
Writing A Compiler for the Finite Domain CSPModeling Language esraMats Norberg14th Mar
h 2006Abstra
tCurrent generation
onstraint programming languages are
onsideredby many, espe
ially in industry, to be too low-level, di�
ult, and large. Ahigh level relational
onstraint modeling language,
alled esra has been
onstru
ted to solve this problem. This thesis is about the
onstru
tionof a
ompiler for a subset of this language. Due to time limitations I havemade
ertain assumptions on the language to make the task manage-able. The
ompiler translates esra sour
e models into SICStus Prolog,a language whi
h have a built in
onstraint solver, the library CLPFD(Constraint Logi
 Programming, Finite Domains). esra uses an abstra
tdata type for mathemati
al relations. In order to translate esra modelsinto Prolog, a
on
rete representation of this data type must be
hosen.In this work I represent relations with iterated list stru
tures
ontain-ing de
ision variables in appropriate domains (integer domains for totalfun
tions and boolean ones for non-fun
tional relations). I also have totranslate quanti�ed expressions into re
ursive pro
edure
alls.

Mats NorbergExamensarbete 20p 2006Datavetenskapligt program 160pDepartment of Information Te
hnologyUppsala UniversitySupervisor:Pierre FlenerExaminer:Justin Pearson 1

SammanfattningI detta examensarbete i villkorsteknik presenteras en kompilator för ett nyttmodelleringsspråk för villkorslösare.BakgrundTraditionella villkorsprogrammeringsspråkanses vara för svåranvända inommångatillämpningsområden; särskilt inom industrin. Nivån är för låg o
h ingåendekunskaper i programmering krävs för att använda sådana verktyg. Ett alterna-tiv är att konstruera särskilda modelleringsspråk. Sådana språk bör:
• Ha tillrä
klig uttry
kskraft för att typiska villkorsproblem skall kunna for-muleras inom språket.
• Vara oberoende av vilken villkorslösare vi använder.
• Vara lätt att använda, även för i
ke-programmerare. Problem skall kunnamodelleras på hög abstraktionsnivå med hjälp av ett litet antal fundamen-tala primitiv.
• Inte vara beräkningsfullständigt, d.v.s. vi kan undvara sådana �nessersom rekursion, loopar o
h kvanti�ering över obegränsade universa.En möjlighet är att bygga på relationer. Detta leder till så kallad relationsmod-ellering, d.v.s. man formulerar en modell där beslutsvariablerna är (matema-tiska) relationer. Villkoren kan då uttry
kas på ett naturligt sätt med hjälp avpredikatlogik.Ett sådant språk har konstruerats vid Uppsala Universitet, Institutionen förInformationsteknologi. Språket har givits namnet esra (Exe
utable Symbolismfor Relational Algebra).En kompilator för esraOm esra modeller ska kunna exekveras av en dator måste de först kompilerastill ett språk som en villkorslösare kan förstå. Det �nns villkorslösare för mångaprogrammeringsspråk, t.ex. Java, C++, OCaml o
h SICStus Prolog. Vårt valföll på SICStus Prolog. Anledningen till att vi valde just SICStus Prolog är attforskarna här har my
ket erfarenhet av det språket. Dessutom stöder SICStusProlog en my
ket stor uppsättning globala villkor.SICStus Prolog saknar variabler av relationstyp, så en viktig del av projek-tet är att representera relationsvariablerna med någon form av datastrukturer.Relationer kan representeras på många olika sätt. I min kompilator väljer jagatt använda matrisrepresentationer där varje relation representeras av en matrisav sanningsvärden. Kompilatorn skapar bara en uppsättning representationerför varje modell o
h är därför deterministisk .Under arbetets gång har jag stött på olika problem att lösa. Hur översätterman till exempel kvanti�erade formler i ett språk utan loopar? Hur kommu-ni
erar man mellan delrutiner i ett språk utan globala variabler? Jag har o
ksåuteslutit vissa detaljer i spe
i�kationen av esra för att göra uppgiften enklare.Den färdiga kompilatorn har testats gentemot 6 testmodeller o
h funnitsgenerera korrekt kod för dessa. Jag har o
kså gjort ben
hmarks för att testae�ektiviteten. I vissa fall var e�ektiviteten sämre än vad vi hoppats på.2

Fortsatt arbeteI fortsättningen kommer andra individer att vidareutve
kla kompilatorn. Det�nns my
ket att göra.
• Implementera de element som jag har utelämnat.
• Göra kompilatorn i
ke-deterministisk o
h införa �er representationer förrelationer. Då blir det kompilatorns sak att hjälpa modelleraren att hittaden mest optimala representationen för en viss klass modeller o
h instans-data.
• Optimeringar av den genererade koden. T.ex. kan det vara möjligt attredu
era djupet i en nästlad iteration genom att använda något globaltvillkor, t.ex. �s
alar produ
t.�
• Automatisk detektering o
h brytning av symmetrier.
• Automatisk generering av impli
erade villkor.

3

Contents1 Introdu
tion 61.1 Constraint Satisfa
tion Problems (CSPs) 61.2 The Relational Modeling Language esra 71.3 Solving CSPs in SICStus Prolog 91.4 The Goal of this Thesis . 112 Assumptions on the Sour
e Language (a Subset of esra) 122.1 General Assumptions . 122.2 Domains . 132.3 De
larations . 152.4 Primitive Expressions . 182.5 Appli
ation Expressions . 202.6 Quanti�
ation . 232.7 The Data File . 253 Sample Models 273.1 The Balan
ed In
omplete Blo
k Design Problem 273.2 The Magi
 Square Problem . 273.3 The n Queens Problem . 283.4 The So
ial Golfer's Problem . 283.5 The Progressive Party Problem 293.6 The Warehouse Lo
ation Problem 304 Translation 314.1 Representing Domains . 314.2 Representing Relations . 334.3 The Translation Algorithm, some Preliminaries 414.4 Translation of Simple Expressions 444.5 Translation of Quanti�ed Expressions 484.6 Translation of the Obje
tive . 534.7 Input and Output . 544.8 The Bran
h Tree . 564.9 A Complete Example . 575 The Compiler, the Final Produ
t 665.1 Installation . 665.2 The esra Libraries . 665.3 Compiling and Running a Model 665.4 Using the Result API . 676 Testing and Ben
hmarking 676.1 Running the Test Suite . 676.2 Some Ben
hmarks . 687 Con
lusion 717.1 Summary . 717.2 Related Work . 717.3 Future Work . 724

8 Grammar 74

5

1 Introdu
tion1.1 Constraint Satisfa
tion Problems (CSPs)Combinatorial problems and dis
rete optimization problems are be
oming moreand more important in various appli
ation domains from industry to �nan
e.Important domains in
lude s
heduling,
ost optimization, and �nan
ial problemssu
h as the portfolio optimization problem [5, 11℄. Problems of this type are oftenhard to solve e�
iently. Typi
ally they are NP-
omplete, whi
h means that nopolynomial time algorithms are available for their solutions. One te
hnique forsolving su
h problems is
alled
onstraint programming over �nite domains [1℄.Consider a �nite set of variables,
alled de
ision variables, varying over �nitedomains and a �nite set of
onstraints on these variables, i.e. a set of formulasexpressible in �rst order predi
ate logi

onstraining the possible values of thevariables. A
onstraint satisfa
tion problem, or CSP in brief, is the task to �nd a
omplete instantiation of the variables whi
h satis�es all
onstraints. A spe
ial
lass of CSPs is the
onstraint optimization problems or COPs in brief. In aCOP the goal is to optimize a fun
tion of the variables su
h that no
onstraintis violated.A software system
apable of solving su
h problems is
alled a
onstraintsolver and the pro
ess of expressing a problem as a CSP is referred to asmodelingthe problem. In order to model a problem as a CSP one has to de�ne thede
ision variables of the problem and their domains and express the
onstraintsin terms of the
hosen variables. This of
ourse
an be done in many di�erentways, some of them leading to more e�
ient solutions than others. The artof modeling is generally not very well understood and is based on experien
erather than theory. A far sighted goal of
onstraint programming resear
h isto develop heuristi
s that
an be used by the solver to
hose the most e�
ientmodel for a parti
ular
lass of problems and instan
e data. But we are not thereyet.Constraint solvers �rst make an attempt to narrow the domains of the de-
ision variables by noting that
ertain values always violate some
onstraints.This pro
ess is
alled
onstraint propagation and is very important for e�
ientsolving of CSPs. When the domains
annot be narrowed any more the solverresorts to a sear
h through the problem state spa
e , i.e. the set of all possibleinstantiations of the de
ision variables. When an in
onsistent state is rea
hed,i.e. a state where some of the domains have be
ome empty, the solver ba
ktra
ksto an earlier state and tries new values. This pro
ess
ontinues until either asolution is found or the entire state spa
e be
omes exhausted.Constraint solvers
an be implemented in various ways. Traditionally solversare built into general purpose programming languages, usually an extension to alogi
 programming language. The advantage is of
ourse that ba
ktra
k sear
h isalready a part of su
h a language, whi
h makes the solver easy to integrate withthe syntax and semanti
s of the language. Another approa
h, whi
h is be
omingin
reasingly more
ommon, is to implement the solver as a library within a
onventional programming language, for instan
e Java. The Koalog
onstraintsolver (see www.koalog.
om/php/j
s.php) is a
ommer
ial Java
lass libraryfor solving CSPs. The CLPFD library [2℄ in SICStus Prolog is another examplewhi
h is treated in se
tion 1.3.Yet another approa
h is to develop a spe
ial solver independent modeling6

language. This is a language whi
h must be
ompiled into exe
utable
ode insome other language. Su
h languages allows the user to model his problemon a mu
h higher level of abstra
tion than most
onventional languages does.Typi
ally su
h a language is de
larative, and does not aim for
omputational
ompleteness. A
ommer
ial example of su
h a language is opl [15, 14℄, atrademark of ILOG, whi
h works in
onjun
tion with a solver written in C++.opl allows the model itself to be separated from the instan
e data. This isa
hieved by providing a separate data �le, whi
h provides values to variableswhi
h has been de
lared in the model but not assigned any value. The separationof model and data is highly desirable be
ause it makes maintenan
e of a largeset of models and instan
es mu
h more manageable.One problem with opl is that it for
es the modeler to
hose
on
rete rep-resentations of the instan
e data and de
ision variables. In opl the data arestores as arrays. Another more abstra
t approa
h is to provide an ADT1 basedview based on the mathemati
al
on
ept of relations. This leads for instan
e torelational modeling languages, see [4℄ for a dis
ussion of the bene�ts of relationalmodeling. It is now the responsibility of the
ompiler to
hose most e�
ient rep-resentations of the abstra
t data types based on some heuristi
s [9, 17℄, relievingthe modeler from this task.1.2 The Relational Modeling Language esraThe resear
h group astra2 (http://www.it.uu.se/resear
h/group/astra)at Uppsala University, has developed a relational modeling language
alledesra3. This se
tion serves as a brief introdu
tion to this language. Fur afull dis
ussion see [4℄ for a general introdu
tion and [3℄ for a te
hni
al dis
us-sion of the syntax and semanti
s of esra. There is also a prede
essor of esrabased on fun
tional variables, here
alled fun
tional esra. There already existsa
ompiler, written in Java,
ompiling fun
tional esra into opl [17℄. See also [9℄for a general dis
ussion of how to represent fun
tional variables and heuristi
sfor
hoosing the most suitable one for a
ertain
lass of problems and instan
edata. This MS
 thesis is an extension of this work to relational esra.The language is based on the
on
ept of relations. A relation between two�nite sets A and B is a set of ordered pairs (a, b) where a ∈ A and b ∈ B. Moregenerally a relation between n sets A1, A2, ..., An is a set of ordered tuples, ortuples in brief, (a1, a2, ..., an) su
h that a1 ∈ A1, a2 ∈ A2, ..., an ∈ An.We also introdu
es the
on
ept of multipli
ity or
ardinality
onstraint on arelation. The notation var R : A m×n Bwhere m and n are non negative integers, de
lares R as a relation between thesets A and B, su
h that every element in A is related to exa
tly m elementsin B, while every element in B is related to exa
tly n elements in A. As ageneralization we may allow m and n to be sets. The expressionvar R : A M1×M2 B1Abstra
t Data Type2Analysis, Synthesis, and Transformation/Reformulation of Algorithms3Exe
utable Symbolism for Relational Algebra7

where M1 and M2 are �nite, non negative integer sets, de
lares R as a relationbetween A and B su
h that ea
h element in A is related to m1 elements in B,where m1 ∈ M1, and ea
h element in B is related to m2 elements in A, where
m2 ∈M2.The
onstraints are expressed by a relational
al
ulus based on predi
atelogi
 with
ounting. Rather than giving a formal spe
i�
ation here I will
larifythe language with an example. For a full spe
i�
ation see [3℄.Consider the balan
ed in
omplete blo
k design problem. Let V be any setof v elements,
alled varieties. A balan
ed in
omplete blo
k design (BIBD) is abag of b subsets of V ,
alled blo
ks, ea
h of size k (
onstraint C1), su
h thatea
h pair of distin
t varieties o

urs together in exa
tly λ blo
ks (C2), with
2 ≤ k < v. An implied
onstraint is that ea
h variety o

urs in the same numberof blo
ks (C3), namely r = λ(v − 1)/(k − 1). A BIBD is parameterized by a 5-tuple 〈v, b, r, k, λ〉. Originally intended for the design of statisti
al experiments,BIBDs also have appli
ations in
ryptography and other domains, for instan
ethe portfolio optimization problem [11℄. See Problem 28 at http://www.
splib.org for more information. I now present an esra model for this problem.dom Varieties ,Blo
ks
st r, k, λ ∈ Nvar BIBD ∈ Varieties r×k Blo
kssolve
∀(v1 < v2 ∈ Varieties)
ount(λ)(j ∈ Blo
ks | BIBD(v1, j) ∧ BIBD(v2, j))Let me step through this model line by line. The linedom V arieties, Blocksde
lares the domains V arieties of varieties and Blocks of blo
ks as instan
edata. The a
tual domains must be supplied via a data �le at run time. Thenext line
st r, k, λ ∈ Nde
lares 3 run time initialized natural number
onstants (the two remaining

BIBD parameters v and b are impli
itly given as the
ardinalities of V arietiesand Blocks). Now the instan
e data are done with; next I de
lare the singlerelational de
ision variable BIBD.var BIBD ∈ Varieties r×k Blo
ksThis line de
lares a relation between V arieties and Blocks with multipli
ity
onstraints r and k. The interpretation of the atom BIBD(v, b) is that variety
v is in blo
k b. Note that the multipli
ities on the relation BIBD automati
allytakes
are of
onstraints C1 and C3. This way to express
ardinality
onstraintsde
laratively is a very powerful feature of esra. The de
larations are now donewith and the
onstraints follow after the keyword `solve'. Consider the line

8

∀(v1 < v2 ∈ Varieties)
ount(λ)(j ∈ Blo
ks | BIBD(v1, j) ∧ BIBD(v2, j))This is a
ounting expression nested within a universal quanti�er. Let medes
ribe the
ounting expression �rst. The formula
ount(λ)(j ∈ Blo
ks | BIBD(v1, j) ∧ BIBD(v2, j))means: there's exa
tly λ values of j ∈ Blocks su
h that BIBD(v1, j)∧BIBD(v2, j)),i.e. there's exa
tly λ blo
ks in Blocks that
ontain both v1 and v2. Finally whenputting ba
k the
ounting expression under the universal quanti�er we get themeaning: for all pairs of distin
t varieties v1 and v2, there's exa
tly λ blo
ks
ontaining both v1 and v2. This is just
onstraint C2 whi
h
on
ludes the dis-
ussion of the BIBD problem.1.3 Solving CSPs in SICStus Prolog1.3.1 Prolog and
lpfdProlog is a logi
 programming language, originally designed for pro
essing ofnatural languages. To understand this report the reader should have a thoroughunderstanding of this language. SICStus Prolog is a trademark of SICS 4 (http://www.si
s.se), a
ommer
ial implementation of the Prolog language. Thelibrary
lpfd, Constraint Logi
 Programming over Finite Domains, is a subsystem of SICStus Prolog [2℄, in
luding a
onstraint solver. Be
ause I willmake frequent use of this library throughout this do
ument I will give a briefintrodu
tion in this se
tion.Solving a CSP in SICStus Prolog
onsists of two phases. First we have tomodel the problem by posting
onstraints to the solver; this is the initializationphase. In the se
ond phase, the labeling phase, we invoke the solver usually bya
all to the labeling/2 predi
ate. The solver will attempt to �nd a solution tothe CSP. When a solution is found it is printed and the user may try to �ndalternative solutions by ba
ktra
king. Prolog answers no if there are no moresolutions. Now I give a des
ription of all
lpfd predi
ates and
onstraints Iwill use throughout the report. The reader will �nd additional do
umentationon line http://www.si
s.se/si
stus.1.3.2 De
ision Variables and their DomainsDe
ision variables are tied to domains.
lpfd has no
omplex or aggregatede
ision variables, so all de
ision variables range over integer sets, denoted byrange expressions whi
h are either intervals or enumerated sets like {1,2,3}. Aninterval expression, e.g. 1..10, denotes the set of all integers between the lowerand upper endpoint respe
tively. There are also in�nite intervals, e.g. 1..sup andinf..7, where sup and inf stand for plus in�nity and minus in�nity respe
tively.Sets are also denoted by enumeration of elements with the usual mathemati
alsyntax, e.g. {1, 4, 7, 11, -5}. We ties range expression to the de
ision variableX by the goal: `X : Range'. To de
lare X as a natural number variable use thefollowing goal:4Swedish Institute for Computer S
ien
e 9

Val is an integer, List is a list of integers or de
ision variables, Countan integer or a de
ision variable, and RelOp is a relational symbol as inse
tion 1.3.3. True if N is the number of elements of List that are equalto Val and N RelOp Count.As an example suppose Xs is a list of boolean values, zeros and ones, and wewant to state the
onjun
tion of all values. The following goal makes the tri
k:length(Xs, NumElements),sum(Xs, #=, NumElements).The explanation is that the sum is equal to the number of elements if and onlyif ea
h element is equal to one.1.3.5 LabelingWhen all
onstraints have been stated (posted) it is time to ask the solver tostart a ba
ktra
k sear
h for a solution to the problem. This is often a
hievedby a
all to the built in predi
ate labeling/2. Consider �rst a pure CSP withde
ision variables in the list Xs. The goallabeling([℄, Xs).starts a ba
ktra
k sear
h for the solution. When a solution has been found itis printed by the system and the user is prompted for (at the toplevel only)ba
ktra
king to �nd alternative solutions. Now
onsider a COP with the ob-je
tive fun
tion bound to the variable M and the de
ision variables we are doinglabeling on in the list Xs. The goallabeling([maximize(M)℄, Xs).tries to �nd a solution where M is maximized. The goallabeling([minimize(M)℄, Xs).sear
hes a solution where M is minimized.1.4 The Goal of this ThesisThe goal of this MS
 thesis is to develop a
ompiler for relational esra,
om-piling models into exe
utable SICStus Prolog programs. The
ompiler shall usea binary matrix representation of relational variables with an optimization fortotal fun
tions. I was given free hand making any reasonable simplifying as-sumption on the sour
e language whi
h would help me to
omplete the task.The
ompiler is implemented in Obje
tive Caml, a fun
tional programming lan-guage in the ML family [10℄ using a parser already developed by Magnus Ågren.In the rest of the thesis I �rst give a detailed de�nition of the sour
e languagea
tually implemented, se
tion 2. Some examples of esra models
an be foundin se
tion 3. In se
tion 4 a detailed a

ount of the a
tual translation algorithmis given. Se
tion 5 is a short summary of how to use the �nal program. Finallysome tests and ben
hmarks are presented in se
tion 6.11

