the Progressive Party Problem
in section 3.5). T was forced to accommodate this case somehow without having
to resort to infinite representations which is quite impossible.

Suppose that we want to represent a function declared on the domain 1. .10
[->] nat. In a pure binary matrix representation this would require that we
allocate a ten by infinity boolean matrix which of course is impossible. To
overcome this problem I invented what I call the total function optimization.
This means that total functions (with right arity 1) are represented by an integer
matrix with a depth equal to the left arity of the function. Now it is possible
to index on the LHS arguments of the function and get a value which is in the
range of the function.

Another problem with unbounded domains is that they might render the
state space of the problem infinite. Suppose that a primitive variable X is defined
on the domain 1..sup. If X appears in the set of variables sent to labeling/2 and
its domain hasn’t been narrowed down to a finite size by constraint propagation,

22

then an exception is raised by the Prolog system: “instantiation error in the first
argument to labeling/2”. I ignore this problem. It is the responsibility of the
user to make sure that such a situation does not occur.

Yet another difficulty is that quantification over non finite domains is never
acceptable. But that is taken care of by the type checking routines.

In a fuller implementation of ESRA there might be set comprehensions, e.g.
{i: D | F(i) < 10}. This presents a new range of difficulties, for instance the
compiler might not even be able to determine if such a set is finite or not at
compile time. It might even be impossible, in some cases, to determine the
finiteness of a set at all. Due to such difficulties I decided not to support set
comprehensions in this implementation.

2.6 Quantification
2.6.1 Local Variable Specifiers

Quantifiers bind variables within a scope depending on the syntax of the re-
spective quantifier. These variables are called local variables and are declared
by what I call a local variable specifier. Each local variable ranges over a prim-
itive domain. A local variable specifier is just a comma separated sequence of
<variable>:<domain> expressions, for instance vi:D1, v2:D2, v3:D3.

When several local variables range over the same domain they can be de-
clared as a single ampersand separated sequence like v1&v2&v3:D.

Yet another format is possible. With v1<v2:D we mean all possible pairs of
vl and v2 with vi<v2 where v1 and v2 both ranges over the primitive domain
D. The < may be substituted by one of the other comparison operators. Observe
that both sides of the vi<v2 expression must be a local variable.

An important point to stress is that each local variable ranges over a ground,
primitive and finite domain. Infinite domains like 1..sup are not allowed in
conjunction with quantification. This is in accord with the original specification
of ESRA. Now I give some examples of correct and illegal local variable specifiers.

i: D1, j : D2
Correct)!
i*i-1 : D
Tllegal! A general expression is not allowed in this context.
i<10 : D
Tllegal! Not a local variable: ’10’.
i&j : D, i : E

Tllegal! The local variable i’ must not be redefined. within the same scope.

23

2.6.2 The Forall Expression

The universal quantifier is denoted by the keyword ’forall’ in ESRA. The
general syntax is:

forall(<lclvarspec> | <condition>) (<formula>)

Here <1lclvarspec> is a local variable specifier, <condition> a formula and
<formula> another formula. The meaning is: for all instantiations of the lo-
cal variables according to <lclvarspec> such that <condition> is true, the
<formula> has to be true. The <formula> of course depends on the local vari-
ables.

The <formula> has to be enclosed in parentheses. This has to be done
because taking it away from the grammar makes it un parsable. For instance
the expression forall(i:D) f b introduces a conflict. Should the function
application f b be reduced before the forall expression or vice versa. Some
examples follow:

forall (i:D) (true)
Correct!
forall(i:D) i*i < 10

Tllegal! The formula must be enclosed in parentheses.

2.6.3 The Count Expression

The count quantifier is a generalization of the existential quantifier of predicate
logic. It has the syntax:

count (<multiplicity>) (<lclvarspec>| <condition>)

Here <multiplicity>is a multiplicity set (see section 2.2.2), and <condition>
a formula. The meaning is that the set of all possible instantiations of the local
variables according to <lclvarspec> such that <condition> is fulfilled, has
a cardinality which is in the set <multiplicity>. Syntactically a singleton
multiplicity set {<expression>} may be abbreviated to <expression>. The
expression:

exists (<lclvarspec> | <condition>)
is syntax sugar for

count (1. .sup) (<lclvarspec> | <condition>)
Here are some examples.

count(1) (i : D | i < 10)
Correct! There is exactly one i < 10 in D.

count (0) (I:D | i*5)

Tllegal! i*5 is not a formula.

24

2.6.4 The Sum Expression

The sum operator is not a quantifier, but has a similar syntax. It operates on
numeric expressions rather than on formulas. The syntax is:

sum (<lclvarspec> | <condition>) (<numexpr>)

Here <lclvarspec> is a local variable specifier, <condition> a formula and
<numexpr> a numeric expression. The meaning is: substitute each local variable
in <numexpr> with its value for each possible instantiation of <lclvarspec>such
that <condition> is true. Then sum all resulting values to obtain the value of
the entire expression. This is just the usual sum notation used in mathematics.
Examples:

sum (i:1..10) (i)

Correct! Computes the sum of all numbers between 1 and 10.
sum (i : 1..10 | £(i)%2 = 0) (£(i))

Correct! Sum all even £ (i) where i is between 1 and 10.
sum (i : D) i*xi-1

Tllegal! The summand has to be enclosed in parentheses.

2.7 The Data File
2.7.1 What is the Data File?

One main objective of relational modeling is to separate the model from the
instance data. The commercial modeling language OPL [14] achieves this by
providing a separate data file, where all instance data are supposed to be de-
clared. ESRA uses the same paradigm. Each constant which is declared but not
instantiated (section 2.3.2) must get its value from the data file. The language
of the data file is constructed within Prolog, so the data file is really a Prolog
program. The data file is a sequence of data constructors, each of them a Prolog
term terminated by a full stop. Primitive variables are instantiated by primi-
tive data constructors, while relation variables get their values from what I call
matriz data constructors.

2.7.2 Primitive Data Constructors

A primitive data constructor is a single line of the form <identifier> = <value>.
The value must be literal and not an expression or another variable. Although
the compiler allows variable names to begin with a lower case letter, Prolog does
not so, I require each runtime initialized constant to begin with a capital letter.
Otherwise Prolog will give you an exception. The data file, as it is implemented
now, do not distinguish between integers and booleans, so the correct way to
instantiate a boolean is to assign it the value 0 or 1. If you try to put the
line B = true. in the data file Prolog will crash your program. The program
behaves this way because I have not had time to change it. You will probable
not instantiate boolean variables in the data file very often.

25

2.7.3 The Matrix Data Constructor

A matrix data constructor has the following syntax:
matrix(<list>).

Here <list> is a list of lists of ... of lists (a “matrix”) of integer values. Total
functions, which must have right arity 1 (see section 2.2.2), are represented
by an integer matrix with a depth of left arity, where the integer values range
over the range of the function. Relations which are not total functions are
represented by binary matrices (matrices with elements 0 or 1) with a depth of
the full arity of the relation. For example the following matrix data constructor

R = matrix([[1,0,1],
(0,0,11,
[1,1,011).

assigns R a value of a binary relation between two sets of cardinality 3. The
actual domains and cardinality constraints cannot be specified in the data file
but must be declared in the model itself. See section 4.2 for more information
on matrix representations of relations.

The following example defines a total function of left arity 1, i.e. a one
dimensional array.

Array = matrix([2, 7, 11, 5, 11, 0, 38]).

As with relations the actual domain of Array is not defined here but in the
model itself.

2.7.4 An Example

As an example I now give a sample data file for the warehouse location problem,
to be presented in section 3.6.

NStores = 10.

NWareHouses = 5.

FixedCost = 30.

Capacity = matrix([1, 4, 2, 1, 3]).

SupplyCost = matrix([[20, 24, 11, 25, 30],
[28, 27, 82, 83, 74],
[74, 97, 71, 96, 70],
[2, 55, 73, 69, 611,
[46, 96, 59, 83, 4],
[42, 22, 29, 67, 59],
[1, 5, 73, 59, 56],
[10, 73, 13, 43, 96],
[93, 35, 63, 85, 46],
[47, 65, 55, 71, 95]1]1).

26

The first two lines define the number of stores and the number of warehouses
respectively. The third line is the fixed maintenance cost per warehouse. The
fourth line is the array of capacities of each warehouse. Finally the fifth line
defines the matrix SupplyCost which gives the cost for each warehouse to supply
each store.

3 Sample Models

All sample models are parts of my major test suite. All these models with
suitable instance data compiles and runs on my system (see section 6.1). The
sample models will be used as examples throughout the rest of this document.

3.1 The Balanced Incomplete Block Design Problem

Let V be any set of v elements, called varieties. A balanced incomplete block
design (BIBD) is a bag of b subsets of V, called blocks, each of size k (constraint
(1), such that each pair of distinct varieties occurs together in exactly A blocks
(Cs), with 2 < k < v. An implied constraint is that each variety occurs in
the same number of blocks (C3), namely r = A(v — 1)/(k —1). A BIBD is
parameterized by a 5-tuple (v,b,r, k, \) of parameters. Originally intended for
the design of statistical experiments, BIBDs also have applications in cryptog-
raphy and other domains. See Problem 28 at http://www.csplib.org for more
information.

This problem may be modeled in ESRA as below. Note that declaring the
domains Varieties and Blocks and the single decision variable BIBD auto-
matically takes care of constraints C; and C5. The interpretation of the atom
BIBD(v, b) is simply that variety v is in block b. The constraint Cs is taken
care of by the formula in the solve clause of the model.

cst V : nat

cst K : nat

cst Lambda : nat

cst B : nat

cst R : nat

dom Varieties = 1..V

dom Blocks = 1..B

var BIBD : Varieties [R#K] Blocks

solve
forall (vl < v2 : Varieties)
(count (Lambda) (i : Blocks | BIBD(v1,i) /\ BIBD(v2,i)))

3.2 The Magic Square Problem

A magic square is an n by n grid of distinct integers, such that the sum of the
integers in each row, each column and the two main diagonals always is the
same. One can show that the constant value of the sum is (n? +1)n/2. Below is
an ESRA model for the problem to find such a magic square. The possible values
are between 1 and n? (because the integers are distinct). In the model below N
is the size of the grid, Sequence the set 1..N, Val the set of integer values and

27

S, the unique decision variable is a total function (array) mapping the set of
grid squares on their values. The four sums in the solve clause are the sum of
each row, each column and the two diagonals respectively. Here N is a run time
constant that must be supplied by a data file.

cst N : 1..sup

dom Sequence = 1..N

dom Val = 1..Nx*N

cst SumVal = (N*N+1)*N/2 : nat

var S : (Sequence [#] Sequence) [->1] Val

solve
forall (I : Sequence)
((sum(J : Sequence) (S(I,J)) = SumVal)

/\

(sum(J : Sequence) (S(J,I)) = SumVal))
/\

sum (I : Sequence) (S(I,I)) = SumVal
/\

sum (I : Sequence) (S(I,N-I+1)) = SumVal

3.3 The n Queens Problem

The n queens problem is the problem how to place n queens on a nxn chessboard
such that no queen attacks another queen. To model this problem we declare a
bijection @ of the rows. The interpretation is that if Q(i) = j a queen stands on
the square (i, j) on the chessboard. Note that the bijectivity of Q) is taken care
of by the cardinality constraint [->1]. By modeling it is clear that each pair of
queens stand on different rows and columns, so the only remaining requirement
is that they must also stand on different diagonals. The two inequalities in the
solve clause of the model below takes care of that.

cst N : nat
dom Rows = 1..N
var Q@ : Rows [->1] Rows

solve
forall (I<J : Rows)
Q@M -1 =0 -1 /\
Q) - J'=Qq0) - 1)

3.4 The Social Golfer’s Problem

In a golf club, there are N players, each of whom plays golf once a week (con-
straint C7) and always in G groups of size S (Cs), hence N = GS. The objec-
tive is to determine whether there is a schedule of W weeks of play for these
golfers, such that there is at most one week where any two distinct players are
scheduled to play in the same group (Cs3). An implied constraint is that every
group occurs exactly SW times across the schedule (C4). See Problem 10 at
http://wuw.csplib.org for more information.

