
Local Search over Relational Databases

Toni Mancini1, Pierre Flener2, and Justin Pearson2

1 Dipartimento di Informatica, Sapienza Università di Roma, Italy
tmancini@di.uniroma1.it

2 Department of Information Technology, Uppsala University, Sweden
Pierre.Flener,Justin.Pearson@it.uu.se

Abstract. Solving combinatorial problems is increasingly crucial in busi-
ness applications, in order to cope with hard problems of practical rel-
evance. However, the approach of exploiting, in production scenarios,
current constraint or mathematical programming solvers has severe limi-
tations, which demand new methods: data is usually stored in potentially
large relational databases, and maintaining the problem in central mem-
ory, as required by current solvers, could be expensive, challenging, or
even impossible, due to the size of the data and the possibly unacceptable
loss of data integrity. We present a declarative language based on sql for
modelling combinatorial problems, and novel techniques for local search
algorithms explicitly designed to work directly on relational databases,
also addressing the different cost model of querying data in the new
framework. We also discuss and experiment with a solver implementation
that, working on top of any relational DBMS, exploits such algorithms
in a way transparent to the user, making a step forward to the seamless
integration of combinatorial problem solving into business environments.

1 Introduction

Solving combinatorial problems is increasingly crucial in many business scenar-
ios, in order to cope with hard problems of practical relevance, like scheduling,
resource and employee allocation, security, financial and enterprise asset manage-
ment. However, severe limitations may arise when exploiting, in business applica-
tions, traditional solvers based on constraint programming (CP), mathematical
programming (MP), SAT, or answer set programming (ASP). In fact, data usu-
ally resides on centralised information systems, in form of possibly large and
distributed relational databases (DB) with complex integrity constraints, serv-
ing multiple concurrent applications. Although current solvers often have means
to load input from external sources via DB management systems (DBMSs), the
approach of processing data outside the information system may be problematic
from different, orthogonal standpoints.

First, problem instances are potentially large, hence computing an optimal
solution to the, usually NP-hard, desired combinatorial problems may require
huge computational time, with any solver. During this time, data needs to be
locked, and this may be unaffordable in dynamic business settings, where the
other applications connected to the same data sources need to work as usual.
Also, in some scenarios, the size of the portion of the data relevant to the prob-
lem may be too large for it to be easily represented in central memory, which is
a typical requirement for current solvers. An example is given by applications in

network security, where to perform, e.g., intrusion detection or attack impact as-
sessment, relevant combinatorial problems typically state constraints over most
of the content of several and potentially very large event logs.

Second, in several scenarios, the structure of both the data and the problem is
very articulated and complex: modern DBMSs provide the user with great flexi-
bility, thanks to libraries of functions for handling various data-types (numbers,
timestamps, text, large unstructured objects, XML-trees) and support for the
definition of custom functions and new types. Hence, designing an encoding of
the combinatorial problem in the constructs offered by current constraint solvers
needs great engineering efforts and significant preprocessing time, given the po-
tential size of the data and the complexity of its structure (or lack of structure,
in some cases). Also, programmers in business scenarios, like DB administrators
(DBAs), typically have no previous knowledge of CP/MP/SAT/ASP, and exter-
nal specialists are usually needed for the problem to be modelled and solved.

All this may result in the overall cost for exploiting such technologies to be-
come uneconomical. Although large companies may decide to invest in tack-
ling their business-critical problems using specialised or ad-hoc technologies, we
believe that the issues above have hindered the more widespread adoption of
general-purpose off-the-shelf solvers by industry, especially for what concerns
small or medium-sized enterprises or the resolution of non-critical problems.

In our previous work [5], in the aim of closing the gap between combinato-
rial problem modelling and current DB methodologies, we proposed an alterna-
tive approach, showing how standard query languages well-known to the aver-
age DBA, like relational algebra (RA) [1] and sql, could be straightforwardly
extended by means of non-determinism in order to get seamless integration
between the two worlds. This led to powerful languages (called NP-Alg and
ConSQL) to model combinatorial problems in NP and optimisation versions
thereof, in the spirit of existential second-order logic [13] and first-order model-
expansion [11]: the use of these languages, as well as the relational structure of
the data, are as intuitive to the average DBA as, e.g., the well-known CP lan-
guage opl [15] and its data structures are to the average CP/MP programmer.

The contributions of this paper are as follows. We extend our approach pre-
senting a new version of our sql-based modelling language, and investigating the
applicability of local search (LS) [9] as a practical means to solve combinatorial
problems over relational DBs. In particular, we re-think classical LS techniques,
with an explicit focus on the relational query cost model and on the features al-
ready present in modern DBMSs to manage efficiently relational data, potentially
large and stored in external memory. To this end, we show how the efficient join
optimisation techniques of current DBMSs allow us to perform a joint (i.e., col-
lective) exploration of the neighbourhood that largely improves the time needed
by evaluating neighbours one by one, as typically done in LS solvers. Although
joint neighbourhood exploration is not a completely new idea in LS, see, e.g.,
work about search over very large-scale neighbourhoods [3], rather than relying
on structural properties of the neighbourhood, we exploit the different query cost
model and primitives. Further, given that the size of the neighbourhood may be-
come impractical in presence of large instances stored in external memory, we
propose, at each iteration, to limit search to a reasonably small set of candidate
neighbours, by characterising and eliminating many non-improving moves. Such

2

a dynamic neighbourhood generation is obtained by exploiting the reasons why
problem constraints are violated, rather than just counting these reasons.

The result is on one hand a declarative modelling framework where modelling
a combinatorial problem is reduced to the definition of a second-order view of the
existing DB (in a way fully compliant with current DB design methodologies),
and on the other hand a portfolio of solving techniques based on LS, relying
entirely on the DBMS data representation and query mechanisms. This allows
the approach to fit the traditional multi-layer data representation paradigm of
DBMSs (which distinguishes among internal, logic, and external layers), and to
scale transparently toward large data sets in external and potentially distributed
storage devices, typical of many business applications (since data consistency and
memory management issues could be totally delegated to the DBMS), while po-
tentially preserving the efficiency of classical solvers, in case the data is small
enough to be entirely cached in main memory and custom DBMS RAM storage
engines optimised for the tasks required by problem solving are implemented.