2 Assumptions on the Sour
e Language (a Subsetof esra)The purpose of this se
tion is to de�ne the sour
e language of the
ompiler.All di�eren
es between the sour
e language and the full esra spe
i�
ation arepresented here.2.1 General AssumptionsMost assumptions on the sour
e language appear throughout the rest of thismajor se
tion, but there are some outstanding issues that don't �t elsewhere.These issues are addressed in this sub se
tion.2.1.1 Synta
ti
 IssuesThere's only a few points where I disagree with the syntax of full esra.
• Identi�ers must begin with a letter of either
ase (may start with lower
ase). The rest of the identi�er
onsists of letters, digits or unders
ores.Quoted as
ii strings are not supported. Moreover so
alled symboli

on-stants, enumerations or atoms or whatever they are
alled, are not sup-ported.
• Using a naked #, -> or +> in relational domain expressions is not allowed.The square bra
kets in [#℄ et
 are mandatory. The reason is that thein
lusion of the naked operators makes the grammar unparsable. So forinstan
e the expression D -> D is illegal but D [->℄ D is
orre
t.
• In expressions like forall(i:D)(<formula>)or sum(i:D)(<expression>),there are mandatory parentheses around <formula> and <expression>.Trying to dis
ard these parentheses makes the grammar unparsable.2.1.2 No Set ComprehensionsIn the full esra spe
i�
ation, there are so
alled set
omprehensions, that is aset given by a �ltering
ondition on a variable. For instan
e {i ∈ D|i < 10}is a set
omprehension meaning all elements in D whi
h are less than ten. Set
omprehensions are not supported!. Implementing set
omprehensions requiresome loop
onstru
tions, similar to the ones used to implement quanti�ed ex-pressions. My original intention was to support set
omprehensions but nowI'm left with no more time so I have to forbid them.The
ard/1 operator to take the
ardinality of a set is most typi
ally usedin
onjun
tion with set
omprehensions, so I de
ided to omit this operator aswell. There is a way to simulate the
ard/1 operator using a sum expression.For instan
e
ard {i:D | F(i) < 100}may be repla
ed bysum(i:D | F(i) < 100) (1).The tri
k is to sum a number of ones, one for ea
h element in {i:D | F(i) <100}. 12

2.2 Domains2.2.1 Primitive DomainsPrimitive domains
ontain primitive values only. I re
ognize two kinds of primi-tive values: integers and booleans. In parti
ular tuples are not primitive values .Integers and booleans must not be intermixed with ea
h other in the same do-main. A primitive domain is thus either a subset of the integers or a subsetof the booleans {true, false}. Observe that the atoms inf and sup are notintegers. They just represent the lower and upper endpoints of an unboundedinterval.Primitive domains must not
ontain de
ision variables , but may
ontainrun time initialized
onstants (see 2.3.2) and expressions depending on su
hvalues. I say that domains are ground , i.e. they are fully instantiated at runtime before the problem is passed to the solver.A primitive domain may be denoted extensionally as a list of values en
losedin bra
es, for instan
e {1, 5, 7, -1}. It may also be given intensionally asan interval with lower and upper endpoints separated by '..', for instan
e1..sup. The atoms 'int' and 'nat' are syntax sugar for inf..sup and 0..suprespe
tively. The singleton interval n..nmay be abbreviated to n, but only whenit is used as a multipli
ity set . It is not allowed for an interval to have an upperbound that is less than its lower bound . The bounds of an interval must eitherbe ground integer values or one of the atoms inf and sup.To illustrate the rules I now give examples of several
orre
t and in
orre
tprimitive domain expressions.{1, 7, 5, -11, 2}Corre
t! This is a domain
ontaining 5 integers.{1, g, 5, -11*d, 2}Corre
t under the assumption that g and d has previously been de
lared asinteger
onstants.{true, false}Corre
t! This is the boolean domain .{1, 2, sup, -12}Illegal! This domain
ontains the illegal atom 'sup'.{1, 5, true}Illegal! This domain is inhomogeneous .1..falseIllegal! The atom 'false' is not allowed as end point to an interval.{1..10}Syntax error! Interval expression must not be en
losed in bra
es.{1, (2,3), 4}Illegal! This domain
ontains a tuple. 13

2.2.2 Relational DomainsRelational domains are
onstru
ted from primitive domains by the binary in�xoperator [#℄ and the unary su�x operator [℄. To de�ne their semanti
s I must�rst de�ne the notion of a multipli
ity set. A multipli
ity set is just a �nitedomain of ground non-negative integer values.Assume that M1, M2 are multipli
ity sets and D1, D2 are primitive domains.The relational domainD1 [M1#M2℄ D2is the domain of relations in the
artesian produ
t of D1 and D2, su
h that ea
helement in D1 is related to m1 elements in D2 where m1 ∈ M1 and ea
h elementin D2 is related to m2 elements in D1 where m2 ∈ M2.Assume that D is a primitive domain and M is a multipli
ity set. The setdomainD[M℄is the domain of subsets of D with
ardinalities in M.I also introdu
e some handy short notations. [#℄, [->℄ and [+>℄ are syntaxsugar for [0..sup # 0..sup℄, [1 # 0..sup℄ and [{0,1} # 0..sup℄ respe
-tively. These are the domains of un
onstrained relations, total fun
tions andpartial fun
tions respe
tively.Now I have to worry a bit about what happens when these expressions arenested. What is the meaning of (D1[#℄D2) [#℄ (D3[#℄D4)? Obviously itmakes no sense to interprete this as a set of relations between relations be
auseesra has no higher order obje
ts, so I have to interprete it as the set of rela-tions in the four fold
artesian produ
t D1 × D2 × D3 × D4. The parenthesesin relational expressions should not have any essential semanti
 signi�
an
e.Parentheses however are important for the parser. The operator [#℄ asso
iatesfrom left to right so D1 [#℄ D2 [#℄ D3 parses as (D1 [#℄ D2) [#℄ D3. Sowhat signi�
an
e has the parse tree if I am going to �atten it out anyway?First I have to introdu
e the idea of the primary fun
tor of a relationaldomain expression. It is just the root of the parse tree. So for instan
e theprimary fun
tor of (D1 [->℄ D2) [#℄ (D3 [->℄ D4) is [#℄. I say that a non-trivial
ardinality
onstraint is atta
hed to a [M1#M2℄ operator, if one of themultipli
ity sets is di�erent from the (trivial) set 0..sup. A
ardinality
onstraintof 0..sup (the naturals) is
alled a trivial
onstraint, be
ause it is really not a
onstraint at all.Now I make the following assumptions on relational domains:
• Ea
h relational domain expression may be
ompletely fa
torized into a
artesian produ
t of primitive domains.
• Non trivial
ardinality
onstraints may only be given to the primary fun
-tor of the relational domain parse tree.
• The relational domain parse tree is
on
eptually �attened to a depth oftwo levels. I will refer to the primitive domains on the left side of the14

primary fun
tor as the left hand side domains or for short the LHS do-mains. Similarly the domains to the right of the primary fun
tor are theright hand side domains or RHS domains. I will
all the number of LHSdomains the left arity of the relational domain. Similarly the number ofRHS domains is the right arity of the relational domain. A relational do-main is a domain of total fun
tions if the left hand side multipli
ity set is{1}.The reasons for �attening out the sub stru
ture of the relational domain parsetree are threefold. Firstly I am not quite sure what this sub stru
ture shouldmean in a language without tuple values. Se
ondly I do not think su
h a substru
ture is really needed for relational modeling. Thirdly by ignoring su
h substru
ture the task of implementation is vastly simpli�ed.With this simpli�
ation any relational domain
an be
ompiled into a quadru-ple (LeftDoms, m1, m2, RightDoms) where LeftDoms and RightDoms, the LHSand RHS domains respe
tively, are lists of primitive domains.I now give some examples of
orre
t and illegal relational domain expressions.D1 [2#1℄ D2Corre
t! This is a domain of relations in D1 x D2 whi
h relates ea
h elementin D1 with exa
tly two elements in D2 and ea
h element in D2 with exa
tly 1element in D1.1..10 [->℄ natCorre
t! This is a domain of total fun
tions from 1..10 to nat.(1..5 [2#℄ D) [->℄ natIllegal! A non trivial
ardinality
onstraint on a non primary fun
tor.1..10[nat℄Corre
t! This is the domain of all sub sets of 1..10.2.3 De
larationsThe purpose of de
larations in any formal language, is to bind identi�ers to theirdomains (or types). In my implementation of esra I require that identi�ers bede
lared before they are used. By this assumption it is possible to implementthe
ompiler in one pass and I need not to worry about
ir
ular dependen
yof
onstant de�nitions.Only one identi�er may be de
lared in the same de
lara-tion. In esra there are 3 kinds of de
larations: domain,
onstant and variablede
larations.
15

2.3.1 Domain De
larationsA domain de
laration binds an identi�er to a domain expression. A domainexpression may later be referred to by this identi�er. In the spe
i�
ation ofthe full esra language it is allowed to de
lare an un spe
i�ed domain identi�erwhi
h is to be bound at run time. This is not allowed in this implementation.The only form of domain de
laration whi
h is re
ognized by the
ompiler isthereforedom <identifier> = <domain expression>Note that domain de
larations begin with the keyword 'dom'. It is also forbid-den to bind an identi�er to a relational domain. I now give examples of
orre
tand illegal domain de
larations.dom Warehouses = 1..5Corre
t!dom Warehouses = {'London', 'Sto
kholm', 'Berlin'}Illegal! Enumerated (or symboli
)
onstants are not supported.dom StoresIllegal! Does not bind the identi�er to a domain at
ompile time.dom Relations = Warehouses [#℄ StoresIllegal! Binds a relational domain.The reasons for these assumptions are again simpli
ity (and time shortage).Allowing domains to be instantiated at run time makes stati
 type
he
kingimpossible. I disallow the
ase of relational domain binding for te
hni
al reasons,it
ompli
ates the �attening of the parse tree in my one pass
ompiler. Toover
ome these limitations it is ne
essary to let all domains be represented atrun time by an obje
t. The
ompiler may only refer to a domain by its namebe
ause the a
tual domain is unknown at
ompile time. A dynami
 type
he
kis now ne
essary ea
h time a relation typed to this domain is referred to. I leavethis work to the next developer.2.3.2 Constant De
larationsA
onstant de
laration binds a
onstant to an identi�er. Constant de
larationsbegin with the keyword '
st'. There are two types of
onstants in esra. First
onstants whi
h are known at
ompile time. These must be bound in line by ade
laration like this:
st <identifier> = <value> : <domain>
16

This de
laration binds the identi�er to its domain at the same time as it is givenits value. A
onsisten
y
he
k is made by the
ompiler to ensure that the valuedoes not violate the domain. from this point on the
ompiler knows the valueof the
onstant and
an substitute the value for the identi�er whenever it isreferred to.The other kind of
onstants esra support are run time instantiated
on-stants. Su
h
onstants must be instantiated at run time from a data �le. Thesyntax for de
laring a run time
onstant is:
st <identifier> : <domain>This binds the identi�er to its domain. The
ompiler does not know the valueof su
h
onstants, so it will have to refer to them by name.Constants
an be relations. There is no syntax for in line de
laration of arelation, so these have to be de
lared as run time
onstants. This is just goodbe
ause it makes it possible to separate the model from its instan
e data.I now give examples of some
orre
t and some illegal
onstant de
larations.
st g = 10 : natCorre
t! Binds the value 10 to g.
st g = -10 : natIllegal! Domain error, -10 is not in nat
st SypplyCost : (Warehouses [#℄ Stores) [->℄ natCorre
t! De
lares instan
e data array for the warehouse lo
ation problem. Notethat the parentheses are really ne
essary here.
st Capa
ity = 8 : Warehouses [->℄ natIllegal! A relational
onstant must not be assigned a value in line.2.3.3 Variable De
larationsA variable de
laration allo
ates a de
ision variable and binds it to a domain.Variable de
larations begin with the keyword 'var'. The syntax for a variablede
laration is:var <identifier> : <domain>Examples:var v : 1..10Corre
t!var Supplies : Warehouses [#1℄ StoresCorre
t! De
lares a binary relation between Warehouses and Stores. Thisrelation is many to one a

ording to the
ardinality
onstraint. Ea
h store
an be supplied by one warehouse only but ea
h warehouse may supply severalstores. 17

2.4 Primitive ExpressionsPrimitive expressions are built from identi�ers and integer and boolean
on-stants and variables inter
onne
ted by binary and unary operators. Quanti�edexpressions and appli
ation expressions are not treated in this se
tion.2.4.1 Type RulesThere is only two kinds of primitive values: integer values and boolean values.ESRA is a typed language whi
h means that I will not a

ept a value with a
ertain type to be used in the wrong
ontext. Integer values are either integer
onstants like 103, or de
lared variables and
onstants belonging to an integerdomain. A variable belonging to the boolean domain might be used in any
ontext requiring a boolean value. An integer variable however must not beused in a boolean
ontext.In the examples that follows I assume that identi�ers starting with b areboolean while those starting with n are integers.b1 = 301In
orre
t! A boolean
an't be
ompared to an integer.(12 < 7) * 58In
orre
t! 12<7 is a boolean value and
annot be multiplied by an integer.2.4.2 Numeri
 ExpressionsPrimitive numeri
 expressions are built from identi�ers and integer
onstantsusing one of the numeri
 operators +, -, *, /, % (remainder) and abs (ab-solute value). The �rst �ve of these are binary in�x operators while abs is aunary pre�x operator. The type rules (see 2.4.1) must be respe
ted. The resultof these operations is itself a numeri
 value and may be used in other numeri
expressions. Normal pre
eden
e rules from mathemati
s are respe
ted as isgrouping sub expressions by parentheses. In the following examples identi�ersstarting with 'n' are integer variables.123 * (n1 - 2)Corre
t!abs(nx*ny - 4*(n+1)) - nCorre
t!2*n1 - trueIllegal! Type error.
18

2.4.3 Comparison ExpressionsPrimitive
omparison expressions are built from identi�ers, integer and boolean
onstants using one of the
omparison operators =, !=, <, =<, >, and >=.Note that `less than or equal to' is denoted by `=<' as in Prolog. Integer as wellas boolean values
an be
ompared using = and !=. I do not support equality orinequality between
omplex values su
h as tuples and sets. Only integers
an be
ompared with the operators <, >, =< and >=. The result of a
omparison isalways a boolean value whi
h
annot parti
ipate in numeri
 expressions. In thefollowing examples identi�ers starting with 'n' are integer variables and thosestarting with other letters are of non integer types.n1*33 =< 0Corre
t!true > 0Illegal! Type error.{1, 2, 3} = sIllegal! Set expressions
annot be
ompared.(2,3) != (6,7)Illegal! Tuples
annot be
ompared.2.4.4 Propositional Expressionsesra supports all the usual
onne
tives of propositional logi
 ex
ept negation.I also support these
onne
tives. Although negation is not supported it
an besimulated by using an impli
ation sin
e the formula not F is equivalent to false=> F. A (primitive) propositional expression is built from identi�ers, integerand boolean
onstants and the operators /\ (
onjun
tion), \/ (disjun
tion), =>,<= (impli
ation) and <=> (equivalen
e). All
omparison operators have higherpre
eden
e than the propositional operators (see the grammar in se
tion 8). Inthe examples that follow, I assume that identi�ers starting with b are booleanswhile those starting with n are integers.n=5 => abs(n1-n1) =< 100Corre
t!n => nn*5 < 0Illegal! Type error.(false => b1) /\ (b2 \/ b3)Corre
t! Emulating negation of b1. 19

2.5 Appli
ation Expressions2.5.1 Total, Partial and Fun
tional Appli
ationsRelations are said to be applied to their arguments. An appli
ation is said tobe total if the number of arguments is the same as the total arity of the relation(see se
tion 2.2.2 for a dis
ussion of arity). Suppose R is binary relation betweenthe sets A and B. The atom R(a, b), where a ∈ A and b ∈ B, is true if and onlyif (a, b) is in R. Total appli
ations
reate boolean values.A partial appli
ation is a relational appli
ation on a subset of its parameters.With R as above the meaning of the expression R(a), where a ∈ A, is the set
{b ∈ B | R(a, b)}.A fun
tional appli
ation, �nally, is an appli
ation of a total fun
tion on allits LHS arguments (se
tion 2.2.2). Suppose F is a total fun
tion from the set
A to the set B. The expression F (a), where a ∈ A, evaluates to the uniqueelement b ∈ B su
h that F (a, b). We say that a is mapped to b under F . Thereare two issues with this terminology whi
h I have to explain a bit more.First one
ould argue that F(a) is a fun
tional appli
ation even if F is apartial fun
tion. Mathemati
ally this is true, but I want to interpret F(a) as anumber and this is impossible if the F is allowed to be partial be
ause then F(a)may be the empty set. The empty set
annot appear in numeri
 expressionsand we have a big trouble. Therefore I don't allow fun
tional notation to beused on partial fun
tions.Se
ondly a fun
tional appli
ation is te
hni
ally partial, but I nevertheless willdistinguish between partial and fun
tional appli
ations, so when I speak aboutthe former I will always mean a non-fun
tional partial appli
ation, resultingin a non-singleton set. Note that a fun
tional appli
ation, when the fun
tionhas an integer range, is a numeri
 expression, that
an itself be used in biggerexpressions.2.5.2 Assumptions on Relations and Appli
ation ExpressionsThe following assumptions are fundamental for my implementation.
• Partial appli
ations are not supported.
• Fun
tional appli
ations are supported on relational obje
ts with a LHSmultipli
ity {1} (see se
tion 2.2.2), i.e. total fun
tions. Fun
tional appli-
ation must not be used on partial fun
tions or on relations that are notfun
tions.
• All total fun
tions are supposed to have a primitive range, i.e. the rightarity must be equal to 1. Relations with left multipli
ity {1} but rightarity bigger than 1 are treated as if they where relations, in parti
ularfun
tional appli
ation is forbidden on su
h obje
ts. This rule is ne
essarybe
ause su
h appli
ations
reate tuple values whi
h does not exist in thisimplementation.
• A relation de
lared with a LHS multipli
ity {1} and right arity 1 is alwaysa total fun
tion. For te
hni
al reasons I
annot allow total appli
ation tobe used with a fun
tion. Use fun
tional appli
ation in this
ase!20

