Revisiting Constraint-Directed Search

Magnus Agren!, Pierre Flener?*!, and Justin Pearson’

! Department of Information Technology
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
{agren,pierref, justin}@it.uu.se
2 Faculty of Engineering and Natural Sciences
Sabanci University, Orhanli, Tuzla, TR — 34956 Istanbul, Turkey

Abstract We revisit the exploration of constraint-directed neighbour-
hoods, where a (small) set of constraints is picked before considering the
neighbouring configurations where those constraints have a decreased
(or preserved, or increased) penalty. Given the semantics of a constraint,
such neighbourhoods can be represented via new attributes or primi-
tives for the corresponding constraint object. We show how to define
these neighbourhoods for set constraints, whether built-in or specified in
monadic existential second-order logic. We also present an implementa-
tion of the corresponding primitives in our local search framework. Using
these new primitives, we show how some common local-search algorithms
are simplified, compared to using just a variable-directed neighbourhood,
while not incurring any run-time overhead.

1 Introduction

Constraint-based local search (CBLS, e.g., [11]) integrates ideas from constraint
programming into local search. Of particular interest to this paper is that rich
modelling and search languages are offered towards a clean separation of the
model and search components of a local search algorithm, via abstractions that
facilitate its design and maintenance. One such abstraction is the concept of con-
straint, which captures some common combinatorial substructure. For instance,
the AllDifferent(zy, ..., x,) constraint requires its arguments to be pairwise dif-
ferent. A constraint can be seen as an object [6,11], storing attributes, such as
its set of variables and its penalty, and providing primitives such as the deter-
mination of the penalty change incurred if some of its variables were assigned
different values. For efficiency, the attributes and results of the primitives must be
maintained incrementally upon each move. This paper contributes to the CBLS
endeavour, enriching the interface of constraint objects with new primitives.
Many neighbourhoods are variable-directed, in the sense that a (small) set
of variables is picked before considering the neighbouring configurations where
those variables take different values. One approach is to attach some level of
conflict to variables and to pick a most conflicting variable. However, the ab-
straction of constraint objects also offers opportunities for constraint-directed

* Work done while a Visiting Faculty Member at Sabanci University.

search (e.g., [5,12,11]), in the sense that a (small) set of constraints is picked be-
fore considering the neighbouring configurations where those constraints have,
say, a decreased penalty. Now, we argue that the knowledge of the semantics of
a built-in constraint, or even just of a constraint specification, allows the design
of the corresponding constraint object to accommodate constraint-directed neigh-
bourhoods whose moves are known to achieve a penalty decrease (or preservation,
or increase), without forcing the iteration over the other moves. This simplifies
the design and maintenance of some local search algorithms.

The remainder of this paper is organised as follows. First, in Section 2, we
define the basic concepts of local search more precisely and present the problem
on which we shall conduct our experiments. The contributions and importance
of this work can then be stated as follows:

— We show how some constraint-directed neighbourhoods can be represented
via new primitives for constraint objects: (i) For a built-in constraint, these
primitives are created using the knowledge of the semantics of the constraint.
(ii) For a non built-in constraint specified in monadic existential second-
order logic, we propose a generic algorithm that works compositionally on
that specification. Using compositional calculi for inferring the existing con-
straint attributes and primitives from such specifications [3], an upper bound
on the performance of a local search algorithm can thus be obtained for a
missing constraint, before deciding whether it is worth building it in. (Sec-
tion 3)

— We present common local search heuristics constructed by constraint-directed
neighbourhoods as well as by a combination of constraint-directed and variable-
directed neighbourhoods. We successfully experiment with one of these heuris-
tics, showing how it simplifies the design of the local search algorithm by not
needing a data structure that is necessary when using just a variable-directed
neighbourhood, while not incurring any run-time overhead. (Section 4)

In Section 5, we conclude, discuss related work, and outline future work.

2 Preliminaries

A constraint satisfaction problem (CSP) P is a triple (X,D,C), where X is a
finite set of variables, D is a finite domain containing the possible values for each
variable in X', and C is a finite set of constraints, each being defined on a subset
of X and specifying its valid combinations of values. By abuse of language, we
often identify a constraint with the singleton set containing it, and P with C.

In this paper, we focus on set-CSPs, that is CSPs where the domain D is the
power set & (U) of some set U, called the universe. Note that scalar variables
can be mimicked by set variables constrained to be singletons. Even though we
only consider set-CSPs, we make no claims about their superiority.

An initial assignment of values to all the variables is maintained:

Definition 1. Let P = (X,D,C) be a CSP. A configuration for P (or X) is a
total function k : X — D. A configuration k is a solution to a constraint set

C' C C if and only if (iff) each constraint in C' is satisfied under k. The set of
all configurations for P is denoted Kp.

Ezample 1. Consider the CSP P = ({S,T}, #({a,b,c}),{S C T}). A configura-
tion for P is given by k(S) = {a,b} and k(T') = 0, or equivalently by k = {S
{a,b},T — 0}. A solution to S C T is given by {S + {a,b},T + {a,b,c}}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such moves, until a solution is found or
allocated resources have been exhausted. The configurations thus examined con-
stitute the neighbourhood of the current configuration:

Definition 2. Let P = (X,D,C) be a CSP. A neighbourhood function for ¢’ C
C is a function n : Kp — Z(Kp), and we call the set n(k) the neighbourhood
of C" under k. A move function for P is a function m : Kp — Kp, and we call
the configuration m(k) a move.