The structure of the paper is as follows. After recalling NP-Alg (Section 2),
in Section 3 we propose a much simplified version of ConSQL having just four
new keywords w.r.t. standard sql. In Section 4 we propose two novel methods
to boost scalability of LS on NP-Alg/ConSQL specifications in the relational
query cost model: joint incremental neighbourhood exploration and violation-
directed neighbourhood design. In Section 5 we briefly describe a new implemen-
tation of ConSQL based on these ideas and on a portfolio of LS algorithms,
with full support to the user for declaratively choosing the search strategy to
follow, and experimentally evaluate it in terms of performance and scalability.
Finally, Section 6 discusses related work and draws conclusions.

2 The Language NP-Alg

A relational schema R is a finite set of relational symbols of arbitrary arities. A
finite DB D over schema R is a set of finite extensions (i.e., finite sets of tuples)
for relations in R. It is convenient to assume that the set of constants occurring
in D is also stored in a unary relation DOMD.

An NP-Alg [5] expression over schema R is a pair 〈S, fail〉, where S =
{S1, . . . , Sn} is a set of new relations (called guessed relations) of arbitrary fi-
nite arities (R ∩ S = ∅) and fail is an expression of plain RA on the new DB
vocabulary R ∪ S. Evaluating 〈S, fail〉 on finite DB D over R amounts to non-
deterministically populating extensions of relations in S with constants in DOMD
in such a way that expression fail evaluates to the empty relation ∅. The answer
to the decision problem is “yes” iff such an extension S for S exists. In this case, S
encodes a solution to the problem instance. Intuitively, fail encodes constraints
that extensions of S need to satisfy. These are represented as a set of tuples called
violation set, hence the goal is to guess an extension S that leads to an empty
violation set, i.e., that makes fail = ∅. NP-Alg can express all (and only) the
queries that specify decision problems belonging to NP. We observe that a dual
approach with constraints defined with universal quantification (as is typical in,
e.g., CP) can however be followed (and suitable syntactic sugar be added by ex-
ploiting De Morgan’s laws), although this would let the language deviate from the
typical DB paradigm (where queries are existentially quantified formulas). This

3

alternative modelling paradigm (intuitively, we encode as 6 ∃x.¬c(x) a constraint
that a CP practitioner would write as ∀x.c(x)) does not introduce any blow-up in
the size of the problem model, since a constraint ¬c(x) is not represented exten-
sionally, but intensionally by a relational algebra (RA) –hence first-order– for-
mula. In Section 3 we show by example how natural the modelling activity is for
the average DB programmer, while in Section 4 we describe how precious the in-
formation carried out by the tuples in the violation set is in order to drive search.

We start from the basic version of RA [1] with operators {σ, π, ×, −, ∪, ∩} for
selection, projection, Cartesian product, set difference, union, and intersection,
respectively, and use its standard positional notation (the unnamed perspective
of [1]) for relation attributes ($1, $2, . . . , or R.$i, i ≥ 1, to denote the i-th
column of R in queries involving multiple relations). Also, given a tuple τ , we
denote its i-th component by τ [$i]. However, to ease the notation of the forth-
coming queries, we extend the language with two new constructs: conditional
if-then-else term expressions and the replacement operator Ψξ. Term expression
(if cond then termT else termF) evaluates to termT or to termF depending on
the truth value of condition cond . As for Ψξ, when applied to a relation R, re-
turns a new relation with each tuple τ of R changed into ξ(τ), with ξ being a
function over the schema of R. Both extensions have direct counterparts in sql.

NP-Alg is expressive enough to capture bounded integers and arithmetic,
typed guessed relations, guessed functions, and guessed permutations, but syn-
tactic sugar can be added for these features: e.g., we could force relations to be
typed and also to model functions, as the following example shows.

Example 1 (Graph k-colouring). Let D be a DB with relations encoding a graph,
in terms of sets of nodes (N , unary) and edges (E, binary, as set of pairs of
nodes), and a set of k available colours (in a unary relationK with k tuples). The
graph k-colouring problem, which is NP-complete for k ≥ 3, can be expressed in
(sugared) NP-Alg by the following expression:

1. Guessed relation: Col : N → K, a total function.
2. fail = σ$16=$3∧$2=$4 (Col × Col) ∩ E.

Guessed function Col is a relation having two typed columns, with entries in
column 1 ranging over N and those in column 2 ranging over K. Being forced to
be a total function, Col is such that any node in N occurs exactly once in column
1 (this is in fact very similar to a direct CSP encoding where, for each node in
N , we have a CSP variable with set K as domain). The problem is satisfiable
iff there exists an extension for Col such that no two different nodes ($1 6= $3)
assigned to the same colour ($2=$4) share an edge in E. Such an extension is
a solution to the problem instance.

We finally observe that forcing all guessed relations to be typed total func-
tions between two unary DB relations does not affect the expressive power of
the language. This is because: (i) tuples of non-unary relations can be denoted
by new constants that act as keys; and (ii) arbitrary guessed relations can be
encoded by characteristic functions. Also, fail can be rewritten in disjunctive
form, as a union of sub-expressions. Since this variation underlies our practical
language described next, from now on we rely on the following new definition:

4

Student(id, name, . . .) Set of students with id and other attributes
Teacher(id, name, . . .) Set of teachers
Course(id, teacher, num_lect) Set of courses to be scheduled, with teacher and number of lectures

planned
Period(id, day, week, start, end) Set of time-periods (in which single lectures are allocated), plus info

on day, start and finish times
Room(id, capacity) Available rooms with their capacity
Enrolled(student, course) Info on enrolment of students in the various courses
Equip(id, name) Equipment available for teaching (e.g., VGA projector)
EquipAvail(equip, room) Presence of equipment in the various rooms
EquipNeeded(course, equip) Equipment needed for the various courses
TeacherUnav(teacher, period) Unavailability constraints for teachers: lectures of their courses cannot

be scheduled in these periods

Fig. 1: DB schema for the university timetabling problem.