• An unbounded domain, like 1..sup, is only allowed on the right hand sideof (see se
tion 2.2.2) a total fun
tion with right arity 1. It is forbidden touse unbounded intervals in all other
ases.
• Ea
h argument of a relational appli
ation must be a primitive value
on-sistent with the domain of the relation. For instan
e a relation de
laredon the domain 1..10 [1#0..sup℄ 1..3 may be applied on (5, 2) butnot on (true, 9).Now follows several examples of
orre
t and illegal appli
ation expressionsand relation de
larations to
larify the rules.
st F : 1..10 [->℄ natCorre
t! A total fun
tion may have 'nat' on the right side. This is just an�array� of 10 natural numbers.
st F : nat [->℄ 1..10Illegal! Unbounded domains are never allowed on the LHS. This would requirean in�nite size representation whi
h is impossible.
st R : nat [nat#1℄ 1..10Illegal! There's a 'nat' on the left hand side. It might be possible to represent Ras an array, but I don't allow it (time shortage! this is a spe
ial
ase I haven'ttreated � the �transposed fun
tion�).var R : 1..10 [#℄ natIllegal! The 'nat' is only allowed on total fun
tions. This
annot be represented�nitely.
st F : 1..10 [->℄ (1..10 [#℄ 1..10)Corre
t! Beware this is not treated as a fun
tion. Use relational notation here!var F : 1..10 [->℄ natCorre
t! Yes, even variable fun
tions may have an unbounded range. Bewarethat this
an
ause a runtime error if the domains have not been narrowed to�nite by
onstraint propagation prior to the labeling phase.dom D = 1..5var R : D [#℄ Dvar S : D[nat℄solveS = R(5)Illegal! Partial appli
ation of R; set values
annot be
ompared.dom D = 1..5var F : D [1#℄ DsolveF(4, 5) 21

Illegal! F is a total fun
tion by multipli
ity
onstraints. Use fun
tional notationhere: F(4) = 5.dom D = 1..5var R : D [->℄ (D [#℄ D)solveR(1, 3, 2)Corre
t! Relational notation is
orre
t be
ause R is not treated as a totalfun
tion. It has right arity 2. R(2) = (3, 4) is forbidden notation.var R : {1,2} [#℄ 1..10solveR(1, 2, 5)Illegal! To many arguments.var F : 1..10 [->℄ 1..10solveF(2)*F(3) + 4 =< 100Corre
t! The values of F are integers, hen
e they may be used in a numeri
expression.var F : 1..10 [+>℄ 1..10solveF(5) = 5Illegal! Fun
tional notation illegal on partial fun
tions be
ause the type ofthe fun
tion �image� is indeterminate (may be the empty set). Use relationalnotation here: F(5, 5).2.5.3 The Problem with Unbounded DomainsThe presen
e of the keywords nat and sup in the sour
e language presentssome di�
ulties to the implementor. This means that domains
an be in�nitein
ertain
ir
umstan
es. It was
lear early on that nat often o

urs on theRHS of fun
tion de
larations (see for instan
e the Progressive Party Problemin se
tion 3.5). I was for
ed to a

ommodate this
ase somehow without havingto resort to in�nite representations whi
h is quite impossible.Suppose that we want to represent a fun
tion de
lared on the domain 1..10[->℄ nat. In a pure binary matrix representation this would require that weallo
ate a ten by in�nity boolean matrix whi
h of
ourse is impossible. Toover
ome this problem I invented what I
all the total fun
tion optimization.This means that total fun
tions (with right arity 1) are represented by an integermatrix with a depth equal to the left arity of the fun
tion. Now it is possibleto index on the LHS arguments of the fun
tion and get a value whi
h is in therange of the fun
tion.Another problem with unbounded domains is that they might render thestate spa
e of the problem in�nite. Suppose that a primitive variable X is de�nedon the domain 1..sup. If X appears in the set of variables sent to labeling/2 andits domain hasn't been narrowed down to a �nite size by
onstraint propagation,22

then an ex
eption is raised by the Prolog system: �instantiation error in the �rstargument to labeling/2�. I ignore this problem. It is the responsibility of theuser to make sure that su
h a situation does not o

ur.Yet another di�
ulty is that quanti�
ation over non �nite domains is nevera

eptable. But that is taken
are of by the type
he
king routines.In a fuller implementation of esra there might be set
omprehensions, e.g.{i : D | F(i) < 10}. This presents a new range of di�
ulties, for instan
e the
ompiler might not even be able to determine if su
h a set is �nite or not at
ompile time. It might even be impossible, in some
ases, to determine the�niteness of a set at all. Due to su
h di�
ulties I de
ided not to support set
omprehensions in this implementation.2.6 Quanti�
ation2.6.1 Lo
al Variable Spe
i�ersQuanti�ers bind variables within a s
ope depending on the syntax of the re-spe
tive quanti�er. These variables are
alled lo
al variables and are de
laredby what I
all a lo
al variable spe
i�er. Ea
h lo
al variable ranges over a prim-itive domain. A lo
al variable spe
i�er is just a
omma separated sequen
e of<variable>:<domain> expressions, for instan
e v1:D1, v2:D2, v3:D3.When several lo
al variables range over the same domain they
an be de-
lared as a single ampersand separated sequen
e like v1&v2&v3:D.Yet another format is possible. With v1<v2:D we mean all possible pairs ofv1 and v2 with v1<v2 where v1 and v2 both ranges over the primitive domainD. The < may be substituted by one of the other
omparison operators. Observethat both sides of the v1<v2 expression must be a lo
al variable.An important point to stress is that ea
h lo
al variable ranges over a ground,primitive and �nite domain. In�nite domains like 1..sup are not allowed in
onjun
tion with quanti�
ation. This is in a

ord with the original spe
i�
ationof esra. Now I give some examples of
orre
t and illegal lo
al variable spe
i�ers.i : D1, j : D2Corre
t!i*i-1 : DIllegal! A general expression is not allowed in this
ontext.i<10 : DIllegal! Not a lo
al variable: '10'.i&j : D, i : EIllegal! The lo
al variable 'i' must not be rede�ned. within the same s
ope.
23

2.6.2 The Forall ExpressionThe universal quanti�er is denoted by the keyword 'forall' in esra. Thegeneral syntax is:forall(<l
lvarspe
> | <
ondition>) (<formula>)Here <l
lvarspe
> is a lo
al variable spe
i�er, <
ondition> a formula and<formula> another formula. The meaning is: for all instantiations of the lo-
al variables a

ording to <l
lvarspe
> su
h that <
ondition> is true, the<formula> has to be true. The <formula> of
ourse depends on the lo
al vari-ables.The <formula> has to be en
losed in parentheses. This has to be donebe
ause taking it away from the grammar makes it un parsable. For instan
ethe expression forall(i:D) f b introdu
es a
on�i
t. Should the fun
tionappli
ation f b be redu
ed before the forall expression or vi
e versa. Someexamples follow:forall (i:D) (true)Corre
t!forall(i:D) i*i < 10Illegal! The formula must be en
losed in parentheses.2.6.3 The Count ExpressionThe
ount quanti�er is a generalization of the existential quanti�er of predi
atelogi
. It has the syntax:
ount(<multipli
ity>) (<l
lvarspe
>| <
ondition>)Here <multipli
ity> is a multipli
ity set (see se
tion 2.2.2), and <
ondition>a formula. The meaning is that the set of all possible instantiations of the lo
alvariables a

ording to <l
lvarspe
> su
h that <
ondition> is ful�lled, hasa
ardinality whi
h is in the set <multipli
ity>. Synta
ti
ally a singletonmultipli
ity set {<expression>} may be abbreviated to <expression>. Theexpression:exists (<l
lvarspe
> | <
ondition>)is syntax sugar for
ount(1..sup) (<l
lvarspe
> | <
ondition>)Here are some examples.
ount(1) (i : D | i < 10)Corre
t! There is exa
tly one i < 10 in D.
ount(0) (I:D | i*5)Illegal! i*5 is not a formula. 24

2.6.4 The Sum ExpressionThe sum operator is not a quanti�er, but has a similar syntax. It operates onnumeri
 expressions rather than on formulas. The syntax is:sum (<l
lvarspe
> | <
ondition>) (<numexpr>)Here <l
lvarspe
> is a lo
al variable spe
i�er, <
ondition> a formula and<numexpr> a numeri
 expression. The meaning is: substitute ea
h lo
al variablein <numexpr>with its value for ea
h possible instantiation of <l
lvarspe
> su
hthat <
ondition> is true. Then sum all resulting values to obtain the value ofthe entire expression. This is just the usual sum notation used in mathemati
s.Examples:sum (i:1..10) (i)Corre
t! Computes the sum of all numbers between 1 and 10.sum (i : 1..10 | f(i)%2 = 0) (f(i))Corre
t! Sum all even f(i) where i is between 1 and 10.sum (i : D) i*i-1Illegal! The summand has to be en
losed in parentheses.2.7 The Data File2.7.1 What is the Data File?One main obje
tive of relational modeling is to separate the model from theinstan
e data. The
ommer
ial modeling language opl [14℄ a
hieves this byproviding a separate data �le, where all instan
e data are supposed to be de-
lared. esra uses the same paradigm. Ea
h
onstant whi
h is de
lared but notinstantiated (se
tion 2.3.2) must get its value from the data �le. The languageof the data �le is
onstru
ted within Prolog, so the data �le is really a Prologprogram. The data �le is a sequen
e of data
onstru
tors, ea
h of them a Prologterm terminated by a full stop. Primitive variables are instantiated by primi-tive data
onstru
tors, while relation variables get their values from what I
allmatrix data
onstru
tors.2.7.2 Primitive Data Constru
torsA primitive data
onstru
tor is a single line of the form <identifier> = <value>.The value must be literal and not an expression or another variable. Althoughthe
ompiler allows variable names to begin with a lower
ase letter, Prolog doesnot so, I require ea
h runtime initialized
onstant to begin with a
apital letter.Otherwise Prolog will give you an ex
eption. The data �le, as it is implementednow, do not distinguish between integers and booleans, so the
orre
t way toinstantiate a boolean is to assign it the value 0 or 1. If you try to put theline B = true. in the data �le Prolog will
rash your program. The programbehaves this way be
ause I have not had time to
hange it. You will probablenot instantiate boolean variables in the data �le very often.25

2.7.3 The Matrix Data Constru
torA matrix data
onstru
tor has the following syntax:matrix(<list>).Here <list> is a list of lists of ... of lists (a �matrix�) of integer values. Totalfun
tions, whi
h must have right arity 1 (see se
tion 2.2.2), are representedby an integer matrix with a depth of left arity, where the integer values rangeover the range of the fun
tion. Relations whi
h are not total fun
tions arerepresented by binary matri
es (matri
es with elements 0 or 1) with a depth ofthe full arity of the relation. For example the following matrix data
onstru
torR = matrix([[1,0,1℄,[0,0,1℄,[1,1,0℄℄).assigns R a value of a binary relation between two sets of
ardinality 3. Thea
tual domains and
ardinality
onstraints
annot be spe
i�ed in the data �lebut must be de
lared in the model itself. See se
tion 4.2 for more informationon matrix representations of relations.The following example de�nes a total fun
tion of left arity 1, i.e. a onedimensional array.Array = matrix([2, 7, 11, 5, 11, 0, 38℄).As with relations the a
tual domain of Array is not de�ned here but in themodel itself.2.7.4 An ExampleAs an example I now give a sample data �le for the warehouse lo
ation problem,to be presented in se
tion 3.6.NStores = 10.NWareHouses = 5.FixedCost = 30.Capa
ity = matrix([1, 4, 2, 1, 3℄).SupplyCost = matrix([[20, 24, 11, 25, 30℄,[28, 27, 82, 83, 74℄,[74, 97, 71, 96, 70℄,[2, 55, 73, 69, 61℄,[46, 96, 59, 83, 4℄,[42, 22, 29, 67, 59℄,[1, 5, 73, 59, 56℄,[10, 73, 13, 43, 96℄,[93, 35, 63, 85, 46℄,[47, 65, 55, 71, 95℄℄).26

The �rst two lines de�ne the number of stores and the number of warehousesrespe
tively. The third line is the �xed maintenan
e
ost per warehouse. Thefourth line is the array of
apa
ities of ea
h warehouse. Finally the �fth linede�nes the matrix SupplyCost whi
h gives the
ost for ea
h warehouse to supplyea
h store.3 Sample ModelsAll sample models are parts of my major test suite. All these models withsuitable instan
e data
ompiles and runs on my system (see se
tion 6.1). Thesample models will be used as examples throughout the rest of this do
ument.3.1 The Balan
ed In
omplete Blo
k Design ProblemLet V be any set of v elements,
alled varieties. A balan
ed in
omplete blo
kdesign (BIBD) is a bag of b subsets of V ,
alled blo
ks, ea
h of size k (
onstraint
C1), su
h that ea
h pair of distin
t varieties o

urs together in exa
tly λ blo
ks(C2), with 2 ≤ k < v. An implied
onstraint is that ea
h variety o

urs inthe same number of blo
ks (C3), namely r = λ(v − 1)/(k − 1). A BIBD isparameterized by a 5-tuple 〈v, b, r, k, λ〉 of parameters. Originally intended forthe design of statisti
al experiments, BIBDs also have appli
ations in
ryptog-raphy and other domains. See Problem 28 at http://www.
splib.org for moreinformation.This problem may be modeled in esra as below. Note that de
laring thedomains Varieties and Blo
ks and the single de
ision variable BIBD auto-mati
ally takes
are of
onstraints C1 and C3. The interpretation of the atomBIBD(v, b) is simply that variety v is in blo
k b. The
onstraint C2 is taken
are of by the formula in the solve
lause of the model.
st V : nat
st K : nat
st Lambda : nat
st B : nat
st R : natdom Varieties = 1..Vdom Blo
ks = 1..Bvar BIBD : Varieties [R#K℄ Blo
kssolveforall (v1 < v2 : Varieties)(
ount (Lambda) (i : Blo
ks | BIBD(v1,i) /\ BIBD(v2,i)))3.2 The Magi
 Square ProblemA magi
 square is an n by n grid of distin
t integers, su
h that the sum of theintegers in ea
h row, ea
h
olumn and the two main diagonals always is thesame. One
an show that the
onstant value of the sum is (n2 +1)n/2. Below isan esra model for the problem to �nd su
h a magi
 square. The possible valuesare between 1 and n2 (be
ause the integers are distin
t). In the model below Nis the size of the grid, Sequen
e the set 1..N, Val the set of integer values and27

S, the unique de
ision variable is a total fun
tion (array) mapping the set ofgrid squares on their values. The four sums in the solve
lause are the sum ofea
h row, ea
h
olumn and the two diagonals respe
tively. Here N is a run time
onstant that must be supplied by a data �le.
st N : 1..supdom Sequen
e = 1..Ndom Val = 1..N*N
st SumVal = (N*N+1)*N/2 : natvar S : (Sequen
e [#℄ Sequen
e) [->1℄ Valsolveforall (I : Sequen
e)((sum(J : Sequen
e) (S(I,J)) = SumVal)/\(sum(J : Sequen
e) (S(J,I)) = SumVal))/\sum (I : Sequen
e) (S(I,I)) = SumVal/\sum (I : Sequen
e) (S(I,N-I+1)) = SumVal3.3 The n Queens ProblemThe n queens problem is the problem how to pla
e n queens on a n×n
hessboardsu
h that no queen atta
ks another queen. To model this problem we de
lare abije
tion Q of the rows. The interpretation is that if Q(i) = j a queen stands onthe square (i, j) on the
hessboard. Note that the bije
tivity of Q is taken
areof by the
ardinality
onstraint [->1℄. By modeling it is
lear that ea
h pair ofqueens stand on di�erent rows and
olumns, so the only remaining requirementis that they must also stand on di�erent diagonals. The two inequalities in thesolve
lause of the model below takes
are of that.
st N : natdom Rows = 1..Nvar Q : Rows [->1℄ Rowssolveforall (I<J : Rows)((Q(I) - I != Q(J) - J) /\(Q(I) - J != Q(J) - I))3.4 The So
ial Golfer's ProblemIn a golf
lub, there are N players, ea
h of whom plays golf on
e a week (
on-straint C1) and always in G groups of size S (C2), hen
e N = GS. The obje
-tive is to determine whether there is a s
hedule of W weeks of play for thesegolfers, su
h that there is at most one week where any two distin
t players ares
heduled to play in the same group (C3). An implied
onstraint is that everygroup o

urs exa
tly SW times a
ross the s
hedule (C4). See Problem 10 athttp://www.
splib.org for more information.28

The instan
e data
an be de
lared as the three natural-number
onstants G,
S, and W , as well as the three domains Players , Weeks , and Groups , as below.A unique de
ision variable, Schedule,
an then be de
lared, immediately taking
are of the
onstraints C1 (be
ause of the totality of the fun
tion) and C4. The�rst forall expression in the solve
lause takes
are of the
onstraint C3 whilethe se
ond one takes
are of C2. The three run time
onstants G, S and W mustbe de�ned in the data �le.
st G : nat
st S : nat
st W : natdom Players = 1..G*Sdom Weeks = 1..Wdom Groups = 1..Gvar S
hedule : (Players [#℄ Weeks) [->{S*W}℄ Groupssolveforall (P_1 < P_2 : Players)(
ount (0..1) (V : Weeks | S
hedule(P_1,V) = S
hedule(P_2,V)))/\forall (H : Groups, V : Weeks)(
ount(S) (P : Players | S
hedule(P,V) = H))3.5 The Progressive Party ProblemThe problem is to timetable a party at a ya
ht
lub. Certain boats are desig-nated as hosts, while the
rews of the remaining boats are designated as guests.The
rew of a host boat remains on board throughout the party to a
t as hosts,while the
rew of a guest boat together visits host boats over a number of pe-riods. The spare
apa
ity of any host boat is not to be ex
eeded at any periodby the sum of the
rew sizes of all the guest boats that are s
heduled to visitit then (
onstraint C1). Any guest
rew
an visit any host boat in at most oneperiod (C2). Any two distin
t guest
rews
an visit the same host boat in atmost one period (C3). See Problem 13 at http://www.
splib.org for moreinformation.The three run time
onstants NumGuests, NumHosts and NumPeriods arede
lared as natural numbers and the domains Guests, Hosts and Periods arede
lared as below. A unique fun
tional de
ision variable, S
hedule,
an thenbe de
lared as below. The �rst forall formula in the solve
lause takes
are of
onstraint C2, the se
ond of C1 and the last one of C3.
st NumGuests : nat
st NumHosts : nat
st NumPeriods : natdom Guests = 1..NumGuestsdom Hosts = 1..NumHostsdom Periods = 1..NumPeriods
st SpareCapa
ity : Hosts -> nat29

st CrewSize : Guests -> natvar S
hedule : (Guests [#℄ Periods) -> Hostssolveforall (G : Guests, H : Hosts)(
ount(0..1) (P : Periods | S
hedule(G,P) = H))/\forall (P : Periods, H : Hosts)(sum(G : Guests | S
hedule(G,P) = H) (CrewSize(G))=< SpareCapa
ity(H))/\forall (G_1 < G_2 : Guests)(
ount (0..1)(P : Periods | S
hedule(G_1,P) = S
hedule(G_2,P)))3.6 The Warehouse Lo
ation ProblemAt last I give an example of a
onstraint optimization problem (COP). Supposethat a number of warehouses are supporting a set of stores. Ea
h store mustbe supplied by exa
tly one warehouse (
onstraint C1). Ea
h warehouse has a
apa
ity telling the maximum number of stores it
an supply (
onstraint C2).Ea
h warehouse has a �xed maintenan
e
ost and a supply
ost for ea
h store.The problem is to determine whi
h warehouses should be open and whi
h onesshould be
losed su
h that the total maintenan
e
ost be as small as possible.The model below is essentially the same as the one presented in the oplbook [14℄. The auxiliary total fun
tion (array) Open tells whi
h warehouses areopen. Open(i) = 1 means that warehouse number i is open while Open(i)= 0 means that warehouse number i is
losed. The instan
e data
onsists ofthe arrays Capa
ity and SupplyCost as well as the numeri

onstants NWare-Houses, NStores and FixedCost. The binary integer de
ision variable Supplytells weather warehouse w supplies store s or not. It must be an integer fun
tionrather than a binary relation, be
ause we want to do arithmeti
 on it. A sampledata �le
an be found in se
tion 2.7.4. The
ost fun
tion
an now be modeledas below using Open(w) as a weight fa
tor. The �rst forall expression in thesu
h that
lause takes
are of
onstraint C1, the se
ond one is a
hanneling
on-straint ensuring the
onsisten
y of the Open array, while the third takes
are of
onstraint C2.
st NStores : nat
st NWareHouses : natdom Stores = 1..NStoresdom Warehouses = 1..NWareHouses
st Capa
ity : Warehouses [->℄ nat
st SupplyCost : (Stores [#℄ Warehouses) [->℄ nat
st FixedCost : natvar Supply : (Stores [#℄ Warehouses) [->℄ {0, 1}var Open : Warehouses [->℄ {0,1}minimisesum(W : Warehouses) (FixedCost * Open(W)) +30

sum(W : Warehouses, S : Stores) (SupplyCost(S,W) * Supply(S,W))su
h thatforall(S : Stores)(
ount(1) (W : Warehouses | Supply(S,W) = 1))/\forall(W : Warehouses, S : Stores) (Supply(S,W) =< Open(W))/\forall(W : Warehouses) (sum(S : Stores) (Supply(S,W)) =< Capa
ity(W))4 Translation4.1 Representing DomainsDomains are stati
 obje
ts represented by ground Prolog terms. Their repre-sentations are des
ribed in this sub se
tion. Be
ause domains are stati
allyinstantiated in this implementation, the
ompiler literally generates these termsand puts them into the generated
ode.4.1.1 Primitive DomainsPrimitive domains are either intervals or set domains (see 2.2.1).
• Intervals are represented by terms like interval(Lower, Upper), whereLower and Upper are the lower and upper bound respe
tively. The bounds
an be either integer
onstants or one or both of the atoms inf and sup.
• Set domains, i.e. domains given by esra expressions like {1,2,3}, arerepresented by terms like list(List), where List is a Prolog list of uniqueinteger
onstants.Before a set domain is used a run time �uniqui�
ation� is performed to ensurethat the list doesn't
ontain any dupli
ate elements. This is ne
essary be
ausethe
ompiler doesn't always know all elements when the domain is �rst
reateddue to run time
onstants. Consider the following de
larations
st g : nat
st r : natdom D = {10, g, r, 5, r+g+1}31