28

The instance data can be declared as the three natural-number constants G,
S, and W, as well as the three domains Players, Weeks, and Groups, as below.
A unique decision variable, Schedule, can then be declared, immediately taking
care of the constraints C; (because of the totality of the function) and Cy. The
first forall expression in the solve clause takes care of the constraint C3 while
the second one takes care of Cy. The three run time constants G, S and W must
be defined in the data file.

cst G : nat

cst S : nat

cst W : nat

dom Players = 1..G*S

dom Weeks = 1..W

dom Groups = 1..G

var Schedule : (Players [#] Weeks) [->{S*W}] Groups

solve
forall (P_1 < P_2 : Players)
(count (0..1) (V : Weeks | Schedule(P_1,V) = Schedule(P_2,V)))
/\
forall (H : Groups, V : Weeks)
(count(S) (P : Players | Schedule(P,V) = H))

3.5 The Progressive Party Problem

The problem is to timetable a party at a yacht club. Certain boats are desig-
nated as hosts, while the crews of the remaining boats are designated as guests.
The crew of a host boat remains on board throughout the party to act as hosts,
while the crew of a guest boat together visits host boats over a number of pe-
riods. The spare capacity of any host boat is not to be exceeded at any period
by the sum of the crew sizes of all the guest boats that are scheduled to visit
it then (constraint C7). Any guest crew can visit any host boat in at most one
period (C2). Any two distinct guest crews can visit the same host boat in at
most one period (C5). See Problem 13 at http://www.csplib.org for more
information.

The three run time constants NumGuests, NumHosts and NumPeriods are
declared as natural numbers and the domains Guests, Hosts and Periods are
declared as below. A unique functional decision variable, Schedule, can then
be declared as below. The first forall formula in the solve clause takes care of
constraint Cs, the second of C; and the last one of Cj.

cst NumGuests : nat
cst NumHosts : nat
cst NumPeriods : nat

dom Guests = 1..NumGuests

dom Hosts = 1..NumHosts

dom Periods = 1..NumPeriods
cst SpareCapacity : Hosts -> nat

29

cst CrewSize : Guests -> nat
var Schedule : (Guests [#] Periods) -> Hosts

solve
forall (G : Guests, H : Hosts)
(count(0..1) (P : Periods | Schedule(G,P) = H))
/\
forall (P : Periods, H : Hosts)
(sum(G : Guests | Schedule(G,P) = H) (CrewSize(G))
=< SpareCapacity(H))
/\
forall (G_1 < G_2 : Guests)
(count (0..1)(P : Periods | Schedule(G_1,P) = Schedule(G_2,P)))

3.6 The Warehouse Location Problem

At last I give an example of a constraint optimization problem (COP). Suppose
that a number of warehouses are supporting a set of stores. Each store must
be supplied by exactly one warehouse (constraint C). Each warehouse has a
capacity telling the maximum number of stores it can supply (constraint Cs).
Each warehouse has a fixed maintenance cost and a supply cost for each store.
The problem is to determine which warehouses should be open and which ones
should be closed such that the total maintenance cost be as small as possible.

The model below is essentially the same as the one presented in the OPL
book [14]. The auxiliary total function (array) Open tells which warehouses are
open. Open(i) = 1 means that warehouse number i is open while Open (i)
= 0 means that warehouse number i is closed. The instance data consists of
the arrays Capacity and SupplyCost as well as the numeric constants NWare-
Houses, NStores and FixedCost. The binary integer decision variable Supply
tells weather warehouse w supplies store s or not. It must be an integer function
rather than a binary relation, because we want to do arithmetic on it. A sample
data file can be found in section 2.7.4. The cost function can now be modeled
as below using Open(w) as a weight factor. The first forall expression in the
such that clause takes care of constraint C, the second one is a channeling con-
straint ensuring the consistency of the Open array, while the third takes care of
constraint Cs.

cst NStores : nat

cst NWareHouses : nat

dom Stores = 1..NStores

dom Warehouses = 1..NWareHouses

cst Capacity : Warehouses [->] nat

cst SupplyCost : (Stores [#] Warehouses) [->] nat
cst FixedCost : nat

var Supply : (Stores [#] Warehouses) [->] {0, 1}
var Open : Warehouses [->] {0,1}

minimise
sum(W : Warehouses) (FixedCost * Open(W)) +

30

sum(W : Warehouses, S : Stores) (
SupplyCost(S,W) * Supply(S,W)

such that

forall(S : Stores)(
count (1) (W : Warehouses | Supply(S,W) = 1)
)

/\

forall(W : Warehouses, S : Stores) (
Supply(S,W) =< Open(W)
)

/\

forall(W : Warehouses) (
sum(S : Stores) (Supply(S,W)) =< Capacity(W)
)

4 Translation

4.1 Representing Domains

Domains are static objects represented by ground Prolog terms. Their repre-
sentations are described in this sub section. Because domains are statically
instantiated in this implementation, the compiler literally generates these terms
and puts them into the generated code.

4.1.1 Primitive Domains
Primitive domains are either intervals or set domains (see 2.2.1).

e Intervals are represented by terms like interval (Lower, Upper), where
Lower and Upper are the lower and upper bound respectively. The bounds
can be either integer constants or one or both of the atoms inf and sup.

e Set domains, i.e. domains given by ESRA expressions like {1,2,3}, are
represented by terms like 1ist (List), where List is a Prolog list of unique
integer constants.

Before a set domain is used a run time “uniquification” is performed to ensure
that the list doesn’t contain any duplicate elements. This is necessary because
the compiler doesn’t always know all elements when the domain is first created
due to run time constants. Consider the following declarations

cst g : nat
cst r : nat
dom D = {10, g, r, 5, r+g+1}

31

The compiler don’t know the values of g and r. Suppose g and r are assigned the
values 5 and 4 respectively. The set now becomes {10, 5, 4}. This uniquifica-
tion must be done at run time when the values of g and r have become known.

Intervals are also error checked to make sure they fit the needs of the sit-
uation. For instance sometimes a finite interval is required. In the following
examples several mappings between ESRA and Prolog are shown, assuming the
--> sign means “maps to”.

1..10 --> interval(1,10)
0..sup --> interval(0,sup)
inf..-5 --> interval(inf,-5)
nat --> interval(0,sup)
int --> interval(l,sup)
{1,3,5,7,9} --> 1list([1,3,5,7,9]1)
{1} --> 1list([1])

5..5 --> interval(5,5)

4.1.2 Multiplicity Sets

Multiplicity sets are represented directly by the CLPFD range expressions they
represent. So for instance {1,3,7} is actually represented by {1,3,7} and 1..sup
by 1..sup. That is the mapping from ESRA to Prolog is the identity mapping!.

Special care must be taken to ensure that multiplicity sets don’t contain non
negative values. "Uniquification” is also necessary.

4.1.3 Relational Domains

Relational domains are represented by the term reldom(LeftDoms, Multl,
Mult2, RightDoms), where LeftDoms and RightDoms are lists of primitive do-
mains while Mult1 and Mult2 are multiplicity sets.

A special form is necessary for set domains, which have right arity zero. The
RightDoms are replaced by [1 and Mult2 by the atom nil.

Here follow examples of the ESRA to Prolog mapping of relational domain
expressions.

1..10[2] -—>
reldom([interval(1,10)],
{2},
nil,
[

(Comment: This is a set domain, the domain of 2 element
subsets of 1..10)

1..10 [->] 1..10 --—>
reldom([interval(1,10)],

1..1,

0..sup,

[interval(1,10)])
(Assume

32

dom D = 1..5

dom V = {1,5,7,9})

(D [#] V) [->] nat -->

reldom([interval(1,5), 1list([1,5,7,91)],
1..1,
0..sup,
[interval(0, sup)])

(Assume
dom D = {1,2,3,4,5}
dom E = D)

(D [2#2] E) -->

reldom([1list([1,2,3,4,51)],
{2},
{2},
[1ist([1,2,3,4,51)1)

(1..10 [#]1 1..10) [->11 1..100 --—>
reldom([interval(1,10), interval(1,10)],
1..1,
1..1,
[interval(1,100)])

1..10 [+>] 1..10 -->
reldom([interval(1,10)],
{0,1},
0..sup,
[interval(1,10)])

4.2 Representing Relations
4.2.1 Various Representations

The representation of relational variables in SICStus Prolog is a central point
in my thesis. Prolog has no aggregate decision variables, so it’s clear these
have to be packed into data structures of some kind. The abstract concept
array or matriz can be implemented in several ways. The most obvious way
is to use lists of lists of ... lists. There are also other possibilities such that
the amatrix representation (see below). There is an implementation of “arrays”
in SICStus Prolog permitting logarithmic access time using some kind of tree
representation. My choice for this compiler is the list (Imatrix) representation
described in the next sub section.

Which concrete representation of the abstract relation variable we choose
may have a dramatic impact on the performance of the solver, so it’s important
to choose a good one. Unfortunately it’s not easy to know a priori which is the
best, one, so the modeler may wish to experiment with several representations.
One solution is to make the compiler non deterministic, which means that there
will be several generated programs per input model, each one using a particular
representation for certain variables in the model.

33

Even better would it be if the compiler itself can make the choices based on
some heuristics, see for instance [9]. It would then be the responsibility of the
compiler to choose the best representation of each decision variable relieving the
modeler from this difficult and time consuming task.

I have not implemented neither a non deterministic compiler nor any heuris-
tics, but simply make the choice deterministically based on the nature of the
relation. Nevertheless before I present my solution, I wish to make a short
digression here on several kinds of representations.

The linked matrix (lmatrix) representation. This is the representation ac-
tually implemented which is described in great detail in the subsequent
sections. In short it means to represent the relation by a multi dimensional
“matrix”. The “matrix” is implemented as a list of lists of ... lists, with
a depth equal to the number of dimensions of the “matrix”. In the pure
binary Imatrix representation each element is 0 or 1. This representation
is presented in more detail in section 4.2.2. The access time to reach an
element is linear in the sum of the dimensions of matrix influencing the
time required to post the constraints but not the actual solving time.

The total function optimization. Suppose that we have an array of instance
data, for instance [1,4,6,8,9]. It would be a waste of space to allocate a
5x5 binary matrix to store this structure. Instead we should store it as a
list of integers. This is the [matriz representation with the total function
optimization. This representation is presented in section 4.2.3.

The total function optimization in reverse. Consider a relation on the do-
main D [#1] E. This can be regarded as a total function from E to D, i.e.
a “reversed” or “transposed” function. Such a function can be represented
by a one dimensional array of decision variables or integers. I have not
implemented this optimization.

The amatrix representation. Prolog has a set of operators to build and de-
compose terms. The arg operator, for instance, extracts the nth argument
of a term in constant time. A matrix can be represented as a nested term.
For instance the Imatriz [[1,1,0], [0,1,1]1] can be represented by the
structured term m(m(1,1,0), m(0,1,1)). The great advantage with this
representation is that an element can be accessed in constant time. 1 call
this representation the amatriz representation, where the a stands for arg.
The problem with this representation is that Prolog doesn’t allow terms
with more than 256 arquments. The compiler must check the number of
arguments and then decide if the amatrix representation can be used.

Using association lists. SICStus Prolog provides a library data structure called
>assoc’, the association structure. It’s a dictionary with logarithmic ac-
cess time implemented as an AVL tree. It’s possible to index a matrix
directly by the domain elements bypassing the domain lookup step (sec-
tion 4.2.5). In this representation, the matrix would be represented by a
set of assoc dictionaries with the domain elements serving as keys.

The flat representation. If the cardinality of the relation (the number of tu-
ples in the relation) is known a priori and never changes, then the relation

34

can be represented by a flat list of elements. I call this the flat represen-
tation. The compiler decides if a flat representation is possible by looking
at the cardinality constraints. The lmatrix representation with the total
function optimization is actually a special case of the flat representation,
where the matrix tree has been partially flattened reducing the depth by
one. Consider a relation in 1..10 [2#] nat. Each element on the left
hand side is related to exactly 2 elements on the right hand side. This
gives a totality of 20 tuples in the relation, so 20 decision variables should
be allocated and stored in a flat list. Note that the nat on the right hand
side is not a problem here. I have not implemented the flat representation.

4.2.2 The Linked Matrix Representation

A way to represent a relation is to use a multi dimensional array, or “matrix”,
of boolean values (zeroes or ones). So if R is an n-ary relation and M is the
matrix representation of R, then My, 4,..4, = 1 if and only if R(aq,aq, ..., an).
It’s tacitly assumed here that the domains of the relations are intervals from 1
to a maximum value, so that the matrix can be indexed directly by the domain
elements; but a generalization will be given in 4.2.5.

One method to represent this “matrix” is to use iterated list structures. A
two dimensional matrix can be represented by a list of lists of booleans, i.e. a list
containing the rows of the matriz. T will call this the linked matriz (Imatriz for
short) representation. I will say that an Imatrix has depth d, if it’s nested d levels
deep. The length vector of an Ay x Ag X ... x A, matrix is the list [47, Ao, ..., A,].
For instance [[[1,0], [0,1]11, [[0,0], [1,011] is an lmatrix of depth 3, a
2 X 2 x 2 matrix more specifically with length vector [2,2,2].

I now present simplified Prolog predicates for creating Imatrices and access-
ing their values. The real predicates, defined in the module Imatrix.pl, are a bit
more complex for technical reasons, but here I want to keep the focus on what’s
of primary interest. The predicate new/2 is used to create a new lmatrix while
value/3 accesses its elements.