Definition 1 (NP-Alg expression). An NP-Alg expression 〈S, fail〉 over
a relational schema R is defined as:

1. A set S = {S1, . . . , Sn} of new binary relations, with any Si :Di→Ci forced
to be a total function with domain Di and co-domain Ci, with both these
relations being unary and belonging to R. We call them guessed functions.

2. An RA expression fail =
⋃k
i=1 faili on the vocabulary R ∪ S.

3 Modelling as Querying

We present a much simplified version of ConSQL, a non-deterministic exten-
sion of sql, with its optimisation-free subset having the same expressive power
as NP-Alg. The language, the initial version of which we proposed in [5], is a
super-set of sql: users can hence safely exploit the rich set of language features
of sql during problem modelling. The new language reduces the number of key-
words added to standard sql from 11 to just 4, in the aim of greatly easing
the modelling task for the average DBA. For space reasons, we omit a formal
description of the language, and introduce it by an example.

Example 2 (University timetabling). Assume a university wants to solve the fol-
lowing course timetabling problem (a variant of the ones presented in [6], in
order to show the flexibility of the language), namely finding a schedule for the
lectures of a set of courses, in a set of classrooms, by minimising the number
of students enrolled in courses with overlapping lectures, and by satisfying con-
straints about lecture allocation in time and rooms (con1, con2, con6), room
equipment (con3), conflicts (con7), and course lengths (con5). Also, teacher un-
availability constraints (con4) make timetables non-periodic. Data reside in a
relational DB with the tables listed in Figure 1 (primary keys are underlined;
foreign keys are omitted). A specification for this problem is given in Figure 2.
The few new keywords are all capitalised.

As can be seen, a problem specification is defined in terms of the new con-
struct create SPECIFICATION, embedding the definition of a set of views (via
the standard sql create view construct), an optional objective function (via the
new constructs MINIMIZE and MAXIMIZE applied to an arbitrary aggregate sql
query), and a set of constraints (via the standard sql check keyword applied to
an arbitrary sql Boolean expression). Some of the views are guessed, in that they

5

create SPECIFICATION Timetabling (
// A guessed view (see new construct CHOOSE), encoding a ‘guessed’ timetable, as an
// assignment of courses to room/period pairs (with some pair possibly unassigned, i.e., null)
create view TT as
select p.id as p, r.id as r, CHOOSE(select id as c from Course) is null from Period p, Room r

// A view defined in terms of TT (dependent guessed view)
create view ConflCourses as select c1.id as c1, c2.id as c2 from Course c1, Course c2, TT t1, TT t2
where c1.id < c2.id and t1.c = c1.id and t2.c = c2.id and t1.p = t2.p

// Objective function, minimise the number of students enrolled in conflicting courses
MINIMIZE select count(*) from Student s, ConflCourses cc, Enrolled e1, Enrolled e2
where e1.student = s and e1.course = cc.c1 and e2.student = s.id and e2.course = cc.c2

// Constraints:
// con1. No two lectures of the same course on the same day
check "con1" (not exists (select * from TT t1, TT t2, Period p1, Period p2
where t1.c = t2.c and t1.c is not null and t1.p = p1.id and t2.p = p2.id and p1.day = p2.day and t1.p != t2.p))

// con2. Capacity constraint, in terms of ordinary SQL view
create view Audience as select e.course as c, count(*) as nb_stud from Enrolled e group by e.course
check "con2" (not exists (select * from TT t, Room r, Audience a
where t.r=r.id and t.c=a.course and r.capacity<a.nb_stud))

// con3. Equipment
check "con3" (not exists (select * from TT t, EquipNeeded en where t.c=en.course and
en.equip not in (select equip from EquipAvail ea where ea.room=t.r)))

// con4. Teachers unavailability
check "con4" (not exists (select * from TT tt, Course c, TeacherUnav tu
where tt.c = c.id and c.teacher = tu.teacher and tt.p = tu.period))

// con5. Right number of lectures for each course, in terms of helper view over TT
create view CourseLen as select t.c, count(*) as nb_lect from TT t where t.r is not null group by t.c
check "con5" (not exists (select * from CourseLen cl, Course c where cl.course=c.id and cl.nb_lect<>c.nb_lect))
// con6. At most 3 lectures of the same course per week
check "con6" (3>=all(select count(*) from TT t, Period p where t.p = p.id group by t.c, p.week))
// con7. Courses taught by the same teacher not in the same period
check "con7" (not exists (select * from TT tt1, TT tt2, Course c1, Course c2
where c1.id < c2.id and c1.teacher = c2.teacher and tt1.p = tt2.p))

);
Fig. 2: ConSQL specification for the university timetabling problem.

have special columns, called guessed column sets, defined by the new construct
CHOOSE, which is the main enabler of the non-determinism added to sql.

Guessed column sets play the same role as guessed functions in NP-Alg (Def-
inition 1): the solver is asked to populate non-deterministically the guessed col-
umn sets of views, choosing tuples from the query argument of CHOOSE, in such
a way that all constraints are satisfied and the optional objective function takes
an optimal value. In the example, our goal is to assign courses to room/period
pairs (guessed view TT), with some pairs possibly having no assigned course (is
null),3 in such a way that the number of students enrolled in courses with conflict-
ing lectures is minimised and that all the constraints are satisfied. Figure 3(b)
(on page 9) shows guessed view TT when the DB holds periods p1, p2, p3, and
rooms r1, r2 and r3 (plus possibly others): the pure sql part of the view definition
(columns ‘p’ and ‘r’ storing all period/room pairs) is extended to the right with a
guessed column set of one column, ‘c’, having the schema of the argument query:
its values are non-deterministically picked from the set of ids of courses. Some of
them can be assigned to null, allowing us to model partial functions. Values in a
guessed column set may be forced to be all different by the standard sql distinct
modifier, hence modelling a particular case of the all-different global constraint.