The
ompiler don't know the values of g and r. Suppose g and r are assigned thevalues 5 and 4 respe
tively. The set now be
omes {10, 5, 4}. This uniqui�
a-tion must be done at run time when the values of g and r have be
ome known.Intervals are also error
he
ked to make sure they �t the needs of the sit-uation. For instan
e sometimes a �nite interval is required. In the followingexamples several mappings between esra and Prolog are shown, assuming the--> sign means �maps to�.1..10 --> interval(1,10)0..sup --> interval(0,sup)inf..-5 --> interval(inf,-5)nat --> interval(0,sup)int --> interval(1,sup){1,3,5,7,9} --> list([1,3,5,7,9℄){1} --> list([1℄)5..5 --> interval(5,5)4.1.2 Multipli
ity SetsMultipli
ity sets are represented dire
tly by the
lpfd range expressions theyrepresent. So for instan
e {1,3,7} is a
tually represented by {1,3,7} and 1..supby 1..sup. That is the mapping from esra to Prolog is the identity mapping!.Spe
ial
are must be taken to ensure that multipli
ity sets don't
ontain nonnegative values. "Uniqui�
ation� is also ne
essary.4.1.3 Relational DomainsRelational domains are represented by the term reldom(LeftDoms, Mult1,Mult2, RightDoms), where LeftDoms and RightDoms are lists of primitive do-mains while Mult1 and Mult2 are multipli
ity sets.A spe
ial form is ne
essary for set domains, whi
h have right arity zero. TheRightDoms are repla
ed by [℄ and Mult2 by the atom nil.Here follow examples of the esra to Prolog mapping of relational domainexpressions.1..10[2℄ -->reldom([interval(1,10)℄,{2},nil,[℄)(Comment: This is a set domain, the domain of 2 elementsubsets of 1..10)1..10 [->℄ 1..10 -->reldom([interval(1,10)℄,1..1,0..sup,[interval(1,10)℄)(Assume 32

dom D = 1..5dom V = {1,5,7,9})(D [#℄ V) [->℄ nat -->reldom([interval(1,5), list([1,5,7,9℄)℄,1..1,0..sup,[interval(0, sup)℄)(Assumedom D = {1,2,3,4,5}dom E = D)(D [2#2℄ E) -->reldom([list([1,2,3,4,5℄)℄,{2},{2},[list([1,2,3,4,5℄)℄)(1..10 [#℄ 1..10) [->1℄ 1..100 -->reldom([interval(1,10), interval(1,10)℄,1..1,1..1,[interval(1,100)℄)1..10 [+>℄ 1..10 -->reldom([interval(1,10)℄,{0,1},0..sup,[interval(1,10)℄)4.2 Representing Relations4.2.1 Various RepresentationsThe representation of relational variables in SICStus Prolog is a
entral pointin my thesis. Prolog has no aggregate de
ision variables, so it's
lear thesehave to be pa
ked into data stru
tures of some kind. The abstra
t
on
eptarray or matrix
an be implemented in several ways. The most obvious wayis to use lists of lists of ... lists. There are also other possibilities su
h thatthe amatrix representation (see below). There is an implementation of �arrays�in SICStus Prolog permitting logarithmi
 a

ess time using some kind of treerepresentation. My
hoi
e for this
ompiler is the list (lmatrix) representationdes
ribed in the next sub se
tion.Whi
h
on
rete representation of the abstra
t relation variable we
hoosemay have a dramati
 impa
t on the performan
e of the solver, so it's importantto
hoose a good one. Unfortunately it's not easy to know a priori whi
h is thebest one, so the modeler may wish to experiment with several representations.One solution is to make the
ompiler non deterministi
, whi
h means that therewill be several generated programs per input model, ea
h one using a parti
ularrepresentation for
ertain variables in the model.33

Even better would it be if the
ompiler itself
an make the
hoi
es based onsome heuristi
s, see for instan
e [9℄. It would then be the responsibility of the
ompiler to
hoose the best representation of ea
h de
ision variable relieving themodeler from this di�
ult and time
onsuming task.I have not implemented neither a non deterministi

ompiler nor any heuris-ti
s, but simply make the
hoi
e deterministi
ally based on the nature of therelation. Nevertheless before I present my solution, I wish to make a shortdigression here on several kinds of representations.The linked matrix (lmatrix) representation. This is the representation a
-tually implemented whi
h is des
ribed in great detail in the subsequentse
tions. In short it means to represent the relation by a multi dimensional�matrix�. The �matrix� is implemented as a list of lists of ... lists, witha depth equal to the number of dimensions of the �matrix�. In the purebinary lmatrix representation ea
h element is 0 or 1. This representationis presented in more detail in se
tion 4.2.2. The a

ess time to rea
h anelement is linear in the sum of the dimensions of matrix in�uen
ing thetime required to post the
onstraints but not the a
tual solving time.The total fun
tion optimization. Suppose that we have an array of instan
edata, for instan
e [1,4,6,8,9℄. It would be a waste of spa
e to allo
ate a5x5 binary matrix to store this stru
ture. Instead we should store it as alist of integers. This is the l matrix representation with the total fun
tionoptimization. This representation is presented in se
tion 4.2.3.The total fun
tion optimization in reverse. Consider a relation on the do-main D [#1℄ E. This
an be regarded as a total fun
tion from E to D, i.e.a �reversed� or �transposed� fun
tion. Su
h a fun
tion
an be representedby a one dimensional array of de
ision variables or integers. I have notimplemented this optimization.The amatrix representation. Prolog has a set of operators to build and de-
ompose terms. The arg operator, for instan
e, extra
ts the nth argumentof a term in
onstant time. A matrix
an be represented as a nested term.For instan
e the lmatrix [[1,1,0℄, [0,1,1℄℄
an be represented by thestru
tured term m(m(1,1,0), m(0,1,1)). The great advantage with thisrepresentation is that an element
an be a

essed in
onstant time. I
allthis representation the amatrix representation, where the a stands for arg.The problem with this representation is that Prolog doesn't allow termswith more than 256 arguments. The
ompiler must
he
k the number ofarguments and then de
ide if the amatrix representation
an be used.Using asso
iation lists. SICStus Prolog provides a library data stru
ture
alled'asso
', the asso
iation stru
ture. It's a di
tionary with logarithmi
 a
-
ess time implemented as an AVL tree. It's possible to index a matrixdire
tly by the domain elements bypassing the domain lookup step (se
-tion 4.2.5). In this representation, the matrix would be represented by aset of asso
 di
tionaries with the domain elements serving as keys.The �at representation. If the
ardinality of the relation (the number of tu-ples in the relation) is known a priori and never
hanges, then the relation34

an be represented by a �at list of elements. I
all this the �at represen-tation. The
ompiler de
ides if a �at representation is possible by lookingat the
ardinality
onstraints. The lmatrix representation with the totalfun
tion optimization is a
tually a spe
ial
ase of the �at representation,where the matrix tree has been partially �attened redu
ing the depth byone. Consider a relation in 1..10 [2#℄ nat. Ea
h element on the lefthand side is related to exa
tly 2 elements on the right hand side. Thisgives a totality of 20 tuples in the relation, so 20 de
ision variables shouldbe allo
ated and stored in a �at list. Note that the nat on the right handside is not a problem here. I have not implemented the �at representation.4.2.2 The Linked Matrix RepresentationA way to represent a relation is to use a multi dimensional array, or �matrix�,of boolean values (zeroes or ones). So if R is an n-ary relation and M is thematrix representation of R, then Ma1,a2,..,an
= 1 if and only if R(a1, a2, ..., an).It's ta
itly assumed here that the domains of the relations are intervals from 1to a maximum value, so that the matrix
an be indexed dire
tly by the domainelements; but a generalization will be given in 4.2.5.One method to represent this �matrix� is to use iterated list stru
tures. Atwo dimensional matrix
an be represented by a list of lists of booleans, i.e. a list
ontaining the rows of the matrix. I will
all this the linked matrix (lmatrix forshort) representation. I will say that an lmatrix has depth d, if it's nested d levelsdeep. The length ve
tor of an A1×A2× ...×An matrix is the list [A1, A2, ..., An].For instan
e [[[1,0℄, [0,1℄℄, [[0,0℄, [1,0℄℄℄ is an lmatrix of depth 3, a

2× 2× 2 matrix more spe
i�
ally with length ve
tor [2,2,2℄.I now present simpli�ed Prolog predi
ates for
reating lmatri
es and a

ess-ing their values. The real predi
ates, de�ned in the module lmatrix.pl, are a bitmore
omplex for te
hni
al reasons, but here I want to keep the fo
us on what'sof primary interest. The predi
ate new/2 is used to
reate a new lmatrix whilevalue/3 a

esses its elements.%% new(+Lengths, -Matrix)%% Length is an integer list, the length ve
tor of Matrix.%% Matrix must be un instantiated when new is
alled.%% True if Matrix is an lmatrix with length ve
tor%% Lengths
onsisting of de
ision variables in 0..1new([L℄, M) :-length(M, L),domain(M, 0, 1).new([L|Ls℄, M) :-length(M, L),new2(L, M).new2([℄, _).new2(Ls, [M|Ms℄) :-new(Ls, M),new2(Ls, Ms).%% value(?Indexes, +Matrix, ?Value)35

M = [[[[1,0℄, [1,1℄℄,[[0,1℄, [1,0℄℄℄,[[[1,1℄, [1,0℄℄,[[0,1℄, [1,1℄℄℄℄.Figure 1: Example of a Linked Matrix. This is a 2× 2× 2× 2 matrix.%% True if Matrix([Indexes℄) = Value%% Pro
edurally: look up element indexed by Indexes.value([I℄, Row, Value) :-lists:nth(I, Row, Value).value([I|Is℄, Matrix, Value) :-lists:nth(I, Matrix, SubMatrix),value(Is, SubMatrix, Value).I will spend the rest of this se
tion developing some de
larative notation usedin the subsequent se
tions to reason about lmatri
es. I will often refer to thelmatrix in Figure 1 in the following. Now I give several de�nitions about lma-tri
es.Flattening. Let M be an lmatrix. A �attening of M , denoted F [M], is a list
ontaining all elements of M in some order.D-Flattening. A d-�attening of an lmatrix M with respe
t to the depth d,denoted Fd[M], is a list of �attenings of all sub lists at nesting depth d.Any d-�attening is an lmatrix of depth 2. I will refer to the elements of
Fd[M] as the rows of M with respe
t to the depth d.Proje
tion. Let M be an lmatrix of depth 2 with length ve
tor [a, b]. Theproje
tion of M on
olumn j, denoted Pj[M], is de�ned by the list
om-prehension [xi | xi = Mi,j ∧ 1 ≤ i ≤ a]. Stated in words, the proje
tionon j is the list of all jth elements in the elements of M , or the jth
olumnof M .Transpose. Let M be an lmatrix with depth 2 and length ve
tor [a, b]. Thetranspose of M , denoted, T [R], is de�ned by the list
omprehension [Lj | Lj =
Pj[M] ∧ 1 ≤ j ≤ b]. In words the transpose is built by taking all �rst el-ements in the elements of M , then the se
ond elements, and so fourth. Iwill
all the elements of T [M] the
olumns of M . Note that we only de�netranspose for lmatri
es of depth 2.Columns. Let M be an arbitrary lmatrix. The
olumns of M with respe
t todepth d are the
olumns of Fd[M].36

Length. The length of a list L is denoted by L[L]. That is the number ofelements in L.Counting. Let L be a list of primitive elements. We say that Cv[L, n], if thevalue v o

urs n times in L. The operator Cv is the
ounting operator.The 2-�attening of the matrix M in Figure 1 is [[1,0,1,1℄, [0,1,1,0℄,[1,1,1,0℄, [0,1,1,1℄℄. Note how the example has been formatted to em-phasize the 2-rows. The
olumns of depth 2 (see de�nition of
olumns above)are [[1,0,1,0℄, [0,1,1,1℄, [1,1,1,1℄, [1,0,0,1℄℄.4.2.3 Optimization for Total Fun
tionsConsider the problem of representing the array [2,3,2,1℄ as a total fun
tion in thelmatrix representation. The domain may be
hosen as reldom([interval(1,4)℄,{1}, nat, [list([2,3,1℄)℄). The lmatrix representing this fun
tion is[[1,0,0℄,[0,1,0℄,[1,0,0℄,[0,0,1℄℄.Here the se
ond index of the lmatrix ranges over [2,3,1℄ rather than over 1..3,see se
tion 4.2.5 for a dis
ussion of domain lookup. In total 12 primitive valueshave to be allo
ated to store 4 integers. This is a gross waste of spa
e. Only4 integers should have to be allo
ated. The solution is to �atten the matrix todepth 1 and store the values dire
tly, i.e. allo
ate the matrix [2,3,2,1℄ instead,whi
h
an be indexed dire
tly by an element in the LHS domain 1..4. Thisredu
tion of the depth of the lmatri
es is the total fun
tion optimization.Turning to the general
ase, let F be a total fun
tion in
reldom(LDoms, {1}, Mult, Range),where Range is a primitive domain and d = L[LDoms] is the left arityof F . Let M be an lmatrix of depth d, with values in Range, su
h that

F (a1, a2, ..., ad) = v if and only if Ma1,a2,...,ad
= v, where v ∈ Range. It'sassumed here that the LHS domains are intervals with left endpoint 1, butsee 4.2.5 for a generalization.An important point to stress is that the total fun
tion optimization is onlymade for fun
tions with right arity 1. It would
ertainly be possible to representtuple valued fun
tions in this way also, but it's more
ompli
ated and beyondthe s
ope of this implementation. Instead tuple valued fun
tions have to berepresented as full binary lmatri
es. With this assumption, the elements in therange set is just integer values or de
ision variables.The type of representation used is uniquely determined by the relational do-main. If Mult1 = {1} and right arity = 1, then the representation is optimized,otherwise it's binary. The Prolog predi
ate get_type below, is used to dedu
ethe representation type. 37

%% get_type(+Mult, +RightArity, -Type)%% True if Type is the representation type
onsistent%% with Mult and RightArity.%% Type is 'binary' for binary lmatrix and 'integer'%% for lmatrix with the total fun
tion optimization.get_type(Mult, RightArity, Type) :-(RightArity > 1 ->Type = binary; Mult = 1..1 ->Type = integer; Mult = {1} ->Type = integer; Type = binary).4.2.4 The Cardinality ConstraintsIn this sub se
tion the
ardinality
onstrains, se
tion 2.2.2, will be de�ned in the
ontext of the lmatrix representation. I will make heavy use of the de
larativenotation of se
tion 4.2.2 in this sub se
tion.Consider a relation R in the domain reldom(LeftDoms, Mult1, Mult2, Right-Doms). Assume that L[LeftDoms] = d and let M be the lmatrix representingR. Consider those elements of M , whi
h are indexed by some �xed values ofthe left hand side indi
es. These elements
onne
t one element in the
artesianprodu
t of the LHS domains to various elements on the right hand side. Butthese elements are pre
isely the elements in Fd[M], i.e. the d-rows of M . Toa�e
t the LHS
ardinality
onstraint of R, it's enough to state that the numberof ones in ea
h d-row of M belongs to Mult1.Now
onsider those elements of M , whi
h are indexed by some �xed values ofthe RHS indi
es. These elements
onne
t one element in the
artesian produ
tof the RHS domains to various elements on the left hand side. These elementsare in T [Fd[M]], the d-
olumns of M . To a�e
t the RHS
ardinality
onstraintof R, it's enough to ensure that the number of ones in ea
h d-
olumn of Mbelongs to Mult2. I now state these assertions in a somewhat more formallanguage, whi
h I hope should be obvious. The
onstru
t A ←− B should beread as A is true if B is true.
Cardinality(M, LeftArity, Mult1, Mult2)←−
Let d = LeftArity
∀(L ∈ Fd[M], C ∈ T [Fd[M]])
begin

C1[L, m1]
C1[C, m2]
m1 ∈Mult1
m2 ∈Mult2

end 38

Although this notation is purely de
larative, the a
tual
omputation of the
ardinality in lmatrix.pl follows the pseudo syntax
losely. There a
tually arepredi
ates named transpose and dflatten,
omputing T [Fd[M]] and Fd[M]respe
tively.It remains to dis
uss how to a�e
t the
ardinality
onstraints in the
aseof the total fun
tion optimization. The �rst thing to observe is that the LHS
ardinality
onstraint of a total fun
tion, {1}, is impli
itly taken
are of by the
hoi
e of representation, be
ause ea
h (array) element is uniquely indexed bythe LHS indi
es. Only the RHS
ardinality must be enfor
ed. Moreover, if theRHS multipli
ity set is N, the
onstraint is trivial and may be disregarded.Assume F is a total fun
tion in reldom(LDoms, {1}, Mult2, Range), where
Range is a primitive domain. Let M be the lmatrix of F in the total fun
tionoptimization. Let d be the depth of M , i.e. d = L[LDoms]. Ea
h element in
F [M] ∈ Range. So it's su�
ient to require that for ea
h element v in Range,the number of o

urren
es of v in F [M] belongs to Mult2. Note that we mustrequire that the
ardinality of Range is �nite unless Mult2 = N. The followingpseudo syntax pro
edure enfor
es the
ardinality
onstraint on total fun
tionswith �nite ranges.
CardinalityFun(M, Range, Mult)←−%% Range must be a �nite primitive domain.
∀(v ∈ Range)
begin