Focusing on set-CSPs, we here consider the following move functions, for all
set variables S,T and universe elements u,v of the considered CSP: add(S,v)
adds v to S; drop(S,u) drops u from S; flip(S,u,v) replaces u in S by wv;
transfer(S,u,T) transfers u from S to T; and swap(S,u,v,T) swaps u of S
with v of T. Given a configuration k, the effects of these moves are only defined
ifuek(S)YANvek(S)ANudk(T)ANv e k(T). For each such move function, we
may define a corresponding neighbourhood function for a constraint set C over
the variable set X. For example, given a configuration k, the neighbourhood
function Add(C) returns the set of all moves of the form add(S,v)(k), where
S € X, given a configuration k for X. The neighbourhood functions Drop(C),
Flip(C), Transfer(C), and Swap(C) are defined similarly. We let N (C) denote the
universal neighbourhood function, resulting from the union of all these functions.

Ezample 2. Consider the constraint S C T and the configuration & = {S
{a},T — {b}}. Assuming that i = {a, b}, we have Add(S C T)(k) = {add(S,b)(k),
add(T,a)(k)}; Drop(S C T)(k) = {drop(S,a)(k), drop(T,b)(k)}; Flip(S C T)(k) =
{flip(S, a,b)(k), flip(T,b,a)(k)}; Transfer(S C T)(k) = {transfer(S,a,T)(k),
transfer(T,b, S)(k)}; and Swap(S C T)(k) = {swap(S,a,b,T)(k)}.

The penalty of a constraint set, which is an estimate on how much it is
violated, is used to rank the configurations of a neighbourhood.

Definition 3. Let P = (X, D,C) be a CSP. A penalty function of C’ C C is a
function penalty(C') : Kp — N such that (s.t.) penalty(C')(k), called the penalty
of C" under k, is zero iff k is a solution to C'.

Ezample 3. AllDisjoint(X) is satisfied under configuration k iff the intersection
between any two distinct set variables in X" is empty. The penalty function

penalty(AllDisjoint (X)) (k) = (Z |k(S)|> —

Sex

U k(S)’ (1)

Sex

computes the total number of drop moves needed to nullify the penalty of the
constraint, that is to transform the current configuration into a solution. For
instance, the penalty of AllDisjoint({S,T,V}) under configuration k = {S
{a,b,c}, T+ {b,c,d},V + {d,e}} is 8 — 5 = 3, and indeed it suffices to drop
the three shared elements b, ¢, d from any set each to get a solution.

When a necessary constraint is not available in our local search framework, we
use monadic existential second-order logic (IMSO) for specifying that constraint.

Ezample 4. The constraint AllDisjoint({S, T, V'}) may be specified in IMSO by
=35313VVva((r ¢ SVa ¢ TAx ¢ V)AN(x ¢ TVag¢gV)).

We introduced IMSO in local search in [1] (in [10], it is used for generat-
ing set constraint propagators), and we will use the inductive penalty function
proposed there. For example, the penalty of a literal (a constraint here) under
a configuration k is 0 if the literal is satisfied under k& and 1, otherwise. The
penalty of a conjunction (disjunction) is the sum (minimum) of the penalties
of its conjuncts (disjuncts). The penalty of a universal (existential) quantifica-
tion is the sum (minimum) of the penalties of the quantified formula where the
occurrences of the bound variable are replaced by each value in the universe.

Ezample 5. Recall k = {S +— {a,b,c},T — {b,c,d},V — {d,e}} of Ex. 3 and
consider 2 of Ex. 4. Then penalty(§2)(k) = 3, i.e., the same value as obtained
by the handcrafted penalty(AllDisjoint(X)) function of Ex. 3.

Ezample 6. The progressive party problem [9] is about timetabling a party at
a yacht club, where the crews of some guest boats party at host boats over a
number of periods. The crew of a guest boat must party at some host boat in
each period (¢1). The spare capacity of a host boat is never to be exceeded (cz).
The crew of a guest boat may visit a particular host boat at most once (c3). The
crews of two distinct guest boats may meet at most once (c4).

Let H and G be the sets of host boats and guest boats, respectively. Let
capacity(h) and size(g) denote the spare capacity of host boat h and the crew
size of guest boat g, respectively. Let P be the set of periods. Let S ;) be a set
variable denoting the set of guest boats whose crews boat h hosts during period
p. The following constraints then model the problem:

(c1) Vp € P : Partition({Sp) : h € H},G)

(c2) Vh € H :Vp € P : MaxWeightedSum(S(y p), size, capacity(h))
(c3) Yh € H : AllDisjoint({S,py : p € P})

(ca) MazIntersect({Snpy: h€ HApe€ P}, 1)

The global constraint Partition(X, Q) is satisfied under configuration k iff the
values of the set variables in X’ partition the constant set), where the value of
each S € X may be the empty set. The constraint MazWeightedSum/(S, w,m) is
satisfied under kiff }°, o). sy w(u) < m. The global constraint MazIntersect(X, m)
is satisfied under k iff the cardinality of the intersection of any two distinct set
variables in X is at most the constant m.

3 Constraint-Directed Neighbourhoods

When constructing a neighbourhood from a variable perspective, we start from
a set of variables and change some of them, while evaluating (incrementally) the
effect that the changes have on the penalty. From a constraint perspective, we
start from a set of constraints and obtain the neighbours directly from those
constraints. The advantage is that we can exploit combinatorial substructures
of the model, and focus on constructing neighbourhoods with particular proper-
ties. By doing this, we extend the idea of constraint-directed search [5,12,11] to
accommodate moves known to decrease, preserve, or increase the penalty.