%% new(+Lengths, -Matrix)
%% Length is an integer list, the length vector of Matrix.
%% Matrix must be un instantiated when new is called.
%% True if Matrix is an lmatrix with length vector
%% Lengths consisting of decision variables in 0..1
new([L], M) :-

length(M, L),

domain(M, 0, 1).
new([L|Ls], M) :-

length(M, L),

new2(L, M).
new2([]1, _).
new2(Ls, [MIMs]) :-

new(Ls, M),

new2(Ls, Ms).

%% value(?Indexes, +Matrix, ?Value)

35

(1,01, [1,111,
(fo,11, [1,01]
1,
L
(ft1,11, [1,011,
(fo,11, 1,111
]
1.

Figure 1: Example of a Linked Matrix. This is a 2 x 2 X 2 x 2 matrix.

%% True if Matrix([Indexes]) = Value
%% Procedurally: look up element indexed by Indexes.
value([I], Row, Value) :-

lists:nth(I, Row, Value).

value([I|Is], Matrix, Value) :-
lists:nth(I, Matrix, SubMatrix),
value(Is, SubMatrix, Value).

I will spend the rest of this section developing some declarative notation used
in the subsequent sections to reason about Ilmatrices. I will often refer to the
Imatrix in Figure 1 in the following. Now I give several definitions about Ima-
trices.

Flattening. Let M be an lmatrix. A flattening of M, denoted F[M], is a list
containing all elements of M in some order.

D-Flattening. A d-flattening of an lmatrix M with respect to the depth d,
denoted Fy[M], is a list of flattenings of all sub lists at nesting depth d.
Any d-flattening is an Imatrix of depth 2. T will refer to the elements of
Fa[M] as the rows of M with respect to the depth d.

Projection. Let M be an lmatrix of depth 2 with length vector [a,b]. The
projection of M on column j, denoted P;[M], is defined by the list com-
prehension [x; | x; = M; ; A1 < i < a]. Stated in words, the projection
on j is the list of all jth elements in the elements of M, or the jth column
of M.

Transpose. Let M be an lmatrix with depth 2 and length vector [a,b]. The
transpose of M, denoted, 7 [R], is defined by the list comprehension [L; | L;
P;IM] A1 <j<b]. In words the transpose is built by taking all first el-
ements in the elements of M, then the second elements, and so fourth. I
will call the elements of T[M] the columns of M. Note that we only define
transpose for Imatrices of depth 2.

Columns. Let M be an arbitrary lmatrix. The columns of M with respect to
depth d are the columns of F4[M].

36

Length. The length of a list L is denoted by L£[L]. That is the number of
elements in L.

Counting. Let L be a list of primitive elements. We say that C,[L,n], if the
value v occurs n times in L. The operator C, is the counting operator.

The 2-flattening of the matrix M in Figure 1 is [[1,0,1,1], [0,1,1,0],
[1,1,1,0], [0,1,1,1]1]. Note how the example has been formatted to em-
phasize the 2-rows. The columns of depth 2 (see definition of columns above)
are [[1,0,1,0], [0,1,1,1], [1,1,1,1], [1,0,0,1]].

4.2.3 Optimization for Total Functions

Consider the problem of representing the array [2,3,2,1] as a total function in the
Imatrix representation. The domain may be chosen as reldom([interval(1,4)],
{1}, nat, [1ist([2,3,1]1)]1). The Imatrix representing this function is

[
[1,0,0]1,
[0,1,0],
[1,0,0]1,
[0,0,1]

1.

Here the second index of the Imatrix ranges over [2,3,1] rather than over 1..3,
see section 4.2.5 for a discussion of domain lookup. In total 12 primitive values
have to be allocated to store 4 integers. This is a gross waste of space. Only
4 integers should have to be allocated. The solution is to flatten the matrix to
depth 1 and store the values directly, i.e. allocate the matrix [2,3,2,1] instead,
which can be indexed directly by an element in the LHS domain 1..4. This
reduction of the depth of the lmatrices is the total function optimization.

Turning to the general case, let F' be a total function in

reldom(LDoms, {1}, Mult, Range),

where Range is a primitive domain and d = L[LDoms] is the left arity
of F. Let M be an lmatrix of depth d, with values in Range, such that
F(ai,a2,...,aq) = v if and only if My, 4.0, = v, where v € Range. It’s
assumed here that the LHS domains are intervals with left endpoint 1, but
see 4.2.5 for a generalization.

An important point to stress is that the total function optimization is only
made for functions with right arity 1. It would certainly be possible to represent
tuple valued functions in this way also, but it’s more complicated and beyond
the scope of this implementation. Instead tuple valued functions have to be
represented as full binary Imatrices. With this assumption, the elements in the
range set is just integer values or decision variables.

The type of representation used is uniquely determined by the relational do-
main. If Multl = {1} and right arity = 1, then the representation is optimized,
otherwise it’s binary. The Prolog predicate get_type below, is used to deduce
the representation type.

37

%% get_type(+Mult, +RightArity, -Type)
%% True if Type is the representation type consistent
%% with Mult and RightArity.
%% Type is ’binary’ for binary lmatrix and ’integer’
%% for lmatrix with the total function optimization.
get_type(Mult, RightArity, Type) :-

(RightArity > 1 ->

Type = binary

Mult = 1..1 ->
Type = integer
Mult = {1} ->

Type = integer

Type = binary).

4.2.4 The Cardinality Constraints

In this sub section the cardinality constrains, section 2.2.2, will be defined in the
context of the lmatrix representation. I will make heavy use of the declarative
notation of section 4.2.2 in this sub section.

Consider a relation R in the domain reldom(LeftDoms, Multl, Mult2, Right-
Doms). Assume that L][LeftDoms| = d and let M be the lmatrix representing
R. Consider those elements of M, which are indexed by some fixed values of
the left hand side indices. These elements connect one element in the cartesian
product of the LHS domains to various elements on the right hand side. But
these elements are precisely the elements in F4[M], i.e. the d-rows of M. To
affect the LHS cardinality constraint of R, it’s enough to state that the number
of ones in each d-row of M belongs to Multl.

Now consider those elements of M, which are indexed by some fixed values of
the RHS indices. These elements connect one element in the cartesian product
of the RHS domains to various elements on the left hand side. These elements
are in 7 [Fg[M]], the d-columns of M. To affect the RHS cardinality constraint
of R, it’s enough to ensure that the number of ones in each d-column of M
belongs to Mwult2. I now state these assertions in a somewhat more formal
language, which I hope should be obvious. The construct A «— B should be
read as A is true if B is true.

Cardinality (M, Le ft Arity, Multl, Mult2) «—
Let d = LeftArity
V(L € Fq[M], C € T[Fq4[M]])
begin
Cl [L, ml]
Cl [C, m2]
ml € Multl
m2 € Mult2
end

38

Although this notation is purely declarative, the actual computation of the
cardinality in lmatrix.pl follows the pseudo syntax closely. There actually are
predicates named transpose and dflatten, computing 7 [Fy[M]] and Fg[M]
respectively.

It remains to discuss how to affect the cardinality constraints in the case
of the total function optimization. The first thing to observe is that the LHS
cardinality constraint of a total function, {1}, is implicitly taken care of by the
choice of representation, because each (array) element is uniquely indexed by
the LHS indices. Only the RHS cardinality must be enforced. Moreover, if the
RHS multiplicity set is N, the constraint is trivial and may be disregarded.

Assume F is a total function in reldom(LDoms, {1}, Mult2, Range), where
Range is a primitive domain. Let M be the lmatrix of F' in the total function
optimization. Let d be the depth of M, i.e. d = L][LDoms]. Each element in
F[M] € Range. So it’s sufficient to require that for each element v in Range,
the number of occurrences of v in F[M] belongs to Mult2. Note that we must
require that the cardinality of Range is finite unless Mwult2 = N. The following
pseudo syntax procedure enforces the cardinality constraint on total functions
with finite ranges.

CardinalityFun(M, Range, Mult) «+—
%% Range must be a finite primitive domain.
V(v € Range)
begin
Cy[F|M], m]
m € Mult
end

4.2.5 Domain Lookup

So far it’s have been tacitly assumed that all domains are of the form interval(1,
Max). So the arguments of relational applications are mapped identically on
matrix indices. In general, however, some of the domains may be other intervals
or general lists of integers. When a relational application is encountered, a
translation of the arguments to indices must be done, before the value can be
retrieved from the Imatrix. Because this lookup must be made each time the
relation is applied, the domain should be made part of the relational object itself.
Therefore, from now on, a relational object with domain Domain and lmatrix
M, will be represented by the Prolog term

relation(Domain, 1m_rel(M))

Some examples will clarify the process of domain lookup.

(Lookup in a set domain)
F = relation(reldom([1ist([-3, 7, -90, 4, 55]1)1,
{1}’

39

0..sup,
[inf..supl),
lm_rel([4, 8, 11, -100, 9]1)

).
F(-90) = 7
lists:nth(N,[-3,7,-90,4,55],-90)
N=3
lists:nth(3, [4,8,11,-100,91, V)
V=11

Ergo: F(-90) = 11

(Lookup in an interval domain)
F = relation(reldom([interval(5,10)],
{1},
0..sup,
[0..supl),
Im_rel([3, 8, 2, 8, 31)
).
F(7) =7
Translation: 7 => 7 + (1-5) = 3
lists:nth(3, [3, 8, 2, 8, 3], V)
V=2
Ergo: F(7) = 2

To be able to translate between application arguments and Imatrix indices, a
Prolog predicate translate(7Arg, +Domain, 7Index) must be defined. Such
a predicate is implemented in lmatrix.pl. A new predicate value/4 can now be
rewritten, replacing value/3 from section 4.2.2 to take care of domain lookup.

%% value(7Args, +Domains, +Matrix, ?Value)
%% The value predicate with domain lookup.
value([Arg], Domain, Row, Value) :-
translate(Arg, Domain, Index),
clpfd:element (Index, Row, Value).
value([Arg|Args], [Domain|Domains], Matrix, Value) :-
translate(Arg, Domain, Index),
lists:nth(Index, Matrix, SubMatrix),
value(Args, Domains, SubMatrix, Value).

4.2.6 Creating Constant Relations

Section 2.7.3 introduced a matrix data constructor, used to enter constant re-
lational objects via the data file. This section addresses the problem of parsing
such data constructors. In order to parse the data correctly, the relational do-
main is needed. Observe that the item M in matrix(M) is already supposed to
be an Imatrix, so it has only to be verified that it’s consistent with the domain.
The representation type is inferred by a call to get_type. Assume there is a
predicate parse_relation(+Matrix, +Domain, -Relation) (actually defined
in esra.pl). The signature of this predicate is:

40

parse_relation(matrix(+Matrix), +Domain, -Relation) :-

%% Parses a relational data constructor from the data file.
%% At entry relation must be un instantiated

%% True if Relation is the correct value of the constructor.

Now follows a step by step description of what parse_relation has to do.

e Decompose Domain. Domain = reldom(LDoms, M1, M2, RDoms)

o Uniquify all primitive domains in LDoms and RDoms, that is remove any
duplicate values. This is necessary because the domains may depend on
run time constants, unknown at compile time, but instantiated by now.
Domains are sets and must not contain duplicates.

e Call get_type (section 4.2.5) to determine the representation type.

e Check the dimensions of Matrix against all domains. The length of each
partial list of Matrix must match the length of the corresponding domain.
Fail if there is an unexpected error, i.e. list expected, but found something
else.

e Check the primitive elements of Matrix. They must be integers.

e Apply the clpfd:domain/3 predicate to all values to make sure they are in
the correct domain. The domain is 0..1 for the binary representation and
the range of the total function in the optimized case.

e Apply Cardinality (section 4.2.4) to Matrix to ensure that no cardinality
constraint is violated.

e If we come so far unify Relation with relation(Domain, 1lm_rel(Matrix)).

4.3 The Translation Algorithm, some Preliminaries

The rest of this major section will focus on the mapping of ESRA syntax into
SICStus Prolog. This sub section will treat some preliminary concepts, neces-
sary to understand how the compiler works.

4.3.1 Traversing a Parse Tree

I assume that the typical reader has a fair knowledge of translation algorithms,
but I will devote this section to a brief discussion of parse tree traversal for
the benefit of the casual reader. The parser generates a parse tree, which is an
abstract representation of the program syntax. The higher up in the tree, the
bigger syntactic entities will be found. The root represents the entire model,
the intermediate nodes expressions and the leaves primitive values.

The translation algorithm performs a complete traversal of the parse tree,
visiting all nodes. At each node a recursive call is made for each direct child
of that node, returning some code chunk or other item. The different items are
combined in some way and passed back to the caller. The parse tree is processed
bottom up.