Cv[F [M], m]
m ∈Mult

end4.2.5 Domain LookupSo far it's have been ta
itly assumed that all domains are of the form interval(1,Max). So the arguments of relational appli
ations are mapped identi
ally onmatrix indi
es. In general, however, some of the domains may be other intervalsor general lists of integers. When a relational appli
ation is en
ountered, atranslation of the arguments to indi
es must be done, before the value
an beretrieved from the lmatrix. Be
ause this lookup must be made ea
h time therelation is applied, the domain should be made part of the relational obje
t itself.Therefore, from now on, a relational obje
t with domain Domain and lmatrixM, will be represented by the Prolog termrelation(Domain, lm_rel(M))Some examples will
larify the pro
ess of domain lookup.(Lookup in a set domain)F = relation(reldom([list([-3, 7, -90, 4, 55℄)℄,{1},39

0..sup,[inf..sup℄),lm_rel([4, 8, 11, -100, 9℄)).F(-90) = ?lists:nth(N,[-3,7,-90,4,55℄,-90)N = 3lists:nth(3, [4,8,11,-100,9℄, V)V = 11Ergo: F(-90) = 11(Lookup in an interval domain)F = relation(reldom([interval(5,10)℄,{1},0..sup,[0..sup℄),lm_rel([3, 8, 2, 8, 3℄)).F(7) = ?Translation: 7 => 7 + (1-5) = 3lists:nth(3, [3, 8, 2, 8, 3℄, V)V = 2Ergo: F(7) = 2To be able to translate between appli
ation arguments and lmatrix indi
es, aProlog predi
ate translate(?Arg, +Domain, ?Index) must be de�ned. Su
ha predi
ate is implemented in lmatrix.pl. A new predi
ate value/4
an now berewritten, repla
ing value/3 from se
tion 4.2.2 to take
are of domain lookup.%% value(?Args, +Domains, +Matrix, ?Value)%% The value predi
ate with domain lookup.value([Arg℄, Domain, Row, Value) :-translate(Arg, Domain, Index),
lpfd:element(Index, Row, Value).value([Arg|Args℄, [Domain|Domains℄, Matrix, Value) :-translate(Arg, Domain, Index),lists:nth(Index, Matrix, SubMatrix),value(Args, Domains, SubMatrix, Value).4.2.6 Creating Constant RelationsSe
tion 2.7.3 introdu
ed a matrix data
onstru
tor, used to enter
onstant re-lational obje
ts via the data �le. This se
tion addresses the problem of parsingsu
h data
onstru
tors. In order to parse the data
orre
tly, the relational do-main is needed. Observe that the item M in matrix(M) is already supposed tobe an lmatrix, so it has only to be veri�ed that it's
onsistent with the domain.The representation type is inferred by a
all to get_type. Assume there is apredi
ate parse_relation(+Matrix, +Domain, -Relation) (a
tually de�nedin esra.pl). The signature of this predi
ate is:40

parse_relation(matrix(+Matrix), +Domain, -Relation) :-%% Parses a relational data
onstru
tor from the data file.%% At entry relation must be un instantiated%% True if Relation is the
orre
t value of the
onstru
tor.Now follows a step by step des
ription of what parse_relation has to do.
• De
ompose Domain. Domain = reldom(LDoms, M1, M2, RDoms)
• Uniquify all primitive domains in LDoms and RDoms, that is remove anydupli
ate values. This is ne
essary be
ause the domains may depend onrun time
onstants, unknown at
ompile time, but instantiated by now.Domains are sets and must not
ontain dupli
ates.
• Call get_type (se
tion 4.2.5) to determine the representation type.
• Che
k the dimensions of Matrix against all domains. The length of ea
hpartial list of Matrix must mat
h the length of the
orresponding domain.Fail if there is an unexpe
ted error, i.e. list expe
ted, but found somethingelse.
• Che
k the primitive elements of Matrix. They must be integers.
• Apply the
lpfd:domain/3 predi
ate to all values to make sure they are inthe
orre
t domain. The domain is 0..1 for the binary representation andthe range of the total fun
tion in the optimized
ase.
• Apply Cardinality (se
tion 4.2.4) to Matrix to ensure that no
ardinality
onstraint is violated.
• If we
ome so far unify Relation with relation(Domain, lm_rel(Matrix)).4.3 The Translation Algorithm, some PreliminariesThe rest of this major se
tion will fo
us on the mapping of esra syntax intoSICStus Prolog. This sub se
tion will treat some preliminary
on
epts, ne
es-sary to understand how the
ompiler works.4.3.1 Traversing a Parse TreeI assume that the typi
al reader has a fair knowledge of translation algorithms,but I will devote this se
tion to a brief dis
ussion of parse tree traversal forthe bene�t of the
asual reader. The parser generates a parse tree, whi
h is anabstra
t representation of the program syntax. The higher up in the tree, thebigger synta
ti
 entities will be found. The root represents the entire model,the intermediate nodes expressions and the leaves primitive values.The translation algorithm performs a
omplete traversal of the parse tree,visiting all nodes. At ea
h node a re
ursive
all is made for ea
h dire
t
hildof that node, returning some
ode
hunk or other item. The di�erent items are
ombined in some way and passed ba
k to the
aller. The parse tree is pro
essedbottom up. 41

+

* *

4 −
5 3

8 1

7

28 15

Figure 2: Parse Tree of 4 ∗ (8 − 1) + 5 ∗ 3As an example
onsider the numeri
 expression 4∗(8−1)+5∗3. its parse treeis depi
ted in Figure 2. Translation is the same as evaluation in this example.The value returned by ea
h
omputation node is labeled on the bran
h leadingto it. So at the �-� node 8-1 = 7 is
omputed and passed ba
k to its parent.Then 4*7 = 28 is
omputed at the left �*� node and passed ba
k to the root. Onthe right side of the tree 5*3 = 15 is
omputed at the right �*� node and passedba
k. Finally, at the root, the result 28+15 = 43 is
omputed. All translationalgorithms work in a similar way.4.3.2 The Conjun
tive ContextConsider the formula F1 ∧ F2 ∧ F3. If this is true then F1, F2 and F3 are alsotrue individually (by elimination of ∧). In this
ase it's enough to state ea
h ofthe F s individually as a
onstraint. Assume on the
ontrary that F ⇒ (A1∧A2)is true. Then it is not generally true that A1 is true. The reason is that the
onjun
tion A1 ∧ A2 is only
onditionally true, i.e. it's true if F is true. Inthis
ase we
annot state A1 as a
onstraint by its own but must
omputethe
onju
tion A1 ∧ A2 and reify it. The
orre
t way stating that formula is:
T ⇔ A1 ∧ A2, F ⇒ T , using an intermediate boolean variable T . In the �rst
ase I will say that the
onjun
tion is evaluated in a
onjun
tive
ontext, while42

in the se
ond
ase the impli
ation operator
uts o� the
onjun
tive
ontext,making the
ontext disjun
tive. In a
onjun
tive
ontext it's permissible torepla
e a
onjun
tion with ea
h
onjun
t separately. In a disjun
tive
ontext,every
onjun
tive formula has to be rei�ed and stored in a new variable.The
onjun
tive
ontext is implemented as an optimization. Without it,any
onjun
tion would always have to be rei�ed. The
ompiler passes the
on-jun
t �ag to the translation fun
tion whi
h is true in a
onjun
tive
ontext andotherwise false. As soon as a disjun
tive node is rea
hed in the parse tree,the
onjun
t �ag is set to false and the
onjun
tive
ontext is
ut o� for alldes
endants of this node.Consider the esra expression forall(i : 1..10) (F(i) = 5). This isjust the iterated
onjun
tion F(1) = 5 /\ ... /\F (10) = 5. In a
onjun
tive
ontext ea
h of these equalities
an be stated as is. In a disjun
tive
ontext,on the
ontrary, ea
h
onjun
t in the iteration must be stored away in a list.When the iteration is
omplete this list is passed ba
k to the an
estor node inthe parse tree and treated there.Note that the
ount operator, along with all non
onjun
tive
onne
tives(∨,⇒,⇐ and⇔),
uts o� the
onjun
tive
ontext; meaning that all expressionsnested inside a
ount operator lives in a disjun
tive
ontext.4.3.3 Communi
ating Variables between Sub Predi
atesIn order to map esra quanti�ed expressions on SICStus Prolog, it's ne
essaryto
reate sub predi
ates (see se
tion 4.5). This gives rise to a new problem,be
ause Prolog doesn't have any global variables. So how to
reate
ommuni-
ation between the same variables in di�erent sub predi
ates? One solution isto state all variables as fa
ts, but I a
tually adopted another solution: the vlistme
hanism.The
ompiler maintains a variable vlist, whi
h is the list of names of alluser supplied variables used in the model. before any sub predi
ates are
reatedthis list must be uni�ed with the name Vlist. The variable Vlist is thenpassed as an argument to all sub predi
ates. Inside the sub predi
ate the Vlistargument must again be uni�ed with vlist. This me
hanism is best illustratedby an example. In the following program fragment a sub predi
ate sub is being
alled. ...Vlist = [A, B, Potatoes, N1℄,sub(, , ,Vlist),....sub(, , ,Vlist) :-Vlist = [A, B, Potatoes, N1℄,...The uni�
ation of Vlist with [A, B, Potatoes, N1℄ makes sure that the variablesA, B, Potatoes and N1 refer to the same obje
ts in the
aller as in sub. A similarme
hanism is used for lo
al variables. The lo
al variables, a
tive in the
aller'ss
ope, are maintained in a list
alled Lo
als and passed to all sub goals withinthis s
ope. 43

Finally all domain expressions, whi
h may depend on
ompiler generatedvariables, are maintained in a list
alled Domains. When this list is uni�edwith the
orresponding argument in a sub predi
ate, all temporaries withinthe domain expression be
ome uni�ed as well. An example will
larify thisme
hanism (here the fo
us is on Domains, so Vlist and Lo
als are omitted)....Domains = [interval(1,T1), list([1, T2, 3, T3, 5℄)℄,sub(, , ,Domains),....sub(, , ,Domains) :-Domains = [interval(1,T1), list([1, T2, 3, T3, 5℄)℄,...The uni�
ation of Domains with the list expression above makes sure that T1,T2 and T3 be
ome de�ned within sub. I will often refer to the uni�
ation ofvariable and list as a pa
king instru
tion on the
aller's side and as an unpa
kinginstru
tion in the
allee.4.4 Translation of Simple ExpressionsSimple expressions are su
h ones not
ontaining quanti�ers or other looping
onstru
ts. This in
lude numeri
 and propositional expressions, appli
ations aswell as de
larations. The purpose of this se
tions is to de�ne the esra to prologmapping of these expressions.4.4.1 Compile time Evaluation of Constant ExpressionsWhile translating expressions, the
ompiler should evaluate
onstant expressionslike 4*5=20. This works very mu
h like the example in se
tion 4.3.1. Amongother bene�ts this will enable the
ompiler to evaluate all expressions dependingon de
lared and initialized
onstants. An example will
larify this pro
edure.
st G = 8dom D = {7*G, -1, G, 5}(Comment: the
ompiler evaluates D = {56, -1, 8, 5})
st B = 10+G(Comment: the
ompiler evaluates B = 18)et
It's
lear that if there are no run time initialized
onstants, the
ompiler will beable to evaluate every ground expression at
ompile time. This works be
auseI require that ea
h identi�er must be de
lared before it's used.4.4.2 Appli
ation ExpressionsThe predi
ate 'value/3', introdu
ed in se
tion 4.2, is used to apply a relation ona tuple of values. Here, only the de
larative aspe
ts of value/3 are of interest,44

the a
tual implementation details are dis
ussed in se
tion 4.2. The meaning ofvalue/3 is:let R be an n-ary relation. If value([a1, a2, .., , an], R, 1), then R(a1, a2, ..., an)holds. Similarly if value([a1, a2, .., , an], R, 0), then R(a1, a2, ..., an) is false.Let F be a total fun
tion with left arity n− 1 and right arity 1. If it's truethat value([a1, a2, ..., an−1], F, V), then F (a1, a2, ..., an−1) = V is also true.The predi
ate 'new/2', whi
h is used to
reate relational de
ision variables, isalso important. The predi
ate new(+Domain, -Relation) is true if Relationis a relation with domain Domain. Here Domain must be a fully instantiated re-lational domain expression while Relationmust be an un instantiated variable.Relation be
omes uni�ed with a new fresh relation.The subsequent se
tions will show many examples of how to use these twopredi
ates. For instan
e ea
h relation appli
ation expression maps into a
all tovalue/3.4.4.3 Numeri
 and Comparison ExpressionsThe translation of numeri
 and
omparative expressions into Prolog follows thegeneral outline of se
tion 4.3.1. At ea
h node in the parse tree, a
ouple of
ode
hunks are assembled by re
ursive
alls to the translation fun
tion and
on
atenated together with the new
ode generated at that node and �nallypassed ba
k to the
aller.In the following I will fo
us attention on the mapping between esra andProlog, so from now on the dis
ussion will be de
larative omitting the detailsof the translation pro
ess.The
ompiler will generate many so
alled temporary variables to hold in-termediary results whi
h have no names in the sour
e model. I will adopt the
onvention here to
all these variables T1, T2, T3, and so fourth. The mappingis straight forward, just repla
e ea
h esra operator with its Prolog
ounter part.In the examples I will sometimes use the (Assume ...)
onstru
tion whi
h meansthat the text within the parentheses does not parti
ipate in the mapping but
arries essential information, su
h as de
larations. The a
tual esra text whi
his mapped will be en
losed in angular bra
kets. It's assumed that ea
h expres-sion to be mapped lives in a
onjun
tive
ontext, so the �nal
onstraint will notbe rei�ed. If the result is just a numeri
 value it will be left in a temporary.Embedded appli
ation expressions will be treated as in se
tion 4.4.2. Note thatthe
lpfd operators #= et
 are used, be
ause it's de
ision variables whi
h aredealt with here. The sign �-> means �maps to�. If the reader have problemsto understand why the instru
tions are generated in a parti
ular order he isen
ouraged to draw a parse tree for himself and do the translation by hand.< X*24 = I*F(I-1) > -->T1 #= X*24,T2 #= I-1,value([T2℄, F, T3),T4 #= I*T3,T1 #= T4.< F(3*F(I*F(I))) > -->value([I℄, F, T1), 45

T2 #= I*T1,value([T2℄, F, T3),T4 #= 3*T3,value([T4℄, F, T5).(result in T5)< X*Y-1 != 0 > -->T1 #= X*Y,T2 #= T1-1,T2 #\= 0.< X*(F(X) - 1) =< G(X-1, Y) > -->value([X℄, F, T1),T2 #= X*T1,T3 #= T2-1,T4 #= X-1,value([T4, Y℄, G, T5),T3 #=< T5.4.4.4 Propositional ExpressionsPropositional expressions are almost as straight forward to map, but are slightly
ompli
ated by the
onjun
tive
ontext.< F => X=5 > -->X #= 5 #<=> T1,F #=> T1.The sub expression X=5 is evaluated in disjun
tive
ontext be
ause of the im-pli
ation operator, so the result is rei�ed into T1. Then the impli
ation istranslated in
onjun
tive
ontext (whi
h is assumed).< false => R(I,J) >value([I,J℄, R, T1),0 #=> T1< BIBD(v1,j) /\ BIBD(v2,j) > -->value([v1, j℄, BIBD, 1),value([v2, j℄, BIBD, 1),4.4.5 De
larationsDe
laration
auses two kinds of e�e
ts. Firstly a symbol table entry is
reated forevery de
lared identi�er. The translator uses this information for type
he
kingpurposes. Se
ondly
ode may be generated by the de
laration for various reasons.When a primitive de
ision variable is de
lared its domain must be madeknown to
lpfd. This produ
es a line of
ode like X in 1..10. Constantsmay be initialized in line by an expression that may
ontain run time
onstants.46

Su
h expressions has to be evaluated and temporaries must be
reated to holdtheir values. Sometimes a domain de
laration also
ontain expressions whi
hmust be evaluated resulting in new temporaries.When a relational de
ision variable is de
lared, a
all to new/2 must begenerated (se
tion 4.4.2) to
reate the relation. Constant de
larations will notbe
onsidered here, see se
tion 4.7.1 instead. Re
all that (Assume ...) in themapping syntax means that the thing within parentheses is not part of the esraexpression being mapped, but is needed as
ontextual information.< var X : 0..10 > -->X in 0..10< var X : {1, 7, 4} > -->X in {1, 7, 4}(Assume G, R are integer run time
onstants)< var X : 1..G*R > -->T1 #= G*R,X in 1..T1(Assume A, B, C and E are integer run time
onstants)< dom D = {2, 3-A, B, 4*C, 55, 9-E} > -->T1 #= 3-A,T2 #= 4*C,T3 #= 9-E.(Comment: The domain D be
omes known by the
ompiler,no additional
ode produ
ed for this purpose! The variablesT1, T2 and T3
ontains the results of
omputations of 3-A,4*C and 9-E. All referen
es to D in the following are literallysubstituted by the term `list([2, T1, B, T2, 55, T3℄)' by the
ompiler. Therefore the T variables need to be remembered. TheD identifier binding is not stored in the generated
ode. This isa design de
ision.)< var F : (1..10 [#℄ 1..5) [->℄ nat > -->new(reldom([interval(1,10), interval(1,5)℄,1..1,0..sup,[interval(0, sup)℄),F).(Comment: A total fun
tion is
reated in thede
lared domain.)< var S : 1..10[5℄ > -->new(reldom([interval(1,10)℄,{5},nil,[℄),S). 47