Definition 4. Let ¢ be a constraint on the set variables X, let k be a config-
uration for X, and let penalty(c) be a penalty function of c. The decreasing,
preserving, and increasing neighbourhoods of ¢ w.r.t. k and penalty(c) are:

{c},l< = {l e N(c)(k) : penalty(c)(k) > penalty(c)(£)}
{c}z ={t e N(c)(k) : penalty(c)(k) = penalty(c)(¢)}
{c},TC ={l e N(c)(k) : penalty(c)(k) < penalty(c)(€)}

This definition gives the properties of moves of decreasing, preserving, and in-
creasing neighbourhoods, respectively. Given this target, we may now define
such neighbourhoods for particular constraints. To present the idea, we do this
for the built-in global AllDisjoint constraint as well as for any IMSO-specified
constraint. We then (in Section 3.3) present a feasible implementation approach.

3.1 Built-in Constraints
Let |X|* denote the number of sets in X' that contain u under k.

Ezxample 7. Let k be a configuration for X. The decreasing, preserving, and in-
creasing neighbourhoods of AllDisjoint(X) under k and (1) are defined by:

{AllDisjoint (X)}5 = {drop(S,u)(k) : |X|¥ > 1} U
{flip(S,u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)}i A add(S,v)(k) € {AllDisjoint(X)}7 }
{AllDisjoint (X))} = {drop(S,u)(k) : |X|* =1} U {add(S,v)(k) : |X|F =0} U

{flip(S,u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)}t A add(S,v)(k) € {AllDisjoint (X)}L \
drop(S,u)(k) € {AllDisjoint(X)}, A add(S,v)(k) € {AllDisjoint(X)},} U
{transfer(S,u, T)(k)} U {swap(S,u,v,T)(k)}

{AllDisjoint(X)}} = {add(S,v)(k) : |X|* > 0} U
{flip(S,u,v)(k) : drop(S,u)(k) € {AllDisjoint(X)};; A add(S,v)(k) € {AllDisjoint(X)}]Tc}

The condition S, T € X ANu,v € U ANu € k(S)Av € E(S)ANu & k(T)ANv €
k(T) is always implicit. Technically, the preserving neighbourhood must also
be expanded with all moves on the set variables of the CSP that are not in
AllDisjoint (X).

For instance, assume that k = {S — {b},T +— {b},V — 0} and U = {a, b}:

{AUDisjoint ({S, T, VI = {drop(8,b)(k), drop(T, b)(k), flip(S, b, a) (k), flip(T, b, a)(k)}
{AllDisjoint ({S,T,V})}r = {add(S,a)(k), add(T, a)(k), add(V, a)(k), transfer(S, b, V)(k), transfer(T, b, V)(k)}
{AlUlDisjoint({S, T, V})}} = {add(V,b)(k)}

Even though these definitions are mutually recursive (for flip), this is just a
matter of presentation, as they can be finitely unfolded (since a flip is just a
drop and an add), and has no impact on the efficiency in practice.

3.2 dIMSO Constraints

We now define the same neighbourhoods for any IMSO constraint. To do this,
we must know the actual impact of a move in terms of the penalty difference.

Definition 5. Let ¢ be a constraint and let k be a configuration for the set
variables of ¢. A delta for ¢ under k is a pair (£,0) s.t. £ is a neighbour of k
and § is the penalty difference when moving from k to £: § = penalty(c)(£) —
penalty(c)(k).

Let Aj; be the pairs in A projected on their first element. Let £> M be § if
(£,0) € M, and 0 otherwise, where ¢ is a configuration and M is a delta set.

Definition 6. Let @ be a formula in AMSO and let k be a configuration for the
set variables of ®. The delta set A(P)(k) of @ under k is inductively defined by:

(a) A(3S1---35.0)(k) = A(¢)(k)
(b) A(Vzg)(k) = {(£,6) : £ € (VueuA(d)(kU{z — u}))n A

=3 (t> A($) (kU {z — u}))}

(c) AQBz¢)(k) ={(£,0) : L € (VueuA(¢)(kU{z — U}))\lu/\
5= runeibl(penalty(qb)(k U{z —u}) +

(t> A(¢)(k U {z = u}))) — penalty(3x¢)(k)}

(d) A(pAp)(k) ={(£,8) : £ € (A(P)(k) UA(P)(K))j1 A6 = £> A(P) (k) +£> A(y) (k)}
(e) AlpVP)(k) ={(£,0): £ € (A($)(k) UAW)(K))1 A
6 = min(penalty(¢) (k) + (L> A(¢)(k)),
penalty () (k) + (€5 A(%)(K))) — penalty(é v) (k))}
(f) A(z <y)(0 (x similarly for <,=,#,>,>, omitted for lack of space *)

k)
(9) Az € S)(k) = (x similarly for ¢, omitted for lack of space *)
{(drop(8, k(z))(K),)} U {(Aip(S, k(x), 0)(k), 1) : v € U\ K(S)} U
{(transfer (S, k(z),T)(k),1) : T € X Nk(z) e U\ k(T)} U
{(swap(S, k(x),v,T)(k),1) :v ¢ k(S)ANT € X A

k(z) ¢ k(T)Av € k(T)}, if k(z) € k(S)
{(add(S, k(z))(k), —1)} U{(flip(S, u, k(z))(k), —1) : u € k(S)} U
{(transfer (T, k(z),S)(k),—1): T € X Nk(z) € k(T)} U
{(swap(S,u, k(x),T)(k),—1):u € k(S)AT € X A

k(z) € k(T) ANu ¢ k(T')}, otherwise

Now, the decreasing, preserving, increasing, and delta neighbourhoods of @ un-
der k and penalty(®) are respectively:

