
Maria Eriksson
Examensarbete 2005
Naturvetarprogrammet 160 p
Department of Information Technology
Uppsala University
Supervisor: Pierre Flener
Examinator: Justin Pearson

Detecting Symmetries
in Relational Models of CSPs

Abstract

This master’s thesis studies symmetry detection in constraint satis-
faction problems (CSPs). After modelling some well-known CSPs in a
relational language, the symmetries of the single constraints in the mod-
els are studied. These results are then transformed into general patterns
for symmetry detection. When the symmetries of the single constraints
have been detected, symmetries for complete CSPs, with one or more con-
straints, are derived compositionally. This work deals with value as well
as variable interchangeability.

Sammanfattning

Inom villkorsprogrammering arbetar man med s̊a kallade kombinatoriska prob-
lem (CSPs) där målet är att tilldela variabler värden s̊a att vissa givna villkor
är uppfyllda. Ett exempel p̊a ett välkänt s̊adant problem är uppgiften att plac-
era åtta damer p̊a ett schackbräde s̊a att ingen dam hotar n̊agon annan dam.
Variablerna är i detta fall de åtta damernas placering och värdena är brädets
64 rutor. De villkor som impliceras av problemet kan t ex uttryckas genom
att tv̊a damer, vilka som helst, inte f̊ar st̊a i samma rad, samma kolumn eller
samma diagonal. En lösning p̊a problemet är en placering av damerna s̊a att
dessa villkor är uppfyllda.

En del kombinatoriska problem är dessutom optimeringsproblem (COPs)
därigenom att det finns ett numeriskt uttryck vars värde, vilket är beroende av
variablernas värden, dessutom ska optimeras (minimeras eller maximeras). Ett
enkelt exempel p̊a ett s̊adant problem är det att tilldela tv̊a variabler, x och
y, värden mellan 1 och 10 s̊a att uttrycket x + y antar ett s̊a litet värde som
möjligt.

I många kombinatoriska problem är olika värden eller variabler sinsemellan
utbytbara utan att problemets lösningar p̊averkas. L̊at oss exemplifiera detta
med det välkända fyrfärgsproblemet. Uppgiften är att i en graf tilldela varje
nod en av fyra färger s̊a att tv̊a sammanhängande noder inte f̊ar samma färg.
Antag nu att vi har en lösning p̊a detta problem. Eftersom det enligt problem-
formuleringen inte har n̊agon betydelse vilken specifik färg varje nod f̊ar utan
endast om tv̊a noders färger är lika eller inte kan vi i v̊ar lösning byta ut tv̊a
färger mot varandra och därigenom erh̊alla en ny lösning, d v s om alla noder
som i den första lösningen var “bl̊a” nu blir “röda” och alla “röda” noder blir
“bl̊a” s̊a kommer villkoret att tv̊a sammanhängande noder inte f̊ar ha samma
färg fortfarande att vara uppfyllt. Vi säger att denna andra lösning är sym-
metrisk med den första. I detta fall uppst̊ar symmetrin genom att olika värden
är sinsemellan utbytbara, men det kan ocks̊a vara fallet att variablerna i en
modell av ett problem är utbytbara p̊a motsvarande sätt. I en del problem är
inte alla, utan endast vissa, värden eller variabler sinsemellan utbytbara och vi
kan tala om bitvis utbytbarhet. I många kombinatoriska problem är vi endast
intresserade av att hitta en lösning, vi behöver allts̊a inte leta efter alla sym-
metriska varianter av denna. Genom att p̊a ett tidigt stadium upptäcka vilka
symmetrier som finns i problemet, s̊asom att i fyrfärgsproblemet se att det inte
har n̊agon betydelse vilken specifika färger noderna har, kan vi undvika att leta
efter symmetriska lösningar och därigenom väsentligt förkorta tiden det tar att
hitta en lösning. När det är känt vilka symmetrier som finns i en modell av
ett problem finns det olika strategier för att “bryta” dessa symmetrier s̊a att vi
inte behöver leta efter alla symmetriska lösningar. En hel del arbete har lagts
ner p̊a att ta fram s̊adana strategier. För att kunna bryta symmetrierna är det
dock nödvändigt att först känna till vilka symmetrier som finns. Att upptäcka
symmetrier är därför ett annat viktigt forskningsomr̊ade inom villkorsprogram-
meringen.

I denna examensuppsats studeras hur symmetrier kan upptäckas i kombina-

toriska (optimerings)problem. Detta har g̊att till s̊a att n̊agra välkända kombi-
natoriska problem, s̊asom 8-damer-problemet och fyrfärgsproblemet, har mod-
ellerats i ett (relationellt) programmeringsspr̊ak. Därefter har symmetrier hos
de enskilda villkoren i varje modell studerats. När symmetrier hos vissa typer
av villkor eller delar av villkor p̊a detta sätt har upptäckts manuellt har dessa
resultat sedan omvandlats till generella mönster för olika typer av symmetriska
villkor. Efter att symmetrier för de enskilda villkoren har upptäckts p̊a detta
sätt, kan symmetrierna för hela kombinatoriska problem, med ett eller flera
villkor, härledas kompositionellt. Med det menas att vi, när vi känner till sym-
metrierna hos de enskilda villkoren hos en modell av ett problem, kan härleda
symmetrier för hela problemet, vilket i detta fall görs med hjälp av resultat fr̊an
[4]. Denna uppsats behandlar symmetrier som uppst̊ar s̊aväl p̊a grund av olika
värdens utbytbarhet, som utbytbarhet mellan variabler.

2

Contents

1 Introduction 2

2 Relational Modelling 2

3 Sample Models 3
3.1 The Progressive Party Problem 3
3.2 Scene Allocation . 5
3.3 Social Golfers . 5
3.4 Graph Colouring . 6
3.5 Balanced Incomplete Block Design 6
3.6 The Warehouse Problem . 7
3.7 The n-Queens Problem . 8

4 Value Interchangeability 8

5 Value Interchangeability in Single Constraints 12
5.1 Value Interchangeable Count Constraints, Example 1 12
5.2 Value Interchangeable Count Constraints, Example 2 17
5.3 Symmetries in Objective Functions and Numerical

Constraints . 20

6 Value Interchangeability in Compositions of Constraints 23
6.1 Composition of Constraint Symmetries 23
6.2 Aggregation . 24

7 Variable Interchangeability 26

8 Variable Interchangeabililty in Single
Constraints 30

9 Variable Interchangeability in Compositions of Constraints 33

10 Conclusion 34

1

1 Introduction

In many constraint satisfaction problems, symmetries occur, due to the fact
that either certain variables or some domain values are indistinguishable. Since
often only one solution, instead of many symmetric solutions, to a particular
problem is wanted, breaking these symmetries, by introducing some distinction
between the variables/values, eg. a lexicographical order, is an important tool
for efficiently solving CSPs. But in order to be able to break the symmetries, one
already has to know where they occur and the aim of this work is to show how
value/variable-symmetries can be detected in relational models of CSPs. The
approach is to detect/derive symmetries in single constraints, and then to use the
insight from [4] that more complex symmetries can be derived compositionally
for problems with more than one constraint.

In Section 2 relational modelling is presented, as well as the constraints
used when modelling the problems. Then, in Section 3, some example CSPs are
presented and modelled. These are the progressive party, scene allocation, social
golfers, graph colouring, BIBD, n-queens and warehouse problems. The models
in Figures 4, 6 and 8 are my models and the other models of Section 3 are found
in [2] and [4]. In Section 4 is the concept of value symmetry and useful results
connected to it presented. All the definitions, propositions and examples of that
section are from [4] except Proposition 22 which I have derived from two other
propositions of Section 4. In Section 7 I translate the results on value symmetry
of Section 4 into results on variable symmetry. This is done in Definitions,
Propositions and Examples 27 to 43. The Definitions and Propositions 26 and 44
to 50 of that section are from [4]. In Section 5 and Section 8 I use the theoretical
results on symmetries from Sections 4 and 7 to derive value/variable symmetries
for the constraints in the models presented in Section 3. This is done stepwise,
by first looking for common patterns for the constraints in the models, for which
full symmetries can easily be detected, and then generalising these patterns to
handle partial symmetries as well. After that the complete symmetry for each
problem can be derived compositionally, as is done in Sections 6 and 9.

2 Relational Modelling

All the problems of Section 3 are modelled in a relational esra-like language
(for our purposes, the description of esra given in [2] suffices, but a complete
description of esra is given in [1]) and for three of the problems (progressive
party, scene allocation and n-Queens problems) models in an opl-like language
are also included. This is to give examples of how the constraints in the esra-
like models (mainly the count constraint) are related to the well-known global
constraints of the opl-like language, such as the allDifferent constraint. In order
to be able to understand the relational models of Section 3, a short explanation
of the constraints found in them, and the relation between these constraints and
global constraints, will be given here.

The constraints of the relational models of Section 3 are expressed in what

2

can be characterised as second-order logic with counting. This means that apart
from functions, relations and quantifiers, ranging over individuals and relations
and for which the syntax and semantics is closely related to second-order logic,
we have a generalisation of the existential quantifier, count, with the following
syntax:

count(〈Set〉)(〈QuantExpr〉)
This states that the number of elements defined by the quantifier expression
〈QuantExpr〉 is in the set 〈Set〉.
Example 1 The expression count({1, 2, 4})(x : Xs | x < 3) says that there are
1, 2 or 4 elements x in the set Xs, such that x < 3, i.e. this holds for instance
if Xs = {−2, 0, 1, 2}, but not if Xs = {0, 1, 2}.
As mentioned, count is a generalisation of the existential quantifier, as ∃(x :
Xs | Condition) is equivalent to count(1 . . . sup)(x : Xs | Condition), where sup
is positive infinity. In Section 3, the count constraint of the relational models
corresponds to different global constraints of the opl-like models. As we will
see in Section 3, a count constraint in a relational model might for example
correspond to an allDifferent constraint in an opl-like model. In this section,
we only mention something about the correspondence between a count and an
allDifferent constraint. If the set in an allDifferent constraint is extensionally
given, we have the following equivalence:

allDifferent({v1, . . . , vn}) ≡ count(n)({v1, . . . , vn})

But if the sets in the allDifferent/count constraints are intensionally given there
are several count constraints equivalent to an allDifferent constraint:

allDifferent({vi : D | i : I}) (1)
≡ ∀(d : D)count(0 . . . 1)(i : I | vi = d) (2)
≡ ∀(i : I)count(0)(j 6= i : I | vi = vj) (3)
≡ ∀(i : I)count(1)(j : I | vi = vj) (4)
≡ count(card(I))(vi : D | i : I) (5)
≡ count(card(I))(d : D | ∃i ∈ I : vi = d) (6)

3 Sample Models

3.1 The Progressive Party Problem

The goal of the progressive party problem is to schedule a party at a yacht club.
Some boats are designated as hosts, while the crews of other bots are guests.
The guests visit different host boats over a number of periods. There are three
constraints for these visits, namely that any guest crew can visit any host boat
in at most one period (constraint 1), any two guest crews can visit the same
host at the same period at most once (constraint 2) and at any period, the spare