In the last example a set domain expression is
onstru
ted, see se
tion 4.1.3.4.5 Translation of Quanti�ed Expressions4.5.1 Loops in PrologThe quanti�ed expressions are not so strait forward to map into Prolog as thestu� we have treated so far. The reason is that it's ne
essary to loop over thedomains of ea
h lo
al variable. The quanti�ers and sums are really the esra
ounter part of loops in ordinary programming languages. But Prolog doesn'tsupport loops, only re
ursion, so I have to
reate several re
ursive predi
ates,in fa
t one for ea
h lo
al variable.Before treating this problem in detail, I want to give examples of some simpleProlog looping te
hniques. The �rst example is a double loop over two intervals,the Prolog equivalent to a double for loop. The loop body simply prints thevalues of the lo
al variables at ea
h turn.%% A double for loop in Prolog.%% Call with loop1(Ibegin, Jbegin, Max)%% Printing all pairs i,j with Ibegin =< I =< Max and%% Jbegin =< j =< Maxloop1(I, J, Max) :-(I =< Max ->Inew is I+1,loop2(I, J, Max),loop1(Inew, J, Max); true).loop2(I, J, Max) :-(J =< Max ->Jnew is J+1,format(``~d, ~d~n'', [I,J℄),loop2(I, Jnew, Max); true).This program uses iteration over the natural numbers. It's also possible toiterate over lists in a similar way. Suppose D1 and D2 are two lists. Thefollowing example loops over the entire �
artesian produ
t� of D1 and D2 andprints all pairs.%% D1 and D2 are integer lists%% Print the ``
artesian produ
t'' of D1 and D2loop1([℄, _).loop1([A1 | A1s℄, D2) :-loop2(A1, D2),loop1(A1s, D2).loop2(_, [℄). 48

loop2(A1, [A2 | A2s℄) :-format("~d, ~d~n", [A1, A2℄),loop2(A1, A2s).Primitive domains are either intervals or lists. Be
ause it's slightly more
on-venient to iterate over lists I de
ided to always use lists when iterating overprimitive domains. Therefore, I
onvert every interval whi
h appears in alo
al variable spe
i�er to a list, before starting the iteration. The predi
atedomain_to_list/2 makes that tri
k (see
ode in esra.pl). The signature is%% domain_to_list(+Domain, -List) :-%% Domain is a domain expression, whi
h must be ground and%% finite.%% List is a list, whi
h must be uninstantiated at entry.%% True if List
ontains the elements of Domain.4.5.2 Iteration S
hemasThe sub predi
ates, generated by the
ompiler, follow �xed patterns. I
allthese patterns iteration s
hemas. Note that there is exa
tly one predi
ate forea
h lo
al variable and ea
h predi
ate has two
lauses, one base
lause and onere
ursive
lause. In this sub se
tion I will use abstra
t pseudo syntax names,su
h as as loop1, loop2, loopi−1, loopn, for all sub predi
ates.There are two types of iteration s
hemas, the blank s
hema and the s
hemawith
olle
tion. In the blank s
hema, the main body of the loop just posts a
onstraint, no result is
omputed. The blank s
hema is used in
onjun
tive
ontext. In the s
hema with
olle
tion, on the other hand, no
onstraint isposted dire
tly, instead the
onstraint is rei�ed and added to an a

umulationlist at ea
h turn of the loop. The a

umulated list is then passed ba
k to the
aller. This s
hema
olle
ts the result of a
omputation. Both s
hemas exhibita strong similarity to the looping examples of se
tion 4.5.1.Suppose the lo
al variables are A1, A2, . . . , An, belonging to the primitivedomains D1, D2, . . . , Dn, where one or more of the Di may be identi
al. Therewill be one predi
ate, named loopi, asso
iated with ea
h lo
al variable Ai. Therewill also be an initial
all to loop1 starting the n fold iteration. Only loopn will
ompute anything. The whole purpose of loop1, loop2, . . ., and loopn−1, is tostart the next sub iteration. In the s
hema de�nitions whi
h follow, I will repla
ethe arguments Vlist, Lo
als and Domains of se
tion 4.3.3 with an ellipsis, in theinterest of
larity. Suppose also that the domains Di already are lists.Consider the blank s
hema �rst. Both base
lause and re
ursive
lause aregiven for ea
h predi
ate. In the base
ase, the empty list, is supposed to mat
hthe re
ursive argument in the other
lause.
Definition: Blank SchemaInitial goal: loop1(D1, D2, . . . , Dn, . . .)

loop1([℄,_, ...,, ...). 49

loop1([A1|A1s℄, A2, ..., An, ...) : −
loop2(A1, D2, ..., Dn, ...),
loop1(A1s, D2, ..., Dn, ...).

loop2(_, [℄,_, ..., ...).
loop2(_, [A2|A2s℄, A3, ..., An, ...) : −

loop3(A1, A2, D3, ..., Dn, ...),
loop2(A1, A2s, D3, ..., Dn, ...)....

loopn(_,_, ..., [℄, ...).
loopn(_, [An|Ans℄, ...) : −(Do something here),

loop3(A1, A2, ..., An−1, Ans, ...).The s
hema with
olle
tion is slightly more
ompli
ated. There are three
om-piler generated variables, always named X, Y and Z, used as a

umulators tos
ope up the
omputed result. X,Y is the primary a

umulator pair, but Z isused for intermediate lists.
Definition: S
hema With Colle
tionInitial goal: loop1(D1, D2, . . . , Dn, [℄, Res, . . .)(Comment: At exit, Res is the list of
omputed results, one result per turn)
loop1([℄,_, ..., X, X, ...).
loop1([A1|A1s℄, D2, ..., Dn, X, Y, ...) : −

loop2(A1, D2, ..., Dn, X, Z, ...),
loop1(A1s, D2, ..., Dn, Z, Y, ...).

loop2(_, [℄,_, ..., X, X, ...).
loop2(A1, [A2|A2s℄, D3, ..., Dn, X, Y, ...) : −

loop3(A1, A2, D3, ..., Dn, X, Z, ...),
loop2(A1, A2s, D3, ..., Dn, Z, Y, ...)....

loopn(_,_, ..., [℄, X, X, ...).
loopn(_, [An|Ans℄, X, Y, ...) : −(Compute something here => T),

loopn(A1, A2, ..., An−1, Ans, [T |X℄, ...).

50

4.5.3 The Forall Quanti�erConsider the expressionforall (Lo
alVariables | Filter) (Formula)The �rst to do is to rewrite this expression toforall (Lo
alVariables) (Filter => Formula),taking
are of the �lter
lause automati
ally. This would be overkill if Filteris ground be
ause a simple Prolog
onditional would su�
e. But in the interestof simpli
ity I always make this transformation in my
ompiler.The next step is to generate an iteration s
hema for Lo
alVariables and�ll it with the translation of Formula. If the s
hema is
olle
ting, the result isa list of boolean values, whi
h have to be rei�ed. Suppose that List
ontainsthe results of the
omputation. To reify List, use the
lpfd sum
onstraint.length(List, N),
lpfd:sum(List, #=, Sum),Sum #= N.This makes the entire forall expression true, be
ause this really is equivalentto putting all elements of List equal to 1. If the expression is
omputed in adisjun
tive
ontext, however, the last line above have to be repla
ed by Sum #=N #<=> Result, to reify the expression instead.4.5.4 The Count Quanti�erConsider the expression
ount (Multipli
ity) (Lo
alVariables | Formula)The �rst thing to do is to generate a s
hema for Lo
alVariables. For the
ountquanti�er, the s
hema must always be
olle
ting, be
ause we
annot handle the
ounting
onstraint before we have seen all values to be
ounted. Therefore the
onjun
tive
ontext has to be
ut o� before the Formula is translated. Supposethat List
ontains the results of the
omputation. To enfor
e the
ounting
onstraint on List, use the
lpfd
ount
onstraint.
lpfd:
ount(1, List, #=, Count),Count in Multipli
ityJust
ounting the number of true values in List and making sure it's in Multi-pli
ity. This
an be rei�ed if the last line above is repla
e byCount in Multipli
ity #<=> Result51

4.5.5 The Sum OperatorConsider the expressionsum (Lo
alVariables | Filter) (Expression)The �rst to do is to rewrite this expression tosum (Lo
alVariables) (Filter*Formula),Here Filter must be
omputed in a disjun
tive
ontext, enfor
ing rei�
ation.Then Filter fun
tions as a binary weight fa
tor, to de
ide whi
h terms in thesum to omit and whi
h ones to in
lude, in the �nal result. Then a s
hema is
reated for Lo
alVariables. The s
hema for the sum operator is always
olle
t-ing, be
ause all values have to be
omputed before the sum
an be
omputed.Assume that List
ontains the results of the
omputation. To
ompute the sumof List, use the
lpfd sum
onstraint.
lpfd:sum(List, #=, Result)The resulting sum value is now stored in Result.4.5.6 ExamplesThe se
tion is
on
luded with several examples of esra to Prolog mappings. Thevlist me
hanism is assumed, but I'm not interested here in the a
tual values ofthe lists, so I repla
e them by ellipses and ignores how the variables in the subpredi
ates get their values. See se
tion 4.8 for an example of a
omplete vlistme
hanism. Also note that the domains are de
lared as temporary variablesbeginning with 'T' in the sub predi
ates. This is always done. From now on,the
onvention to name sub predi
ates after the same base name as the modelitself is adopted. For instan
e if the model's name is `model', the sub predi
atesare named model1, model2 et
.(Assume dom D = 1..3)(Assume model name is 'test')< forall(I&J : D) (I*J < 100) > -->...(Comment: The blank s
hema is used)test1([1,2,3℄, [1,2,3℄, Vlist, Lo
als, Domains),...test1([℄, _, _, _, _).test1([I|Is℄, T2, Vlist, Lo
als, Domains):-test2(I, T2, Vlist, Lo
als, Domains),test1(Is, T2, Vlist, Lo
als, Domains).test2(_, [℄, _, _, _).test2(I, [J|Js℄, Vlist, Lo
als, Domains):-Vlist = ...,Lo
als = ...,Domains = ..., 52

T3 #= I*J,T3 #< 100,test2(I, Js, Vlist, Lo
als, Domains).(Assume model name is 'test')<
ount(20 (I : 1..3 | F(I) = I) > -->...(Comment: Colle
ting S
hema Used)test1(T1, [℄,Results, Vlist, Lo
als, Domains),
lpfd:
ount(1, Results, #=, Count),Count in {2},...test1([℄, X,X, _, _, _).test1([I|Is℄, X,Y, Vlist, Lo
als, Domains):-Vlist = ...,Lo
als = ...,Domains = ...,value([I℄, F, T2),T2 #= I #<=> T3,test1(Is, [T3|X℄, Y, Vlist, Lo
als, Domains).(Assume model name is 'summing')< S = sum(I : 1..10) (I*I - 1) > -->...(Comment: Colle
ting S
hema Used)summing1([1,2,3,4,5,6,7,8,9,10℄, [℄,Xs, Vlist, Lo
als, Domains),
lpfd:sum(Xs, #=, Sum)...summing1([℄, X,X, _, _, _).summing1([_I|_Is℄, X,Y, Vlist, Lo
als, Domains):-Vlist = ...,Lo
als = ...Domains = ...,T1 #= I*I,T2 #= T1-1,summing1(Is, [T2|X℄,Y, Vlist, Lo
als, Domains).4.6 Translation of the Obje
tiveWhen all
onstraints have been posted the problem have to be submitted to thesolver for a solution. This is the obje
tive of the model. There are two kindsof obje
tives, solve and optimise respe
tively. Consider the obje
tive solve<formula>. After <formula> has been translated, a
all to the library predi
ateall_variables/2, de�ned in esra.pl is generated. The signature is%% all_variables(+ESRAVariables, -CLPFDVariables)%% ESRAVariables is a list of all ESRA de
ision variables%% True if CLPFDVariables is the list of all CLPFD de
ision variables,53

%% whi
h has been allo
ated.The lines of
ode that invokes the solver to solve a CSP, are always (if we assumethat V1, V2, ..., Vn are all de
ision variables in the esra model).esra:all_variables([V1, V2, ..., Vn℄, AllVariables),
lpfd:labeling([ff
℄, AllVariables)The ellipsis shall be �guratively interpreted here, in an a
tual generated programn is always known, so the
ompiler generates the list of known names.If we are dealing with a COP instead, and the obje
tive fun
tion is boundto the
lpfd variable T, then the
orresponding Prolog lines areesra:all_variables([V1, V2, ..., Vn℄, AllVariables),
lpfd:labeling([ff
, Optimize℄, AllVariables)Here Optimize is one of the atoms maximize or minimize. Note the option[ff
℄ sent to the labeling/2 predi
ate. This means ��rst failed with the most
onstrained heuristi
�. This leftmost variable with the smallest domain is always
hosen �rst breaking ties by (a) sele
ting the variable that has the most
on-straints suspended on it and (b) sele
ting the leftmost one. This default
an beoverridden by
hanging the
ompiler variable `options' de�ned in generate.ml.4.7 Input and Output4.7.1 The Data File, and Run Time ConstantsRun time
onstants have to be initialized by the data �le. The data �le a
-tually is a Prolog program, so ea
h data
onstru
tor is a valid Prolog term(se
tion 2.7). if the
ompiler en
ounters run time
onstants it generates a
allto the predi
ate read_file/2, de�ned in esra.pl, whi
h reads the �le and storesea
h data
onstru
tor in a di
tionary named Unknowns. The signature is%% read_file(+FileName, -Unknowns)%% FileName is an atom, the name of the data file.%% Unknown must be un instantiated when this predi
ate%% is
alled.%% Reads all run time
onstants from the file FileName and%% stores them in the di
tionary Unknowns.Later, ea
h run time
onstant is retrieved from Unknowns by a
all to find_variable/4,whi
h is also de�ned in esra.pl. This predi
ate has the signature%% find_variable(+Key, +Unknowns, -Value, +Domain)%% True if Key is bound to Value in Unknowns.%% Key is an atom, the ESRA name of the
onstant.%% Unknowns is the di
tionary
ontaining all run time%%
onstants. 54

%% Domain is the domain of the
onstant.%% Value is the name of the
onstant.When find_variable en
ounters a relational data
onstru
tor it
alls parse_relation/3of se
tion 4.2.6 to
onstru
t the obje
t. Now I give some examples of the map-ping of esra
onstant de
larations to Prolog.<
st K : nat > -->find_variable('K', Unknowns, K, interval(0, sup))<
st Array : 1..10 [->℄ nat > -->find_variable('Array', Unknowns, Array,reldom([interval(1,10)℄,{1},0..sup,[interval(0,sup)℄))<
st Set : 1..10 [{2,5}℄ > -->find_variable('Set', Unknowns, Set,reldom([interval(1,10)℄,{2,5},nil,[℄))(Comment: This is a set
onstant)4.7.2 Printing and ResultsAfter a solution to the problem has been found, the predi
ate make_results/2(de�ned in esra.pl) is
alled to
reate a di
tionary
ontaining all de
ision vari-ables of the problem. This di
tionary is the result parameter. The signature ofmake_results/2 is%% make_results(+List, -Result)%% List is a D-list of pairs Key-Value, one for ea
h de
ision%% variable of the problem.%% Result must be un instantiated by entry.%% True if Result is a di
tionary of all (Key,Value) pairs.%% The variable Result holds the result parameter on exit.The next step is to
all print_results/2 (de�ned in esra.pl), to print all re-sulting de
ision variables on the s
reen a

ording to a default printing format.The signature is%% print_result(+Result)%% Result is a D-list of pairs Key-Value, one for ea
h%% de
ision variable. 55

%% Prints the results of the problem in a default format%% on the s
reen.The result parameter
ontains all de
ision variables of the problem. The user
an extra
t this information by using the result API, whi
h is des
ribed inse
tion 5.4.4.8 The Bran
h TreeBefore presenting the �nal example of a real world translation, there's a ne
-essary subtlety to
onsider. When translating a quanti�ed expression a newpredi
ate is
reated. The program text of this predi
ate is to inserted later inthe
ode stream. If we are writing instru
tion to a �le one by one, we are gettinginto problems. The solution is that the
ompiler maintains a data representa-tion of the program whi
h I
all a bran
h tree in memory during the translation.Only when the translation is
omplete, is the bran
h tree
onverted into the�nal program. To explain the bran
h tree,
onsider the following esra
ode
hunkN = sum(I : 1..5) (I*I) /\forall(I:1..5) (I < 10).A bran
h tree for this
ode
hunk is(Assume: program name is ``test'')(Comment: Vlist me
hanism takes
are of N)(Comment: Domains and Lo
als uninteresting now, repla
e by ellipsis.)Vlist = [N℄,test1([1,2,3,4,5℄, [℄,T1, ...),Bran
h(test1([℄, X,X, _, _, _).test1([I|Is℄, X,Y, Vlist, Lo
als, Domains) :-Vlist = [N℄,Lo
als = ...,Domains = ...,T3 #= I*I,test1(Is, [T3|X℄,Y, Vlist, Lo
als, Domains).),
lpfd:sum(T1, #=, T2),N #= T2,test2([1,2,3,4,5℄, ...),Bran
h(test2([℄, _, _, _).test2([I|Is℄, Vlist, Lo
als, Domains) :-Vlist = [N℄,Lo
als = ...,Domains = ...,I #< 10,test2(Is, Vlist, Lo
als, Domains)56

).When the entire model has been translated, the
ompiler
onverts the bran
htree into a �nal Prolog program. First all instru
tions not o

urring in anybran
h are written out, the so
alled stem of the bran
h tree. Then all bran
hesare written out re
ursively. The result is a Prolog program with several predi-
ates.4.9 A Complete ExampleNow it's time to present a major example of a full translation of an esra model.I have
hosen the well known warehouse lo
ation problem, see se
tion 3.6 for ade�nition. This model di�ers from the one of se
tion 3.6 be
ause I think it'sbetter suited to illustrate the subtleties of translation than the other model, butit models the same CSP.4.9.1 PreliminariesBefore the example
an be understood, there are some preliminary notions thatmust be explained, whi
h have not been en
ountered yet.The name mapping. The
ompiler generates variables with names like Vlist,Domains, AllVariables, X, Y and Z. How
an we assure that these variablesdon't
lash with user supplied ones? There's also the problem that Prologdoesn't allow variable names to begin with lower
ase letters, while esradoes so. The solution is to map the names to an internal format. Themapping is very simple; just prepend an unders
ore to the name. Thus,the esra name foo maps to the prolog name _foo, while Bar maps to_Bar.The
omputer generated �temporary variables� have so far been
alled T1,T2 et
. We now rename these variables to _1, _2 et
, to avoid
lashingwith user variables beginning with T.Module pre�xes. The familiar predi
ates value/3, new/2 et
, have a
quired amodule pre�x, to show that they belong to one of the esra library modules:esra.pl and lmatrix.pl. These modules
ontain all ne
essary Prolog
odeto support the generated program at run time.On
e wrappers. Several predi
ates are wrapped into
alls of on
e/1. Thisis to suppress ba
ktra
king. A goal
alled by on
e(Goal) is only invokedon
e. When ba
ktra
king o

urs, Goal doesn't leave any
hoi
e points onthe sta
k. Without this pre
aution, the program often ba
ktra
ks whenit's not supposed to,
ausing various problems.Files. There must be several �les to run the model. Firstly, the generatedprogram itself, named model.pl, if model is the base name of the model.Se
ondly, the data �le, whi
h has the name model.in.pl. Both these �lesare Prolog programs. Thirdly, the library �les esra.pl and lmatrix.pl,must be in the dire
tory indi
ated by the module de
larations at the headof the generated program. 57

4.9.2 Stepping Through the ExampleThe example model is named ware, the warehouse lo
ation problem. The sour
e�le is ware.pl and the data �le ware.in.pl. The following esra sour
e modelhas been line numbered to fa
ilitate referen
ing.1
st NStores : nat2
st NWareHouses : nat3 dom Stores = 1..NStores4 dom Warehouses = 1..NWareHouses5
st Capa
ity : Warehouses [->℄ nat6
st SupplyCost : (Stores [#℄ Warehouses) [->℄ nat7
st Maintenan
eCost : nat8 var Supplies : Warehouses [#1℄ Stores9 minimise10 Maintenan
eCost *11 (sum(W : Warehouses |
ount(1..sup) (12 S : Stores | Supplies(W,S))) (1)13)14 +15 sum(W : Warehouses, S : Stores | Supplies(W,S)) (16 SupplyCost(S,W)17)18 su
h that19 (forall (W : Warehouses)20 (
ount (0..Capa
ity(W))21 (S : Stores | Supplies(W,S))))And here is the translation, ware.pl, also line numbered.1 :- use_module(library(
lpfd)).2 :- use_module(library(lists)).3 :- use_module('lmatrix.pl').4 :- use_module('esra.pl').5 ware(Results):-6 esra:reset_
ounters,7 esra:read_file('ware.in.pl', Unknowns),8 esra:find_variable('NStores', Unknowns, _NStores,interval(0, sup)),9 esra:find_variable('Maintenan
eCost', Unknowns,10 Maintenan
eCost, interval(0, sup)),11 esra:find_variable('NWareHouses', Unknowns, _NWareHouses,interval(0, sup)),12 lmatrix:new(reldom([interval(1, _NWareHouses)℄,0..sup, 1..1,[interval(1, _NStores)℄),_Supplies),58