3 is null is a standard sql keyword used in table definitions, stating that values of
some field can be (rather than ‘must be’, as the name suggests) the special value null.

6

4 Local search to solve NP-Alg queries on relational DBs

Local search (LS) [9] has proved to be an extremely promising approach to solve
combinatorial problems over potentially large data sets (typical of many business
scenarios). Also, its intrinsic flexibility may be exploited when building systems
that need to cope with dynamic and concurrent settings. Below, we restate the
main notions of LS in terms of an NP-Alg expression 〈S, fail〉, and then present
novel techniques to take advantage of the relational query cost model, and to
scale seamlessly toward large data sets stored in external memory.

Definition 2 (States, search space, costs, solutions). A state is an exten-
sion S for guessed functions S. The search space is the set of all possible states.
The cost of a state S is Σk

i=1|faili|, i.e., the total number of tuples returned by the
sub-expressions faili when evaluated on S. A solution is a state where fail = ∅,
hence having cost 0.

Most LS algorithms have, at their core, a greedy inner loop: after a possi-
bly random initialisation, they iteratively evaluate and perform small changes
(moves) from the current state to a neighbour state, in order to reduce its cost.
Since the greedy loop terminates if no moves lead to a cost reduction (i.e., in the
states called local minima), these algorithms are enhanced with more sophisti-
cated (not purely greedy) techniques (e.g., simulated annealing or tabu-search),
to continue search toward better states. Although, in general, the universe of
possible moves is chosen in advance by the programmer from the structure of
the problem, the simple structure of the relational model and of guessed func-
tions in NP-Alg suggests a very natural definition for atomic moves, while more
complex moves could be defined by composition of these atomic moves.

Definition 3 (Move). A move is a pair 〈S, δ〉 where S ∈ S (with S : D → C)
and δ = 〈d, c〉, with d ∈ D and c ∈ C.

Given any state S of S and the corresponding extension S of guessed function
S, a move 〈S, δ〉 with δ = 〈d, c〉 changes S by replacing with c the co-domain
value assigned to domain value d. We denote the extension of S after performing
move 〈S, δ〉 as S ⊕ δ, and the neighbour state reached with such a move as
S⊕〈S, δ〉. A move 〈S, δ〉 executed on state S is improving, neutral, or worsening
iff the cost of state S⊕〈S, δ〉 is, respectively, less than, equal to, or greater than
the cost of S. Also, move δ executed on S is improving, neutral, or worsening
w.r.t. constraint i iff the cost share of state S ⊕ 〈S, δ〉 due to constraint i (i.e.,
|faili|) is, respectively, less than, equal to, or greater than that of S.

Greedy algorithms follow different strategies for selecting an improving move
at each step: for example, gradient descent chooses an improving move randomly,
while steepest descent chooses the move that maximally reduces the cost of the
current state. Since steepest descent needs to consider all possible moves in order
to choose the best one, it could be very inefficient on large-scale neighbourhoods.
A third very successful algorithm is min-conflicts, which randomly selects one
guessed function S : D → C and one of its domain values d ∈ D, and then
chooses the best improving move among all those involving S and d.

The strength of classical LS techniques typically arises from their ability to
exploit the similarities between the current state and each of its neighbours, by

7

evaluating the cost variation of neighbours incrementally. In the next paragraph
we show not only that this is possible also in our framework, but also argue that
the relational model allows a second, orthogonal approach to increase efficiency,
namely the exploitation of the similarities among the neighbours of a given state.
This is done by evaluating the entire neighbourhood jointly.

Joint Incremental Neighbourhood Evaluation (JINE). Consider an NP-
Alg expression 〈S, fail〉, where fail =

⋃k
i=1 faili, and all faili are conjunctive

queries, i.e., of the form σφ(Si1 × · · · × Sis × Ri1 × · · · × Rir), with all Sij ∈ S
and Rip ∈ R (plus occurrences of ∩, which can be rewritten in terms of σ and
×). In ConSQL this is equivalent to saying that constraints can be expressed
as not exists select-from-where queries, as is often the case (see, e.g., the graph k-
colouring constraint and most of those in the university timetabling specification,
while the others can be rewritten in conjunctive form by standard means). Let
us now focus on a single constraint i, and on a distinguished guessed function S
(binary relation encoding a function S : D → C with D and C unary relations in
R) occurringm≥1 times in the expression faili. To emphasise them occurrences
of S, we can w.l.o.g. rewrite faili as follows (after also changing references to
columns in the selection condition φ accordingly):

faili = σφ(S(1) × · · · × S(m) ×T), (1)

with S(1), . . . , S(m) being the m occurrences of S, and T the Cartesian product
of all the relations other than S in the constraint expression. Let us also assume
that, in a given state S, faili evaluates to a possibly empty set of tuples Vi, which
represents the violation set of constraint i.

We now show that, given an arbitrary set of moves over S, encoded as tuples
δ = 〈d, c〉 in a relationMS ⊆ D×C, we can compute incrementally the violation
set of constraint i in all the new states {S⊕〈S, δ〉 | δ ∈MS} (and as a consequence
the exact cost variation for constraint i upon each move in MS) by running just
the following two queries:

V −i,S = σχ′
(
MS × Vi

)
, V +

i,S = Ψξ

(
σχ′′∧φ′

(
MS × (S(1)×· · ·×S(m)×T)

))
,

where χ′ =
∨m
j=1(MS [$1] = Vi[$(2j−1)]), χ′′ =

∨m
j=1(MS [$1] = S(j)[$1]), and φ′

is obtained from φ by replacing any term of the form S(j).$2 (with j ∈ [1..m]) into
the conditional term expression (if S(j).$1 = MS .$1 then MS .$2 else S(j).$2).