3

range Guests = ...;
range Hosts = ...;
range Periods = ...;
int spareCap[Hosts] = ...;
int crewSize[Guests] = ...;
var Hosts schedule[Guests,Periods];
solve {

forall(g in Guests)
allDifferent(all(p in Periods) schedule[g,p]);

forall(i in Guests, j in Guests: i<j)
meetAtmost(all(p in Periods) schedule[i,p],

all(p in Periods) schedule[j,p], 1);
forall(p in Periods)

weightedAtmost(crewSize, all(g in Guests) schedule[g,p],
spareCap);

};

Figure 1: An opl-like model of the Progressive Party problem

dom Guests, Hosts, Periods
cst spareCap : Hosts −→ N
cst crewSize : Guests −→ N
var schedule : (Guests × Periods) −→ Hosts
solve

∀(g : Guests, h : Hosts) count(0 . . . 1)(p : Periods | schedule(g, p) = h)
∧ ∀(i < j : Guests) count(0 . . . 1)(p : Periods | schedule(i, p) = schedule(j, p))

∧ ∀(p : Periods, h : Hosts)

(
∑

g:Guests | schedule(g,p)=h

crewSize(g)

)
≤ spareCap(h)

Figure 2: A relational model of the Progressive Party problem

capacity of any host boat must not be exceed of the sum of the crew sizes of all
the guest crews visiting that boat at that period (constraint 3). Two different
models of this problem are found in Figures 1 and 2. The opl-like model in
Figure 1 is similar to the one found in [4], except that some variables have
changed names and that the constraints have a different order, and the ESRA-
like model in Figure 2 is found in [2]. If we compare the constraints in these
two models with the ones in Section 2 we see that the allDifferent constraints of
Figure 1 is of type (1) and that it corresponds to a count constraint of type (2)
in Figure 2. We could just as well have used for example a constraint of type (5)
in Figure 2 which instead would give us the following constraint:

∀(g : Guests)count(card(Periods))(schedule(g, p) | p : Periods)

4

range Scenes = ...;
range Days = ...;
range Actors = ...;
int fee[Actors] = ...;
{Scenes} casting[Actors] = ...;
var Days shoot[Scenes];
minimise

sum(a in Actors)
fee[a]*nbDistinct(all(s in casting[a]) shoot[s])

subject to
forall(d in Days)

atMost(all(s in Scenes: shoot[s]=d), 5);

Figure 3: An opl-like model of the Scene Allocation problem

dom Scenes,Days,Actors
cst fee : Actors −→ N
cst casting : Actors × Scenes
var shoot : Scenes −→ Days
minimise∑

a:Actors

fee(a)*card{(d : Days) | ∃(s : Scenes | casting(a, s) ∧ shoot(s) = d)}
such that

∀(d : Days)count(0 . . . 5)(s : Scenes | shoot(s) = d)

Figure 4: A relational model of the Scene Allocation problem

3.2 Scene Allocation

The next problem we look at is the scene allocation problem, where the objective
is to minimise the cost for shooting a film, where each scene of the film needs
the participation of a certain set of actors, who have to be present the whole
day that scene is shot, and where each actor has an individual fee for the time
spent in the studio. The production cost is to be minimised, by deciding which
scene should be shot which day, under the condition that at most five scenes
can be shot each day. The problem can be modelled as in Figure 3 and Figure 4
respectively, where the model of Figure 3 is found in [4].

3.3 Social Golfers

Like the progressive party problem, the social golfers problem is a scheduling
problem, but here it is n players at a golf club whose playing is to be scheduled
for w weeks, such that any two players are scheduled to play in the same group
at most once and that every group of players each week consists of s players.
A third condition for the problem is that every player plays golf exactly once a
week, and this condition is in the model implicitly taken care of by the fact that

5

cst g, s, w : N
dom Players = 1 . . . g ∗ s
dom Weeks = 1 . . . w
dom Groups = 1 . . . g
var schedule : (Players ×Weeks) −→s∗w Groups
solve

∀(p < q : Players) count (0 . . . 1)(v : Weeks | schedule(p, v) = schedule(q, v))
∧ ∀(h : Groups, v : Weeks) count (s)(p : Players | schedule(p, v) = h)

Figure 5: A relational model of the Social Golfers problem

dom Colours
dom Nodes
cst edge : Nodes ×Nodes
var colouring : Nodes −→ Colours
solve

∀(n : Nodes)count(0)(m : Nodes | edge(n,m) ∧ colouring(n) = colouring(m))

Figure 6: A relational model of the Graph Colouring problem

functions are total in the ESRA-like language. The relational model of Figure 5
is found in [2].

3.4 Graph Colouring

In the well known graph colouring problem, nodes of a graph are to be given
any of a given set of colours, such that any two connected nodes do not have
the same colour. A relational model of this problem is found in Figure 6.

3.5 Balanced Incomplete Block Design

A balanced incomplete block design (BIBD) is an arrangement of v elements,
called varieties into b blocks, such that each block contains k varieties, and each
variety occurs in r different blocks (which in the model of Figure 7 is expressed
by the multiplicities of the × constructor), with the additional condition that
each pair of distinct varieties occurs together in exactly λ blocks. A relational
model of the BIBD problem, from [2], is found in Figure 7. There we see that
whereas the decision variables in our previous models were functions, here we
are dealing with a relation. Also, whereas the problems in our previous models
have some degree of value symmetry, the BIBD problem modelled in this way
is variable symmetric, as we will see in Section 8.

6

dom Varieties,Blocks
cst r, k, λ : N
var bibd : Varieties r×k Blocks
solve

∀(v1 < v2 : Varieties) count(λ)(j : Blocks | bibd(v1, j) ∧ bibd(v2, j))

Figure 7: A relational model of BIBDs

dom Warehouses,Stores
cst maintCost : N
cst cap : Warehouses −→ N
cst supplyCost : Stores ×Warehouses −→ N
var supplier : Stores −→ Warehouses
minimise(

∑
w:Warehouses,s:Stores | supplier(s)=w

supplyCost(s, w)

)

+maintCost*card{(w : Warehouses) | ∃(s : Stores | supplier(s) = w)}
such that

∀(w : Warehouses) count(0 . . . cap(w))(s : Stores | supplier(s) = w)

Figure 8: A relational model of the Warehouse Location problem

3.6 The Warehouse Problem

The background to the warehouse problem, which is a constraint optimisation
problem, is that some company considers opening warehouses on some candi-
date locations in order to supply its existing stores. The objective is to decide
which warehouses to open, while minimising a cost function. The stores and
warehouses have the following properties:

• Each candidate warehouse has the same maintenance cost.

• Each candidate warehouse has a supply capacity (the maximum number
of stores it can supply).

• The supply cost to a store depends on the warehouse.

The problem has two constraints:

• Each store must be supplied by exactly one actually opened warehouse.

• Each actually opened warehouse supplies at most a number of stores equal
to its capacity.

And the cost function which it is the objective to minimise:

• The sum of the actually incurred maintenance costs and supply costs.

A model of this problem is found in Figure 8.

7

int n = ...;
range Queens = 1 ... n;
range Rows = 1 ... n;
var Rows nqueen[Queens];
solve {

allDifferent(all(q in Queens) nqueen[q]);
allDifferent(all(q in Queens) q-nqueen[q]);
allDifferent(all(q in Queens) q+nqueen[q]);

};

Figure 9: An OPL-like model of the n-Queens problem

cst n
dom Queens = 1 . . . n
dom Rows = 1 . . . n
var nqueen : Queens −→ Rows
solve

∀(q : Queens) count(0)(r 6= q : Queens | nqueen(q) = nqueen(r))
∧ ∀(q : Queens) count(0)(r 6= q : Queens | q − nqueen(q) = r − nqueen(r))
∧ ∀(q : Queens) count(0)(r 6= q : Queens | q + nqueen(q) = r + nqueen(r))

Figure 10: A relational model of the n-Queens problem

3.7 The n-Queens Problem

The n-Queens problem consists in placing n queens on an n× n chessboard, so
that no two queens attack each other. This problem can be modelled using three
constraints, as in Figure 9 and in Figure 10. Whereas the model in Figure 9
uses the global allDifferentconstraint expressing the fact that for any solution to
the problem, all queens must be in different diagonals and rows, the relational
model in Figure 10 is more closely related to the first description of the problem.
In Figure 10 the first count constraint is of type (3) of Section 2, but we could
of course just as well have used a constraint of type (4) instead. Note that
the constraint that the queens are in different columns is already implicitly
expressed in both models, where queen i can be seen as the queen in column i.

4 Value Interchangeability

As we noted in the beginning, symmetries often occur in CSPs, because val-
ues or variables are interchangeable. In this section the concept of (piecewise)
value interchangeability will be presented. This concept is presented in [3] and
developed in [4]. We illustrate the concept of value interchangeability with a
formulation from [3]: “There are many applications in resource allocation and
scheduling where the exact values taken by the variables are not important.
What is significant is which variables take the same values or, in other terms,

8

how the variables are clustered.”
Apart from Proposition 22 the rest of this section is copied from [4], and the

number of the definitions, examples and propositions in that paper is given in
parentheses. Definition 2 not only defines a CSP and the solution of a CSP, but
also indicates the notation that will be used in the following pages:

Definition 2 A CSP is a triple 〈V,D, C〉, where V denotes the set of variables,
D denotes the set of possible values for these variables, and C : (V → D) → Bool
is a constraint that specifies which assignments of values to the variables are
solutions. A solution to a CSP P = 〈V, D, C〉 is a function σ : V → D such that
C(σ) = true. The set of solutions to a CSP P is denoted by Sol(P).

Let us apply this definition to the model of the graph colouring problem
in Figure 6. There we have a set of nodes, Nodes for each of which the func-
tion colouring should assign a colour. The variables in this model is the set
{colouring(n) | n : Nodes}. The domain of the model is the possible values
for the variables, i.e. the set Colours and the constraint is of course the forall
statement, which for each assignment of values to the variables is true of false.
A solution to the problem is an assignment of a colour to each varible such
that the constraint is true, i.e. such that no two adjacent nodes have the same
colour.

Some of the problems of Section 3 are constraint optimisation problems,
COPs. Problems of this type, apart from being CSPs, also have a global
function. A solution to the COP O = 〈V,D, C, {〉 is a solution to the CSP
P = 〈V,D, C〉 such that the value of f is the minimal one among the possible
values of f for solutions to P. The scene allocation and the warehouse prob-
lems are examples of COPs, where we have some function whose value is to be
minimised. In the rest of this section, we will deal with value interchangeability
for CSPs and COPs.

Definition 3 (Definition 5) Let P = 〈V, D, C〉 be a CSP. P is value inter-
changeable if, for each solution σ ∈ Sol(P) and each bijection b : D → D, the
function b ◦ σ ∈ Sol(P).

Example 4 (Example 1) Let V ⊇ {v1, v2, v3}. The CSP P = 〈V, D,C〉, where
C = allDifferent(v1, v2, v3) is value interchangeable.

Definition 5 (Definition 6) Let D = {D1, . . . , Dn} be a partition of D. A
bijection b : D → D is piecewise interchangeable over D if ∀v ∈ Di : b(v) ∈
Di (1 ≤ i ≤ n).

