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1 Introduction

The objectives of this investigation are (a) to study the sim-
ilarities between proof planning and schema-guided pro-
gramming (i.e., between proof methods and programming
schemas), and (b) to express the latter in terms of the
former, so as to be able to use any proof planner as an
existing implementation platform for developing the first
schema-guided developer of (standard or constraint) lo-
gic programs. This approach has the pleasant side-effect
that any proof obligations, such as verifications, matchings,
or simplifications, arising during schema-guided program-
ming can also be handled within the plan-guided automated
theorem prover. At the same time, this approach reveals an
opportunity for identifying and integrating useful heurist-
ics of when and how to apply what programming schema,
which dimension had hitherto been much neglected for pro-
gramming schemas, but not for proof methods.

We will first revisit plan-guided theorem proving [2] (in
Section 2) and then introduce the notion of schema-guided
programming, as a generalisation of schema-guided pro-
gram synthesis (whether through specification decompos-
ition [25, 10] or through pre-computation for a specifica-
tion schema [26, 12]) and of schema-guided program trans-
formation [27, 6, 23] (in Section 3). This provides us with
a framework [22] for unifying plan-guided theorem prov-
ing and schema-guided programming, and allows us thus
to encode programming schemas as proof methods (in Sec-
tion 4). Finally, we outline some first heuristics of when
and how to apply what programming schema (in Section 5),
as such heuristics naturally fit within this encoding. In the
conclusion (Section 6), we summarise and sketch how to
continue this research.

2 Plan-Guided Theorem Proving

When constructing a proof, there are typically many infer-
ence rules that can be applied at any given point during the
proof, and proofs are normally quite deep. The search space
of possible proof attempts is therefore very large.Proof
planning[2] reduces the size of proofs by constructing them
out of larger building blocks (calledmethods), and further
reduces the search space by allowing methods to encode
proof heuristics. Complete proofs plans are automatically
refined to compositions of tactics, which then generate com-
pletely formal proofs. Proof planning has so far been imple-

mented in three systems, namelyClam[5], �Clam[24], and
mega [1]. These systems can be equipped with user inter-
faces (XBarnacle[19] for the first two, and L
UI for the
third) that allow user and machine to cooperate in the proof
process. In addition, techniques developed for proof plan-
ning (e.g., rippling [3]) have been incorporated into other
theorem provers [21].

2.1 Object-Level Logic

Proof rules generally contain schematic variables that must
be instantiated when applying them. Applying a proof ruleH1`G1; ::: ;Hn`GnH`G rulename to a sequenth ` g requires
matchingh ` g with H ` G, i.e., finding a substitution�
on the schematic variables inH ` G such thath ` g =(H ` G)�, and instantiating the schematic variables in theHi ` Gi accordingly. The result is a node in the proof tree
with labelhh ` g; rulenamei, andn children, namely the
nodesh(Hi ` Gi)�; openi. Note that� must instantiate all
the schematic variables in theHi ` Gi.
Definition 2.1 A partial proof of a conjecture is a tree with
the following properties:� Each node is labeled with a pairhS;Ri, whereS is a

sequent andR is either the rule of inference that is ap-
plied to that sequent to generate the children (if any)
of the node, or the special atomopenif no rule of in-
ference has been applied to that sequent. In the latter
case, the node is said to beopen.� The conjecture is the sequent at the root of the tree.� If the application of an inference rule generates no sub-
goals, the (leaf) node at which it is applied iscomplete.

A proof is a partial proof with no open nodes.

2.2 Tactics

Definition 2.2 A tactic [13] is a procedure that constructs
a piece of object-level proof for a nodeX in a partial proof
treeP1. The tactic constructs a new partial proof treeP2,
whose root is labeled with the goal and the name of the tac-
tic, only by applying primitive rules of inference or other
tactics (direct modification of the proof tree is forbidden
since it may be unsound). After the tactic has finished ap-
plying rules of inference,P2 is folded so that only the root
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and any open nodes are retained, resulting in a partial proof
treeP 02 of depth 0 or 1 consisting of a root node with a (pos-
sibly zero) number of children (the open nodes ofP2). P 02
is then grafted intoP1 in place of nodeX .

For example, a tactic may strip all universal quantifiers
from the front of a goal and then apply a lemma. We con-
sider tactics to be derived rules of inference, and therefore
allow tactics as well as primitive rules of inference in Defin-
ition 2.1. As in LCF [13], a tactic language is defined that
providestacticals, for composing tactics.

2.3 Meta-Level Logic

In the preceding sections, we have defined the object-level
logic of formal proofs. It is implemented in a tactic-based
theorem prover. InClam [5], the default object-level the-
orem prover isOyster[4], a version ofNuPRL[7]. We now
define the meta-level logic, in which abstractions of tactics
(methods) operate on abstractions of object-level sequents
(meta-level sequents).

Definition 2.3 A meta-level sequentis an abstraction of an
object-level sequent that may be annotated to help guide
subsequent proof (e.g., the wave fronts in rippling), contain
meta-variables(i.e., existentially quantified variables of the
language in which the planner is written), and may have
some hypotheses added or deleted.