{O}r = {C:(L,7) € A(P)(k) Ay < 0}
(B} = {L: (4,7) € A(D)(k) Ay =0}
(B} ={l: (L) € A®)(k) Ay > 0}
(B}, ={€:(L,7) € A(®)(k) Ay = 5}

Example 8. Consider {2 of Ex. 4 as well as k and U of Ex. 7:

A(£2)(k) = {(drop(S.,b)(k), —1), (drop(T',b)(k), —1), (add(S, a)(k),0), (add(T, a)(k),0),
(add (V. a)(k),0), (add(V,b)(k), 1), (flip(S, b, a)(k), —1),
(flip(T, b, a)(k), —1), (transfer(S,b,V)(k),0), (transfer(T,b,V)(k),0)}

The obtained neighbourhoods are the same as the handcrafted ones in Ex. 7.
All and only the possible moves are captured in a delta set:

Lemma 1. Let @ be in IMSO and k a configuration for @: A(®)(k), = N(P)(k).

Proof. (C) Trivial, as N (®)(k) is the set of all possible moves for the set variables
of . (2) Assume now that ¢ € N(@)(k). If £ is of the form add(S,v)(k), then
there must be a subformula ¢ in @ of the form v € S or v ¢ S. Since v ¢ k(S)
by definition of add(S,v), we then have that add(S,v)(k) € (A(¢)(k));1 and
hence add(S,v)(k) € (A(®)(k))):. Similarly for drop, as well as for flip, swap,
and transfer, which are just transactions over add and drop moves. O

Def. 6 correctly captures the penalty differences in deltas according to Def. 5:

Lemma 2. Let @ be a formula in IMSO and let k be a configuration for @. If
e N(D)(k), then > A(P)(k) = penalty(P)(£) — penalty(P) (k).

Proof. Let A = N(®)(k) be the set of all moves on @ under k. The proof is by
structural induction on @. The lemma holds for the base cases (f) and (g), and
follows for case (a) by induction from the definition. The quantifier cases (b) and
(c) are just generalisations of the following two cases.
Case (d): ¢ A 1. Consider a configuration ¢ € A. We have that:
penalty(¢ A) (€) — penalty (¢ A1) (k)
= penalty($)(¢) — penalty(¢)(k) + penalty (1) (¢) — penalty(1)(k), by def. of penalty
=0 A(p)(k) + > A(y)(k), by induction
= (> A(é A 9)(K), by Def. 6.
Case (e): ¢ V 1. Consider a configuration £ € A. We have that:
penalty(¢ V ¥)(€) — penalty (¢ V) (k)
= min(penalty(P) (L), penalty (¥)(£)) — penalty(d V ¥)(k), by def. of penalty
__min(penalty(¢)(k) + £> A(P)(k), . .
= penalty()(k) + £ A()(k)) — penalty(g v) (k) Y AUCHOn
= (> A(¢V ¥)(k), by Def. 6. O

o~

It follows directly from Lemmas 1 and 2 that Def. 6 correctly captures the
considered neighbourhoods according to Def. 4:

Proposition 1. Let @ be a formula in AMSO, let k be a configuration for the
set variables X of @, and let £ € N(®)(k). We then have that:

le {913}}C < penalty(P)(¢) < penalty(P)(k)

¢ € {P}, < penalty(P)(¢) = penalty(P)(k)

le {4’}11 < penalty(P)(¢) > penalty(P) (k)

Algorithm 1 member and iterate primitives for AllDisjoint.

1: function member({AllDisjoint(X)}t)(@, k)
match ¢ with
drop(S, u)(k) — |X|} > 1
| flip(S,u,v)(k) — |X]}; > LA|X[S =0
| any_-other — false
end match
procedure iterate({AllDisjoint(X)}i)(S, k,o)
for all u € {z € k(S) : |X|* > 1} do
o(drop(S,u)(k))
for all v € {z € U\ k(S) : |X|* =0} do o(flip(S,u,v)(k)) end for

3.3 Implementation Issues

For built-in constraints, the decreasing, preserving, and increasing neighbour-
hoods are represented procedurally (sometimes with the support of underlying
data structures) by member and iterate primitives. In Algo. 1, we only show these
primitives for { AllDisjoint(X)}}. The member({ AllDisjoint(X)}})(£, k) primi-
tive takes two configurations ¢ and k and returns true iff £ € { AllDisjoint(X)}}.
This is the case only when ¢ is of the form drop(S,u)(k) and w occurs more than
once in X, or flip(S,u,v)(k) and u (respectively v) occurs more than once (re-
spectively not at all) in X (lines 3 to 4). A call member({ AllDisjoint(X)}1) (4, k)
can be performed in constant time, assuming that |X|* and |X|* are main-
tained incrementally. The z'temte({AllDisjoint(X)},ﬁ)(S, k,o) primitive takes a
set variable S, a configuration k, and a function ¢ and applies ¢ to each ¢ €
{AllDisjoint(X)}i involving S. This is the case for each configuration ¢ of the
form drop(S,u)(k) or flip(S,u,v)(k) s.t. member({ AllDisjoint(X)}1)(¢, k) holds
(lines 9 to 10). The function o takes a move and works by side effects. A call
o(?) could, e.g., evaluate the penalty difference between ¢ and the current con-
figuration, and update some internal data structure keeping track of the best
such move. A call itemte({AllDisjomt(X)},ﬁ)(S, k,o) can be performed in time
O(|{AllDisj0mt(X)}i|), assuming that the set comprehensions on lines 8 and 10
are maintained incrementally, and that a call to o takes constant time.