We say that a partition S1 of a set S is coarser than the partition S2 of S, or
equivalently, that S2 is finer than S1, if every element of S2 is a subset of some
element of S1.

Definition 6 (Definition 7) Let P = 〈V,D, C〉 be a CSP and D be a partition
of D. P is piecewise value interchangeable (PVI) over D if, for each solution
σ ∈ Sol(P) and each piecewise-interchangeable bijection b overD, b◦σ ∈ Sol(P).

9

Note that, if P = 〈V,D, C〉 is value interchangeable, then it is piecewise value
interchangeable over {D}. It might also be the case that a CSP P = 〈V,D, C〉 is
PVI over the partition D1, as well as over the partition D2. Then if D1 is coarser
than D2, we say that P being PVI over D1 is a stronger symmetry than P being
PVI over D2. In this case we say that the latter symmetry is suboptimal.

Example 7 (Example 2) Let V ⊇ {v1, v2, v3}, D 3 1, and consider a constraint
atmost(o, d, 〈v1, . . . , vk〉) which holds for an assignment σ if there are at most o
occurrences of d in 〈σ(v1), . . . , σ(vk)〉. The CSP 〈V, D, atmost(2, 1, 〈v1, v2, v3〉)〉
is PVI over {{1}, D \ {1}}.

A CSP might also have global functions, which are value interchangeable if
their value does not change under certain bijections of the domain values.

Definition 8 (Definition 8) A global function f : (V → D) → N is value
interchangeable if, for each assignment σ : V → D and each bijection b : D → D,
f(σ) = f(b ◦ σ).

Example 9 (Example 3) Let V ⊇ {v1, v2, v3} and consider global functions of
the form nbDistinct(v1, . . . , vk) which, given an assignment σ, return the number
of distinct values in 〈σ(v1), . . . , σ(vk)〉. The global function nbDistinct(v1, v2, v3)
is value interchangeable.

Definition 10 (Definition 9) Let D be a partition of D. A global function f :
(V → D) → N is piecewise value interchangeable over D if, for each assignment
σ : V → D and piecewise-interchangeable bijection b over D, f(σ) = f(b ◦ σ).

Now we can define value interchangeability for a COP as well.

Definition 11 (Definition 10) Let O = 〈V,D, C, f〉 be a COP. O is value in-
terchangeable if, for each solution σ ∈ Sol(O) and each bijection b : D → D,
b ◦ σ ∈ Sol(O) and f(σ) = f(b ◦ σ).

Definition 12 (Definition 11) Let O = 〈V, D,C, f〉 be a COP and D be a
partition of D. O is piecewise value interchangeable over D if, for each solution
σ ∈ Sol(O) and each piecewise-interchangeable bijection b over D, b◦σ ∈ Sol(O)
and f(σ) = f(b ◦ σ).

In the following, we often assume fixed sets V and D in examples for simplic-
ity and talk directly about the composition and interchangeability of constraints,
since they are essentially equivalent to their CSP counterparts, as we observe
that if P1 = 〈V, D, C1〉 and P2 = 〈V, D,C2〉 are two CSPs, then their composi-
tion P1∧P2 = 〈V,D, C1∧C2〉. Using the definitions of value interchangeability,
we will see how symmetries for a composition of constraints can be inferred from
the individual symmetries of each constraint.

Proposition 13 (Proposition 1) Let P1 = 〈V, D,C1〉 and P2 = 〈V,D, C2〉 be
two value interchangeable CSPs. Then, their composition P1 ∧ P2 is value
interchangeable.

10

Example 14 (Example 4) Let V ⊇ {v1, . . . , v6} and let C1 and C2 be the
constraints allDifferent(v1, v2, v3) and allDifferent(v4, v5, v6). Then C1 ∧ C2 is
value interchangeable.

As in the previous example, it is often the case that a constraint does not
constrain all variables, but while this does not affect the value interchangeability,
it might affect the variable interchangeability of the problem as we will see in
Section 7.

Proposition 15 (Proposition 2) Let P1 = 〈V, D,C1〉 and P2 = 〈V,D, C2〉 be
two CSPs. Assume that Pi is piecewise value interchangeable over partition Di

of D (1 ≤ i ≤ 2). Then the composition P1 ∧P2 is piecewise value interchange-
able over

D = {D1 ∩D2 | D1 ∈ D1 ∧ D2 ∈ D2 ∧ D1 ∩D2 6= ∅}.
Proof. First observe that D is a partition of D. Now let b be a piecewise-
interchangeable bijection over D. We show that b is piecewise-interchangeable
over D1. Indeed, consider a set D1 ∈ D1 and a value d ∈ D1. By definition of
D, there exists D2 ∈ D2 such that I = D1 ∩D2 and d ∈ I. Since b is piecewise-
interchangeable over D, b(d) ∈ I ⊆ D1 and b is piecewise-interchangeable over
D1. Similarly, we can show that b is piecewise-interchangeable over D2. As a
consequence, if σ ∈ Sol(P1 ∧ P2), then b ◦ σ ∈ Sol(P1) and b ◦ σ ∈ Sol(P2).
Hence, b ◦ σ ∈ Sol(P1 ∧ P2).

Example 16 (Example 5) Let D = {1, . . . , 10} and let C1 and C2 be the
constraints atmost(1, 1, 〈v1, . . . , v5〉) and atmost(2, 2, 〈v1, . . . , v5〉) which are PVI
over D1 = {{1}, {2, . . . , 10}} and D2 = {{2}, {1, 3, . . . , 10}} respectively. The
composition C1 ∧ C2 is PVI over

D = {{1}, {2}, {3, . . . , 10}}.
Analogously to the composition of constraint symmetries, we will now see

how symmetries can be derived for composition for functions, COPs and nu-
merical constraints.

Proposition 17 (Proposition 3) Let f1 and f2 be two global functions of sig-
nature (V → D) → N. If f1 and f2 are value interchangeable, then so is f1 ? f2

(? ∈ {+,−,×}).
Example 18 (Example 6) Let V ⊇ {v1, . . . , v6} and let f1 and f2 be the global
functions nbDistinct(v1, v2, v3) and nbDistinct(v4, v5, v6). Then, the global func-
tion 3f1 + 4f2 is value interchangeable.

Proposition 19 (Proposition 4) Let f1 : (V → D) → N and f2 : (V → D) → N
be two global functions. If f1 and f2 are piecewise value interchangeable over
D1 and D2 respectively, then f1 ? f2, where ? ∈ {+,−,×}, is piecewise value
interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 ∧ D2 ∈ D2 ∧ D1 ∩D2 6= ∅}.

11

Proposition 20 (Proposition 5) Let O = 〈V, D,C, f〉 be a COP and P =
〈V,D, C〉. If P and f are value interchangeable, then O is value interchange-
able. If P is piecewise value interchangeable over partition D1 of D and f is
piecewise value interchangeable over partition D2 of D, then O is piecewise value
interchangeable over

D = {D1 ∩D2 | D1 ∈ D1 ∧ D2 ∈ D2 ∧ D1 ∩D2 6= ∅}.

Proposition 21 (Proposition 6) Let f : (V → D) → N be a global function
and D be a partition of D. If f is piecewise value interchangeable over D, then
the CSP 〈V, D, f ≈ 0〉 is piecewise value interchangeable over D as well, where
≈ ∈ {>,≥, =, 6=,≤, <}.

From this proposition and Proposition 19 we can derive the following proposi-
tion, which is not in [4]:

Proposition 22 If f : (V → D) → N and g : (V → D) → N are two global
functions that are PVI over the partitions D1 and D2 of D, then the CSP
〈V,D, f ≈ g〉, where ≈∈ {>,≥,=, 6=,≤, <}, is PVI over D = {D1 ∩D2 | D1 ∈
D1 ∧ D2 ∈ D2 ∧ D1 ∩D2 6= ∅}.

5 Value Interchangeability in Single Constraints

In this section, we will derive (piecewise) value interchangeability, as defined in
the previous section, for the problems of Section 3. If we look at the different
relational models in Sections 3.1 to 3.6, we can easily see that there are certain
types of constraints that occur more than once, and we shall look at these to
detect common patterns and derive symmetries for them in order to be able to
detect symmetries for similar constraints in other problems.

5.1 Value Interchangeable Count Constraints, Example 1

The first constraint in the relational model of the progressive party problem
(Figure 2)

∀(g : Guests, h : Hosts) count(0 . . . 1)(p : Periods | schedule(g, p) = h)

and the constraint in the scene allocation problem (Figure 4)

∀(d : Days) count(0 . . . 5)(s : Scenes | shoot(s) = d)

look very similar. In both of the problems the following pattern occurs:

var . . . −→ Domain
...
∀(. . . d : Domain . . .) count(0 . . . k)(. . . | . . . = d)

12

Since the constraint holds for all d in the domain, we can conclude that if σ
is a solution to a CSP with a constraint of this pattern and b : D −→ D is a
bijection on the domain of the problem, then b ◦ σ is also a solution, i.e. this
constraint is fully value interchangeable. But, of course, it is important that
count(. . .) holds for all the elements in the domain.

Further, we also see that the value of the constant k does not affect the
symmetry of the constraint. In fact, it does not even matter if there are at
least, exactly, or at most k variables such that the constraint holds. In fact not
only sets of the type {k, . . . , l} are allowed in the count expression, but all kinds
of sets, and it is straightforward to see that in the pattern

var . . . −→ Domain
...
∀(. . . d : Domain . . .)count(〈Set〉)(. . . | . . . = d)

the set does not affect the symmetry of the constraint at all, as long as it does
not contain any explicit references to d, since it is not in any way dependent on
the elements of the domain.

Thus we can conclude that relational constraints with the following pattern
are fully value interchangeable (the syntax used is found in [2]):

var〈Id〉 : 〈SetExpr〉 -> Domain

... (7)
forall(〈QuantExpr〉)count(〈Set〉)

(((〈RelQvars〉 | 〈IdTuple〉&
+

)in〈SetExpr〉)
,+

| 〈NumExpr〉 = d)

where

1. 〈QuantExpr〉 contains an expression d:Domain, and where this expression
is preceeded by a comma or a parenthesis and not followed by |. This is
to avoid expressions such as: ∀(3 < d : Domain) or ∀(d : Domain | d < 3)
which would break the full symmetry.

2. 〈Set〉 does not contain any explicit references to d.

Now we can use this pattern to check for symmetries in other problems, and
we note that the second constraint in the social golfers problem (Figure 5) is of
this type and we can thus conclude that it is fully value-symmetric.