41

o8 15

8 1
Figure 2: Parse Tree of 4% (8 — 1) + 5% 3

As an example consider the numeric expression 4% (8—1)+5%3. its parse tree
is depicted in Figure 2. Translation is the same as evaluation in this example.
The value returned by each computation node is labeled on the branch leading
to it. So at the “-” node 81 = 7 is computed and passed back to its parent.
Then 4*7 = 28 is computed at the left “*” node and passed back to the root. On
the right side of the tree 5*3 = 15 is computed at the right “*” node and passed
back. Finally, at the root, the result 28+15 = 43 is computed. All translation
algorithms work in a similar way.

4.3.2 The Conjunctive Context

Consider the formula F; A F5 A F3. If this is true then Fy, F5 and F3 are also
true individually (by elimination of A). In this case it’s enough to state each of
the F's individually as a constraint. Assume on the contrary that F' = (41 A Asg)
is true. Then it is not generally true that A; is true. The reason is that the
conjunction A; A Ay is only conditionally true, i.e. it’s true if F is true. In
this case we cannot state A; as a constraint by its own but must compute
the conjuction A; A Ay and reify it. The correct way stating that formula is:
T & Ay AN Ag, F = T, using an intermediate boolean variable T'. In the first
case I will say that the conjunction is evaluated in a conjunctive context, while

42

in the second case the implication operator cuts off the conjunctive context,
making the context disjunctive. In a conjunctive context it’s permissible to
replace a conjunction with each conjunct separately. In a disjunctive context,
every conjunctive formula has to be reified and stored in a new variable.

The conjunctive context is implemented as an optimization. Without it,
any conjunction would always have to be reified. The compiler passes the con-
junct flag to the translation function which is true in a conjunctive context and
otherwise false. As soon as a disjunctive node is reached in the parse tree,
the conjunct flag is set to false and the conjunctive context is cut off for all
descendants of this node.

Consider the ESRA expression forall(i : 1..10) (F(i) = 5). This is
just the iterated conjunction F(1) = 5 /\ ... /\F(10) = 5. In a conjunctive
context each of these equalities can be stated as is. In a disjunctive context,
on the contrary, each conjunct in the iteration must be stored away in a list.
When the iteration is complete this list is passed back to the ancestor node in
the parse tree and treated there.

Note that the count operator, along with all non conjunctive connectives
(V,=, < and <), cuts off the conjunctive context; meaning that all expressions
nested inside a count operator lives in a disjunctive context.

4.3.3 Communicating Variables between Sub Predicates

In order to map ESRA quantified expressions on SICStus Prolog, it’s necessary
to create sub predicates (see section 4.5). This gives rise to a new problem,
because Prolog doesn’t have any global variables. So how to create communi-
cation between the same variables in different sub predicates? One solution is
to state all variables as facts, but I actually adopted another solution: the wvlist
mechanism.

The compiler maintains a variable vlist, which is the list of names of all
user supplied variables used in the model. before any sub predicates are created
this list must be unified with the name Vlist. The variable V1ist is then
passed as an argument to all sub predicates. Inside the sub predicate the V1ist
argument must again be unified with vlist. This mechanism is best illustrated
by an example. In the following program fragment a sub predicate sub is being
called.

Vlist = [A, B, Potatoes, Ni],
sub(, , ,Vlist),

sub(, , ,Vlist) :-
Vlist = [A, B, Potatoes, Ni],

The unification of Vlist with [A, B, Potatoes, N1] makes sure that the variables
A, B, Potatoes and N1 refer to the same objects in the caller as in sub. A similar
mechanism is used for local variables. The local variables, active in the caller’s
scope, are maintained in a list called Locals and passed to all sub goals within
this scope.

43

Finally all domain expressions, which may depend on compiler generated
variables, are maintained in a list called Domains. When this list is unified
with the corresponding argument in a sub predicate, all temporaries within
the domain expression become unified as well. An example will clarify this
mechanism (here the focus is on Domains, so V1ist and Locals are omitted).

Domains = [interval(1,T1), list([1, T2, 3, T3, 5])],
sub(, , ,Domains),

sub(, , ,Domains) :-
Domains = [interval(1,T1), 1list([1, T2, 3, T3, 5])1,

The unification of Domains with the list expression above makes sure that T1,
T2 and T3 become defined within sub. I will often refer to the unification of
variable and list as a packing instruction on the caller’s side and as an unpacking
instruction in the callee.

4.4 Translation of Simple Expressions

Simple expressions are such ones not containing quantifiers or other looping
constructs. This include numeric and propositional expressions, applications as
well as declarations. The purpose of this sections is to define the ESRA to prolog
mapping of these expressions.

4.4.1 Compile time Evaluation of Constant Expressions

While translating expressions, the compiler should evaluate constant expressions
like 4*5=20. This works very much like the example in section 4.3.1. Among
other benefits this will enable the compiler to evaluate all expressions depending
on declared and initialized constants. An example will clarify this procedure.

cst G =8

dom D = {7%G, -1, G, 5}

(Comment: the compiler evaluates D = {66, -1, 8, 5})
cst B = 10+G

(Comment: the compiler evaluates B = 18)

etc

It’s clear that if there are no run time initialized constants, the compiler will be
able to evaluate every ground expression at compile time. This works because
I require that each identifier must be declared before it’s used.

4.4.2 Application Expressions

The predicate ’value/3’, introduced in section 4.2, is used to apply a relation on
a tuple of values. Here, only the declarative aspects of value/3 are of interest,

44

the actual implementation details are discussed in section 4.2. The meaning of
value/3 is:

let R be an n-ary relation. If value([as, as, .., , ay], R, 1), then R(a1, a9, ..., an)
holds. Similarly if value([a1, ag, .., , an], R,0), then R(a1,as,...,ay) is false.

Let F' be a total function with left arity n — 1 and right arity 1. If it’s true
that value([as, as, ..., an-1], F, V), then F(a1,as,...,an—1) =V is also true.

The predicate 'new/2’, which is used to create relational decision variables, is
also important. The predicate new(+Domain, -Relation) is true if Relation
is a relation with domain Domain. Here Domain must be a fully instantiated re-
lational domain expression while Relation must be an un instantiated variable.
Relation becomes unified with a new fresh relation.

The subsequent sections will show many examples of how to use these two
predicates. For instance each relation application expression maps into a call to
value/3.

4.4.3 Numeric and Comparison Expressions

The translation of numeric and comparative expressions into Prolog follows the
general outline of section 4.3.1. At each node in the parse tree, a couple of
code chunks are assembled by recursive calls to the translation function and
concatenated together with the new code generated at that node and finally
passed back to the caller.

In the following I will focus attention on the mapping between ESRA and
Prolog, so from now on the discussion will be declarative omitting the details
of the translation process.

The compiler will generate many so called temporary variables to hold in-
termediary results which have no names in the source model. I will adopt the
convention here to call these variables T1, T2, T3, and so fourth. The mapping
is straight forward, just replace each ESRA operator with its Prolog counter part.
In the examples I will sometimes use the (Assume ...) construction which means
that the text within the parentheses does not participate in the mapping but
carries essential information, such as declarations. The actual ESRA text which
is mapped will be enclosed in angular brackets. It’s assumed that each expres-
sion to be mapped lives in a conjunctive context, so the final constraint will not
be reified. If the result is just a numeric value it will be left in a temporary.
Embedded application expressions will be treated as in section 4.4.2. Note that
the CLPFD operators #= etc are used, because it’s decision variables which are
dealt with here. The sign --> means “maps to”. If the reader have problems
to understand why the instructions are generated in a particular order he is
encouraged to draw a parse tree for himself and do the translation by hand.

< Xx24 = I*F(I-1) > --—>

T1 #= Xx24,

T2 #= I-1,
value([T2], F, T3),
T4 #= T*T3,

T1 #= T4.

< F(3*F(I*F(I))) > -->
value([I], F, T1),

45

T2 #= Ix*T1,
value([T2], F, T3),
T4 #= 3%T3,
value([T4], F, T5).
(result in T5)

< XxY-1 !'=0 > -—>

T1 #= XxY,
T2 #= T1-1,
T2 #\= 0.

< Xx(FX) - 1) =< GX-1, Y) > -—>
value([X], F, T1),

T2 #= X*T1,

T3 #= T2-1,

T4 #= X-1,

value([T4, Y], G, T5),

T3 #=< T5.

4.4.4 Propositional Expressions

Propositional expressions are almost as straight forward to map, but are slightly
complicated by the conjunctive context.

<F =>X=5> -->
X #= 5 #<=> T1,
F #=> T1.

The sub expression X=5 is evaluated in disjunctive context because of the im-
plication operator, so the result is reified into T1. Then the implication is
translated in conjunctive context (which is assumed).

< false => R(I,J) >
value([I,J], R, T1),
0 #=> T1

< BIBD(v1,j) /\ BIBD(v2,j) > -->
value([vl, jl, BIBD, 1),
value([v2, jl, BIBD, 1),

4.4.5 Declarations

Declaration causes two kinds of effects. Firstly a symbol table entry is created for
every declared identifier. The translator uses this information for type checking
purposes. Secondly code may be generated by the declaration for various reasons.

When a primitive decision variable is declared its domain must be made
known to cLPFD. This produces a line of code like X in 1..10. Constants
may be initialized in line by an expression that may contain run time constants.

46

Such expressions has to be evaluated and temporaries must be created to hold
their values. Sometimes a domain declaration also contain expressions which
must be evaluated resulting in new temporaries.

When a relational decision variable is declared, a call to new/2 must be
generated (section 4.4.2) to create the relation. Constant declarations will not
be considered here, see section 4.7.1 instead. Recall that (Assume ...) in the
mapping syntax means that the thing within parentheses is not part of the ESRA
expression being mapped, but is needed as contextual information.

<var X : 0..10 > -->
X in 0..10

<var X : {1, 7, 4} > -->
X in {1, 7, 4}

(Assume G, R are integer run time constants)
<var X : 1..G*xR > -->

T1 #= G*R,

X in 1..T1

(Assume A, B, C and E are integer run time constants)
< dom D = {2, 3-A, B, 4*C, 55, 9-E} > -->

T1 #= 3-A,
T2 #= 4xC,
T3 #= 9-E.

(Comment: The domain D becomes known by the compiler,

no additional code produced for this purpose! The variables

T1, T2 and T3 contains the results of computations of 3-A,

4%C and 9-E. All references to D in the following are literally
substituted by the term ‘list([2, T1, B, T2, 55, T3])’ by the
compiler. Therefore the T variables need to be remembered. The

D identifier binding is not stored in the generated code. This is
a design decision.)

<var F : (1..10 [#] 1..5) [->] nat > -->
new(reldom([interval(1,10), interval(1,5)],
1..1,
0..sup,
[interval(0, sup)l),
F).
(Comment: A total function is created in the
declared domain.)

<var S : 1..10[5] > -->
new(reldom([interval(1,10)],
{53,
nil,
[,
S).

47

In the last example a set domain expression is constructed, see section 4.1.3.

4.5 Translation of Quantified Expressions
4.5.1 Loops in Prolog

The quantified expressions are not so strait forward to map into Prolog as the
stuff we have treated so far. The reason is that it’s necessary to loop over the
domains of each local variable. The quantifiers and sums are really the ESRA
counter part of loops in ordinary programming languages. But Prolog doesn’t
support loops, only recursion, so I have to create several recursive predicates,
in fact one for each local variable.

Before treating this problem in detail, I want to give examples of some simple
Prolog looping techniques. The first example is a double loop over two intervals,
the Prolog equivalent to a double for loop. The loop body simply prints the
values of the local variables at each turn.

%% A double for loop in Prolog.
%% Call with loopl(Ibegin, Jbegin, Max)
%% Printing all pairs i,j with Ibegin =< I =< Max and
%% Jbegin =< j =< Max
loopl(I, J, Max) :-
(I =< Max ->
Inew is I+1,
loop2(I, J, Max),
loopl(Inew, J, Max)
true
).
loop2(I, J, Max) :-
(J =< Max ->
Jnew is J+1,
format(‘‘~d, “d™n’’, [I,J]),
loop2(I, Jnew, Max)

true

This program uses iteration over the natural numbers. It’s also possible to
iterate over lists in a similar way. Suppose D1 and D2 are two lists. The
following example loops over the entire “cartesian product” of D1 and D2 and
prints all pairs.

%% D1 and D2 are integer lists
%% Print the ‘cartesian product’’ of D1 and D2
loopi([1,).
loop1([Al | A1s], D2) :-
loop2(Al, D2),
loopl(Als, D2).
loop2(_, [1).

48

loop2(Al, [A2 | A2s]) :-
format("~d, ~d"n", [A1l, A2]),
loop2(Al, A2s).

Primitive domains are either intervals or lists. Because it’s slightly more con-
venient to iterate over lists I decided to always use lists when iterating over
primitive domains. Therefore, I convert every interval which appears in a
local variable specifier to a list, before starting the iteration. The predicate
domain_to_list/2 makes that trick (see code in esra.pl). The signature is

%% domain_to_list(+Domain, -List) :-

%% Domain is a domain expression, which must be ground and
%% finite.

%% List is a list, which must be uninstantiated at entry.
%% True if List contains the elements of Domain.