As for the function of the replacement operator, here ξ, when applied to a tu-
ple τ = 〈d, c, d1, c1, . . . , dm, cm, t〉, produces tuple τ ′ = 〈d, c, d1, c

′
1, . . . , dm, c

′
m, t〉

such that, for all j ∈ [1..m], we have that c′j = c if dj = d, and c′j = cj otherwise.
The following result holds (proofs are omitted for space reasons):

Theorem 1. In the state S⊕ 〈S, δ〉 reached after performing any move δ ∈MS

from state S, the expression faili for constraint i evaluates to:(
Vi − π

−MS

(
σMS=δ(V −i,S)

))
∪ π
−MS

(
σMS=δ

(
V +
i,S

))
,

with π−MS
denoting the projection operator that filters out columns of MS in

V −i,S/V
+
i,S. Also, the two arguments of ∪ have no tuples in common.

8

Audience
c nb_stud
c1 27
c2 26
c3 37
c4 35
c5 48
c6 43
c7 67

TT
p r c
p1 r1 c1
p1 r2 –
p1 r3 c3
p2 r1 –
p2 r2 c6
p2 r3 c5
p3 r1 –
p3 r2 c7
p3 r3 c6
.

Vcon2

t.p t.r t.c r.id r.capacity a.c a.nb_stud
p2 r2 c6 r2 40 c6 43
p3 r2 c7 r2 40 c7 67
. .

(a) (b) (c)
Fig. 3: (a) View Audience. (b) A portion of the extension of guessed view TT in current
state (‘-’ means null). (c) Portion of Vcon2 due to the given portion of TT.
MTT

p r c
p2 r2 c1
p2 r2 c5
p2 r2 c7
p2 r2 –
p3 r2 c1
p3 r2 c5
p3 r2 c6
p3 r2 –

V −con2,TT

p r c t.p t.r t.c r.id r.cap a.c a.nb_stud
p2 r2 c1 p2 r2 c6 r2 40 c6 43
p2 r2 c5 p2 r2 c6 r2 40 c6 43
p2 r2 c7 p2 r2 c6 r2 40 c6 43
p2 r2 – p2 r2 c6 r2 40 c6 43
p3 r2 c1 p3 r2 c7 r2 40 c7 67
p3 r2 c6 p3 r2 c7 r2 40 c7 67
p3 r2 – p3 r2 c7 r2 40 c7 67

V +
con2,TT

p r c t.p t.r t.c r.id r.cap a.c a.nb_stud
p2 r2 c5 p2 r2 c5 r2 40 c5 48
p2 r2 c7 p2 r2 c7 r2 40 c7 67
p3 r2 c5 p3 r2 c5 r2 40 c5 48
p3 r2 c6 p3 r2 c6 r2 40 c6 43

(a) (b) (c)

Fig. 4: A set MTT of moves over TT (a) and result of queries V −con2,TT (b) and V +
con2,TT (c)

(only tuples deriving from the portion of TT shown in Figure 3(b) are given).

Theorem 1 tells us that, given any set of moves MS over a guessed function
S occurring in constraint i, the queries V −i,S and V +

i,S correctly compute the
changes in the violation set of constraint i in all (joint evaluation) the states
reached by performing each of these moves, given the violation set in the current
state (incremental evaluation). Queries V −i,S and V +

i,S return sets of tuples, each
representing a move δ = 〈d, c〉 in MS concatenated with a tuple that will be
removed from, respectively added to Vi, in case δ is executed. Given that the two
arguments of ∪ have no tuples in common we can compute with one additional
query the exact cost of all moves in MS over all constraints, by grouping and
counting tuples therein. If all violation sets Vi are materialised (i.e., stored in
tables), we can incrementally maintain them by deleting and inserting tuples
returned by these queries.

Example 3 (University timetabling, continued). Consider a generic state where
the extension for TT is partially given in Figure 3(b) and the capacity constraint
con2 has the violation set Vcon2 of Figure 3(c). The problem instance refers to
(among possibly others) periods p1–p3, rooms r1, r2, r3 with capacities of 30,
40, 50 students, respectively, and courses c1–c7. Figure 4 shows a set of moves
MTT over TT (part (a)) and the results of computing queries V −con2,TT (part (b))
and V +

con2,TT (part (c)) from set MTT. As an example, move (p2, r2, c1) (that is,
assigning course c1 to room r2 in period p2) will reduce the cost of con2 by 1
(since it occurs once in V −con2,TT, see Figure 4(b), and does not occur in V +

con2,TT,
see Figure 4(c)). Analogously, move (p2, r2, c5) is neutral w.r.t. con2, because it
occurs once in the results of both queries.

Violation-Directed Neighbourhood Design (VND). Classical LS algo-
rithms use problem constraints only to evaluate the quality of a move, i.e., the

9

variation in cost of the associated neighbour state. In our framework, given the
definition of move (cf. Definition 3), the neighbourhood to explore would be the
set of all states reachable from the current one by changing in all possible ways
the co-domain value associated to any domain value of any guessed table. The
necessary join operations may be computationally very expensive, despite the
usual exploitation by the DBMS of clever query optimisation techniques. The
straightforward approach of considering, for each S ∈ S (with S : D → C),
the set MS = D × C quickly becomes impractical. Consider the university
timetabling problem of Example 2. By Definition 3, at any step, a steepest de-
scent algorithm should consider |Period| · |Room| · |Course| possible moves (each
period/room pair can be reassigned to one of the remaining courses plus null),
to find and choose the one that maximally reduces the cost of the next state.
Even in not-so-large instances, e.g., 960 periods (8 periods/day, 5 days/week for
6 months; recall that timetables are not periodic here), 30 rooms, and 40 courses,
the size of MTT, which is to be used in join operations in order to compute, for
each constraint i, queries V −i,TT and V +

i,TT is over 106.
To overcome these difficulties, the concept of constraint-directed neighbour-

hoods has been proposed [2]. The idea is to focus on the constraints also to isolate
subsets of the moves that possess some useful properties, e.g. those that are im-
proving w.r.t. one or more constraints. The modelling paradigm of NP-Alg
allows us to improve these methods by considering the content of the violation
sets (not only their size, i.e., the current cost of the associated constraints): each
tuple in a violation set (such a tuple being called violation in what follows) can
be interpreted as a reason why the associated constraint is violated in the current
state. This knowledge can be exploited to avoid wasting efforts in considering
many non-improving moves during the greedy inner loop of any LS algorithm.