For dIMSO-specified constraints, the neighbourhoods are represented partly
extensionally and partly intensionally. Given a constraint ¢ and a configuration
k, the subset A¢, 43 (P)(k) of A(P)(k) with elements of the form (add(S,v)(k),)
or (drop(S,u)(k),d) is represented extensionally at every node in the constraint
DAG of &, and updated incrementally between moves, similarly to incrementally
updating penalties [3].

Ezample 9. Consider k = {S — {b},T — {b},V — 0} and A(£2)(k) of Ex. 8.
The constraint DAG of 2 under k, shown in Fig. 1, contains penalty information
(shaded sets) and the sets A4 4 (w)(k) € A(w)(k), for each subformula w of £2.

We present member and iterate primitives only for the decreasing neigh-
bourhood of IMSO-specified constraints in Algo. 2. Since A4 q3(4)(k) is rep-
resented extensionally for each subformula, we access it in constant time. Both

{(add(S, a)(k),0),
(drop(S, b)(k), —1),
(add(T, a)(k),0),

(drop(T, b)(k), 1),

(add(V; a)(k),0),
(add(V; b)(k), 1)}

{(a) ~ 0,
(®) = 1}
ASATIV— Vo — A

{0 =1}
{(add(S, a)(k), 0),

{(add(S, a)(k), 1),

{(add(T, a)(k), 0),
(drop(T, b)(k), 0),
(add(V, a)(k), 0),
(add(V, b)(k), 1)}

{(a) — 0,

(b) — 0}

V

x¢T
{(@) ~ 0,

(drop(S, B)(K), ~1)} () = 1}
T

{(@) 0,
®) = 1}

{(add(T, a)(k), 1),
(drop(T, b)(k), —1)}

{(add(V; a)(k), 1),

(drop (S, b) (k). ~1), (add(V, b)(k), 1)}

(add(T, a)(k),0),

(drop(T', b)(k), —1),

(add(V, a)(k). 0), v A Tz gV

(add(V, b)(k), 1)} {(a) — 0, {(a) — 0, {(a) — 0,
(b) — 1} (b) — 1} (b) — 0}

{(add(S, a)(k), 0),
(drop(S,b)(k), —1),
(add(T, a)(k),0),
(drop(T', b)(k), —1),
(add(V, a)(k),0),
(add(V, b)(k), 0)}

{(add(T, a)(k), 1),
(drop(T, b) (k), —1),
(add(V, a)(k), 1),
(add(V,b)(k), 1)}

Figure 1. Constraint DAG of AMSO constraint 2 under configuration k of Ex. 8.

primitives call collect(®)(S, k, M), which takes a set variable S, a configuration
k, and a move set M, where S is affected by each move in M and M only
contains flip, transfer, swap moves, and returns the delta set for @ under k,
where the configuration ¢ is taken from M for each delta (¢,¢). This function
is partly described in Algo. 2; all other cases follow similarly from Def. 6. For
351 - --35,(¢), the function is called recursively for ¢ (line 11). For Va(¢), it is
called recursively for ¢, and the value of §, given a transfer move, is obtained
from the result of that call (lines 12 to 13). For ¢ A ¢p: (i) if S is in both con-
juncts, then the value of 4, given a move of the form transfer(S,u,T)(k), is
recursively determined as the sum of transfer(S,u,T)(k) > collect(¢)(S, k, M)
and transfer(S,u,T)(k) > collect()(S, k, M) (lines 15 to 17); (ii) if S is only
in one of the conjuncts, say ¢, then the value of §, given a move of the form
transfer (S, u, T)(k), is recursively determined as the sum of transfer (S, u,T)(k)>
collect(¢)(S, k, M) and add(T,u)(k) > Aj(a,q}(¥)(k) (lines 18 to 20). The ben-
efit of representing A, 41 (®)(k) extensionally can be seen in case (ii), where
a recursive call is needed only for the subformula where S appears. For « € S,
given a transfer(S,u, T')(k) move, the value of § is 1, since u is removed from S
(line 23).

Ezample 10. Consider 2 and k = {S — {b},T — {b},V — 0} of Ex. 8. Then
collect (2)(V, k, {flip(S,b,a)(k)}) = {(flip(S,b,a)(k),—1)}. Hence, similarly to
Ex. 7, flip(S,b,a) (k) € {2}}.

By a similar reasoning as in [3, Sect. 5.3], we can see that the time complexity
of collect(®) is at worst proportional to the size of @. The IMSO specification we

Algorithm 2 Generic member and iterate primitives for IMSO constraints.
1: function member({@}}c)(ﬁ, k)

2: match ¢ with

3: drop(S,u)(k), add(S,v)(k) — £> A(a,q1(P)(k) <O

4: | flip(S,u,v)(k), transfer(S,w, T)(k), swap (S, u,v, T)(k) — £ collect(P)(S, k,{£}) < 0

5: end match

6: procedure iterate({®}})(S, k, o)

7 for all (¢,6) € A‘{a‘d}(d))(k)‘s U collect(P) (S, k,{£: ¢ € N(@)(k)‘s}) do

8: if § < 0 then o(¢) end if

9: function collect(®)(S, k, M)