If we on the other hand look at the warehouse problem (Figure 3.6)

var supplier : Stores −→ Warehouses
...
∀(w : Warehouses) count(0 . . . cap(w))(s : Stores | supplier(s) = w)

we see that the constraint in this model is very similar to our pattern (7), but
we also see that restriction 2 above is violated. In this problem, the values of the

13

domain – the warehouses – are not indistinguishable, but only warehouses with
the same capacity are interchangeable. The warehouse problem is, modelled
this way, thus piecewise value interchangeable over partitions of the warehouses
with the same capacity. To detect this, and other PVI constraints similar to
this one, we need a more general form of pattern (7). A more general constraint
than constraint (7), with its restrictions, would be:

var . . . −→ Domain
... (8)
∀(. . . d : D . . .)︸ ︷︷ ︸

1

count(〈Set〉)︸ ︷︷ ︸
2

(. . . | . . . = f(d))︸ ︷︷ ︸
3

where D ⊆ Domain, 〈Set〉 is some set, possibly expressed with a reference to
d, and f is some function in Domain −→ N (the range of the function could of
course also be the integers or the reals). We can divide the constraint into three
parts, where each one of them, depending on their formulation, can break the
full symmetry. Let us assume that we have full symmetry for the constraint in
order to see how this symmetry is affected as one of these three parts are changed
in a way that breaks the symmetry. In the cases 1–3 below, we will say that a
part of the constraint is “value interchangeable” or “PVI” over some partition
D, meaning that, the rest of the constraint being equal to constraint (7), this
or that formulation of the considered part makes the whole constraint value
interchangeable or PVI over D.

1. The first part of the constraint is the ∀(. . . d : D . . .) expression which is
“PVI” over D = {D,Domain \D}.
Proof. Assume that we have a CSP, P with a constraint like (8), where
the second and third parts of the constraint are fully symmetric, and that
σ is a solution to P. Now, for any bijection b such that if d ∈ D, then
b(d) ∈ D, b ◦ σ will also be a solution, since the constraint holds for all
d ∈ D. That is, P is PVI over any partition D of Domain such that for any
piecewise interchangeable bijection, b, over D, if d ∈ D, then b(d) ∈ D,
and indeed D = {D,Domain \ D} is such a partition, and in fact the
coarsest one. With our terminology, this means that ∀(. . . d : D . . .) is
“PVI” over D.

In the case where D = Domain it is “PVI” over D = {Domain} and
we have full symmetry, as established above. To express ∀(. . . d : D . . .),
where D ⊆ Domain, we have several possibilities:

(a) ∀(k > d : Domain) ≡ ∀(d : Domain | d < k), which is “PVI” over
D = {{d : Domain | d < k}, {d : Domain | d ≥ k}}.

(b) ∀(k ≥ d : Domain) ≡ ∀(d : Domain | d ≤ k), which is “PVI” over
D = {{d : Domain | d ≤ k}, {d : Domain | d > k}}.

(c) ∀(k = d : Domain) ≡ ∀(d : Domain | d = k), which is “PVI” over
D = {{k}, {Domain\{k}}}.

14

(d) ∀(k 6= d : Domain) ≡ ∀(d : Domain | d 6= k), which is “PVI” over
D = {{k}, {Domain\{k}}}.

(e) ∀(k ≤ d : Domain) ≡ ∀(d : Domain | d ≥ k), which is “PVI” over
D = {{d : Domain | d ≥ k}, {d : Domain | d < k}}.

(f) ∀(k < d : Domain) ≡ ∀(d : Domain | d > k), which is “PVI” over
D = {{d : Domain | d > k}, {d : Domain | d ≤ k}}.

Note that (1a) and (1e) are “PVI” over the same partition of the values,
as are (1b) and (1f), and (1c) and (1d) respectively. If we think about it,
the expressions ∀(d : Domain | d ≈ k) can be generalised even more, viz.
if we have

(g) ∀(d : Domain | 〈Formula〉) where 〈Formula〉 is some formula, pos-
sibly refering to d. This would be “PVI” over the partition D =
{D,Domain \D}, where D = {d : Domain | 〈Formula〉}.

It is also possible to combine any of (1a)–(1f) with (1g):

(h) ∀(k ≈ d : Domain | 〈Formula〉), where ≈∈ {<,≤, =, 6=,≥, >}. This
expression is in the general case “PVI” over D = {D1 ∩ D2 | D1 ∈
D1 ∧ D2 ∈ D2 ∧ D1 ∩D2 6= ∅} if ∀(k ≈ d : Domain) is “PVI” over
D1 and ∀(d : Domain | 〈Formula〉) is “PVI” over D2.
Example. The expression ∀(2 < d : Domain | f(d) ≥ 20), where
Domain = {1, 2, 3, 4} and f(1) = f(3) = f(4) = 25, f(2) = 1, is PVI
over D = {{1}, {2}, {3, 4}}.
But if we think about it further, this expression only considers the
elements d : Domain s.t. d > 2 and f(d) ≥ 20; for all the elements
of Domain for which any of these conditions does not hold, we do
not have to make any further partition. That is, in our example,
we can make a coarser partition of the elements of the domain and
conclude that the expression is “PVI” over D′ = {{1, 2}, {3, 4}}.
By thus exploiting the semantics of the forall-expression, we can in
many cases find a better partition than we would using only the
general result in (1h) above. In cases (1i) and (1j) below we list some
such cases where the expression is “PVI” over a coarser partition
than in the general case (there are many such cases, depending on
what 〈Formula〉 looks like, it could for example be a conjunction of
formulas including d, a case which is not discussed below):

(i) ∀(k1≈1d : Domain | f(d)≈2k2), where ≈1, ≈2 ∈ {<,≤,=, 6=,≥, >} is
“PVI” over D = {D,Domain \D}, where D = {d : Domain | k1≈1d∧
f(d)≈2k2}.

(j) ∀(k1≈1d : Domain | k2≈2f(d)), where ≈1, ≈2 ∈ {<,≤,=, 6=,≥, >} is
“PVI” over D = {D,Domain \D}, where D = {d : Domain | k1≈1d∧
k2≈2f(d)}.

15

2. Our next task is to decide in what way the 〈Set〉 in the count expres-
sion affects the symmetry of the constraint. In Pattern 1 we draw the
conclusion that as long as there are no explicit references to d in the set
expression, it does not affect the symmetry of the constraint. There are
many possible ways to declare different sets, but at least the following are
of interest:

(a) count(k . . . d), where k ∈ N
(b) count(d . . . k)

(c) count(d)

The reference to d in the expressions (2a)–(2c) completely breaks the sym-
metry and makes the expression “PVI” over the partition D = {{di} | di :
Domain}.
(e) count(k . . . f(d)), where k ∈ N and f is some function in Domain −→

N
(f) count(f(d) . . . k)

(g) count(f(d))

The expressions in (2e)-(2g) are “PVI” over D = {{d : Domain | f(d) =
f(di)} | di : Domain}, i.e. over the partition where elements of the domain
with the same value for f are grouped together.

3. Finally, we look at the last part of the constraint, i.e. (. . . | . . . = f(d)).
We know that f is some function in Domain −→ N, and suppose that
D = {f(d) | d : Domain}∩Domain. Then the third part of the constraint
is “PVI” over D = {D,Domain \D}. In particular, if f = id , i.e. if the
whole expression is (. . . | . . . = d), then D = Domain and D = {Domain},
i.e. it is fully “value interchangeable”, as established above.

Using the result in (2e) above, we can conclude that the constraint in the
model of the warehouse location problem in Figure 3.6) is PVI over {{w :
Warehouses | cap(w) = cap(wi)} | wi : Warehouses}, i.e. over the partition of
warehouses with the same capacity.

But how is the symmetry of a constraint of pattern (7) affected if more than
one of the three parts of the constraint differs from (7)?

Proposition 23 Let us suppose that we have a constraint, such that the first
part is “PVI” over D1, the second is “PVI” over D2, and the third is “PVI”
over D3. Then the whole constraint is PVI over D = {D1 ∩ D2 ∩ D3 | D1 ∈
D1 ∧ D2 ∈ D2 ∧ D3 ∈ D3 ∧ D1 ∩D2 ∩D3 6= ∅}.

16

We can now summarise the results of this section into our first general pattern
that can be used to detect value interchangeability:

Pattern 1:
var . . . −→ Domain
...
∀(. . . d : D . . .)count(〈Set〉)(. . . | . . . = f(d))

Constraints of this pattern are PVI over D = {D1 ∩ D2 ∩ D3 | D1 ∈ D1 ∧
D2 ∈ D2 ∧ D3 ∈ D3 ∧ D1 ∩ D2 ∩ D3 6= ∅} if D1 = {D,Domain \ D},
D2 = Domain if we have no references to d in the set 〈Set〉 or if 〈Set〉 =
{k1, k2, . . . , km, f(d), km+1, . . . kn} where k1 . . . kn ∈ N, thenD2 = {{d : Domain | f(d) =
f(di)} | di : Domain}, and D3 = {S,Domain \ S}, where S = {f(d) | d :
Domain, f(d) : Domain}.
Example 24 Suppose that we have a model of a CSP P = 〈V,D, C〉 which
includes the following constraint:

∀(2 < d : D | d 6= 6)︸ ︷︷ ︸
1

count(0 . . . f(d))︸ ︷︷ ︸
2

(v : V | f(v) = G(d))︸ ︷︷ ︸
3

(9)

Let us further suppose that D = {1, 2, . . . , 10} and f and G are two functions
defined on D, s.t. f(d) = 0 if d ≤ 5 and f(d) = 1 otherwise and G(d) = d+2, d ∈
D. Then, by (1i) above, part 1 is “PVI” overD1 = {{1, 2, 6}, {3, 4, 5, 7, 8, 9, 10}},
by (2e) above, part 2 is “PVI” over D2 = {{1, 2, . . . , 5}, {6, 7, . . . , 10}} and
by (3) above is part 3 “PVI” over D3 = {{1, 2, . . . , 8}, {9, 10}}. From this
and Proposition 23 we derive that the whole constraint 9 is PVI over D =
{{1, 2}, {3, 4, 5}, {6}, {7, 8}, {9, 10}}.

5.2 Value Interchangeable Count Constraints, Example 2

Let us now look at the second constraint of the progressive party problem in
Figure 2:

var schedule : (Guests × Periods) −→ Hosts
...
∀(i < j : Guests) count(0 . . . 1)(p : Periods | schedule(i, p) = schedule(j, p))

Whereas the first constraint in the model of the progressive party problem (Fig-
ure 2) had similarities to the constraint of the scene allocation problem (Fig-
ure 4), the second constraint, on its hand, is similar to the first constraint of
the model of the social golfers problem (Figure 5):

var schedule : (Players ×Weeks) −→s∗w Groups
...
∀(p < q : Players) count (0 . . . 1)(v : Weeks | schedule(p, v) = schedule(q, v))

17

In these two examples, we note that there is no explicit reference to any elements
of the domain in the constraints and this indicates that they are value-symmetric
and that the forall expression and the set in the count expression are not part
of the symmetric pattern.
Proof. Let us assume that we have a CSP P = 〈V = {v1, v2, . . . , vn}, D, C〉.
Now let

var f : V −→ D

be a variable declaration in a relational model of the problem. Let us then
construct a partition of V , V = {V1, V2, . . . , Vn}, where Vi = {v : V | f(v) =
f(vi)}. Now suppose we have a bijection b : D −→ D, then if f(v) = f(vi)
for v, vi ∈ V then (b ◦ f)(v) = (b ◦ f)(vi), which means that Vi = Vib

, where
Vib

= {v : V | (b ◦ f)(v) = (b ◦ f)(vi)}, i.e. the partition V is unchanged. So
if we take any subsets, W1 and W2, of V , then for all w1 ∈ W1 we have that
|{w2 : W2 | f(w1) = f(w2)}| is not affected by the bijection b.