As an example, Figure 3 shows a state for the university timetabling problem.
Tuples in the violation set of con2, Vcon2 (Figure 3(c)), besides giving informa-
tion on the current cost of con2 (their overall number), give also reasons about
why this constraint is not satisfied: e.g., the first tuple shows that the current
timetable has the problem that course c6 (43 students) is given in period p2 in a
room, r2, which is too small (40 seats); analogously for the other tuples. Hence,
to reduce the cost of con2 it makes no sense to consider moves that act on pe-
riod/room pairs occurring in no violations. Also, it makes no sense to consider
e.g. a move that reassigns p2/r2 to another course with more than 40 students.

In general, consider an NP-Alg expression 〈S, fail〉, where fail =
⋃k
i=1 faili,

and all faili are of the form (1). In order to improve the cost of the current
state, greedy algorithms iteratively choose (according to different strategies) an
improving move δ. However, for δ to be improving, it has to be improving for at
least one constraint i, by making at least one tuple in violation set Vi disappear
in the neighbour state. Now consider any constraint i and any guessed function
S occurring in it, and assume that in the current state S faili evaluates to a
non-empty violation set Vi. We now define the set of moves over S that are
promising w.r.t. constraint i.

Definition 4 (Promising moves). The set of promising moves over guessed
function S : D → C w.r.t. constraint i of the form (1) is defined by:

PromS
i = π

D,C
(σχ∧¬φ′(D × C × Vi)) (2)

10

where χ =
∨m
j=1(D.$1 = Vi.$(2j − 1)) and φ′ is as in the definition of V +

i,S.

The set of moves that are promising w.r.t. a constraint is a correct over-appr-
oximation of the set of moves that are improving for that constraint:

Theorem 2. In any state S, for any constraint i, and for any guessed function
S ∈ S, all moves over S that are improving w.r.t. constraint i belong to PromS

i .

This result shows that the concept of promising moves is an important build-
ing block for the seamless application of all LS algorithms, since it can be used to
drive automatically their inner greedy loops in populating the desired move sets
MS before running JINE. As an example, to run steepest descent, it is enough to
explore the moves that are promising for at least one constraint (hence populat-
ing, for each S ∈ S, the set MS with the union of the PromS

i over all constraints
i over S). On the other hand, if the size of the data is too large to make steepest
descent practical, simpler algorithms may be applied. As an example, we could
bias the search toward improving as much as possible a most violated constraint
by feeding JINE with sets of moves containing only those that are promising for
it (one set MS for each S mentioned in the selected constraint).

A few comments on the meaning of query (2) are in order. A generic tuple λ ∈
Vi has the form 〈d1, c1, . . . , dm, cm, t〉, with d1, . . . , dm ∈ D, c1, . . . , cm ∈ C, and t
a tuple over schema T. PromS

i computes moves over S (hence pairs 〈d, c〉 ∈ D×C,
witness the use of the projection operator π) such that: (i) The domain value of
the move, d, is equal to at least one among d1, . . . , dm of at least one tuple λ ∈ Vi
(selection condition χ); and (ii) For such a λ, the tuple λ′, built by replacing
in λ any cj with the new value c iff dj = d, does not satisfy condition φ (hence
is not part of the violation set in the state reached after performing the move).
Since in RA we cannot modify tuples when evaluating a condition, in (2) we take
the alternative approach of changing the condition φ into φ′. Requirement (i)
guarantees that synthesised moves involve only domain values that appear in
(i.e., are responsible for) at least one tuple λ of the violation set Vi, hence
eliminate at least λ. Requirement (ii) additionally ensures that, after performing
each of such moves 〈d, c〉 over S, the newly introduced tuple in S (i.e., 〈d, c〉) does
not introduce a new tuple λ′ in the violation set by satisfying φ again with tuple t.

Example 4 (University timetabling, continued). Consider the state shown in Fig-
ure 3. The query for PromTT

con2 (once generalised to handle domain and co-domain
relations of arity greater than 1) returns the set of moves that eliminate at least
one tuple in the violation set Vcon2 (Figure 3(c)) without introducing a new one
by matching again the same tuples of table Room and view Audience (given in
Figure 3(a)). Figure 5(a) shows part of the result of PromTT

con2 containing the
moves synthesised from the first two violations. Any move over TT that is not
in PromTT

con2 is guaranteed to be non-improving for con2.
If we do not use VND, then a total of |Period| · |Room| · |Course| moves need

to be considered for evaluation at each iteration. With VND instead, at most
|Course| moves for each violation of con2 need to be assessed (usually less, given
φ′). Hence, the more progressed the greedy search, and the closer we are to a
solution, the smaller the neighbourhood that needs to be explored.

11

VND can be extended to handle additional algorithms. Consider, e.g., min-
conflicts: at any iteration this algorithm randomly selects one guessed function
S : D → C and one of its domain values d ∈ D, and then chooses the best improv-
ing move among all those involving S and d. Given that for a move to be improv-
ing, it needs to delete at least one tuple in the violation set of some constraint, we
can design a violation-directed (and generalised) version of min-conflicts in such
a way that it first selects a random violation λ ∈

⋃k
i=1 Vi, and then considers as

promising all moves that would make λ disappear in the next state. Only such
moves would be used to populateMS , which would then be evaluated with JINE.