4.5.2 Iteration Schemas

The sub predicates, generated by the compiler, follow fixed patterns. I call
these patterns iteration schemas. Note that there is exactly one predicate for
each local variable and each predicate has two clauses, one base clause and one
recursive clause. In this sub section I will use abstract pseudo syntax names,
such as as loop1, loops, loop;—1,loop,, for all sub predicates.

There are two types of iteration schemas, the blank schema and the schema
with collection. In the blank schema, the main body of the loop just posts a
constraint, no result is computed. The blank schema is used in conjunctive
context. In the schema with collection, on the other hand, no constraint is
posted directly, instead the constraint is reified and added to an accumulation
list at each turn of the loop. The accumulated list is then passed back to the
caller. This schema collects the result of a computation. Both schemas exhibit
a strong similarity to the looping examples of section 4.5.1.

Suppose the local variables are Ay, As, ..., A,, belonging to the primitive
domains D1, D5, ..., D,, where one or more of the D; may be identical. There
will be one predicate, named loop;, associated with each local variable A;. There
will also be an initial call to loop; starting the n fold iteration. Only loop,, will
compute anything. The whole purpose of loopy, loops, ..., and loop,_1, is to
start the next sub iteration. In the schema definitions which follow, I will replace
the arguments Vlist, Locals and Domains of section 4.3.3 with an ellipsis, in the
interest of clarity. Suppose also that the domains D; already are lists.

Consider the blank schema first. Both base clause and recursive clause are
given for each predicate. In the base case, the empty list, is supposed to match
the recursive argument in the other clause.

Definition: Blank Schema
Initial goal: loopi (D1, Da,...,Dyp,...)

loop1 (1, _, ...y, ..0).

49

loop1 ([A1|A18], Ag, ..y Ap,y o) o —
lOOpQ(Ala D27 ad) Dn;)5
loop1(A1s, Do, ...; Dy, ...).

loop2(_, [0,).

loopa(_, [Ag]Aas], As, ..y Ap,y.l) : —
lOOpg(Al,AQ,Dg,...,Dn,...),
lOOpg(Al,AQS,Dg,...,Dn,...).

loopn(_, ..., [1,...).

loopn(_, [An|Ans],...) : —
(Do something here),
lOOpg(Al, AQ, ceey Anfl, AnS,)

The schema with collection is slightly more complicated. There are three com-
piler generated variables, always named X, Y and Z, used as accumulators to
scope up the computed result. X,Y is the primary accumulator pair, but Z is
used for intermediate lists.

Definition: Schema With Collection

Initial goal: loopi (D1, Da,..., Dy, [1,Res,...)
(Comment: At exit, Res is the list of computed results, one result per turn)

loop1 (11, ..., X, X, ...).

loop1([A1|A18], Do, ..., Dy, XY,) —
loop2(A1, Do, ...,; Dy, X, Z, ...),
loop1(A18, Do, ...; Dy, Z)Y, ..).

loopa(_, 01, ..., X, X, ...).

lOOpg(Al, [AQlAgS],D3, ...,Dn, X, Y,) L=
lOOp3(A1,A2,D3,...,Dn, X, Z,),
loop2 (A1, A28, D3, ..., Dy, Z)Y, ...).

loopn(_, ..., [1, X, X, ...).

loopn(_, [An]Ans], XY, ..): —
(Compute something here => T),
lOOpn(Al,AQ,...,An_l,AnS, [T|X],)

50

4.5.3 The Forall Quantifier

Consider the expression

forall (LocalVariables | Filter) (Formula)

The first to do is to rewrite this expression to

forall (LocalVariables) (Filter => Formula),

taking care of the filter clause automatically. This would be overkill if Filter
is ground because a simple Prolog conditional would suffice. But in the interest
of simplicity I always make this transformation in my compiler.

The next step is to generate an iteration schema for LocalVariables and
fill it with the translation of Formula. If the schema is collecting, the result is
a list of boolean values, which have to be reified. Suppose that List contains
the results of the computation. To reify List, use the CLPFD sum constraint.

length(List, N),
clpfd:sum(List, #=, Sum),
Sum #= N.

This makes the entire forall expression true, because this really is equivalent
to putting all elements of List equal to 1. If the expression is computed in a
disjunctive context, however, the last line above have to be replaced by Sum #=
N #<=> Result, to reify the expression instead.

4.5.4 The Count Quantifier

Consider the expression

count (Multiplicity) (LocalVariables | Formula)

The first thing to do is to generate a schema for LocalVariables. For the count
quantifier, the schema must always be collecting, because we cannot handle the
counting constraint before we have seen all values to be counted. Therefore the
conjunctive context has to be cut off before the Formula is translated. Suppose
that List contains the results of the computation. To enforce the counting
constraint on List, use the CLPFD count constraint.

clpfd:count (1, List, #=, Count),
Count in Multiplicity

Just counting the number of true values in List and making sure it’s in Multi-

plicity. This can be reified if the last line above is replace by

Count in Multiplicity #<=> Result

o1

4.5.5 The Sum Operator
Consider the expression

sum (LocalVariables | Filter) (Expression)

The first to do is to rewrite this expression to

sum (LocalVariables) (Filter*Formula),

Here Filter must be computed in a disjunctive context, enforcing reification.
Then Filter functions as a binary weight factor, to decide which terms in the
sum to omit and which ones to include, in the final result. Then a schema is
created for LocalVariables. The schema for the sum operator is always collect-
ing, because all values have to be computed before the sum can be computed.
Assume that List contains the results of the computation. To compute the sum
of List, use the CLPFD sum constraint.

clpfd:sum(List, #=, Result)

The resulting sum value is now stored in Result.

4.5.6 Examples

The section is concluded with several examples of ESRA to Prolog mappings. The
vlist mechanism is assumed, but I’'m not interested here in the actual values of
the lists, so I replace them by ellipses and ignores how the variables in the sub
predicates get their values. See section 4.8 for an example of a complete vlist
mechanism. Also note that the domains are declared as temporary variables
beginning with T’ in the sub predicates. This is always done. From now on,
the convention to name sub predicates after the same base name as the model
itself is adopted. For instance if the model’s name is ‘model’, the sub predicates
are named modell, model2 etc.

(Assume dom D = 1..3)
(Assume model name is ’test?)
< forall(I&J : D) (IxJ < 100) > -->

(Comment: The blank schema is used)
test1([1,2,3], [1,2,3], Vlist, Locals, Domains),

test1([1, _, _, _, _).

test1([I|Is], T2, Vlist, Locals, Domains):-
test2(I, T2, Vlist, Locals, Domains),
test1(Is, T2, Vlist, Locals, Domains).

test2(_, [I, _, -,).

test2(I, [J|Js], Vlist, Locals, Domains):-
Vliist = ...,
Locals = ...,
Domains = ...,

592

T3 #= IxJ,
T3 #< 100,
test2(I, Js, Vlist, Locals, Domains).

(Assume model name is ’test?)
< count(20 (I : 1..3 | F(I) =1I) > --—>

(Comment: Collecting Schema Used)

test1(T1, [],Results, Vlist, Locals, Domains),
clpfd:count (1, Results, #=, Count),

Count in {2},

test1([], X,X, _, _, _).
test1([I|Is], X,Y, Vlist, Locals, Domains):-
Vlist = ...,
Locals = ...,
Domains = ...,
value([I], F, T2),
T2 #= 1 #<=> T3,
test1(Is, [T3|X], Y, Vlist, Locals, Domains).

(Assume model name is ’summing’)
<SS =sum(I: 1..10) (I*I - 1) > -->

(Comment: Collecting Schema Used)
summing1([1,2,3,4,5,6,7,8,9,10], [],Xs, Vlist, Locals, Domains),
clpfd:sum(Xs, #=, Sum)

summing1 ([1, X,X, _, _,).
summing1 ([_I|_Is], X,Y, Vlist, Locals, Domains):-
Vlist = ...,
Locals = ...
Domains = ...,
T1 #= IxI,
T2 #= T1-1,
summingl (Is, [T2]X],Y, Vlist, Locals, Domains).

4.6 Translation of the Objective

When all constraints have been posted the problem have to be submitted to the
solver for a solution. This is the objective of the model. There are two kinds
of objectives, solve and optimise respectively. Consider the objective solve
<formula>. After <formula> has been translated, a call to the library predicate
all_wvariables/2, defined in esra.pl is generated. The signature is

%% all_variables(+ESRAVariables, -CLPFDVariables)
%% ESRAVariables is a list of all ESRA decision variables
%% True if CLPFDVariables is the list of all CLPFD decision variables,

93

%% which has been allocated.

The lines of code that invokes the solver to solve a CSP, are always (if we assume
that V1, V2, ..., Vn are all decision variables in the ESRA model).

esra:all_variables([V1, V2, ..., Vn], AllVariables),
clpfd:labeling([ffc], AllVariables)

The ellipsis shall be figuratively interpreted here, in an actual generated program
n is always known, so the compiler generates the list of known names.

If we are dealing with a COP instead, and the objective function is bound
to the CLPFD variable T, then the corresponding Prolog lines are

esra:all_variables([V1, V2, ..., Vn], AllVariables),
clpfd:labeling([ffc, Optimize], AllVariables)

Here Optimize is one of the atoms maximize or minimize. Note the option
[ffc] sent to the labeling/2 predicate. This means “first failed with the most
constrained heuristic”. This leftmost variable with the smallest domain is always
chosen first breaking ties by (a) selecting the variable that has the most con-
straints suspended on it and (b) selecting the leftmost one. This default can be
overridden by changing the compiler variable ‘options’ defined in generate.ml.

4.7 Input and Output
4.7.1 The Data File, and Run Time Constants

Run time constants have to be initialized by the data file. The data file ac-
tually is a Prolog program, so each data constructor is a valid Prolog term
(section 2.7). if the compiler encounters run time constants it generates a call
to the predicate read_file/2, defined in esra.pl, which reads the file and stores
each data constructor in a dictionary named Unknowns. The signature is

%% read_file(+FileName, -Unknowns)

%% FileName is an atom, the name of the data file.

%% Unknown must be un instantiated when this predicate

%% is called.

%% Reads all run time constants from the file FileName and
%% stores them in the dictionary Unknowns.

Later, each run time constant is retrieved from Unknowns by a call to find_variable/4,
which is also defined in esra.pl. This predicate has the signature

%% find_variable(+Key, +Unknowns, -Value, +Domain)

%% True if Key is bound to Value in Unknowns.

%% Key is an atom, the ESRA name of the constant.

%% Unknowns is the dictionary containing all run time
%% constants.

54

%% Domain is the domain of the constant.
%% Value is the name of the constant.

When find_variable encounters a relational data constructor it calls parse_relation/3
of section 4.2.6 to construct the object. Now I give some examples of the map-
ping of ESRA constant declarations to Prolog.

< cst K : nat > -->
find_variable(’K’, Unknowns, K, interval(0, sup))

< cst Array : 1..10 [->] nat > -->
find_variable(’Array’, Unknowns, Array,
reldom([interval(1,10)],
{13},
0..sup,
[interval (0,sup)])

< cst Set : 1..10 [{2,5}] > -->
find_variable(’Set’, Unknowns, Set,
reldom([interval(1,10)],
{2,5},
nil,
[
)

(Comment: This is a set constant)

4.7.2 Printing and Results

After a solution to the problem has been found, the predicate make_results/2
(defined in esra.pl) is called to create a dictionary containing all decision vari-
ables of the problem. This dictionary is the result parameter. The signature of
make_results/2is

%% make_results(+List, -Result)

%% List is a D-list of pairs Key-Value, one for each decision
%% variable of the problem.

%% Result must be un instantiated by entry.

%% True if Result is a dictionary of all (Key,Value) pairs.
%% The variable Result holds the result parameter on exit.

The next step is to call print_results/2 (defined in esra.pl), to print all re-
sulting decision variables on the screen according to a default printing format.
The signature is

%% print_result (+Result)
%% Result is a D-list of pairs Key-Value, one for each
%% decision variable.

95

%% Prints the results of the problem in a default format
%% on the screen.

The result parameter contains all decision variables of the problem. The user
can extract this information by using the result API, which is described in
section 5.4.

4.8 The Branch Tree

Before presenting the final example of a real world translation, there’s a nec-
essary subtlety to consider. When translating a quantified expression a new
predicate is created. The program text of this predicate is to inserted later in
the code stream. If we are writing instruction to a file one by one, we are getting
into problems. The solution is that the compiler maintains a data representa-
tion of the program which I call a branch tree in memory during the translation.
Only when the translation is complete, is the branch tree converted into the
final program. To explain the branch tree, consider the following ESRA code
chunk

N = sum(I : 1..5) (I*I) /\
forall(I:1..5) (I < 10).