13 esra:find_variable('SupplyCost', Unknowns, _SupplyCost,reldom([interval(1, _NStores),interval(1, _NWareHouses)℄,{1}, 0..sup,[interval(0, sup)℄)),14 esra:find_variable('Capa
ity', Unknowns, _Capa
ity,reldom([interval(1, _NWareHouses)℄,{1}, 0..sup,[interval(0, sup)℄)),15 Vlist = [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies,_SupplyCost, _Capa
ity℄,16 Domains = [interval(1, _NWareHouses), interval(1, _NStores)℄,17 esra:domain_to_list(interval(1, _NWareHouses), _8),18 on
e(ware3(_8, [℄,_14, Vlist, [℄, Domains)),19 sum(_14, #=, _15),20 _16 #= _Maintenan
eCost*_15,21 esra:domain_to_list(interval(1, _NWareHouses), _1),22 esra:domain_to_list(interval(1, _NStores), _2),23 on
e(ware1(_1, _2, [℄,_6, Vlist, [℄, Domains)),24 sum(_6, #=, _7),25 _17 #= _16+_7,26 esra:domain_to_list(interval(1, _NWareHouses), _18),27 on
e(ware5(_18, Vlist, [℄, Domains)),28 esra:all_variables([_Supplies℄, AllVariables),29 esra:report_postings,30 labeling([down, minimize(_17)℄, AllVariables),31 esra:report_solution(optimum-_17),32 esra:make_results(['Supplies'-_Supplies℄, Results),33 esra:print_results(['Supplies'-_Supplies℄).34 ware5([℄, _, _, _).35 ware5([_W|_Ws℄, Vlist, Lo
als, Domains):-36 [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies, _SupplyCost,_Capa
ity℄ = Vlist,37 [℄ = Lo
als,38 [interval(1, _NWareHouses), interval(1, _NStores)℄ = Domains,39 lmatrix:value([_W℄, _Capa
ity, _19),40 esra:domain_to_list(interval(1, _NStores), _20),41 on
e(ware6(_20, [℄,_22, Vlist, [_W℄, Domains)),42 esra:set_
ounts(_22, 0.._19),43 on
e(ware5(_Ws, Vlist, Lo
als, Domains)).44 ware6([℄, X,X, _, _, _).45 ware6([_S|_Ss℄, X,Y, Vlist, Lo
als, Domains):-46 [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies, _SupplyCost,_Capa
ity℄ = Vlist,47 [_W℄ = Lo
als,48 [interval(1, _NWareHouses), interval(1, _NStores)℄ = Domains,49 lmatrix:value([_W, _S℄, _Supplies, _21),59

50 on
e(ware6(_Ss, [_21|X℄, Y, Vlist, Lo
als, Domains)).51 ware1([℄, _, X,X, _, _, _).52 ware1([_W|_Ws℄, _2, X,Y, Vlist, Lo
als, Domains):-53 on
e(ware2(_W, _2, X,Z, Vlist, Lo
als, Domains)),54 on
e(ware1(_Ws, _2, Z,Y, Vlist, Lo
als, Domains)).55 ware2(_, [℄, X,X, _, _, _).56 ware2(_W, [_S|_Ss℄, X,Y, Vlist, Lo
als, Domains):-57 [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies, _SupplyCost,58 _Capa
ity℄ = Vlist,59 [℄ = Lo
als,60 [interval(1, _NWareHouses), interval(1, _NStores)℄ = Domains,61 lmatrix:value([_S, _W℄, _SupplyCost, _4),62 lmatrix:value([_W, _S℄, _Supplies, _3),63 _5 #= _4*_3,64 on
e(ware2(_W, _Ss, [_5|X℄, Y, Vlist, Lo
als, Domains)).65 ware3([℄, X,X, _, _, _).66 ware3([_W|_Ws℄, X,Y, Vlist, Lo
als, Domains):-67 [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies, _SupplyCost,_Capa
ity℄ = Vlist,68 [℄ = Lo
als,69 [interval(1, _NWareHouses), interval(1, _NStores)℄ = Domains,70 esra:domain_to_list(interval(1, _NStores), _9),71 on
e(ware4(_9, [℄,_11, Vlist, [_W℄, Domains)),72 esra:set_
ounts_and_reify(_11, 1..sup, _12),73 _13 #= 1*_12,74 on
e(ware3(_Ws, [_13|X℄, Y, Vlist, Lo
als, Domains)).75 ware4([℄, X,X, _, _, _).76 ware4([_S|_Ss℄, X,Y, Vlist, Lo
als, Domains):-77 [_NStores, _Maintenan
eCost, _NWareHouses, _Supplies, _SupplyCost,_Capa
ity℄ = Vlist,78 [_W℄ = Lo
als,79 [interval(1, _NWareHouses), interval(1, _NStores)℄ = Domains,80 lmatrix:value([_W, _S℄, _Supplies, _10),81 on
e(ware4(_Ss, [_10|X℄, Y, Vlist, Lo
als, Domains)).The
onstru
tion in lines 11�12 of the sour
e model requires an explanation.Part of the explanation is already given in se
tion 2.1.2. The sum expressionevaluates to the
ardinality of the set{W : Warehouses |
ount(1..sup)(S : Stores | Supplies(W,S))}.60

This
ardinality is the number of open warehouses, so we get the total �xed
ostby multiplying this number with the �xed
ost per warehouse (Maintenan
eCost).Now I'm stepping through the example line by line to explain how it works.Line 1�4Module de
larations. Open modules
lpfd, lists, lmatrix and esra. The �rst twoare system modules, while the latter belong to the esra library. If the modulede
larations of the library points to another dire
tory, these �les should residethere instead of in the
urrent dire
tory. A variable in the
ompiler de
ides towhi
h dire
tory the library �les belong.Line 5The main goal, whi
h starts the generated program. Results is the result pa-rameter.Line 6Reset the
lpfd statisti
s
ounters to zero.Line 7Read the data �le ware.in.pl. Store ea
h run time
onstant in a Key-Valuedi
tionary named Unknowns.Line 8�11Lookup the de
lared run time
onstants of the program: NStores, Maintenan
eCostand NWarehouses, in the di
tionary. These
onstants are integer valued as seenby the domains in the
alls to find_variable. These lines takes
are of thelines 1�2 and 7 in the sour
e model. Note that the domains de
lared in thesour
e are passed as arguments to find_variable as well as the variable names.Line 12Create the variable Supplies (line 8 in the sour
e). Note how var Supplies :Warehouses [#1℄ Stores translates to a
all to lmatrix:new/2, de�ning theprolog variable _Supplies.Line 13�14More
alls to find_variable taking
are of lines 5�6 in the model. Now _Ca-pa
ity and _SupplyCost are instantiated. These are relational
onstants. Rela-tional
onstants are looked up after all de
larations have been pro
essed by the
ompiler, and all domains are known.Line 15�16Now when all de
larations have been pro
essed by the
ompiler, the variablesVlist and Domains
an be uni�ed with the list of all variable names and the listof all de
lared domain expressions respe
tively. This is the vlist me
hanism.Line 17A
all to domain_to_list/2
onverts the domain expression interval(1, _NWareHouses)into a Prolog list and stores this list in _8. This step is a preparation for
om-puting the �rst sum (sour
e lines 11�13) in the obje
tive fun
tion of the model.It's the Warehouses domain whi
h has to be
onverted to a list.61

Line 18The sub predi
ate ware3 is invoked in the
olle
ting s
hema to
ompute the sumsum(W:Warehouses |
ount(1..sup) (S : Stores|Supplies(W,S))) (1). Thissum is a
tually a weight fa
tor measuring the
ardinality of the set of stores a
ertain warehouse supplies. Only warehouses supplying some store have a main-tenan
e
ost. The result is
olle
ted in _14.Line 19�20The sum of the list _14 is
omputed and multiplied with the maintenan
e
ost.The result is in _16. Now we have
omputed the �rst term of the obje
tivefun
tion, the �xed
ost.Line 21�22More domain-list
onversions. The domains Warehouses and Stores are
on-verted to the lists _1 and _2 respe
tively. This is preparation for the se
ondsum
omputation.Line 23The sub predi
ate ware1
omputes the se
ond sum of the obje
tive fun
tion inthe
olle
ting s
hema. The
olle
t is in _14. Note that Lo
als is [℄, be
ause nolo
als are a
tive in the
urrent s
ope, the main predi
ate.Line 24The
olle
t is summed, using the
lpfd sum
onstraint. result in _7.Line 25The two parts of the obje
tive fun
tion are summed, result in _17.Line 26�27Invoking sub predi
ate ware5 to
ompute the forall expression in the su
h that
lause of the model in the blank s
hema.Line 28The esra:all_variables/2 predi
ate takes all de
ision variables of the modeland �attens them to get all
lpfd elementary de
ision variables, whi
h hasbeen allo
ated. They are
olle
ted into the Prolog list AllVariables.Line 29Code to print out some statisti
s, like the number of posted
onstraints et
.Line 30Invoking the
lpfd solver to minimize the value in _17 with respe
t to all
on-straints posted so far.Line 31 Report that a solution has been found along with statisti
s su
h thatthe number of ba
ktra
ks and the solving time.Line 32Call make_results/2 to
reate the result parameter.62

Line 33Call print_solution/2 to print the de
ision variables in a default format.Now the main bran
h of the program has been explained. The bran
h startedby ware3 is treated nest. It's the bran
h used to
ompute the �rst sum in theobje
tive fun
tion. Lines 11�12 in the sour
e model.Line 65�66This is just the
lause heads of the s
hema with
olle
tion over the lo
al variablespe
i�er (W : Warehouses). The
olle
t will be gathered in Y. The predi
ateware3 is the root of the �rst bran
h of the program. The predi
ate is
alled inline 18.Line 67�69The vlist me
hanism.Line 70�71Calling ware4 to
ompute the nested
ount expression in the s
hema with
ol-le
tion. The
olle
t is in the list _11. Note that Lo
als is [_W℄, be
ause thelo
al variable _W is now in the outer s
ope. this
all starts a sub bran
h of ware3.Line 72The lineesra:set_
ounts_and_reify(_11, 1..sup, _12)
alls a library predi
ate, taking
are of the
ounting
ondition of lines 11�12 inthe sour
e model. We reify the boolean variable _12 with the statement thatthe number of o

urren
es of 1 in _11 belongs to 1..sup. E�e
tively we aremeasuring the
ardinality of the set{S : Stores | Supplies(W,S)}.Line 73This line
omputes the expression under the sum sign of sour
e lines 11�12.The fa
tor _11, the result of the
ount, is used as a weight fa
tor
ontrolling ifthe
urrent term should
ontribute to the sum or not. The a
tual term is �1�.This
onstru
tion is a way to simulate the
ard/1 esra operator, whi
h is notsupported by this implementation.Line 74The re
ursive
all to ware3, pro
essing the rest of the domain. The
omputedvalue is pushed on the
olle
t X.Line 75�76Predi
ate ware4 uses the s
hema with
olle
tion to
ompute the body of the
ount expression in sour
e lines 11�12. The
olle
t is gathered in Y.63

Line 77�79The vlist me
hanism. Note that the lo
al variable _W is not in the
urrent s
ope,so it must be inherited via the vlist me
hanism.Line 80Using value to
ompute Supplies(W,S).Line 81Re
ursive
all to ware4, taking
are of the rest of the domain. The
olle
t ispushed onto X.The �rst sum in the obje
tive fun
tion is now explained. The se
ond sumis
omputed by ware1.Lines 51�52Predi
ate ware1 starts the se
ond major bran
h of the program. The goal ofthis bran
h is to
ompute the sumsum(W : Warehouses, S : Stores | Supplies(W,S)) (SupplyCost(S,W))The s
hema with
olle
tion is used, with the
olle
t in Y as usual. This predi-
ate is responsible for the lo
al variable W.Line 53This
all to ware2 starts an iteration over S, the se
ond level of the two folditeration over (W:Warehouses, S:Stores). The partial
olle
t is gathered in Z(in the s
hema with
olle
tion, intermediate
olle
t ve
tors are always using theZ variable).Line 54The re
ursive
all to ware1 is taking
are of the rest of the warehouses. Thepartial
olle
t Z,
ontaining
omputed values for the
urrent value of W and allpossible S, is used as input here. The �nal
olle
t is gathered in Y.Lines 55�56Predi
ate ware2
omputes the body of the se
ond sum in the obje
tive fun
tion.It uses the s
hema with
olle
tion, with the
olle
t in Y.Line 57�60The vlist me
hanism. Note that Lo
als is empty; there are no lo
als in the outers
ope here.Line 61�62These lines
ompute Supplies(W,S) and SupplyCost(S,W) respe
tively.Line 63The �ltering fa
tor Supplies(W,S) is multiplied by SupplyCost(S,W). The resultis in _5. 64

Line 64The re
ursive
all to ware2. The resulting value, _5, is pushed onto the
olle
tve
tor X.All that remains now is to explain the expression in the su
h that
lause ofthe model, lines 19�21. The bran
h starting with ware5 takes
are of that ex-pression.Line 34�35Predi
ate ware5 starts the third bran
h of the program, using the blank s
hemaover (W : Warehouses). It enfor
es the
onstraintforall(W : Warehouses) (
ount(0..Capa
ity(W))(S : Stores | Supplies(W,S))).Line 36�38The vlist me
hanism.Line 39Computing Capa
ity(W), result in _19.Line 40�41Invoking ware6 to
ompute
ount(0..Capa
ity(W)) (S : Stores | Supplies(W,S)).The
olle
t is in _22.Line 42Calling a library predi
ate to set the
ounting
onstraint on _22. The number ofo

urren
es of �1s� in _22 belongs to the interval 1.._19. Here _19 is the resultof the
omputation Capa
ity(W).Line 43Re
ursive
all to ware5, taking
are of the rest of the warehouses.Line 44�45The predi
ate ware6 uses a s
hema with
olle
tion over (S : Stores),
omputingthe expression Supplies(W,S). The
olle
t goes into Y.Line 46�48The vlist me
hanism. Note that _W belongs to an outer s
ope, so it has to bepassed via Lo
als.Line 49 65

Computing the value of Supplies(W,S). Result goes into _21.Line 50Re
ursive
all to ware6 to take
are of the rest of the stores. The
olle
t ispushed onto X.5 The Compiler, the Final Produ
t5.1 InstallationTo install esra
d to the sour
e dire
tory 'sr
' and type 'make'. That will
reate an exe
utable �le named 'esra'. This exe
utable doesn't depend on anylibraries, databases or other �les, so it may reside anywhere in your �le system.Just pla
e it somewhere and set your PATH a

ordingly.5.2 The esra LibrariesThe system
ontains two library �les, esra.pl and lmatrix.pl. These Prologmodule �les are ne
essary to run the
ompiler generated programs. The �rstfour lines of ea
h generated program
ontain module de
larations. The defaultlo
ation for the esra library �les is the
urrent dire
tory, i.e. the one you standin when you run the generated program. This lo
ation
an be
hanged in twoways:
• Change the module de
laration at the beginning of the generated programto in
lude the full path names of esra.pl and lmatrix.pl. This will onlya�e
t this parti
ular program.
• In the
ompiler, module translate.ml, there is a let binding of the identi�erlibrary_path. Change this binding to have the
ompiler pla
ing the esralibraries in your favorite dire
tory. This will a�e
t all programs generatedby the
ompiler.5.3 Compiling and Running a ModelTo
ompile an esra model, say foo.esra, just type esra foo.esra. If therewere no
ompilation errors, you will get a program named foo.pl. If the
om-piler �nds an error, it issues an error message and aborts the exe
ution withoutprodu
ing any output. If the model depends on run time initialized
onstants,you will have to
reate a data �le, whi
h must have the name foo.in. Make surethat the module de
larations at the top of the program. are
onsistent with thelo
ation of the esra libraries. There are two ways to run the generated program.
• Type prolog or si
stus at the shell prompt. In the intera
tive Prologsystem, just type [foo℄. to
onsult your program. To run the program,just type the single goal foo(R)., where R is the result parameter (seese
tion 4.7.2). The program will then print the results of the
omputationin a default format if su

essful, otherwise it answers with no.

66

• Use your ema
s interfa
e. Opening foo.pl in ema
s, will get ema
s intoProlog Mode. Typing the
ommand C-
 C-b (
onsult_buffer) will
on-sult the program and open a Prolog pro
ess in a separate bu�er, so thatyou
an
ommuni
ate with the program. Then just type foo(R). to startthe program, where R is the result parameter (see se
tion 4.7.2).5.4 Using the Result APIThe result parameter is supposed to be opaque. To extra
t information fromit, a spe
ial API has been
onstru
ted, the so
alled result API. This API isde�ned in esra.pl. There are three predi
ates: get_obje
t/3, is_related/2and fun
tion_value/3 des
ribed below.%% get_obje
t(+Results, +Name, -Obje
t) :-%% Results is a result parameter, Name is an atom, Obje
t is a value%% True if Obje
t is bound to Name in Results%% is_related(+Arguments, +Relation) :-%% Arguments is a list of integers%% Relation is an ESRA relation%% True if Relation(
1,
2, ...,
n) where
i = Arguments[i℄%% fun
tion_value(+Coordinates, +Fun
tion, -Value) :-%% Arguments is a list of integers%% Fun
tion is an ESRA total fun
tion%% True if Fun
tion(
1,
2, ...,
n) = Value where
i = Arguments[i℄6 Testing and Ben
hmarking6.1 Running the Test SuiteThis produ
t
omes with a small test suite, lo
ated in the dire
tory sr
/test.The models in this dire
tory has been
ompiled and tested, so I know thatthey works. To
ompile all models in the test suite,
d to sr
/test and run the
ommand
test at the shell prompt. This will
ompile all test models. Runningthe test programs require two steps.Enter Prolog and type[
test℄.This will
onsult all programs and de�ne a predi
ate 'run'.Then typerun.This will run all programs in the test suite.To
on
lude this se
tion I give an example. The program magi
.pl is in thetest suite. This is a model of so
alled magi
 squares (see se
tion 3.2). In the67

a

ompanying data �le magi
.in.pl, the size of the magi
 square
an be spe
i�ed.The following is a sample session| ?- [magi
℄.%
onsulting /home/mano7083/xjob/esra/test/magi
.pl...%
onsulted /home/mano7083/xjob/esra/test/magi
.pl in module user, 0 mse
 8 bytyes| ?- magi
(R).Initialization done, 179
onstraints postedLapsed time : 0.01 se
ondsSolution found in 0.0 se
onds2 ba
ktra
ks were triedS =[8,3,4℄[1,5,9℄[6,7,2℄R = t('S',relation(reldom([interval(1,3),interval(1,3)℄,{1},1..1,[interval(1,9)℄),lm_rel([[8,3,4℄,[1,5,9℄,[6,7,2℄℄)),0,t,t) ?Here we
an see the output from the program. The variable S
ontains a 3x3magi
 square. As we
an see the sum of ea
h row, ea
h
olumn and the twomajor diagonals is always 15 as it should be. Note that Prolog types the value ofR at the end (the result parameter) followed by a question mark. The user
antype a semi
olon after the question mark to get more solutions by ba
ktra
king.The display of the result parameter is not very useful, but I don't know how toturn it o� without at the same time disable ba
ktra
king.6.2 Some Ben
hmarksThe ben
hmarks presented in this se
tion seems to indi
ate some e�
ien
yproblems. CSPs are generally hard to solve, but this implementation gives un-expe
tedly fast growing exe
ution times for most problems. I don't understandthe reason for this behavior.The magi
 Square ProblemIn the magi
 square problem, se
tion 3.2, there is a steep growth of
omputingtime by the grid width n. In the table constraints is the number of posted
onstraints and backtracks the number of ba
ktra
ks the solver had to make.
68