VND+JINE can be further generalised to deal with compound moves of
bounded size, in order to, e.g., generate swap moves to keep the values in distinct
guessed column sets all-different, or to capture the core ideas of well-known tech-
niques like, e.g., variable neighbourhood search [12, 4], by, e.g., defining layers of
different neighbourhoods of increasing size and complexity, in order to bypass lo-
cal optima, and limited discrepancy search [8], where assignments different from
those of the initial one may be regarded as neighbours. Other aspects, like sup-
porting the non-greedy phase of the search or constraint weights and priorities,
may also be taken into account by making small changes to the queries above.

Before concluding this section, some comments on the complexity of VND
and JINE are in order. For each guessed function S and constraint i: (i) PromS

i

can be computed with two joins, the first of which, given condition χ, does not
lead to an explosion of the number of tuples (any tuple in Vi can match at mostm
tuples of D, with m being usually very small: e.g., at most 2 in the constraints of
the university timetabling problem); (ii) V −i,S involves a single join; and (iii) V +

i,S

involves one more join than the expression of constraint i. Condition χ′′ avoids
the combinatorial explosion of the number of tuples due to the added join.

5 Implementation and Experiments

We implemented a solver based on the ideas above. The system, written in Java,
takes as input a problem specification in ConSQL and uses standard sql com-
mands for choosing, evaluating, and performing moves. The modelling language
has been extended with a declarative search strategy definition (SSD) language.
Here (see Figure 5(b)), search strategies are given as LS algorithms (and param-
eters) such as gradient/steepest descent, tabu search, min-conflicts, simulated
annealing, and their composition (via random restarts or batches) [16, 7].

The system interacts transparently with any DBMS. This implementation
choice greatly increases robustness, generality, and portability: the solver is im-
mediately usable by the average DBA on any information system (either cen-
tralised or distributed) with a standard sql API and on data of virtually any
size (since memory management issues are entirely delegated to the DBMS). On
the other hand, this generality certainly introduces a bottleneck for performance,
which can however be solved (at least when data is small enough to be cached
in main memory) by implementing custom RAM storage engines specific to a
DBMS that exploit differentiable data structures (see, e.g., [16]) optimised for
the queries required by VND+JINE.

In order to measure the effectiveness of the techniques above on the scal-
ability of LS when applied to relational data, we experimentally evaluated the

12

PromTT
con2

p r c
p2 r2 c1
p2 r2 · · ·
p2 r2 c5
p2 r2 c7
p2 r2 –
p3 r2 c1
p3 r2 · · ·
p3 r2 c6
p3 r2 –
.

SOLVE WITH SEQUENCE OF
STEEPEST DESCENT

STOP AFTER 5 IDLE ITERATIONS,
SIMULATED ANNEALING WITH

TEMPERATURE BETWEEN 100 AND 10
COOL BY 0.9 EVERY 2 ITERATIONS
STOP AFTER 10 IDLE ITERATIONS,

TABU SEARCH WITH
TABU TENURE BETWEEN 5 AND 10 ITERATIONS
STOP AFTER 10 IDLE ITERATIONS

5 TIMES
RESTART 5 TIMES

(a) (b)
Fig. 5: (a) Promising moves over TT computed starting from the displayed portion of
violation set Vcon2 (Figure 3(c)). (b) An example of application of the search strategy
definition language of ConSQL: the current problem is solved with a bunch of LS
solvers applied in sequence 5 times, and allowing 5 random restarts.

performance gain of the current system when VND+JINE are enabled. Given the
targeted novel scenario of having data modelled independently and stored outside
the solving engine, and being queried by non-experts in combinatorial problem
solving using standard DBMS APIs, our purpose is not and cannot be to compete
with state-of-the-art LS solvers like the one of Comet [16]. Rather, our experi-
ments have been addressed at seeking answers to the following questions: what is
the impact of VND+JINE on: (i) the reduction of the size of the neighbourhood
to explore; (ii) the overall performance gain of the greedy part of the search.

Given our objectives, it is sufficient to limit our experimentation to a simple
centralised client-server architecture (both DBMS and LS solver on the same
host, a computer with an Athlon64 X2 Dual Core 3800+ CPU, 4GB RAM, using
MySQL DBMS v. 5.0.75, with no particular optimisations) and to focus on single
greedy runs, until a local minimum is reached. Also, we can focus on relative
(rather then absolute) times and can omit the numbers of moves performed, since
VND+JINE do not affect the sequence of moves executed by the LS algorithm.

We experimented with two problems: graph colouring (a compact specifica-
tion with only one guessed column set and one constraint, which gives clean infor-
mation about the impact of our techniques on a per-constraint basis) and univer-
sity timetabling (much more articulated and complex). Again, given the current
objectives we limit our attention to instances that could be handled in a reason-
able time by the currently deployed system: 17 graph coloring instances with up
to 561 nodes and 6656 edges (from mat.gsia.cmu.edu/COLOR/instances.html)
and all 21 compX instances of the 2007 Int’l Timetabling Competition (www.cs.
qub.ac.uk/itc2007) for university timetabling, having up to 131 courses, 20
rooms, and 45 periods. Experiments on both problems involved two greedy al-
gorithms: steepest descent (which requires at each step to explore the entire
neighbourhood) and the violation-directed version of min-conflicts mentioned at
the end of Section 4.

Results are reported in Figure 6(a). Instances have been solved running both
algorithms with and without VND+JINE, from the same random seed. As ex-
pected, enabling VND+JINE considerably boosts performance: impressive speed-
ups (of orders of magnitude) were experienced on all instances, especially when
the entire neighbourhood needs to be evaluated (steepest descent), hence un-
doubtedly establishing the ability of JINE to exploit the powerful join optimisa-
tion techniques implemented in modern DBMSs. Furthermore, the experiments

13

show that VND+JINE bring advantages also when complete knowledge on the
neighbourhood is not needed (min-conflicts), although speed-ups are unsurpris-
ingly lower. Finally, we observe (see Figure 6(b)) the strong expected reductions
of the size of the neighbourhood actually explored, thanks to the action of VND,
even when it is applied in the worst-case scenario (steepest descent, when the
union of promising moves over all guessed functions and w.r.t. all constraints
needs to be considered). In particular, VND filters out often more than 30% of
the moves at the beginning of search, and constantly more than 80% (with very
few exceptions) when close to a local minimum. This in turn reinforces JINE,
by strongly reducing the size of MS move sets involved in join operations, and
thus its overall efficiency.