10: match ¢ with

11: 351 -+ 35, (6) — collect(d)(S, k, M)

12: | Vz(¢) — {(transfer(S,w,T)(k),d) : transfer(S,u,T)(k) € M A

13: 6 = transfer(S,w, T)(k) > collect(¢)(S, k, M)}

14: | pANYp —

15: if S € set_vars(¢) N set_vars(y) then

16: {(transfer(S,u, T)(k), §) : transfer(S,u, T)(k) € M A

17: 6 = transfer(S,u, T)(k) > collect(¢)(S, k, M) + transfer(S,u,T)(k) >
collect(¢) (S, k, M)}

18: else if S € set_vars(¢) then

19: {(transfer(S,u, T)(k), §) : transfer(S,u, T)(k) € M A

20: § = transfer(S,u, T)(k) > collect(¢)(S, k, M) + add(T, u)(k) > A|tq,a3 (¥) (k) }

21: else (x symmetric to the case when S € set_vars(¢) *)

22: -+ (* omitted cases *) - - -

23: | = €S — {(transfer(S,u,T)(k), 1) : transfer(S,u,T)(k) € M}

24: end match

have used for AllDisjoint is quadratic in the number of variables. In general, an
IMSO specification will have some overhead in terms of formula length, which is
the price to pay for the convenience of using IMSO. We come back to this issue
in Section 4.3 with experimental evidence that such an overhead can in practice
be only linear.

The member({P} ,ﬁ)(ﬁ ,k) primitive takes two configurations ¢ and k and
returns true iff ¢ € {(15},lC If ¢ is an add or drop, the result is obtained di-
rectly from A, 43(®@)(k) (line 3). Otherwise, the result is obtained from a call
collect(P)(S, k, {£}), where S is a variable affected by ¢ (line 4).

The z'temte({@}i)(s, k,o) primitive takes a set variable S, a configuration
k, and a function ¢ and applies o to each move in {@}i involving S. This set
is obtained from a union of the extensionally represented A, 4} (®)(k) and the
result of a call collect(®)(S, k, M), where M is the set of all moves involving S.
We use M|s to denote the deltas in M involving S.

Given an AMSO-specified constraint @, the time complexities of member and
iterate are both at worst proportional to the size of @, since both call collect.

4 Using Constraint-Directed Neighbourhoods

We first revisit three common heuristics using our constraint-directed neighbour-
hoods. All heuristics are greedy and would be extended with metaheuristics (e.g.,
tabu search and restarting mechanisms) in real applications. Then we show that
our constraint-directed neighbourhoods even avoid certain (usually necessary)
data structures. Finally, we present some experimental results.

Algorithm 3 Simple heuristic using constraint-directed neighbourhoods.

1: function Cps(C)
k <« RANDOMCONFIGURATION(C)
while penalty(C)(k) > 0 do
choose c € C s.t. penalty(c)(k) > 0 for
choose ¢ € {c}t minimising penalty(C)(£) for k <+ £ end choose
end choose
return k

4.1 Constraint-Directed Heuristics

All heuristics use a choose operator to pick a member in a set with some prop-
erty. For picking a decreasing/preserving/increasing neighbour, this operator can
be implemented using the member and iterate primitives of the constraints.

Simple heuristics. The heuristic CDs in Algo. 3 greedily picks the best neigh-
bour in the set of decreasing neighbours of an unsatisfied constraint. More pre-
cisely, CDs takes a set of constraints C and returns a solution if one is found. It
starts by initialising k& to a random configuration for all variables in C (line 2).
It then iterates as long as there are any unsatisfied constraints (lines 3 to 6).
At each iteration, it picks a violated constraint ¢ (line 4), and updates k to any
configuration in the decreasing neighbourhood of ¢ minimising the total penalty
of C (line 5). A solution is returned if there are no unsatisfied constraints (line 7).

Cps is a variant of constraintDirectedSearch [11]. Apart from the addi-
tional tabu mechanism of the latter, the main difference is line 5. While in CDs,
the decreasing moves are obtained directly from the constraint, meaning that no
other moves are evaluated, the decreasing moves of constraintDirectedSearch
are obtained by evaluating all moves, i.e., also the preserving and increasing ones.

As it requires that there always exists at least one decreasing neighbour, CDS
is easily trapped in local minima. We may improve it by also allowing preserving
and increasing moves, if need be. This can be done by replacing line 5 with the
following, assuming the set union is evaluated in a lazy fashion:

choose ? € {c}1 U{c}i U{c}] minimising penalty(C)(¢) for k < ¢ end choose

While this algorithm is simple to express also in a variable-directed approach
(by, e.g., evaluating the penalty differences w.r.t. changing a particular set of
variables according to some neighbourhood function, focusing on those giving
a lower /constant /higher penalty), the constraint-directed approach allows us to
focus directly on the particular kind of moves that we are interested in.

Multi-phase heuristics. One of the advantages with the considered constraint-
directed neighbourhoods is the possibilities they open up for the simple design of
multi-phase heuristics. This is a well-known method and often crucial to obtain
efficient algorithms (see [4], for example). In a multi-phase heuristic, a con-
figuration satisfying a subset IT C C of the constraints is first obtained. This

Algorithm 4 Multi-phase heuristics using constraint-directed neighbourhoods.