This shows not only that the problem is value interchangeable, but also that
the only thing that defines the pattern in these constraints is the function f ,
and the count expression. Using the syntax from [2], we can conclude that
constraints of the following pattern are fully value-symmetric:

var f : 〈SetExpr1 〉
... (10)
[forall(〈QuantExpr〉)]count(〈Set〉)

(((〈RelQvars〉|〈IdTuple〉&
+

)in〈SetExpr2 〉)
,+

| f(〈Tuple〉) = f(〈Tuple〉))
But as in the constraint (7) of Section 5.1, there are some restrictions if we want
to have full value interchangeability. There can be no explicit references to f
in any of the expressions 〈QuantExpr〉, 〈Set〉, 〈SetExpr1 〉 or 〈SetExpr2 〉 in the
count constraint. Otherwise we could have a CSP:

var f : V −→ D
...
∀(v : V | f (v) < k) count(0 . . . 1)(w : V | f (v) = f (w))

which is not fully value interchangeable as we will see below.
Can we use this pattern to say something about the symmetry of the graph

colouring problem? Since it is not the actual colours of the nodes in the graph,
but rather which nodes have the same colours, that matters, the problem is fully
value interchangeable, and the constraint in the model in Figure 6 in fact does
look something like the pattern (10), but not exactly. It rather has the pattern:

var f : V −→ D
...
∀(. . . v : V . . .) count(. . .)(w : V | 〈Expr〉 ∧ f (v) = f (w))

18

If the expression 〈Expr〉 does not contain any references to f, it does not
affect the value interchangeability of the constraint, which is thus the case in
the model in Figure 6.

Now, let us, just as in Section 5.1, see in what way the symmetry of a
constraint of pattern (10) is affected if one of the restrictions above is violated,
i.e. when a reference to f in any of the expressions mentioned above breaks the
full symmetry into a partial one. Again the constraint can be divided into three
parts, and we will investigate how the symmetry of the constraint is affected
if one of these parts is changed compared with constraint (10) and the others
remain the same, using “value interchangeable” and “PVI” in the same meaning
as in Section 5.1. A generalisation of constraint (10) could be:

var f : V −→ Domain
...
∀(v : V | . . . f (v) . . .)︸ ︷︷ ︸

1

count(. . . f(v) . . .)︸ ︷︷ ︸
2

((w : V | . . . f(v) . . .) | f (v) = f (w))︸ ︷︷ ︸
3

Examining each of the three parts separately, we have the three following cases:

1. We have already concluded that we have full value interchangeability if
there is no restriction to the set of variables that we are looking at, i.e.
if part 1 looks like ∀(v : V). If this is not the case, we have at least two
possibilities:

(a) ∀(v : V | f(v) ≈ k), where k ∈ N and ≈∈ {<,≤,=, 6=,≥, >}. This is
“PVI” over D = {D,Domain \D}, where D = {d : Domain | d ≈ k}.

(b) ∀(v : V | k ≈ f(v)). If D = {d : Domain | k ≈ d}, this is “PVI” over
D = {D,Domain \D}.

2. Without references to f(v) in the set of the count expression, we have full
value interchangeability. Other than this, there are at least three plausible
cases:

(a) count(k . . . f(v)), where k ∈ N
(b) count(f(v) . . . k)

(c) count(f(v))

These three cases are all “PVI” over the trivial partition of the domain,
i.e. D = {{di} | di : Domain}.

3. In the third part of the constraint, we have, just as in the first part, a
possibility to restrict the set of variables which the constraint concerns.
If this is not done, the constraint is fully symmetric. Otherwise we have
two cases analogous to the ones in (1):

19

(a) ((w : V | f(v) ≈ k) | f(v) = f(w)), where k ∈ N and ≈∈
{<,≤, =, 6=,≥, >}. This is “PVI” over D = {D,Domain \D}, where
D = {d : Domain | d ≈ k}.

(b) ((w : V | k ≈ f(v)) | f(v) = f(w)), which, if D = {d : Domain | k ≈
d} is “PVI” over D = {D,Domain \D}.

To conclude this section, we summarise this into a general pattern, using Propo-
sition 23 in Section 5.1.

Pattern 2:
var f : V −→ Domain
...
∀(v : V | . . . f (v) . . .)count(. . . f(v) . . .)((w : V | . . . f(v) . . .) | f (v) = f (w))

Constraints of this pattern are PVI over D = {D1 ∩D2 ∩D3 | D1∈D1 ∧ D2∈
D2 ∧ D3 ∈ D3 ∧ D1 ∩ D2 ∩ D3 6= ∅} where D1 corresponds to D in case 1
above, D2 corresponds to D in case 2 above, and D3, finally, corresponds to D
in case 3 above.

5.3 Symmetries in Objective Functions and Numerical
Constraints

Using the results of Sections 5.1 and 5.2 we have been able to detect value
symmetries for all constraints in our models (except, of course, in the n-Queens
and the BIBD problem, which are only value interchangeable over the trivial
partition of the values) with one exception, namely for the numerical constraints
and for objective functions occuring in COPs. In order to compositionally derive
the symmetries for whole problems, we have to be able to detect symmetries
in objective functions. As in Sections 5.1 and 5.2 we will first look at some
examples and then, with the Definitions 8 and 10 and Propositions 17 and 19,
see what symmetries they exhibit. Our first example will be the third constraint
of the progressive party problem in Figure 2:

∀(p : Periods, h : Hosts)︸ ︷︷ ︸
1


 ∑

g:Guests | schedule(g,p)=h

crewSize(g)




︸ ︷︷ ︸
2

≤ spareCap(h)︸ ︷︷ ︸
3

(11)

As indicated, we will use the same approach as in Sections 5.1 and 5.2 and divide
the constraint (11) into three parts and study their symmetries separately first
and then derive the symmetries for the whole constraint. In the first part we see
that no restrictions are made to the set of Hosts from which the element h can be
chosen, and it is thus fully “value interchangeable”. Now, if we look at the rest of
the constraint, we see that it is a numerical constraint, which by Proposition 22
is PVI over the partition D = {D1 ∩D2 | D1 ∈ D1 ∧D2 ∈ D2 ∧D1 ∩D2 6= ∅},

20

if

(
∑

g:Guests | schedule(g,p)=h

crewSize(g)

)
is PVI over D1 and spareCap(h) is PVI over

D2. What can we say about the symmetries of these expressions? Since in the
summation function, there is no reference to any specific hosts (the host h in the
summation range is not specified here, but in the forall expression that preceeds
the summation expression) in the summands or in the summation range, any
bijection on the hosts will not affect the value of the function, and it is thus
fully “value interchangeable” according to Definition 8. We can generalise this
in a pattern that can be applied to other functions as well:

Pattern 3: A function with any of the following patterns:∑
〈QuantExpr〉

〈NumExpr〉, abs〈NumExpr〉, card〈SetExpr〉, or f〈Tuple〉, where the

expressions 〈QuantExpr〉, 〈NumExpr〉, 〈SetExpr〉 or 〈Tuple〉 do not contain any
references to any specific elements of the domain, is fully “value interchange-
able”.

In the third part of constraint (11) we have a function spareCap with the
signature Hosts −→ N. This means that spareCap(h) is PVI over the partition
D = {{h : Hosts | spareCap(h) = spareCap(hi)} | hi ∈ Hosts}. This can also
be turned into a general pattern:

Pattern 4: If the following occurs in a relational model of a CSP:

cst f : Domain −→ N
...
. . . d : Domain . . . f(d)

then the function f(d) is “PVI” over the partition D = {{d : Domain | f (d) =
f (di)} | di ∈ Domain}.

From this, we can finally, using Propositions 22 and 23, draw the conclusion
that the constraint (11) is PVI over the partitionD = {{h : Hosts | spareCap(h) =
spareCap(hi)} | hi ∈ Hosts}.

Our next example is not a numerical constraint, but the objective function
occurring in the scene allocation problem. The function has the following form:

∑

a:Actors

fee(a)*card{(d : Days) | ∃(s : Scenes | casting(a, s) ∧ shoot(s) = d)}

(12)
The first part of the summands in the function, i.e. fee(a), does not affect the
symmetry of the function since we do not have any reference to any elements
from Days there. Then we have a cardinality expression with references to
elements from the domain. The way the scene allocation problem is stated, it is
easy to see that the actual days assigned to the scenes are not important, but as
we want a pattern for more general cardinality expressions, we will study them
more closely.

What does it mean for a function of the form f(d) = card〈SetExpr〉 to be
PVI over some partition D? Well, suppose that f(d) = n, then f(d) is PVI over

21

D if for any piecewise interchangeable bijection b : D −→ D, f(d) = (f ◦ b)(d),
i.e. if f(b(d)) = n. But to say that card〈SetExpr〉 = n can be expressed by
saying that count(n)(x | x ∈ 〈SetExpr〉), and these two expressions are thus
PVI over the same partition. (Note that n is an arbitrary number that does not
affect the symmetry of the expressions.) For our constraint (12), for example,
the cardinality expression is PVI over the same partition as the constraint:

count(n)((d : Days) | ∃(s : Scenes | casting(a, s) ∧ shoot(s) = d)) (13)

We have thus transformed the question of symmetry for the cardinality expres-
sion into a question on symmetry of a count constraint. Those we have studied
before, but only when preceeded by a universal quantifier. Therefore we will
look at the symmetry for some “simple” count constraints. If we look at the
objective function of the model of the warehouse location problem, we find a
cardinality expression very similar to the one in the scene allocation problem.
In what way can we generalise their “corresponding” count constraints? The
following pattern is at least one generalisation of constraint (13):

Pattern 5:
var f : Vars −→ Domain
...
count(S)((d : D) | ∃(v : Vars | Form ∧ f(v) = d))

where S ⊆ N, D ⊆ Domain, and Form is some formula without references to
elements from the domain. Now, the only part of this constraint that can affect
its value interchangeability is the expression d : D. We can, as in Section 5.1,
conclude that this part, and thus the whole constraint, is PVI over the partition
D = {D,Domain \ D}, where we can apply the cases (1a)-(1j) of Section 5.1
if we want to explicitly express some possibilities for this partition. Since in
the cardinality expression in the function (12), D = Days, the expression, and
therefore, by Pattern 3 and Proposition 17, the whole objective function (12) is
fully value interchangeable.