Magi
 Square Ben
hmarks
n time (s) backtracks constraints3 0 2 1794 0 13 4135 2.03 4974 8556 > 2 min ? 1613

The Warehouse Lo
ation ProblemThe
omputing time of the warehouse lo
ation problem, se
tions 3.6 and 4.9.2,is a rapidly growing fun
tion of the problem size as
ould be seen from theben
hmarks. In the table below, nw, ns, stands for the number of warehousesand the number of stores respe
tively. The instan
e data are randomly gener-ated. One
an see that the
omputing time depends on nw and ns in di�erentways. The problem rapidly be
omes intra
table.Two di�erent models are
ompared. The model from se
tion 3.6 uses theredundant array open keeping tra
k of whi
h warehouses are open. The modelof se
tion 4.9.2 on the other hand disposes of redundant variables. The �rstmodel is most e�
ient as seen by the table below. In the table a time value ofthe type `> 2 min' means that the program has timed out with a time limit of 2minutes. The �rst line of the table refers to a model published in the opl book[14℄, the other instan
es are randomly generated.Warehouse Lo
ation Problem Ben
hmarksModel of Se
tion 3.6 Model of Se
tion 4.9.2
nw ns time (s) backtracks constraints time (s) backtracks constraints5 10 1.3 1098 839 23 58107 34968 7 0.61 890 1242 2.3 4109 94710 10 19 20210 2183 > 2 min ? 16645 15 41 87430 1628 > 2 min ? 1244The model of se
tion 3.6 is more e�
ient than the other one as
an be seen fromthe ben
hmark table above. The reason may be that the redundant variables and
hanneling
onstraints of the former model triggers more
onstraint propagation.It's important to noti
e that this behaviour may be di�erent for di�erent modelsand instan
es.On a suggestion from Pierre Flener, I tried to �atten the Supplies array
olumn wise instead of row wise (the default) before sending it to labeling/2.I also
hanged the default labeling option from [�
℄ to [down℄. This modi�
a-tion speeded up the
omputation. As a
omparison I give ben
hmarks for the�optimized� versions of the same models and instan
es below.69

Warehouse Lo
ation Problem Ben
hmarksModel of Se
tion 4.9.2 (optimized)
nw ns time (s) backtracks constraints5 10 0.8 2582 6898 7 0.6 737 77910 10 28 21176 13645 15 18 38098 101910 15 97 63557 201915 15 > 2 min ? 3019Although the optimized model performs better the s
alability is still bad. Inparti
ular the 15 × 15 instan
e still times out. The model of se
tion 3.6 is notsuitable for this type of optimization be
ause it uses two de
ision variable arraysinstead of one and the Supply array is transposed with respe
t to the one in theother model so it does no sense to �atten it
olumn wise. Therefore only one ofthe models has been in
luded here.The n Queens ProblemIn the n queens problem, the
omputing time is �rst very low, but at approx-imately n = 16 it begins to grow rapidly. A strange pattern is that the timeis invariably lower for odd values of n. For even ns, the problem be
omes in-tra
table at n = 22, but for odd values of n I
an drive it a little bit father.n Queens Ben
hmarks

n time (s) backtracks constraints8 0.01 23 4649 0.01 6 59410 0.05 23 74011 0.01 9 90212 0.04 45 108013 0.12 16 127414 0.17 296 148415 0.34 207 179016 2.63 1516 195217 1.8 875 221018 11.75 5545 248419 0.8 321 277420 60.42 24386 308021 2.37 783 340223 6.25 1910 409425 12.27 3161 485027 151.51 32444 567029 525.13 93393 6554
70

7 Con
lusion7.1 SummaryIn this thesis I present an implementation of the modeling language esra[4, 3℄.The
ompiler translates esra models into SICStus Prolog and submits them tothe
lpfd [2℄ sub system for solution. In the interest of simpli
ity and rapid de-velopment,
ertain features of esra has been ex
luded from the implementation.This report is divided into two major parts. The �rst part gives a detailed de�-nition of the language a
tually implemented, while the se
ond part is an equallydetailed presentation of the translation algorithms. The
ompiler itself is devel-oped in OCaml, an obje
t oriented fun
tional language. The relational variablesof esra are represented as �matri
es�, i.e. as iterated list stru
tures simulatingmulti dimensional arrays. I have abstra
ted some Prolog
ode, for instan
e the
ode responsible for relational representation, into two separate Prolog librarymodules. The generated programs together with the library modules makes upan exe
utable system,
apable of solving CSPs written in esra. I have tested the
ompiler against several test models. In all
ases I have found that the
ompilergenerates
orre
t
ode and that the
ode produ
es the
orre
t answers. Someben
hmarks of the warehouse lo
ation problem, and other problems, are alsopresented. As the ben
hmarks indi
ate, the implementation is not as e�
ientas one would wish. I don't understand the reasons for this ine�
ien
y.7.2 Related WorkConstraint logi
 programming over �nite domains is a vast and important re-sear
h �eld. Systems based on high level modeling languages are in the vogueand there are several ongoing proje
ts in this dire
tion all over the world.There is also a prede
essor of esra based on fun
tional variables, here
alledfun
tional esra. There already exists a
ompiler, written in Java,
ompilingfun
tional esra into opl [17, 9℄. See also [9℄ for a general dis
ussion of how torepresent fun
tional variables and heuristi
s for
hoosing the most suitable onefor a
ertain
lass of problems and instan
e data.The goal of the Australian G12 proje
t [13℄ is to build a software platformfor solving large s
ale industrial
ombinatorial optimization problems. The sys-tem will use Constraint Programming to allow problems to be stated simply,and then solved e�
iently. The platform will
onsist of Zin
, a high level modellanguage, Mer
ury, an already existing
onstraint programming language andCadmium, a mapping language for transforming Zin
 models into mer
ury pro-grams. The
omplete platform,
omprising Zin
, Cadmium and Mer
ury will be
alled G12 (sin
e Zin
, Cadmium and Mer
ury belong to the 12th group in theperiodi
 table of
hemi
al elements).The system will work with several solversmixing di�erent solving paradigms, su
h as for instan
e
onstraint program-ming, mixed integer programming and lo
al sear
h. Su
h work will require the
ollaboration of resear
hers from di�erent dis
iplines: operations resear
hers,graph algorithms resear
hers, meta-heuristi
s resear
hers, arti�
ial intelligen
eresear
hers, and software engineers.The Arti�
ial Intelligen
e Group at University of York, UK, does resear
hin the area of automated generation of
onstraint programs [7℄. The proje
t'saim is to develop an automated system that, given a spe
i�
ation of a problem,71

an generate one or more
onstraint programs that
an solve the problem. TheYork system
onsists of two
omponents:a spe
i�
ation language
alled essen
e[6℄ and a re�nement language
onjure [8℄. essen
e goes far beyond esra insupplying a vast set of de
ision variable types su
h as sets, multisets, relations,fun
tions, partitions whi
h
an be nested to arbitrary depths, for instan
e set,set of set, set of partitions, and so forth. Note that the York group have takenanother approa
h to relational modeling than esra. A design goal of esra is tomake the language initially as small as possible, deliberately omitting featuressu
h as nested data-types. The se
ond development of the York group is theformulation and automation of a set of rules that
an re�ne
onstraints on
omplex variables in an essen
e spe
i�
ation into
onstraints on atomi
 andatomi
 set variables, the level of abstra
tion provided by existing
onstrainttoolkits. This is taken
are of by the
onjure language.7.3 Future WorkThis implementation of esra is a minimal one. I have deliberately left outfeatures whi
h I found di�
ult, un
lear or tedious to implement. Now I willgive suggestions of future extensions, both su
h ones that I left out and su
hones that was never in the s
ope of this proje
t.The type
he
king is now interla
ed with translation in my one pass
ompiler.I think it would be ni
e to lift it out and perform the type
he
king a
t on theparse tree before passing it to the translator. Also the error messages
ould bemore user friendly.An optimization pass may be introdu
ed between the parser (type
he
ker)and translator whi
h attempts a transformation/simpli�
ation of the parse treein order to produ
e more e�
ient
ode. For instan
e it would be possible torepla
e some loops with a s
alar produ
t
onstraint. Consider the following
odesnippet from the warehouse problem model in se
tion 4.9.2sum(W : Warehouses, S : Stores | Supplies(W,S)) (SupplyCost(S,W)).Normally this sum is
omputed by a double loop over W and S. But the innerloop
an be repla
ed by a s
alar produ
t
onstraint instead. Con
eptually thisis equivalent tosum(W : Warehouses) (s
alar_produ
t (Row-W[Supplies℄, Col-S[SupplyCost℄))This
an be implemented dire
tly in SICStus Prolog whi
h has a s
alar_produ
t
onstraint.Sometimes an entire sub predi
ate
an be eliminated by
omputing a sumdire
tly on a relation variable rather than
opy it row wise (a pro
edure pointedout by my supervisor Pierre Flener). Consider the following fragment of thewarehouse lo
ation problem from se
tion 4.9.2.forall(W : Warehouses) (
ount(0..Capa
ity(W)) (S : Stores | Supplies(W,S)72

))The normal way to translate this expression is by a double loop over W and S.The inner loop over S should just
opy the array Supplies(W) and pass it ba
k.This
an be optimized by letting the outer loop set the
ounting
onstraintdire
tly on Supplies(W). This is
on
eptually equivalent toforall(W : Warehouses) (Count-Ones(Row-W[Supplies℄, Count)Count in 0..Capa
ity(W)).This is possible be
ause the array Supplies is stored row wise, so that the rowsare dire
tly addressable without
opying.Some features that I have left out are really part of esra. For instan
e the
ard/1 operator and set
omprehension notation as well as symboli
 (enumer-ated)
onstants should be implemented. See se
tion 2 for a full a

ount of whathas been missed out of the language.The
ompiler should be non deterministi
, i.e. produ
e several programsusing di�erent representations of the relational variables. This will aid themodeler (or a tool) in the task of
hoosing the most suitable representation fora
ertain model/instan
e data
lass. The modeler (or a tool) will then be ableto experiment with di�erent models without having to re
ompile.Eventually, more intelligen
e will be built into the
ompiler via heuristi
s(su
h as those of [9℄) for the
ompiler to rank the resulting
ompiled programs byde
reasing likelihood of e�
ien
y, without any re
ourse to experiments. Certainrepresentations
an be shown to be more e�
ient than others under
ertain
ir
umstan
es depending on
ardinality
onstraints and other fa
tors [9, 12, 16℄.Symmetry breaking is very important in solving su
h problems as BIBDwhi
h are loaded with symmetries. Automati
 symmetry breaking in the
om-piler would be very desirable although hard to a
hieve.Automati
 generation of implied
onstraints is also very desirable to buildinto the
ompiler be
ause it is often the key to e�
ient solving.

73

8 GrammarModel
〈Model〉 −→ 〈Decl〉 〈Objective〉De
larations
〈Decl〉 −→ 〈DomDecl〉 | 〈CstDecl〉 | 〈VarDecl〉 | 〈Decl〉 〈Decl〉Domain De
larations
〈DomDecl〉 −→ dom 〈Id〉 = 〈Expr〉Constant De
larations
〈CstDecl〉 −→
st 〈Id〉 : 〈Expr〉

|
st 〈Id〉 = 〈Expr〉: 〈Expr〉Variable De
larations
〈VarDecl〉 −→ var 〈Id〉 : 〈Expr〉Obje
tives
〈Objective〉 −→ solve 〈Expr〉

| minimise 〈Expr〉 su
h that 〈Expr〉
| maximise 〈Expr〉 su
h that 〈Expr〉Expressions

〈Expr〉 −→ 〈Name〉 | 〈Appl〉 | 〈Tuple〉 | 〈NumExpr〉
| 〈SetExpr〉 | 〈Formula〉

〈Appl〉 −→ 〈Id〉 〈Expr〉

〈Tuple〉 −→ (〈Exprs〉)
〈Exprs〉 −→ 〈Expr〉 | 〈Expr〉, 〈Exprs〉Numeri
 Expressions
〈NumExpr〉 −→ 〈Int〉

| 〈Expr〉 〈ArithBinOp〉 〈Expr〉
| 〈ArithUnaryOp〉 〈Expr〉
| sum (〈QuantExpr〉)(〈Expr〉)

〈Int〉 −→ 〈Nat〉 | -〈Nat〉

〈Nat〉 −→ 〈Digit〉 | 〈Digit〉 〈Nat〉

〈Digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 974

Set Expressions
〈SetExpr〉 −→ int | nat

| { 〈Exprs〉}
| 〈Expr〉.. 〈Expr〉
| 〈Expr〉[〈Expr〉℄
| 〈Expr〉 〈SetOp〉 〈Expr〉

〈SetOp〉 −→ [〈Expr〉# 〈Expr〉℄
| [〈Expr〉#℄
| [# 〈Expr〉℄
| [#℄
| [-> 〈Expr〉℄
| [->℄
| [+> 〈Expr〉℄
| [+>℄Formulas

〈Formula〉 −→ true | false
| 〈Expr〉 〈PropOp〉 〈Expr〉
| 〈Expr〉 〈CompOp〉 〈Expr〉
| forall (〈QuantExpr〉)(〈Expr〉)
| exists (〈QuantExpr〉)
|
ount (〈Expr〉)(〈QuantExpr〉)

〈QuantExpr〉 −→ 〈QvarDecls〉
| 〈QvarDecls〉| 〈Expr〉

〈QvarDecls〉 −→ 〈LclVarSpec〉
| 〈LclVarSpec〉, 〈QvarDecls〉

〈LclVarSpec〉 −→ 〈Qvars〉: 〈Expr〉

〈Qvars〉 −→ 〈GuardVars〉 | 〈ConjVars〉

〈ConjVars〉 −→ 〈Id〉 | 〈Id〉 & 〈ConjVars〉

〈GuardVars〉 −→ 〈Id〉 〈CompOp〉 〈Id〉Identi�ers
〈Id〉 −→ 〈Letter〉

| 〈Letter〉 〈DigitsLetters〉

〈Ids〉 −→ 〈Id〉
| 〈Id〉, 〈Ids〉

〈Letter〉 −→ A | . . . | Z | a | . . . | z
〈DigitsLetters〉 −→ (〈Digit〉 | 〈Letter〉 | _)

| (〈Digit〉 | 〈Letter〉 | _) 〈DigitsLetters〉75

OperatorsComparison Operators
〈CompOp〉 −→ < | =< | = | >= | > | !=Arithmeti
 Operators
〈ArithBinOp〉 −→ + | - | * | / | %
〈ArithUnaryOp〉 −→ - | absPropositional Operators
〈PropOp〉 −→ /\ | \/ | => | <= | <=>

76

Referen
es[1℄ K. R. Apt. Prin
iples of Constraint Programming. Cambridge UniversityPress, 2003.[2℄ M. Carlsson, G. Ottosson, and B. Carlson. An open-ended �nite domain
onstraint solver. In H. Glaser, P. Hartel, and H. Ku
hen, editors, Pro
eed-ings of PLILP'97, volume 1292 of LNCS, pages 191�206. Springer-Verlag,1997.[3℄ P. Flener, J. Pearson, and M. Ågren. The Syntax, Semanti
s, and TypeSystem of esra. Te
hni
al report, ASTRA group, April 2003. Available athttp://www.it.uu.se/resear
h/group/astra/.[4℄ P. Flener, J. Pearson, and M. Ågren. Introdu
ing ESRA, a relational lan-guage for modelling
ombinatorial problems. In M. Bruynooghe, editor,LOPSTR'03: Revised Sele
ted Papers, volume 3018 of LNCS, pages 214�232. Springer-Verlag, 2004.[5℄ P. Flener, J. Pearson, and L. G. Reyna. Finan
ial portfolio optimisation.In M. Walla
e, editor, Pro
eedings of CP'04, volume 3258 of LNCS, pages227�241. Springer-Verlag, 2004.[6℄ A. Fris
h, M. Grumm, C. Je�erson, and B. M. Hernandez. The essen
e ofessen
e. In B.Hni
h, P.Prosser, and B.Smith, editors, Pro
eedings of theFourth International Workshop on Modelling and Reformulating ConstraintSatisfa
tion Problems, pages 73-88, o
t 2005. Available at http://www.
s.york.a
.uk/aig/
onstraints/AutoModel.[7℄ A. Fris
h, C. Je�erson, and B. M. Hernandez. The rules of
onstraintmodelling: An overview. In Pro
eedings of the 12th Workshop on Au-tomated Reasoning,2005. Available at http://www.
s.york.a
.uk/aig/
onstraints/AutoModel.[8℄ A. Fris
h, C. Je�erson, and B. M. Hernandez. The rules of
onstraintmodelling. In Pro
eedings of the 19th International Joint Conferen
e onArti�
ial Intelligen
e, 109-116, 2005. Available at http://www.
s.york.a
.uk/aig/
onstraints/AutoModel.[9℄ B. Hni
h. Fun
tion Variables for Constraint Programming. PhD thesis, De-partment of Information S
ien
e, Uppsala University, Sweden, 2003. Avail-able at http://publi
ations.uu.se/theses/.[10℄ X. Leroy. The Obje
tive Caml System release 3.08. Institut National deRe
her
he en Informatique et en Automatique, jul 2004. Available at http://
aml.inria.fr.[11℄ O. Sivertsson. Constru
tion of syntheti
 CDO squared. Master's the-sis, Computing S
ien
e, Department of Information Te
hnology, UppsalaUniversity, Sweden, 2005. Available as Te
hni
al Report 2005-042 athttp://www.it.uu.se/resear
h/publi
ations/reports/2005-042/.77

[12℄ B. M. Smith. Modelling a permutation problem. Te
hni
al Report 18,S
hool of Computing, University of Leeds, UK, 2000. Also in Pro
eedingsof the ECAI'00 Workshop on Modelling and Solving Problems with Con-straints.[13℄ P. Stu
key, M. de la Banda, M. Maher, K. Marriott, J. Slaney, Z. Somogyi,M. Walla
e, and T. Walsh. The g12 proje
t, mapping solver independentmodels to e�
ient solutions. Te
hni
al report. Available at http://www.
s.mu.oz.au/~pjs/papers/g12.pdf.[14℄ P. Van Hentenry
k. The OPL Optimization Programming Language. TheMIT Press, 1999.[15℄ P. Van Hentenry
k. Constraint and integer programming in OPL. IN-FORMS Journal on Computing, 14(4):345�372, 2002.[16℄ T. Walsh. Permutation problems and
hannelling
onstraints. InR. Nieuwenhuis and A. Voronkov, editors, Pro
eedings of LPAR'01, vol-ume 2250 of LNCS, pages 377�391. Springer-Verlag, 2001.[17℄ S. Wrang. Implementation of the ESRA
onstraint modelling language.Master's thesis, Computing S
ien
e 223, Department of Information Te
h-nology, Uppsala University, Sweden, 2002. Available at ftp://ftp.
sd.uu.se/pub/papers/masters-theses/.

78