1: function CDSPRESERVINGFULL(IT, X))
k «— SOLVE(IT)
while penalty(X)(k) > 0 do
choose ¢ € IT;; minimising penalty(X)(k) for k < £ end choose
return k

2

3

4

5

6: function CDSPRESERVING(IT, 2)

7 k < SOLvE(IT)

8: X «— the set of all variables of the constraints in IT
9: while penalty(X)(k) > 0 do

10: choose z € X maximising conflict(¥)(z, k) for
11 choose ¢ € (I1|,),, minimising penalty(X|,)(k) for k «— £ end choose
12 end choose

13 return k

configuration is then transformed into a solution satisfying all constraints by
only considering the preserving neighbourhoods of the constraints in I7. The
difficulty of choosing a good subset IT varies. In order to guide the user in this
task, a candidate set II can be automatically identified in MultiTAC style [7].

In Algo. 4, we show the two multi-phase heuristics CDSPRESERVINGFULL
and CDSPRESERVING. Both take two sets of constraints IT and X, where IT U
Y = C, and return a solution to C if one is found. In CDSPRESERVINGFULL,
a configuration k for all the variables of C, satisfying the constraints in I7, is
obtained by the call SOLVE(IT) (line 2). The function SOLVE could be a heuristic
method or some other suitable solution method, possibly without search. We
then iterate as long as there are any unsatisfied constraints in X' (lines 3 to 4).
At each iteration, we update k to be any neighbour ¢ that preserves all constraints
in I7, minimising the total penalty of X' (line 4). If there are no more unsatisfied
constraints in X, then the current configuration (a solution) is returned (line 5).

A problem with CDSPRESERVINGFULL is that if I7 is large or contains con-
straints involving many variables, the size of the intersection of the preserving
neighbourhoods on line 4 may be too large to obtain an efficient heuristic. We
here present one method to overcome this problem, using conflicting variables.
The conflict of a variable is a measure of how much it contributes to the penalty
of the constraints it is involved in. By focusing on moves involving such conflict-
ing variables or perhaps even the most conflicting variables, we may drastically
shrink the size of the neighbourhood, obtaining a more efficient algorithm, while
still preserving its robustness.

The heuristic CDSPRESERVING differs from CDSPRESERVINGFULL in the fol-
lowing way: After k is assigned initially, X" is assigned the set of all variables of
the constraints in IT (line 8). Then, at each iteration, a most conflicting variable
x € X is picked (line 10) before the preserving neighbourhoods of the con-
straints in IT are searched. Next, when the best neighbour is chosen (line 11),
the constraints in I and X are projected onto those containing z, drastically
reducing the size of the neighbourhood. We use C|, to denote the constraints in
C containing x.

Note that projecting neighbourhoods onto those containing a particular set of
variables, such as conflicting variables, is a very useful variable-directed approach

for speeding up heuristic methods. In this way, CDSPRESERVING is a fruitful
cross-fertilisation between a variable-directed and a constraint-directed approach
for generating neighbourhoods.

4.2 Avoiding Necessary Data-Structures

Another advantage with the considered constraint-directed neighbourhoods is
that data structures for generating neighbourhoods that traditionally have to be
explicitly created are not needed here. For example, the model of the progressive
party problem of Ex. 6 is based on a set of set variables X where each S, ;) € X
denotes the set of guest boats whose crews boat h hosts during period p. Assume
now that we want to solve this problem using CDSPRESERVING where I7 is the
set of Partition constraints. Having obtained a partial solution that satisfies IT
in line 7, the only moves preserving IT are moves that transfer a guest boat from
a host boat in a particular period to another host boat in the same period, or
moves that swap two guest boats between two host boats in the same period. To
generate these preserving moves from a variable-directed perspective, we would
have to create data structures for obtaining the set of variables in the same
period as a given variable chosen in line 10. By instead viewing this problem
from a constraint-directed perspective, we obtain the preserving moves directly
from the constraints in II and no additional data structures are needed.

4.3 Experimental Results

We implemented the ideas presented in this paper for all the constraints used in
the model of the progressive party problem as well as for any IMSO constraint.
The classical instances [9] for the progressive party problem were then run,
mimicking the algorithm of [2] but using a variant of CDSPRESERVING. This
meant that the Partition constraints were chosen as the preserved constraints
11, that we extended CDSPRESERVING with the same metaheuristics, maximum
number of iterations, and so on, and that the preserving neighbourhood of the
Partition constraints was restricted to transfer moves from the chosen most
conflicting set variable to any other set variable.

To show the feasibility of algorithms using the proposed constraint-directed
neighbourhoods, the first purpose of experiments is to compare them, within a
given local search framework, with algorithms not using such neighbourhoods,
for both built-in and IMSO constraints. The purpose here is thus not to compare
with other models of the progressive party problem in other frameworks.

We show the experimental comparison with [2] in Table 1. Each entry is the
mean time in seconds of successful runs out of 100 for a particular instance,
and the numbers in parentheses are the numbers of unsuccessful runs, if any,
for that instance. All experiments were run on an Intel 2.4 GHz Linux machine
with 512 MB memory. We see that, for using the built-in Partition constraint,
the times are similar, and that there are no overhead problems to mention with
constraint-directed neighbourhoods. When using the IMSO-specified Partition
constraint, the run times are 3 to 4 times higher for all these instances. This is

CDSPRESERVING and built-in Partition (X, Q) CDSPRESERVING and IMSO Partition (X, Q)

H /periods (fails) 6 7 8 9 10 H /periods (fails) 6 7 8 9 10
1-12,16 0.7 1.8 19.1 1-12,16 2.4 6.2 72.6
1-13 8.8 105.2 1-13 31.2 411.8