To conclude this section on the value interchangeability of the constraints in
the models of Section 3, we will look at the objective function of the warehouse
location problem in Figure 8. By Pattern 5, we know that the cardinality ex-
pression is fully value interchangeable. maintCost is a constant and does not
affect the symmetry. What remains is the summation function, where we, as op-
posed to Pattern 3, have references to elements of the domain in the summands.
If we have:

Pattern 6:
cst f : Domain −→ N
... ∑
d:D⊆Domain

f(d)

of which the summation function in the warehouse location problem is an in-
stance, we have (at least) two different partitions over which the function is

22

PVI. First, since it does not matter in which order the elements are added, any
bijection on D1 = {D,Domain \D} will give the same solutions. But we could
also make the partition D2 = {{d : Domain | f(d) = f(di)} | di ∈ Domain}.
Which of these partitions we choose could be different in different cases. In the
warehouse location problem though, the decision variable occurs in the subscript
of the summation, which means that this would not help us partition the values.
Instead we say that the function (and therefore the whole objective function in
the model) is PVI overD = {{w : Warehouses | ∀s ∈ Stores . supplyCost(s, w) =
supplyCost(s, wi)} | wi ∈ Warehouses}.

6 Value Interchangeability in Compositions of
Constraints

In Section 5 we saw how we could derive symmetries for single constraints and
thus for problems with one constraint. In many CSPs, though, we have more
than one constraint. In Section 6.1 we will look at how we can compositionally
derive symmetries for problems with more than one constraint, and in Sec-
tion 6.2 we study the semantics of some common constraints to see if we can
derive a stronger symmetry than the general method of Section 6.1 would give
us.

6.1 Composition of Constraint Symmetries

In Propositions 13 and 15, originally found in [4], we saw that given two CSPs
P1 = 〈V, D,C1〉 and P2 = 〈V, D,C2〉, which are PVI over D1 and D2 respec-
tively, their composition P1 ∧ P2 is PVI over D = {D1 ∩D2 | D1 ∈ D1 ∧D2 ∈
D2 ∧D1 ∩ D2 6= ∅}. We observe that P1 ∧ P2 ≡ 〈V,D, C1 ∧ C2〉 and that the
proposition therefore can be applied to one CSP with two constraints. Using
Proposition 15 repeatedly allows us always to derive some, but perhaps subop-
timal, partition of the values over which a given CSP is PVI, as long as we know
the partitions over which the constraints in the problem are PVI.

Now we can apply this proposition to our results from Section 5 on the
symmetry of single constraints in the models of Section 3 to make conclusions
on the symmetries of the whole models:

Progressive Party: In Section 5.1 we saw that the first constraint in the model
of Section 3.1 of the progressive party problem is fully value interchange-
able. By Section 5.2, we know that the same holds for the second con-
straint. But as the third constraint is only PVI, we can, using Proposi-
tion 15, conclude that the progressive party problem is PVI over the par-
tition of the values D = {{h : Hosts | spareCap(h) = spareCap(hi)} | hi ∈
Hosts}.

Scene Allocation: This is a COP, where both the constraint (by Section 5.1)
and the objective function (by Section 5.3) are fully value interchangeable.
Then by Proposition 20 this model is fully value interchangeable.

23

Social Golfers: In the model of Figure 5 of this problem, we have two con-
straints, which, by Sections 5.1 and 5.2, are both value interchangeable,
which, by Proposition 13, means that so is the whole model.

Graph Colouring: Already in Section 5.2, we could conclude that this prob-
lem is fully value interchangeable, since its only constraint is.

BIBD: In the model in Figure 7, as mentioned earlier, the decision variable
is not a function, but a relation between the Varieties and the Blocks.
This is analogous to a function in Varieties × Blocks −→ {0, 1}. In the
picture below, we see a solution to the BIBD problem where v = b = 3,
k = r = 1 and λ = 0. Here we clearly see that the values 0 and 1 are not
interchangeable, which means that we only have value interchangeability
over the trivial partition. We will instead deal with the symmetries of
this problem in the section on variable symmetries in single constraints,
namely Section 8.

0

0

1

0

1

0

1

0

0

Warehouse Location: In the model of this problem, we have a constraint,
which by Section 5.1 is PVI over D1 = {{w : Warehouses | cap(w) =
cap(wi)} | wi : Warehouses}. We also have an objective function, which
by Section 5.3 is PVI over D2 = {{w : Warehouses | ∀s ∈ Stores .
supplyCost(s, w) = supplyCost(s, wi)} | wi ∈ Warehouses}. From this
and Proposition 20 we can conclude that the whole model is PVI over the
partition D = {{w : Warehouses | cap(w) = cap(wi) ∧
∀s ∈ Stores . supplyCost(s, w) = supplyCost(s, wi)} | wi ∈ Warehouses}.

n-Queens: In the model of this problem, the first constraint matches Pattern 2
in Section 5.2, but the other two does not. The reason for this is that the
problem, modelled this way, is only symmetric over the trivial partition
of the values, i.e. D = {{di}, di ∈ Domain}.

6.2 Aggregation

As observed in [4], the symmetries derived using Proposition 13 and 15 might
be suboptimal. One way of dealing with this is by remodelling problems using
aggregation, or at least recognising that a conjunction of constraints corresponds
to some aggregated constraint, for which a stronger symmetry can be derived.
Let us at first look at the global cardinality constraint, available in SICStus

24

Prolog for instance, to see an example of a constraint that corresponds to a
conjunction of count constraints.

global cardinality(Xs,Vals)

where Xs = [x1, . . . , xd] is a list of integers or decision variables, and Vals =
[k1 − v1, . . . , kn − vn] is a list of pairs where each key ki is a unique integer and
vi is a domain variable or an integer. It is true if every element of Xs is equal
to some key, ki, and for each pair ki − vi, exactly vi elements of Xs are equal
to ki. This constraint is equivalent to:

dom Ks,Vs,Xs
cst g : Ks −→ Vs
var f : Xs −→ Ks
solve

∀(k : Ks)count(g(k))(x : Xs | f(x) = k)

This constraint we have already seen in Section 5.1 as an instance of Pattern
1, modified according to case (2g), so compared with any constraint of the type
∀(. . .)count(. . .)(. . .) it is not very general and it does not help us to derive any
stronger symmetries than we have already done.

Let us instead look at a conjunction of constraints, all matching case 1:

var f : Variables −→ Domain
...
∀(d : D1)count(〈Set〉)(v : V1 | f(v) = d)
∧∀(d : D2)count(〈Set〉)(v : V2 | f(v) = d)
...
∧∀(d : Dn)count(〈Set〉)(v : Vn | f(v) = d)

where Di ⊆ Domain, Vi ⊆ Variables and where the 〈Set〉 in the count expression
is the same set in all the constraints. Then by considering the semantics of
these constraints, we see that this conjunction is PVI over D = {D1∪D2∪ . . .∪
Dn,Domain \D1 ∪D2 ∪ . . . ∪Dn}, whereas we, using the result of case 1 and
Proposition 15 would get a much finer partition.

Example 25 Take the case where n = 2, Domain = {1, 2, 3, 4}, D1 = {1, 2}
and D2 = {2, 3}. Then using aggregation we derive PVI over the partition
D = {{1, 2, 3}, {4}} whereas our previous results would only give us the trivial
partition D′

= {{1}, {2}, {3}, {4}}.

25

7 Variable Interchangeability

In Section 3.5 we mentioned that the BIBD problem is variable symmetric, and
as we will see, many of the other problems that we have discussed, apart from
being (piecewise) value interchangeable, are also variable interchangeable. Be-
fore deriving these symmetries, we will start by transforming the definitions and
propositions on value interchangeability of Section 4 into results about variable
interchangeability, and also see how more complex symmetries can be derived
compositionally. We will use the Definition 12 of [4] for variable symmetry and
then derive definitions and propositions corresponding to Definitions 7 to 11
and Propositions 1 to 6 of that paper, but for variable symmetry. This means
that Definitions and Propositions 27 to 43 are my translations of results from [4]
on value symmetry to results on variable symmetry. In the following the corre-
sponding definition/proposition of [4] is given in parenthesis after the number
of the new definition/proposition. Note that the numbers given in parenthesis
after these definitions and propositions does not, as opposed to in Section 4 in-
dicate that these definitions and propositions are in [4], but only that they are
analogous to the indicated definition/proposition. The Definitions and Proposi-
tions 26 and 44 to 50 are copied from [4]. Now, let us first repeat the definition
for variable interchangeability (Definition 12 of [4]):

Definition 26 (Definition 12) Let P = 〈V, D,C〉 be a CSP. P is variable in-
terchangeable if, for each solution σ ∈ Sol(P) and each bijection b : V −→ V ,
the function σ ◦ b ∈ Sol(P).

Example 27 The CSP P = 〈V,D, allDifferent(v1, v2, v3)〉 is variable inter-
changeable if V = {v1, v2, v3}, else the next definition applies:

Definition 28 (Definition 7) Let P = 〈V, D,C〉 be a CSP and V be a partition
of V . P is piecewise variable interchangeable (PVarI) over V if, for each solution
σ ∈ Sol(P) and each piecewise-interchangeable bijection b (see Definition 5)
over V, σ ◦ b ∈ Sol(P).

Note that, if P = 〈V, D, C〉 is variable interchangeable, then it is PVarI over
{V }.
Example 29 Take the CSP P as in Example 27, i.e. P = 〈V,D, C〉, where
C = allDifferent(v1, v2, v3). Then P is piecewise variable interchangeable over
V = {{v1, v2, v3}, V \ {v1, v2, v3}}, i.e. if V = {v1, v2, v3}, then P is PVarI over
V = {V }.
Definition 30 (Definition 8) A global function f : (V −→ D) −→ N is variable
interchangeable if, for each assignment σ : V −→ D and each bijection b : V −→
V , f(σ) = f(σ ◦ b).

Definition 31 (Definition 9) Let V be a partition of V . A global function
f : (V −→ D) −→ N is piecewise variable interchangeable over V if, for each
assignment σ : V −→ D and piecewise-interchangeable bijection b over V,
f(σ) = f(σ ◦ b).

26

Example 32 Take the global function nbDistinct(v1, . . . vk) : (V −→ D) −→
N, where V = {v1, v2, . . . , vn} and k ≤ n. Then nbDistinct(v1, v2, . . . , vk) is
variable interchangeable if k = n, while on the other hand if k < n, it is PVarI
over V = {{v1, v2, . . . , vk}, {vk+1, vk+2, . . . , vn}}.

Definition 33 (Definition 10) Let O = 〈V,D, C, f〉 be a COP. O is variable
interchangeable if, for each solution σ ∈ Sol(O) and each bijection b : V −→ V ,
σ ◦ b ∈ Sol(O) and f(σ) = f(σ ◦ b).

Definition 34 (Definition 11) Let O = 〈V,D, C, f〉 be a COP and V be a
partition of V . O is piecewise variable interchangeable over V if, for each solution
σ ∈ Sol(O) and each piecewise-interchangeable bijection b over V, σ◦b ∈ Sol(O)
and f(σ) = f(σ ◦ b).

Now, that we have defined variable interchangeability for CSPs as well as
COPs, we can go on with the propositions for composition of symmetries.

Proposition 35 (Proposition 1) Let P1 = 〈V, D,C1〉 and P2 = 〈V,D, C2〉 be
two variable interchangeable CSPs. Then, their composition P1 ∧P2 is variable
interchangeable.

Example 36 Take the two CSPs P1 = 〈V, D, allDifferent(v1, v2, v3)〉 and P2 =
〈V,D, v1 + v2 + v3 = k〉, where V = {v1, v2, v3}. Then P1 ∧ P2 is variable
interchangeable.