A branch tree for this code chunk is

(Assume: program name is ‘‘test’’)

(Comment: V1ist mechanism takes care of N)

(Comment: Domains and Locals uninteresting now, replace by ellipsis.)
Vlist = [N],

test1([1,2,3,4,51, [1,T1, ...),

Branch (
test1([], X,X, _, _,).
test1([I|Is], X,Y, Vlist, Locals, Domains) :-
Vlist = [N],
Locals = ...,
Domains = ...,
T3 #= IxI,
test1(Is, [T3|X],Y, Vliist, Locals, Domains).
)’
clpfd:sum(T1, #=, T2),
N #= T2,
test2([1,2,3,4,5], ...),
Branch (

test2([], _, _, _).
test2([I|Is], Vlist, Locals, Domains) :-
Vlist = [N],
Locals = ...,
Domains = ...,
I #< 10,
test2(Is, Vlist, Locals, Domains)

o6

When the entire model has been translated, the compiler converts the branch
tree into a final Prolog program. First all instructions not occurring in any
branch are written out, the so called stem of the branch tree. Then all branches
are written out recursively. The result is a Prolog program with several predi-
cates.

4.9 A Complete Example

Now it’s time to present a major example of a full translation of an ESRA model.
I have chosen the well known warehouse location problem, see section 3.6 for a
definition. This model differs from the one of section 3.6 because I think it’s
better suited to illustrate the subtleties of translation than the other model, but
it models the same CSP.

4.9.1 Preliminaries

Before the example can be understood, there are some preliminary notions that
must be explained, which have not been encountered yet.

The name mapping. The compiler generates variables with names like Vlist,
Domains, AllVariables, X, Y and Z. How can we assure that these variables
don’t clash with user supplied ones? There’s also the problem that Prolog
doesn’t allow variable names to begin with lower case letters, while ESRA
does so. The solution is to map the names to an internal format. The
mapping is very simple; just prepend an underscore to the name. Thus,
the ESRA name foo maps to the prolog name _foo, while Bar maps to

Bar.

The computer generated “temporary variables” have so far been called T1,
T2 etc. We now rename these variables to _1, _2 etc, to avoid clashing
with user variables beginning with T.

Module prefixes. The familiar predicates value/3, new/2 etc, have acquired a
module prefiz, to show that they belong to one of the ESRA library modules:
esra.pl and Imatrix.pl. These modules contain all necessary Prolog code
to support the generated program at run time.

Once wrappers. Several predicates are wrapped into calls of once/1. This
is to suppress backtracking. A goal called by once(Goal) is only invoked
once. When backtracking occurs, Goal doesn’t leave any choice points on
the stack. Without this precaution, the program often backtracks when
it’s not supposed to, causing various problems.

Files. There must be several files to run the model. Firstly, the generated
program itself, named model.pl, if model is the base name of the model.
Secondly, the data file, which has the name model.in.pl. Both these files
are Prolog programs. Thirdly, the library files esra.pl and lmatrix.pl,
must be in the directory indicated by the module declarations at the head
of the generated program.

57

4.9.2 Stepping Through the Example

The example model is named ware, the warehouse location problem. The source
file is ware.pl and the data file ware.in.pl. The following ESRA source model
has been line numbered to facilitate referencing.

O ~NO O WN -

10
11
12
13
14
15
16
17

18
19
20
21

cst
cst
dom
dom
cst
cst
cst
var

NStores : nat

NWareHouses : nat

Stores = 1..NStores

Warehouses = 1..NWareHouses

Capacity : Warehouses [->] nat

SupplyCost : (Stores [#] Warehouses) [->] nat
MaintenanceCost : nat

Supplies : Warehouses [#1] Stores

minimise

MaintenanceCost *

(sum(W : Warehouses | count(l..sup) (
S : Stores | Supplies(W,S))) (1)

)

+

sum(W : Warehouses, S : Stores | Supplies(W,S)) (
SupplyCost (S,W)

)

such that

(forall (W : Warehouses)
(count (0..Capacity(W))
(S : Stores | Supplies(W,S))))

And here is the translation, ware.pl, also line numbered.

D w N e

use_module (library(clpfd)).
use_module (library(lists)).
use_module (’Ilmatrix.pl’).
use_module(’esra.pl’).

ware (Results) : -

esra:reset_counters,

esra:read_file(’ware.in.pl’, Unknowns),

esra:find_variable(’NStores’, Unknowns, _NStores,
interval(0, sup)),

esra:find_variable(’MaintenanceCost’, Unknowns,
MaintenanceCost, interval(0, sup)),

esra:find_variable(’NWareHouses’, Unknowns, _NWareHouses,
interval(0, sup)),

Imatrix:new(reldom([interval(1l, _NWareHouses)],

0..sup, 1..1,
[interval(1l, _NStores)]l),
_Supplies),

o8

13 esra:find_variable(’SupplyCost’, Unknowns, _SupplyCost,
reldom([interval(1l, _NStores),
interval(l, _NWareHouses)],

{1}, 0. .sup,
[interval(0, sup)])),
14 esra:find_variable(’Capacity’, Unknowns, _Capacity,
reldom([interval (1, _NWareHouses)],
{1}, 0. .sup,
[interval(0, sup)])),
15 Vlist = [_NStores, _MaintenanceCost, _NWareHouses, _Supplies,
_SupplyCost, _Capacity],
16 Domains = [interval(l, _NWareHouses), interval(l, _NStores)],
17 esra:domain_to_list(interval(l, _NWareHouses), _8),
18 once(ware3(_8, [],_14, Vlist, [], Domains)),
19 sum(_14, #=, _15),
20 _16 #= _MaintenanceCost*_15,
21 esra:domain_to_list(interval(l, _NWareHouses), _1),
22 esra:domain_to_list(interval(l, _NStores), _2),
23 once(warel(_1, _2, [1,_6, Vlist, [1, Domains)),
24 sum(_6, #=, _7),
25 _17 #= _16+_7,
26 esra:domain_to_list(interval(l, _NWareHouses), _18),
27 once(ware5(_18, Vlist, [], Domains)),
28 esra:all_variables([_Supplies], AllVariables),
29 esra:report_postings,
30 labeling([down, minimize(_17)], AllVariables),
31 esra:report_solution(optimum-_17),
32 esra:make_results([’Supplies’-_Supplies], Results),
33 esra:print_results([’Supplies’-_Supplies]).
34 ware5([], _, _,).
35 wareb([_W|_Ws], Vlist, Locals, Domains):-
36 [_NStores, _MaintenanceCost, _NWareHouses, _Supplies, _SupplyCost,
_Capacity] = Vlist,
37 [1 = Locals,
38 [interval (1, _NWareHouses), interval(l, _NStores)] = Domains,
39 Imatrix:value([_W], _Capacity, _19),
40 esra:domain_to_list(interval(1, _NStores), _20),
41 once(ware6(_20, [1,_22, Vlist, [_W], Domains)),
42 esra:set_counts(_22, 0.._19),
43 once(ware5(_Ws, Vlist, Locals, Domains)).
44 ware6([], X,X, _, _, _).
45 ware6([_S|_Ss], X,Y, Vlist, Locals, Domains):-
46 [_NStores, _MaintenanceCost, _NWareHouses, _Supplies, _SupplyCost,
_Capacity] = Vlist,
47 [_W] = Locals,
48 [interval (1, _NWareHouses), interval(l, _NStores)] = Domains,
49 Ilmatrix:value([_W, _S], _Supplies, _21),

99

50

51
52
53
54

55
56
57
58
59
60
61
62
63
64

65
66
67

68
69
70
71
72
73
74

75
76
7

78
79
80
81

once(ware6(_Ss, [_21[X], Y, Vlist, Locals, Domains)).

warel ([1, _, X,X, _, _, _).

warel ([_W|_ws], _2, X,Y, Vlist, Locals, Domains):-
once(ware2(_W, _2, X,Z, Vlist, Locals, Domains)),
once(warel(_Ws, _2, Z,Y, Vlist, Locals, Domains)).

ware2(_, [1, X,X, _, _,).
ware2(_W, [_S|_Ss], X,Y, Vlist, Locals, Domains):-
[_NStores, _MaintenanceCost, _NWareHouses, _Supplies, _SupplyCost,
_Capacity] = Vlist,
[1 = Locals,
[interval (1, _NWareHouses), interval(l, _NStores)] = Domains,
Imatrix:value([_S, _W], _SupplyCost, _4),
Imatrix:value([_W, _S], _Supplies, _3),
_5 #= _4%x_3,
once(ware2(_W, _Ss, [_5|X], Y, Vlist, Locals, Domains)).

ware3([], X,X, _, _,).

ware3([_W|_Ws], X,Y, Vlist, Locals, Domains):-
[_NStores, _MaintenanceCost, _NWareHouses, _Supplies, _SupplyCost,
_Capacity] = Vlist,
[1 = Locals,
[interval (1, _NWareHouses), interval(l, _NStores)] = Domains,
esra:domain_to_list(interval(1, _NStores), _9),
once(ware4(_9, [1,_11, Vlist, [_W], Domains)),
esra:set_counts_and_reify(_11, 1..sup, _12),
_13 #= 1x_12,
once(ware3(_Ws, [_13|X], Y, Vlist, Locals, Domains)).

ware4([1, X,X, _, _, _).
ware4([_S|_Ss], X,Y, Vlist, Locals, Domains):-
[_NStores, _MaintenanceCost, _NWareHouses, _Supplies, _SupplyCost,
_Capacity] = Vlist,
[_W] = Locals,
[interval (1, _NWareHouses), interval(l, _NStores)] = Domains,
lmatrix:value([_W, _S], _Supplies, _10),
once(ware4(_Ss, [_10|X], Y, Vlist, Locals, Domains)).

The construction in lines 11-12 of the source model requires an explanation.
Part of the explanation is already given in section 2.1.2. The sum expression
evaluates to the cardinality of the set

{W : Warehouses |
count (1. .sup)
(S : Stores | Supplies(W,S))}.

60

This cardinality is the number of open warehouses, so we get the total fixed cost
by multiplying this number with the fixed cost per warehouse (MaintenanceCost).
Now I'm stepping through the example line by line to explain how it works.

Line 1-4

Module declarations. Open modules clpfd, lists, Imatrix and esra. The first two
are system modules, while the latter belong to the ESRA library. If the module
declarations of the library points to another directory, these files should reside
there instead of in the current directory. A variable in the compiler decides to
which directory the library files belong.

Line 5
The main goal, which starts the generated program. Results is the result pa-
rameter.

Line 6
Reset the CLPFD statistics counters to zero.

Line 7
Read the data file ware.in.pl. Store each run time constant in a Key-Value
dictionary named Unknowns.

Line 8-11

Lookup the declared run time constants of the program: NStores, MaintenanceCost
and NWarehouses, in the dictionary. These constants are integer valued as seen

by the domains in the calls to find_variable. These lines takes care of the
lines 1-2 and 7 in the source model. Note that the domains declared in the
source are passed as arguments to find_variable as well as the variable names.

Line 12

Create the variable Supplies (line 8 in the source). Note how var Supplies :
Warehouses [#1] Stores translates to a call to Imatrix:new/2, defining the
prolog variable _Supplies.

Line 13-14

More calls to find_variable taking care of lines 5-6 in the model. Now _Ca-
pacity and _SupplyCost are instantiated. These are relational constants. Rela-
tional constants are looked up after all declarations have been processed by the
compiler, and all domains are known.

Line 15-16

Now when all declarations have been processed by the compiler, the variables
Vlist and Domains can be unified with the list of all variable names and the list
of all declared domain expressions respectively. This is the vlist mechanism.

Line 17

A call to domain_to_list/2converts the domain expression interval (1, _NWareHouses)
into a Prolog list and stores this list in _8. This step is a preparation for com-

puting the first sum (source lines 11-13) in the objective function of the model.

It’s the Warehouses domain which has to be converted to a list.

61

Line 18
The sub predicate ware3 is invoked in the collecting schema to compute the sum

sum(W:Warehouses | count(l..sup) (S : Stores|Supplies(W,S))) (1). This

sum is actually a weight factor measuring the cardinality of the set of stores a
certain warehouse supplies. Only warehouses supplying some store have a main-
tenance cost. The result is collected in _14.

Line 19-20

The sum of the list _14 is computed and multiplied with the maintenance cost.
The result is in _16. Now we have computed the first term of the objective
function, the fized cost.

Line 21-22

More domain-list conversions. The domains Warehouses and Stores are con-
verted to the lists _1 and _2 respectively. This is preparation for the second
sum computation.

Line 23

The sub predicate warel computes the second sum of the objective function in
the collecting schema. The collect is in _14. Note that Locals is [], because no
locals are active in the current scope, the main predicate.

Line 24
The collect is summed, using the CLPFD sum constraint. result in _7.

Line 25
The two parts of the objective function are summed, result in _17.

Line 26-27
Invoking sub predicate wareb to compute the forall expression in the such that
clause of the model in the blank schema.