6 Conclusions and Future Work

Although some attempts to provide a smoother integration between DBs and
NP-hard problem solving have already been carried out, especially in the con-
texts of deductive database systems (see, e.g., constraint databases [10], which
however focus on representing implicitly and querying a possibly infinite set of
tuples, typically representing spatial or temporal data) and ASP (e.g., DLVDB [14],
a version of DLV which uses a DBMS and its query mechanism to mimic in ex-
ternal memory the computation of answer sets of a disjunctive logic program),
to the best of our knowledge ConSQL is the first attempt to provide the av-
erage DB programmer with effective means to access combinatorial problem
modelling and solving techniques when developing business applications, with-
out the intervention of specialised programmers. Our framework appropriately
behaves in dynamic and concurrent settings, seamlessly reacting to changes in
the source data, thanks to the flexibility of LS coupled with the transactional
and change-interception mechanisms, e.g., triggers, well supported by DBMSs.
In fact, should a concurrent application make some (small) modifications to the
data being processed, such change-interception mechanisms may be transpar-
ently used to synchronise the materialised data behind VND+JINE, just by
considering the changes as exogenous moves that took place. This makes our
approach fully respect data access policies enforced in information systems with
concurrent applications: a solution to the combinatorial problem is represented
as a view of the data, which is dynamically kept up-to-date w.r.t. the underly-
ing (evolving) DB relations. Our approach fits the usual development life-cycle
of commercial DBMSs, in that the implementation of custom RAM cache and
storage engines optimised for the queries required by VND+JINE would allow
a more efficient and lower level interaction with the DBMS.

This paper is of course only a step toward achieving full convergence between
information management systems and efficient combinatorial problem solving.
Thanks to some industrial interest about ConSQL, we are currently working in
several directions, such as the extension of VND+JINE to constraints defined
by queries with aggregates and groupings. In particular, this extension requires,
in order to keep incremental evaluation possible and efficient, the maintenance
of additional information, which can be considered the DB counterpart of dif-
ferentiable data structures exploited in other LS solvers (e.g., [16]). Support for
aggregates would also allow us to handle in more clever ways any presence of

14

Problem / Algorithm Steepest-descent Min-conflicts
Graph colouring 8x..665x 0.9x..1.6x

(avg: 205x) (avg: 1.4x)

University timetabling >15x(*) 3x..21x
(avg: n/a) (avg: 8x)

(*) Evaluation of all instances except one without
VND+JINE starved for more than 12 hours at the first
iteration.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!"# $!"# %!"# &!"# '!"# (!"#)!"# *!"# +!"# ,!"# $!!"#

(a) (b)

Fig. 6: (a) ConSQL speed-ups (in the number of iterations in 1 hour) when running
steepest descent and min-conflicts with VND+JINE. (b) Behaviour of the ratio of the
size of the neighbourhood generated by VND w.r.t. the complete neighbourhood, as
a function of the state of run (0%=start, 100%=local minimum reached) for graph
colouring (one line per instance whose greedy runs terminated in the time-limit).

objective functions, whose evaluation is now not handled incrementally, and to
introduce more sophisticated inference mechanisms to handle distinct guessed
column sets (a sort of the all-different constraint) and support for other global
constraints, which proved to be precious in CP and LS [16].

References
[1] S.Abiteboul,R.Hull,andV.Vianu.Foundations of Databases. AddisonWesley,1995.
[2] M. Ågren, P. Flener, and J. Pearson. Revisiting constraint-directed search. Infor-

mation and Computation, 207(3):438–457, 2009.
[3] R. Ahuja, Ö. Ergün, J. Orlin, and A. Punnen. A survey of very large-scale neigh-

borhood search techniques. Discrete Applied Mathematics, 123:75–102, 2002.
[4] A. Andrew, J. Levine, and D. Long. Constraint directed variable neighbourhood

search. In Proc. of LCSC 2007 (in conj. with CP 2007), 2007.
[5] M. Cadoli and T. Mancini. Combining Relational Algebra, sql, Constraint Mod-

elling, and Local Search. Theory and Practice of Logic Progr., 7(1–2):37–65, 2007.
[6] F. De Cesco, L. Di Gaspero, and A. Schaerf. Benchmarking curriculum-based

course timetabling: Formulations, data formats, instances, validation, and results.
In Proc. of PATAT 2008, 2008.

[7] L. Di Gaspero and A. Schaerf. EASYLOCAL++: An object-oriented framework
for flexible design of local search algorithms. Software – Practice and Experience,
33(8):733–765, 2003.

[8] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proc. of
IJCAI 2001, pages 607–615, 2001. Morgan Kaufmann.

[9] H. H. Hoos and T. Stützle. Stochastic Local Search, Foundations and Applications.
Elsevier/Morgan Kaufmann, 2004.

[10] G.M.Kuper, L. Libkin, and J. Paredaens, ed.Constraint Databases. Springer, 2000.
[11] D. Mitchell and E. Ternovska. A framework for representing and solving NP search

problems. In Proc. of AAAI 2005, pages 430–435, 2005. AAAI Press/MIT Press.
[12] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers and

Operations Research, 24(11):1097–1100, 1997.
[13] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[14] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive

queries in database and logic programming systems. Theory and Practice of Logic
Programming, 8(2):129–165, 2008.

[15] P.VanHentenryck.TheOPLOptimization Programming Language.MITPress, 1999.
[16] P.VanHentenryck andL.Michel. Constraint-Based Local Search. MIT Press, 2005.

15