Proposition 37 (Proposition 2) Let P1 = 〈V, D,C1〉 and P2 = 〈V,D, C2〉 be
two CSPs. Assume that Pi is piecewise variable interchangeable over partition
Vi of V (1 ≤ i ≤ 2). Then the composition P1 ∧ P2 is piecewise variable
interchangeable over V = {V1 ∩ V2 | V1 ∈ V1 ∧ V2 ∈ V2 ∧ V1 ∩ V2 6= ∅}

Proof. Take σ ∈ Sol(P1 ∧ P2), then σ ∈ Sol(P1) ∧ σ ∈ Sol(P2). By the
construction of V, any bijection b which is piecewise interchangeable over V is
also a piecewise interchangeable bijection over V1 and V2. Since Pi is PVarI
over Vi we have σ ◦ b ∈ Sol(P1) and σ ◦ b ∈ Sol(P2), from which follows that
σ ◦ b ∈ Sol(P1 ∧ P2), i.e. P1 ∧ P2 is PVarI over V.

Note that, in Propositions 35 and 37, we have only considered CSPs with
the same set of variables. Before looking at what happens when this is not the
case, we shall look at the composition of function symmetries.

Proposition 38 (Proposition 3) Let f1 and f2 be two global functions of sig-
nature (V −→ D) −→ N. If f1 and f2 are variable interchangeable, then so is
f1 ? f2, where ? ∈ {+,−,×}.

Example 39 Let V = {v1, v2, v3} and take the two variable interchangeable
functions f1 = nbDistinct(v1, v2, v3) and f2 = v1 + v2 + v3, then 3f1 + 4f2 is
variable interchangeable.

27

Proposition 40 (Proposition 4) Let f1 and f2 be two global functions of signa-
ture (V −→ D) −→ N, and let f1 and f2 be PVarI over V1 and V2 respectively,
then f1 ? f2 (? ∈ {+,−,×}) is PVarI over V = {V1 ∩ V2 | V1 ∈ V1 ∧ V2 ∈
V2 ∧ V1 ∩ V2 6= ∅}.

Proposition 41 (Proposition 5) Let O = 〈V, D,C, f〉 be a COP and P =
〈V,D, C〉. If P and f are variable interchangeable, then O is variable inter-
changeable. If P is PVarI over partition V1 of V and f is PVarI over partition
V2 of V , then O is PVarI over V = {V1 ∩ V2 | V1 ∈ V1 ∧ V2 ∈ V2 ∧ V1 ∩ V2 6= ∅}.

Proposition 42 (Proposition 6) Let f : (V −→ D) −→ N be a global function
and V be a partition of V . If f is PVarI over V, then the CSP 〈V,D, f ≈ 0〉 is
PVarI over V as well, where ≈∈ {>,≥,=, 6=,≤, <}.

Remark In many cases, when composing CSPs, it is possible to find a
coarser partition over which the composition is PVarI, than we would using
Proposition 37. Look at the following example:

Example 43 Take the CSPs P1 = 〈V,D, v1 = v2〉 and P2 = 〈V,D, v2 = v3〉,
where V = {v1, v2, v3}. Then P1 is PVarI over the partition V1 = {{v1, v2}, {v3}}
and P2 is PVarI over V2 = {{v1}, {v2, v3}}. Then by Proposition 37 P1 ∧ P2

is PVarI over V = {V1 ∩ V2 | V1 ∈ V1 ∧ V2 ∈ V2 ∧ V1 ∩ V2 6= ∅}, i.e. P1 ∧ P2

is PVarI over V = {{v1}, {v2}, {v3}}, but P1 ∧ P2 is in fact fully variable in-
terchangeable, since if we have a solution such that v1 = v2 and v2 = v3, then
v1 = v3, i.e. these three variables are fully interchangeable. To see this we need
more information about the CSPs P1 and P2 than the partitions over which
they are PVarI, though, such as in this example the knowledge that equality is
transitive.

Our example above illustrates that even if it would be nice to be able to
always derive PVarI over a partition with as few elements as possible, this
sometimes requires more information than we have about the problem. The
important thing is that we do not derive any symmetries that are not there,
and we can conclude that if a CSP P1 is PVarI over V = {V1, . . . , Vm} then it
is also PVarI over V ′ = {W1, . . . , Wn}, where for all 1 ≤ i ≤ n we have Wi ⊆ Vj

for some 1 ≤ j ≤ m. In particular, any CSP P = 〈{v1, v2, . . . , vn}, D, C〉 is
PVarI over the trivial partition of its variables, V = {{v1}, {v2}, . . . , {vn}}.

Since in the relational models of the progressive party and the social golfers
problem we use matrix models, we end this section by including some results on
matrix models from [4], and again give the corresponding numbers of [4] of the
definitions and propositions in parentheses. Formally, a matrix M of variables
can be modelled as a bijection X × Y → V , where X are the row indices of M ,
Y its column indices, and V its set of variables. For clarity, we use traditional
notations: M [i, j] denotes the variable in row i and in column j, M [i] row i,
and M [∗, j] column j. We assume that all matrices are defined over row indices
X and column indices Y .

28

Definition 44 (Definition 15) A matrix-CSP (MCSP) is a triple 〈M,D, C〉,
where M is a matrix of variables, D denotes the set of values for these variables,
and C : (M → D) → Bool specifies which assignments of values to the variables
are solutions. A solution to an MCSP P = 〈M,D, C〉 is a function σ : M → D
such that C(σ) = true. The set of solutions to P is denoted by Sol(P).

An example of a matrix-CSP is the model of the progressive party problem
in Figure 2. There we have a matrix of variables, i.e. the set {schedule(g, p) | g :
Guests, p : Periods}. The domain is the set Hosts and the constraint is the
conjunction of the three forall statements, which for any given assignment of
values to the variables is either true or false.

The next definitions specify column interchangeability, a “global” form of
variable interchangeability.

Definition 45 (Definition 16) A column permutation for a matrix M is a func-
tion ρ : M → M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X ∧ j ∈ Y)

for some bijection b : Y → Y .

Definition 46 (Definition 17) An MCSP P = 〈M,D, C〉 is column interchange-
able if, for each solution σ ∈ Sol(P) and each column permutation ρ : M → M ,
the function σ ◦ ρ ∈ Sol(P).

Proposition 47 (Proposition 7) Let P1 = 〈M, D, C1〉 and P2 = 〈M,D, C2〉 be
two column interchangeable MCSPs. Then, their composition P1∧P2 is column
interchangeable.

These results are also generalised to concern piecewise interchangeability.

Definition 48 (Definition 18) Let Y be a partition over Y . A piecewise column
permutation over Y for a matrix M is a function ρ : M → M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X ∧ j ∈ Y)

for some piecewise-interchangeable bijection b over Y.

Definition 49 (Definition 19) Let Y be a partition over Y . An MCSP P =
〈M, D, C〉 is piecewise column interchangeable over Y if, for each solution σ ∈
Sol(P) and each piecewise column permutation ρ over Y, the function σ ◦ ρ ∈
Sol(P).

Proposition 50 (Proposition 8) Let P1 = 〈M, D, C1〉 and P2 = 〈M,D, C2〉
be two piecewise column interchangeable MCSPs over Y1 and Y2 respectively.
Then, their composition P1 ∧ P2 is piecewise column interchangeable over

Y = {Y1 ∩ Y2 | Y1 ∈ Y1 ∧ Y2 ∈ Y2 ∧ Y1 ∩ Y2 6= ∅}.
These results naturally generalise to row interchangeability and also to con-

cern matrix-COPS.

29

8 Variable Interchangeabililty in Single
Constraints

As we saw in Section 7 variable interchangeability is quite similar to value in-
terchangeability. The difference is that we look for interchangeability of the
variables of some CSP, instead of at the interchangeability of the values. This
means that had the values for which we looked at the interchangeability of in
Section 5 been variables instead of values, we would have had some kind of vari-
able interchangeability. This means that we could have used the same patterns
as in section 5 to check for variable interchangeability if the elements of the
domain that has some kind of symmetry are variables in the model. But, as
we will see when looking at the models of Section 3 again, the patterns of Sec-
tion 5 are not applicable to them, when looking for variable interchangeability,
but we will have to derive new patterns that show us that some variables are
interchangeable.

There is one thing that makes variable interchangeability more complicated
than value interchangeability, though, and it is the case when we deal with ma-
trix variables. If we have matrix variable interchangeability, or ordinary variable
interchangeability depends on the decision variable. If the variable is a function
in Var −→ Domain and the elements of Var are (piecewise) interchangeable,
then we have (piecewise) variable interchangeability. But if the variable on the
other hand is a function in Xs×Ys −→ Domain and the elements of Xs/Ys are
(piecewise) interchangeable, then we have (piecewise) row/column interchange-
ability. This means that we can start by checking if the values of some domain
are interchangeable or not, and then by looking if we have a matrix model or
not, see what type of symmetry we have. We state this in a proposition that
shows the relation between value, variable and row/column interchangeability:

Proposition 51 Assume that in a model of a CSP P = 〈V,D, C〉 some set S
occurs and that for any piecewise interchangeable bijection b over the partition
S of S, it is the case that for every occurrence of an element s from S in the
model of P, replacing s by b(s) preserves the solutions. Then if S is the set of
values of P, i.e. if S = D, then P is piecewise value interchangeable over S or
if S = V , then P is piecewise variable interchangeable over S or finaly if S is
the set of rows/columns of P, then P is piecewise row/column interchangeable
over S.

Let us start by looking at the progressive party problem. In the relational
model of Figure 2, we have chosen to let the variable be a matrix, where the rows
represents the Guests and the columns represents the Periods. Each element
in the matrix, [g, p], is given a value representing the host that guest g visits
in period p. Now, the Periods are fully interchangeable in the model and this
corresponds, in our relational model, to column interchangeability as defined
in Definition 46. The only thing we have to do to be able to detect this in
the model is to construct patterns that lets us derive that the Periods are fully
interchangeable in all the constraints of the model in Figure 2, and then note

30

that we are dealing with a matrix model, where the Periods are represented by
the columns in the decision variable.