1,3-13,19 10.2 143.9 (1) 1,3-13,19 37.9 582.4 (3)
3-13,25,26 21.0 220.5 (14) 3-13,25,26 81.0 903.4 (12)
1-11,19,21 11.8 96.0 (1) 1-11,19,21 43.6 367.2

1-9,16-19 17.7 184.7 (11) 1-9,16-19 66.5 750.8 (8)

Algo. of [2] and built-in Partition (X, Q)

H /periods (fails) 6 7 8 9 10
1-12,16 1.2 2.3 21.0
1-13 7.0 90.5

1,3-13,19 7.2 128.4 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 10.3 83.0 (1)

1-9,16-19 18.2 160.6 (22)

Table 1. Run times in seconds for the progressive party problem. Mean run time of
successful runs (out of 100) and number of unsuccessful runs (if any) in parentheses.

not a surprise since IMSO specifications of Partition are at least of quadratic
length in its number of set variables, leading to an at worst quadratic slowdown
for the IMSO algorithms compared to the built-in Partition. The experiments
suggest that the slowdown is actually at worst linear! Compared to the built-
in Partition, it must also be noted that efforts such as designing penalty and
variable-conflict functions with incremental maintenance algorithms as well as
implementing member and iterate primitives were not necessary, since all this is
obtained automatically given the IMSO specification, as shown in [3] and this
paper, respectively.

5 Conclusion

In summary, we first revisited the exploration of constraint-directed neighbour-
hoods, where a (small) set of constraints is picked before considering the neigh-
bouring configurations where those constraints have a decreased (or preserved, or
increased) penalty. Given the semantics of a built-in constraint, or just the syntax
of a specification of a new constraint, neighbourhoods consisting only of configu-
rations with decreased/preserved/increased penalty can be represented via new
constraint primitives. We then presented an implementation of the correspond-
ing primitives in our local search framework and, using these new primitives,
showed how some local-search algorithms are simplified, compared to using just
a variable-directed neighbourhood, while not incurring any run-time overhead.
In terms of related work, the constraint objects of [6,11] have the primitives
getAssignDelta(z,v) and getSwapDelta(z;, z2) in their interface, returning the
penalty changes upon the moves x := v and x1 :=: 9, respectively. Although it
is possible to construct decreasing/preserving/increasing neighbourhoods using
these primitives, the signs of their penalty changes are not known in advance.
So if one wants to construct, say, a decreasing neighbourhood (as is done in
constraintDirectedSearch on page 68 in [11], for example), then one may

have to iterate over many moves that turn out to be non-decreasing. This con-
trasts using the primitives for representing constraint-directed neighbourhoods
proposed in this paper, where it is known in advance that exploring the decreas-
ing neighbourhood, say, will only yield moves with a lower penalty. Of course,
using the invariants of Comet, it is possible to extend its constraint interface
with primitives similar to those proposed in this paper, thus achieving similar
results in the (scalar) Comet framework. Conducting payoff experiments (like
the one of Section 4.3) within the Comet framework is considered future work,
while comparisons between frameworks are beyond the purpose of this paper.

In [8], it is also suggested that global constraints can be used in local search
to generate heuristics to guide search; however, that work differs in that the
provided heuristics are defined in an ad-hoc manner for each constraint.

There are many directions for future work. Currently, the preserving neigh-
bourhood I7;7 in line 4 of Algo. 4 is still calculated dynamically as (.. ;{c};
even though the proposed compositional calculus for IMSO can handle this. One
might even choose a neighbour among 17,- NY ,i, by representing the intersection
of the moves preserving the penalty of IT and the moves decreasing the penalty
of X, if that intersection is non-empty, thereby saving at each iteration the
consideration of the non-decreasing moves on Y. Finally, the neighbourhoods
of Definition 4 should be parameterised by the neighbourhood function to be
used, rather than hardwiring the universal neighbourhood function N(C), and
the programmer should be supported in the choice of this parameter.

References

1. M. Agren, P. Flener, and J. Pearson. Incremental algorithms for local search from
existential second-order logic. Proc. of CP’05, vol. 3709 of LNCS. Springer, 2005.

2. M. Agren, P. Flener, and J. Pearson. Set variables and local search. In Proceedings
of CP-AI-OR’05, volume 3524 of LNCS, pages 19-33. Springer-Verlag, 2005.

3. M. Agren, P. Flener, and J. Pearson. Generic incremental algorithms for local
search. Constraints, 12(3), September 2007.

4. 1. Doti and P. Van Hentenryck. Scheduling social golfers locally. In Proceedings
of CP-AI-OR’05, volume 3524 of LNCS. Springer-Verlag, 2005.

5. M. S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD
thesis, Computer Science Department, Carnegie Mellon University, USA, 1983.

6. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.
ACM SIGPLAN Notices, 37(11):101-110, 2002. Proceedings of OOPSLA’02.

7. S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1-2):7-43, 1996.

8. A. Nareyek. Using global constraints for local search. In Vol. 57 of DIMACS: Series
in Discrete Maths and Theoretical Computer Science, pages 9-28. AMS, 2001.

9. B. M. Smith et al. The progressive party problem: Integer linear programming and
constraint programming compared. Constraints, 1:119-138, 1996.

10. G. Tack, C. Schulte, and G. Smolka. Generating propagators for finite set con-
straints. In Proceedings of CP’06, volume 4204 of LNCS. Springer-Verlag, 2006.

11. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press 2005.

12. J. P. Walser. Integer Optimization by Local Search: A Domain-Independent Ap-
proach, volume 1637 of LNCS. Springer-Verlag, 1999.