Line 28

The esra:all_variables/2 predicate takes all decision variables of the model
and flattens them to get all CLPFD elementary decision variables, which has
been allocated. They are collected into the Prolog list Al1Variables.

Line 29
Code to print out some statistics, like the number of posted constraints etc.

Line 30
Invoking the CLPFD solver to minimize the value in _17 with respect to all con-
straints posted so far.

Line 31 Report that a solution has been found along with statistics such that
the number of backtracks and the solving time.

Line 32
Call make_results/2 to create the result parameter.

62

Line 33
Call print_solution/2 to print the decision variables in a default format.

Now the main branch of the program has been explained. The branch started
by ware3 is treated nest. It’s the branch used to compute the first sum in the
objective function. Lines 11-12 in the source model.

Line 65-66

This is just the clause heads of the schema with collection over the local variable
specifier (W : Warehouses). The collect will be gathered in Y. The predicate
ware3 is the root of the first branch of the program. The predicate is called in
line 18.

Line 67-69
The vlist mechanism.

Line 70-71

Calling ware4 to compute the nested count expression in the schema with col-
lection. The collect is in the list _11. Note that Locals is [_W], because the
local variable _W is now in the outer scope. this call starts a sub branch of ware3.

Line 72
The line

esra:set_counts_and_reify(_11, 1..sup, _12)

calls a library predicate, taking care of the counting condition of lines 11-12 in
the source model. We reify the boolean variable _12 with the statement that
the number of occurrences of 1 in _11 belongs to 1..sup. Effectively we are
measuring the cardinality of the set

{S : Stores | Supplies(W,S)}.

Line 73

This line computes the expression under the sum sign of source lines 11-12.
The factor _11, the result of the count, is used as a weight factor controlling if
the current term should contribute to the sum or not. The actual term is “1”.
This construction is a way to simulate the card/1 ESRA operator, which is not
supported by this implementation.

Line 74
The recursive call to ware3, processing the rest of the domain. The computed
value is pushed on the collect X.

Line 75-76

Predicate ware4 uses the schema with collection to compute the body of the
count expression in source lines 11-12. The collect is gathered in Y.

63

Line 77-79
The vlist mechanism. Note that the local variable _W is not in the current scope,
so it must, be inherited via the vlist mechanism.

Line 80
Using value to compute Supplies(W,S).

Line 81
Recursive call to ware4, taking care of the rest of the domain. The collect is
pushed onto X.

The first sum in the objective function is now explained. The second sum
is computed by warel.

Lines 51-52
Predicate warel starts the second major branch of the program. The goal of
this branch is to compute the sum

sum(W : Warehouses, S : Stores | Supplies(W,S)) (
SupplyCost (S,W)
)

The schema with collection is used, with the collect in Y as usual. This predi-
cate is responsible for the local variable W.

Line 53

This call to ware2 starts an iteration over S, the second level of the two fold
iteration over (W:Warehouses, S:Stores). The partial collect is gathered in Z
(in the schema with collection, intermediate collect vectors are always using the
Z variable).

Line 54

The recursive call to warel is taking care of the rest of the warehouses. The
partial collect Z, containing computed values for the current value of W and all
possible S, is used as input here. The final collect is gathered in Y.

Lines 55-56
Predicate ware2 computes the body of the second sum in the objective function.
It uses the schema with collection, with the collect in Y.

Line 57-60
The vlist mechanism. Note that Locals is empty; there are no locals in the outer
scope here.

Line 61-62
These lines compute Supplies(W,S) and SupplyCost(S,W) respectively.

Line 63

The filtering factor Supplies(W,S) is multiplied by SupplyCost(S,W). The result
is in _5.

64

Line 64
The recursive call to ware2. The resulting value, _5, is pushed onto the collect
vector X.

All that remains now is to explain the expression in the such that clause of
the model, lines 19-21. The branch starting with wareb takes care of that ex-
pression.

Line 34-35
Predicate ware5 starts the third branch of the program, using the blank schema
over (W : Warehouses). It enforces the constraint

forall(W : Warehouses) (
count (0. .Capacity(W))
(S : Stores | Supplies(W,S))
).

Line 36-38
The vlist mechanism.

Line 39
Computing Capacity(W), result in _19.

Line 40-41
Invoking ware6 to compute

count (0. .Capacity(W)) (
S : Stores | Supplies(W,S)).

The collect is in _22.

Line 42

Calling a library predicate to set the counting constraint on _22. The number of
occurrences of “1s” in _22 belongs to the interval 1.._19. Here _19 is the result
of the computation Capacity(W).

Line 43
Recursive call to ware5, taking care of the rest of the warehouses.

Line 44-45
The predicate ware6 uses a schema with collection over (S : Stores), computing
the expression Supplies(W,S). The collect goes into Y.

Line 46—48
The vlist mechanism. Note that _W belongs to an outer scope, so it has to be

passed via Locals.

Line 49

65

Computing the value of Supplies(W,S). Result goes into _21.

Line 50
Recursive call to ware6 to take care of the rest of the stores. The collect is
pushed onto X.

5 The Compiler, the Final Product

5.1 Installation

To install ESRA cd to the source directory ’src’ and type 'make’. That will
create an executable file named ’esra’. This executable doesn’t depend on any
libraries, databases or other files, so it may reside anywhere in your file system.
Just place it somewhere and set your PATH accordingly.

5.2 The ESRA Libraries

The system contains two library files, esra.pl and lmatrix.pl. These Prolog
module files are necessary to run the compiler generated programs. The first
four lines of each generated program contain module declarations. The default
location for the ESRA library files is the current directory, i.e. the one you stand
in when you run the generated program. This location can be changed in two
ways:

e Change the module declaration at the beginning of the generated program
to include the full path names of esra.pl and Imatrix.pl. This will only
affect this particular program.

e In the compiler, module translate.ml, there is a let binding of the identifier
library_path. Change this binding to have the compiler placing the ESRA
libraries in your favorite directory. This will affect all programs generated
by the compiler.

5.3 Compiling and Running a Model

To compile an ESRA model, say foo.esra, just type esra foo.esra. If there
were no compilation errors, you will get a program named foo.pl. If the com-
piler finds an error, it issues an error message and aborts the execution without
producing any output. If the model depends on run time initialized constants,
you will have to create a data file, which must have the name foo.in. Make sure
that the module declarations at the top of the program. are consistent with the
location of the ESRA libraries. There are two ways to run the generated program.

e Type prolog or sicstus at the shell prompt. In the interactive Prolog
system, just type [foo]. to consult your program. To run the program,
just type the single goal foo(R)., where R is the result parameter (see
section 4.7.2). The program will then print the results of the computation
in a default format if successful, otherwise it answers with no.

66

e Use your emacs interface. Opening foo.pl in emacs, will get emacs into
Prolog Mode. Typing the command C-c¢ C-b (consult_buffer) will con-
sult the program and open a Prolog process in a separate buffer, so that
you can communicate with the program. Then just type foo(R) . to start
the program, where R is the result parameter (see section 4.7.2).

5.4 Using the Result API

The result parameter is supposed to be opaque. To extract information from
it, a special API has been constructed, the so called result API. This API is
defined in esra.pl. There are three predicates: get_object/3, is_related/2
and function_value/3 described below.

%% get_object(+Results, +Name, -Object) :-

%% Results is a result parameter, Name is an atom, Object is a value

%% True if Object is bound to Name in Results

%% is_related(+Arguments, +Relation) :-

%% Arguments is a list of integers

%% Relation is an ESRA relation

%% True if Relation(cl, c2, ..., cn) where ci = Arguments[i]

%% function_value(+Coordinates, +Function, -Value) :-
4% Arguments is a list of integers
%% Function is an ESRA total function

%% True if Function(cl, c2, ..., cn) = Value where ci = Arguments[i]

6 Testing and Benchmarking

6.1 Running the Test Suite

This product comes with a small test suite, located in the directory src/test.
The models in this directory has been compiled and tested, so I know that
they works. To compile all models in the test suite, cd to src/test and run the
command ctest at the shell prompt. This will compile all test models. Running
the test programs require two steps.

Enter Prolog and type

[ctest].

This will consult all programs and define a predicate run’.

Then type
run.

This will run all programs in the test suite.

To conclude this section I give an example. The program magic.pl is in the
test suite. This is a model of so called magic squares (see section 3.2). In the

67

accompanying data file magic.in.pl, the size of the magic square can be specified.
The following is a sample session

| 7- [magic].

% consulting /home/mano7083/xjob/esra/test/magic.pl...

% consulted /home/mano7083/xjob/esra/test/magic.pl in module user, O msec 8 byt
yes

| 7- magic(R).

Initialization done, 179 constraints posted

Lapsed time : 0.01 seconds

Solution found in 0.0 seconds
2 backtracks were tried

g =
[8,3,4]
[1,5,9]
[6,7,2]

R = t(’S’,relation(reldom([interval(1,3),interval(1,3)],{1},1..1,
[interval(1,9)1),
Im_rel([[8,3,41,[1,5,91,[6,7,211)),0,t,t) 7

Here we can see the output from the program. The variable S contains a 3x3
magic square. As we can see the sum of each row, each column and the two
major diagonals is always 15 as it should be. Note that Prolog types the value of
R at the end (the result parameter) followed by a question mark. The user can
type a semicolon after the question mark to get more solutions by backtracking.
The display of the result parameter is not very useful, but I don’t know how to
turn it off without at the same time disable backtracking.

6.2 Some Benchmarks

The benchmarks presented in this section seems to indicate some efficiency
problems. CSPs are generally hard to solve, but this implementation gives un-
expectedly fast growing execution times for most problems. I don’t understand
the reason for this behavior.

The magic Square Problem

In the magic square problem, section 3.2, there is a steep growth of computing
time by the grid width n. In the table constraints is the number of posted
constraints and backtracks the number of backtracks the solver had to make.

68

Magic Square Benchmarks

n | time (s) | backtracks | constraints
3 0 2 179
4 0 13 413
5 2.03 4974 855
6 | > 2 min ? 1613

The Warehouse Location Problem

The computing time of the warehouse location problem, sections 3.6 and 4.9.2,
is a rapidly growing function of the problem size as could be seen from the
benchmarks. In the table below, n,,, ns, stands for the number of warehouses
and the number of stores respectively. The instance data are randomly gener-
ated. One can see that the computing time depends on n,, and ng in different
ways. The problem rapidly becomes intractable.

Two different models are compared. The model from section 3.6 uses the
redundant array open keeping track of which warehouses are open. The model
of section 4.9.2 on the other hand disposes of redundant variables. The first
model is most efficient as seen by the table below. In the table a time value of
the type ‘> 2 min’ means that the program has timed out with a time limit of 2
minutes. The first line of the table refers to a model published in the oPL book
[14], the other instances are randomly generated.

| Warehouse Location Problem Benchmarks

Model of Section 3.6 Model of Section 4.9.2
Ny | ns | time (8) | backtracks | constraints || time (s) | backtracks | constraints
5| 10 1.3 1098 839 23 58107 3496
8 7 0.61 890 1242 2.3 4109 947
10 | 10 19 20210 2183 || > 2 min ? 1664
5| 15 41 87430 1628 || > 2 min ? 1244

The model of section 3.6 is more efficient than the other one as can be seen from
the benchmark table above. The reason may be that the redundant variables and
channeling constraints of the former model triggers more constraint propagation.
It’s important to notice that this behaviour may be different for different models
and instances.

On a suggestion from Pierre Flener, I tried to flatten the Supplies array
column wise instead of row wise (the default) before sending it to labeling/2.
I also changed the default labeling option from [ffc] to [down]. This modifica-
tion speeded up the computation. As a comparison I give benchmarks for the
“optimized” versions of the same models and instances below.

69

| Warehouse Location Problem Benchmarks

Model of Section 4.9.2 (optimized)

Ny | ns | time (s) | backtracks constraints
5|10 0.8 2582 689
8 7 0.6 737 779

10 | 10 28 21176 1364
5| 15 18 38098 1019

10 | 15 97 63557 2019

15| 15 | > 2 min ? 3019

Although the optimized model performs better the scalability is still bad. In
particular the 15 x 15 instance still times out. The model of section 3.6 is not
suitable for this type of optimization because it uses two decision variable arrays
instead of one and the Supply array is transposed with respect to the one in the
other model so it does no sense to flatten it column wise. Therefore only one of
the models has been included here.