Let us for example start with the following pattern:

Pattern 7: ∀(〈QuantExpr1 〉)︸ ︷︷ ︸
1

count(〈Set〉)︸ ︷︷ ︸
2

(〈QuantExpr2 〉 | f(s) = . . .)︸ ︷︷ ︸
3

(14)

Constraints of this pattern are found in the progressive party problem (both
the first and second constraint in Figure 2), the scene allocation problem, both
constraints of the social golfers problem, and the warehouse location problem.
This constraint can, in the same way as we did in Section 5.1, be divided into
three parts. Now we choose one of the domains of the model for which we check
for interchangeability. Again, whether this interchangeability of the elements
of some domain implies variable, matrix variable or value interchangeability of
the model depends on the role of this domain in the model. In the progressive
party problem for example, we both have Guests and Periods, where the first
set is interchangeable over guests with the same crew size and the second set
is fully interchangeable which means that we have a piecewise row interchange-
ability, but a full column interchangeability. Now let us suppose that we in the
constraint 14 are looking for interchangeability for the elements of a set Set and
that s ∈ Set . This means that we, just as in Section 5.1 can go through each
part of the constraint and see how it affects the interchangeability, with respect
to Set , of the whole constraint, assuming that we at first have full symmetry. In
order not to confuse things, we assume that the elements of Set are the variables
of the actual CSP, such as the Stores in the warehouse problem (Figure 8), but
if the model of the CSP instead have a matrix variable, where the rows/columns
represents the elements of Set , all the results in the rest of this section can just
as well be considered to deal with row/column interchangeability. Once we have
derived the symmetries of the different parts of a constraint we can use the fol-
lowing proposition, corresponding to Proposition 23 of Section 5.1 to derive the
symmetry for the whole constraint:

Proposition 52 Let us suppose that we have a constraint, such that the first
part is “PVarI” over V1, the second is “PVarI” over V2, and the third is “PVarI”
over V3. Then the whole constraint is PVarI over V = {V1 ∩ V2 ∩ V3 | V1 ∈
V1 ∧ V2 ∈ V2 ∧ V3 ∈ V3 ∧ V1 ∩ V2 ∩ V3 6= ∅}.

Now, let us look at the “variable interchangeability” of the different parts of
the constraint 14.

1. If 〈QuantExpr1 〉 does not have any references to elements in Set it does
not affect the interchangeability of the constraint, with respect to Set .
Otherwise if we have ∀(. . . s : S . . .), where S ⊆ Set , this part is “PVarI”
over S = {S,Set \ s}. That s : S ⊆ Set can be expressed in many ways, of
which some are mentioned in case 1 of Section 5.1. Note that we here and
in the rest of this section abuse the concept of variable interchangeability
when we say that a part of a constraing is “variable interchangeable” or
“PVarI” in a similar way as was done in Section 8.

31

2. Again, we have a situation similar to the one concerning value interchange-
ability in Section 5.1. If there are no references to elements from Vars in
〈Set〉 we have full symmetry for this part, otherwise we have the same
possibilities as in case 2 of Section 5.1.

3. The case of 〈QuantExpr2 〉, and therefore its variable interchangeability, is
the same as for 〈QuantExpr1 〉.

Once the symmetries for these three parts have been established, we can use
Proposition 52 to derive the symmetry for the whole constraint. Let us now
use these results to make some conclusions on the variable interchangeability of
some constraints in our relational models of Section 3, taking the into account
whether we have matrix models or not:

Progressive Party: In the first two constraints in Figure 2, both the Guests
and the Periods are fully interchangeable. This means that we have full
row and full column interchangeability in these two constraints.

Scene Allocation: The Scenes are fully variable interchangeable in the con-
straint of the model of the scene allocation problem.

Social Golfers: Both the Players and the Weeks are fully interchangeable in
the model of Figure 5, which means that we have full row and column
interchangeability.

Warehouse Location: The stores in the constraint in the model of Figure 8
are fully variable interchangeable.

For the BIBD problem, we already in Section 3 noted that the model of
Figure 7 has some kind of variable symmetry. Again we have a matrix model
where both the rows (the Varieties) and the columns (the Blocks) are fully
interchangeable but since the decision variable is not a function, but a relation
in this model, we have to make a variant of the pattern above.

∀(〈QuantExpr1 〉)︸ ︷︷ ︸
1

count(〈Set〉)︸ ︷︷ ︸
2

(〈QuantExpr2 〉 | f(s) ∧ . . .)︸ ︷︷ ︸
3

(15)

Constraints of this type displays exactly the same row/column interchange-
ability as the constraint 14 does in a matrix model when cases 1–3 above are
applied to the three parts of the constraint.

Now let us look at the variable interchangeability of the objective functions
and the numerical constraints of the models in Section 3. We will again sim-
ply use our results from Section 5, but apply them to sets of variables rather
than values, to see if the variables are interchangeable, and then by looking at
the decision variable decide whether we have variable or matrix row/column
interchangeability.

Let us start with the Periods in the third constraint in the model of Figure 2.
Using Pattern 3 in Section 5.3 we see that the Periods are fully interchangeable

32

in this constraint, i.e. we have a case of column interchangeability. The Guests
on the other hand are row interchangeable over partitions of Guests with the
same crewSize, a result that follows from Pattern 6 of Section 5.3.

In the scene allocation problem in Figure 4, we have an objective function
which is a summation function. By Proposition 40 this means that the function
is PVarI over the same partition as the summands. Since we are looking for
the interchangeability of the Scenes, the expression fee(a) does not affect the
symmetry of the function. Then we have a cardinality expression card{(d :
Days) | ∃(s : Scenes | casting(a, s) ∧ shoot(s) = d) with the following pattern:

card{(. . .)︸︷︷︸
1

| ∃(v : V ⊆ Vars︸ ︷︷ ︸
2

| 〈Expr1 〉 ∧ 〈Expr2 〉︸ ︷︷ ︸
3

)} (16)

To derive the symmetry of this constraint, let us first construct the following
useful pattern:

Pattern 8:
〈Expr 1 〉 ∧ 〈Expr 2 〉 ∧ . . . ∧ 〈Expr n〉

If the expression 〈Expr i〉 is “PVarI” over the partition Vi of the variables, then
the whole conjunction is “PVarI” over the partition V = {V1∩V2∩ . . .∩Vn | Vi ∈
Vi ∧ V1 ∩ V2 ∩ . . . ∩ Vn 6= ∅}.

In the first part of the expression 16, we have no references to any variables,
and so it does not affect the symmetry. In the second part, we have again a
situation similar to the one in case 1 of Section 5.1, i.e. it is “PVarI” over the
partition V = {V,Vars \ V } of the variables. In the third part of the constraint
we have a conjunction of expressions for which we can use Pattern 8 to derive
the interchangeability of the variables. Now it is possible to use Proposition 52
to derive the interchangeability for the whole constraint.

If we again look at the summation function in the scene allocation model
of Figure 4, we can from the results above conclude that it is PVarI over the
partition V = {{s : Scenes | ∀a : Actors . casting(a, s) = casting(a, si)} | si :
Scenes}.

We will end this section by looking at the objective function in the model
of the warehouse location problem. Here we have a sum, where the addend
by Proposition 38 and the discussion of expression 16 is fully “variable inter-
changeable” whereas the augend, if we translate Pattern 6 of Section 5.3 to
concern variable interchangeability, is “PVarI” over V = {{s : Stores | ∀w ∈
Warehouses . supplyCost(s, w) = supplyCost(si, w)} | si ∈ Warehouses}. From
Proposition 40 now follows that the whole objective function is PVarI over V.

9 Variable Interchangeability in Compositions
of Constraints

In this section we use Propositions 35, 37, 47 and 50 and the results of the
previous section to derive the variable symmetries for the whole problems in the
models of Section 3.

33

Progressive Party: In the previous section, we concluded that the Periods in
the model in Figure 2 are fully variable interchangeable in all three con-
straints. By Proposition 47 we then have full column interchangeability.
The Guests on the other hand are fully interchangeable in the first two
constraints of the model, but in the third one they are only interchangeable
over the partition R = {{g : Guests | crewSize(g) = crewSize(gi)} | gi ∈
Guests}, which by Proposition 50 means that this model is row inter-
changeable over R.

Scene Allocation: In our model of the scene allocation problem, in Figure 4,
the Scenes are the variables. They are fully interchangeable in the con-
straint of the model, but in the objective function they are PVarI over V =
{{s : Scenes | ∀a : Actors . casting(a, s) = casting(a, si)} | si : Scenes},
by the previous section. We can now, using Proposition 37, derive that
the whole model is PVarI over V.

Social Golfers: Both the Players and the Weeks are fully intechangeable in
both the constraints of the model in Figure 5, which, by Proposition 47,
means that we have full row and full column interchangeability.

BIBD: Already in the previous section we concluded that we have full row, as
well as full column interchangeability in the BIBD model of Figure 7.

Warehouse Location: In the model in Figure 8 of this problem, we have
again full variable interchangeability in the constraint, but in the objec-
tive function the Stores are interchangeable over the partition V = {{s :
Stores | ∀w ∈ Warehouses . supplyCost(s, w) = supplyCost(si, w)} | si ∈
Warehouses}, which means that the whole model is PVarI over this par-
tition.

n-Queens: As in Section 6.1 we can conclude that none of our patterns of
Section 7 fully matches the last two constraints of Figure 10, and again
we conclude that this is only quite natural, since the variables, as well as
the values, of the model, the Queens, are only interchangeable over the
trivial partition V = {{qi} | qi ∈ Queens}

10 Conclusion

In this work we have seen that it is possible to detect symmetries in many CSPs
modelled in a relational language. By analysing constraints and objective func-
tions occurring in the sample models, and sometimes parts of constraints or
functions, we have been able to detect common patterns for which symmetries
can be derived. As well value as variable interchangeability have been detected
by in this way finding patterns that shows us that the elements of some set
occurring in a (part of a) constraint are fully or partially interchangeable. Once

34

the symmetries for single constraints had been detected, symmetries for com-
plete CSPs and COPs could easily be derived compositionally, using the results
on compositional derivation of symmetries in [4].

We have studied seven CSPs for which symmetries of different types and
in various degree have been detected. One way of continuing the work would
be to look at more sample models in order to find other patterns that displays
symmetries as well. An other way would be to generalise the results found here
so that they cover more types of constraints. In both cases there are at least two
possible directions one could choose. The first one is to further exploit the ap-
proach of dividing a constraint into smaller parts, that like “buildingblocks” can
be put together to form a constraint, and for which very general patterns can
be constructed. The symmetry for a whole constraint can then be composition-
ally derived from the symmetries of the “buildingblocks”. The other approach
would be to find common constraints, or perhaps even aggregates of constraints,
for which symmetries can be detected at once without using the compositional
approach. The benefit of the first approach is that it would probably be possible
to find very general patterns so that at least some symmetries can be derived for
more or less any constraint. The problem is that the symmetries derived com-
positionally in this way might be suboptimal. If we on the other hand choose
the other approach, we would probably find more optimal symmetries in some
cases, but it might on the other hand be hard to find patterns for all possible
constraints.

35

References

[1] P. Flener, J. Pearson, and M. Ågren. The Syntax, Semantics, and Type
System of ESRA. Technical report, ASTRA group, April 2003. Available at
http://www.it.uu.se/research/group/astra/.

[2] P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a relational lan-
guage for modelling combinatorial problems. In M. Bruynooghe, editor,
LOPSTR’03: Revised Selected Papers, volume 3018 of LNCS, pages 214–
232. Springer-Verlag, 2004.

[3] P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Tractable sym-
metry breaking for CSPs with interchangeable values. In Proceedings of
IJCAI’03, pages 277–282. Morgan Kaufmann, 2003.

[4] P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Compositional
derivation of symmetries for constraint satisfaction. In J.-D. Zucker and
L. Saitta, editors, Proceedings of SARA’05, LNCS. Springer-Verlag, 2005.
Supersedes Technical Report http://www.it.uu.se/research/reports/
2004-022/.

36