The n Queens Problem

In the n queens problem, the computing time is first very low, but at approx-
imately n = 16 it begins to grow rapidly. A strange pattern is that the time
is invariably lower for odd values of n. For even ns, the problem becomes in-
tractable at n = 22, but for odd values of n I can drive it a little bit father.

| n Queens Benchmarks |

n | time (s) | backtracks | constraints

8 0.01 23 464

9 0.01 6 594
10 0.05 23 740
11 0.01 9 902
12 0.04 45 1080
13 0.12 16 1274
14 0.17 296 1484
15 0.34 207 1790
16 2.63 1516 1952
17 1.8 875 2210
18 11.75 5545 2484
19 0.8 321 2774
20 60.42 24386 3080
21 2.37 783 3402
23 6.25 1910 4094
25 12.27 3161 4850
27 151.51 32444 5670
29 | 52513 93393 6554

70

7 Conclusion

7.1 Summary

In this thesis I present an implementation of the modeling language ESRA[4, 3].
The compiler translates ESRA models into SICStus Prolog and submits them to
the CLPFD [2] sub system for solution. In the interest of simplicity and rapid de-
velopment, certain features of ESRA has been excluded from the implementation.
This report is divided into two major parts. The first part gives a detailed defi-
nition of the language actually implemented, while the second part is an equally
detailed presentation of the translation algorithms. The compiler itself is devel-
oped in OCaml, an object oriented functional language. The relational variables
of ESRA are represented as “matrices”, i.e. as iterated list structures simulating
multi dimensional arrays. I have abstracted some Prolog code, for instance the
code responsible for relational representation, into two separate Prolog library
modules. The generated programs together with the library modules makes up
an executable system, capable of solving CSPs written in ESRA. I have tested the
compiler against several test models. In all cases I have found that the compiler
generates correct code and that the code produces the correct answers. Some
benchmarks of the warehouse location problem, and other problems, are also
presented. As the benchmarks indicate, the implementation is not as efficient
as one would wish. I don’t understand the reasons for this inefficiency.

7.2 Related Work

Constraint logic programming over finite domains is a vast and important re-
search field. Systems based on high level modeling languages are in the vogue
and there are several ongoing projects in this direction all over the world.

There is also a predecessor of ESRA based on functional variables, here called
functional ESRA. There already exists a compiler, written in Java, compiling
functional ESRA into OPL [17, 9]. See also [9] for a general discussion of how to
represent functional variables and heuristics for choosing the most suitable one
for a certain class of problems and instance data.

The goal of the Australian G12 project [13] is to build a software platform
for solving large scale industrial combinatorial optimization problems. The sys-
tem will use Constraint Programming to allow problems to be stated simply,
and then solved efficiently. The platform will consist of Zinc, a high level model
language, Mercury, an already existing constraint programming language and
Cadmium, a mapping language for transforming Zinc models into mercury pro-
grams. The complete platform, comprising Zinc, Cadmium and Mercury will be
called G12 (since Zinc, Cadmium and Mercury belong to the 12th group in the
periodic table of chemical elements).The system will work with several solvers
mixing different solving paradigms, such as for instance constraint program-
ming, mixed integer programming and local search. Such work will require the
collaboration of researchers from different disciplines: operations researchers,
graph algorithms researchers, meta-heuristics researchers, artificial intelligence
researchers, and software engineers.

The Artificial Intelligence Group at University of York, UK, does research
in the area of automated generation of constraint programs [7]. The project’s
aim is to develop an automated system that, given a specification of a problem,

71

can generate one or more constraint programs that can solve the problem. The
York system consists of two components:a specification language called ESSENCE
[6] and a refinement language CONJURE [8]. ESSENCE goes far beyond ESRA in
supplying a vast set of decision variable types such as sets, multisets, relations,
functions, partitions which can be nested to arbitrary depths, for instance set,
set of set, set of partitions, and so forth. Note that the York group have taken
another approach to relational modeling than ESRA. A design goal of ESRA is to
make the language initially as small as possible, deliberately omitting features
such as nested data-types. The second development of the York group is the
formulation and automation of a set of rules that can refine constraints on
complex variables in an ESSENCE specification into constraints on atomic and
atomic set variables, the level of abstraction provided by existing constraint
toolkits. This is taken care of by the CONJURE language.

7.3 Future Work

This implementation of ESRA is a minimal one. I have deliberately left out
features which I found difficult, unclear or tedious to implement. Now I will
give suggestions of future extensions, both such ones that I left out and such
ones that was never in the scope of this project.

The type checking is now interlaced with translation in my one pass compiler.
I think it would be nice to lift it out and perform the type checking act on the
parse tree before passing it to the translator. Also the error messages could be
more user friendly.

An optimization pass may be introduced between the parser (type checker)
and translator which attempts a transformation /simplification of the parse tree
in order to produce more efficient code. For instance it would be possible to
replace some loops with a scalar product constraint. Consider the following code
snippet from the warehouse problem model in section 4.9.2

sum(W : Warehouses, S : Stores | Supplies(W,S)) (
SupplyCost (S,W)
).

Normally this sum is computed by a double loop over W and S. But the inner
loop can be replaced by a scalar product constraint instead. Conceptually this
is equivalent to

sum(W : Warehouses) (
scalar_product (Row-W[Supplies], Col-S[SupplyCost])
)

This can be implemented directly in SICStus Prolog which has a scalar _product
constraint.

Sometimes an entire sub predicate can be eliminated by computing a sum
directly on a relation variable rather than copy it row wise (a procedure pointed
out by my supervisor Pierre Flener). Consider the following fragment of the
warehouse location problem from section 4.9.2.

forall(W : Warehouses) (
count (0. .Capacity(W)) (
S : Stores | Supplies(W,S)

72

)

The normal way to translate this expression is by a double loop over W and S.
The inner loop over S should just copy the array Supplies(W) and pass it back.
This can be optimized by letting the outer loop set the counting constraint
directly on Supplies(W). This is conceptually equivalent to

forall(W : Warehouses) (
Count-0Ones (Row-W[Supplies], Count)
Count in 0..Capacity (W)

).

This is possible because the array Supplies is stored row wise, so that the rows
are directly addressable without copying.

Some features that I have left out are really part of ESRA. For instance the
card/1 operator and set comprehension notation as well as symbolic (enumer-
ated) constants should be implemented. See section 2 for a full account of what
has been missed out of the language.

The compiler should be non deterministic, i.e. produce several programs
using different representations of the relational variables. This will aid the
modeler (or a tool) in the task of choosing the most suitable representation for
a certain model/instance data class. The modeler (or a tool) will then be able
to experiment with different models without having to recompile.

Eventually, more intelligence will be built into the compiler via heuristics
(such as those of [9]) for the compiler to rank the resulting compiled programs by
decreasing likelihood of efficiency, without any recourse to experiments. Certain
representations can be shown to be more efficient than others under certain
circumstances depending on cardinality constraints and other factors [9, 12, 16].

Symmetry breaking is very important in solving such problems as BIBD
which are loaded with symmetries. Automatic symmetry breaking in the com-
piler would be very desirable although hard to achieve.

Automatic generation of implied constraints is also very desirable to build
into the compiler because it is often the key to efficient solving.

73

8 Grammar

Model
(Model) — (Decl) (Objective)

Declarations
(Decl) — (DomDecl) | (CstDecl) | (VarDecl) | (Decl) (Decl)

Domain Declarations

(DomDecl) — dom (Id) = (Expr)

Constant Declarations

(CstDecl) — cst (Id) : (Expr)
| cst (Id) = (Expr) : (Expr)

Variable Declarations

(VarDecl) — wvar (Id) : (Expr)

Objectives

(Objective) — solve (Expr)
| minimise (Expr) such that (Expr)
| maximise (Expr) such that (Expr)

Expressions

(Expr) — (Name) | (Appl) | (Tuple) | (NumExpr)
| (SetExpr) | (Formula)

{(Appl) — (Id) (Expr)
(Tuple) — ((Exprs))
(Exprs) — (Expr)| (Expr), (Exprs)

Numeric Expressions
(NumExpr) — (Int)
| (Expr) (ArithBinOp) (Expr)
| (ArithUnaryOp) (Expr)
| sum ((QuantExpr)) ((Expr))
(Inty — (Nat) | -(Nat)
(Nat) — (Digit)| (Digit) (Nat)

(Digit)y — 0| 1]2|3]4|5]6|7|8]9

74

Set Expressions

(SetExpr) — int|nat
| (B
| (Expr) . . (Expr)
| (Bxpr) [(Bpn)]
| (Expr) (SetOp) (Expr)

(SetOp) — [(Expr) # (Expr)]
| C{Bxpr)#]
| T (Bxpn)]
| [#]
| [-> (Expr)]
| [->]
| > (Expr)]
| [+>]

Formulas

(Formula) —— true| false
| (Bxpr) (PropOp) (Expr)
| (Bxpr) (CompOp) {Expr)
| forall ((QuantExpr)) ((Expr))
| exists ((QuantExpr))
| count ((Expr)) ((QuantExpr))

(QuantExpr) — (QvarDecls)
| (QvarDecls) | (Expr)

(QvarDecls) — (LclVarSpec)
| (LclVarSpec) , (QvarDecls)

(LelVarSpec) — (Quars) : (Expr)

(Qvars) — (GuardVars) | (ConjVars)
(ConjVars) — (Id) | (Id) & (ConjVars)
(GuardVars) — (Id) (CompOp) (Id)

Identifiers

(Id) — (Letter)
| (Letter) (DigitsLetters)

(Ids) — (1d)
| (1d), (Ids)

(Letter) — A| ...|Z]al]...|z
(DigitsLetters) — ({Digit) | (Letter) | _)
| ((Digit) | (Letter) | _) (DigitsLetters)

75

Operators
Comparison Operators

(CompOp) — <|=<|=|>=|>]|!=

Arithmetic Operators
(ArithBinOp) — +|-|*| /| %

(ArithUnaryOp) — -] abs

Propositional Operators

(PropOp) — /\|\/|=>] <=]<=>

76

References

1]

2]

3]

[4]

[5]

[6]

7]

18]

[9]

[10]

[11]

K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain
constraint solver. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proceed-
ings of PLILP’97, volume 1292 of LNCS, pages 191-206. Springer-Verlag,
1997.

P. Flener, J. Pearson, and M. Agren. The Syntax, Semantics, and Type
System of esra. Technical report, ASTRA group, April 2003. Available at
http://www.it.uu.se/research/group/astra/.

P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational lan-
guage for modelling combinatorial problems. In M. Bruynooghe, editor,
LOPSTR’03: Revised Selected Papers, volume 3018 of LNCS, pages 214—
232. Springer-Verlag, 2004.

P. Flener, J. Pearson, and L. G. Reyna. Financial portfolio optimisation.
In M. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages
227-241. Springer-Verlag, 2004.

A. Frisch, M. Grumm, C. Jefferson, and B. M. Hernandez. The essence of
essence. In B.Hnich, P.Prosser, and B.Smith, editors, Proceedings of the
Fourth International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pages 73-88, oct 2005. Available at http://www.cs.
york.ac.uk/aig/constraints/AutoModel.

A. Frisch, C. Jefferson, and B. M. Hernandez. The rules of constraint
modelling: An overview. In Proceedings of the 12th Workshop on Au-
tomated Reasoning,2005. Available at http://www.cs.york.ac.uk/aig/
constraints/AutoModel.

A. Frisch, C. Jefferson, and B. M. Hernandez. The rules of constraint
modelling. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, 109-116, 2005. Available at http://www.cs.york.
ac.uk/aig/constraints/AutoModel.

B. Hnich. Function Variables for Constraint Programming. PhD thesis, De-
partment of Information Science, Uppsala University, Sweden, 2003. Avail-
able at http://publications.uu.se/theses/.

X. Leroy. The Objective Caml System release 3.08. Institut National de
Recherche en Informatique et en Automatique, jul 2004. Available at http:
//caml.inria.fr.

O. Sivertsson. Construction of synthetic CDO squared. Master’s the-
sis, Computing Science, Department of Information Technology, Uppsala
University, Sweden, 2005. Available as Technical Report 2005-042 at
http://www.it.uu.se/research/publications/reports/2005-042/.

7

[12]

[13]

[14]

[15]

[16]

[17]

B. M. Smith. Modelling a permutation problem. Technical Report 18,
School of Computing, University of Leeds, UK, 2000. Also in Proceedings
of the ECAI’00 Workshop on Modelling and Solving Problems with Con-
straints.

P. Stuckey, M. de la Banda, M. Maher, K. Marriott, J. Slaney, Z. Somogyi,
M. Wallace, and T. Walsh. The ¢12 project, mapping solver independent
models to efficient solutions. Technical report. Available at http://www.
cs.mu.oz.au/"pjs/papers/gl2.pdf.

P. Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, 1999.

P. Van Hentenryck. Constraint and integer programming in OPL. IN-
FORMS Journal on Computing, 14(4):345-372, 2002.

T. Walsh. Permutation problems and channelling constraints. In
R. Nieuwenhuis and A. Voronkov, editors, Proceedings of LPAR’01, vol-
ume 2250 of LNCS, pages 377-391. Springer-Verlag, 2001.

S. Wrang. Implementation of the ESRA constraint modelling language.
Master’s thesis, Computing Science 223, Department of Information Tech-
nology, Uppsala University, Sweden, 2002. Available at ftp://ftp.csd.
uu.se/pub/papers/masters-theses/.

78