In contrast to object-level sequents, meta-level sequents
can contain schematic variables. We call schematic vari-
ables that occur in a proofmeta-variables. They have
an important rôle inmiddle-out reasoning, in which terms
such as existentially quantified variables are replaced in the
meta-level sequents by meta-variables. The meta-variables
are successively instantiated as a side-effect of subsequent
proof planning steps, allowing steps such as the choice of
existential witness to be delayed until later in the proof.

2.4 Methods

Tactics construct pieces of object-level proof; methods con-
struct pieces of meta-level proof, i.e., schematic proofs.

Definition 2.4 A methodis a tuple with 6 elements:� Name(Parameters): the name and formal parameters
of the method.� Input: the input pattern to which the method applies.� Pre-conditions: conditions that must hold for the
method to apply.� Post-conditions: conditions that must hold after the
method has been applied.� Outputs: a list of output patterns.� Tactic(Parameters): the name and parameters (if any)
of the tactic that constructs the piece of the object-level
proof corresponding to this method.

Definition 2.5 A method hName; Input; P re; Post;Outputs; Tactici is applicableto a meta-level sequentG
if and only if there exist variable assignments (substitutions�1, �2, �3) on the method’s schematic variables such thatG�1 = Input �1 and` Pre �1�2 and` Post �1�2�3. The
result of the method application is a list of output goals,
namelyOutputs �1�2�3.

In Clam, pre- and post-conditions are pieces of Prolog
code. A method’s pre-conditions thus determine the context
in which the method will apply. The same object-level tac-
tic may be represented by several methods, each operating
in different circumstances, allowing us to distinguish situ-
ations in which it isdesirableto apply a tactic from those
in which it ispossible. It also has explanational value, since
applying the tactic in different circumstances may have a
different intuitive meaning, for example the rewriting tactic
is used during rippling, symbolic evaluation, and weak fer-
tilisation, methods which have clearly distinguished rôles in
the proof process. The terminology for describing object-
level proofs can be abstracted to the meta-level (compare
with Definition 2.1):

Definition 2.6 A partial proof planof a conjecture is a tree
with the following properties:� Each node is labeled with a pairhS;Ri, whereS is a

meta-level sequent andR is either the method that is
applied to that sequent to generate the children (if any)
of the node, or the special atomopenif no method has
been applied to that meta-level sequent. In the latter
case, the node is said to beopen.� The meta-level sequent at the root of the tree is a (pos-
sibly annotated) abstraction of the conjecture.� If the application of a method generates no subgoals,
then the (leaf) node at which it is applied iscomplete.

A proof planis a partial proof plan with no open nodes.

In practice, the meta-level sequent at the root of the tree is
syntactically identical to the initial conjecture. Aspects of
abstraction and/or annotation are introduced further down
in the tree by the application of methods.

2.5 Construction of the Proof Plan

We now demonstrate how methods work by describing how
Clam constructs a proof plan. Details of proof plan con-
struction may differ considerably between different plan-
ners. A completed proof plan inClamhas a tree structure.
Initially, the partial proof plan,PP , is set to the tree with
one node, which is labeled with the conjecture to be proved
and the reserved tokenopen. Then,proof planningconsists
of the following 6 steps:

1. Choose a leaf nodeL = hG; openi fromPP .

2. Choose a proof methodM = hName; Input; P re;Post; Outputs; Tactici.
3. Find an assignment of schematic and meta-level vari-

ables (substitution�1) such thatG�1 = Input �1.
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4. Check the heuristic conditions and set up the sub-
goals by finding assignments of schematic and meta-
level variables (substitutions�2 and �3) such that` Pre �1�2 and` Post �1�2�3.

5. ReplaceL in PP with a node that has labelhG�1�2�3;M �1�2�3i, and one child for each ele-
ment of the (possibly empty) list of subgoalsOutputs �1�2�3.

6. Recurse on the new partial proof plan.

If any of these steps fail, the planner backtracks to its last
choice point (for example, choosing a different open leaf
node fromPP , choosing a different method to apply, or
finding alternative substitutions that satisfy the pre- and
post-conditions). If there are no remaining open leaf nodes,
the planning process terminates. Different strategies for
ordering the planning of open subgoals yield depth-first,
breadth-first, iterative deepening, or best-first [20] planning
strategies, all of which are implemented inClam. A pro-
cedure for constructing the object level proof is formed by
replacing each method in the tree by its associated tactic
with associated parameters.

Applying a method at the meta-level is usually signific-
antly faster than applying the corresponding tactic at the
object-level. The fact that tactics (and by analogy methods)
combine many low-level proof steps into a larger high-level
steps, and that methods encode heuristics, means that proof
plans are relatively short and can be generated with little
search. For example, a proof plan containing 17 method ap-
plications generated automatically byClam was expanded
upon tactic execution to aOysterproof which contained 665
applications of inference rules [5].

3 Schema-guided Programming

We consider that all formulae (such as formal specifications
and programs) are within some predetermined, typed, first-
order logic languageL. This language is gradually intro-
duced as we go along. Whenever types are not so import-
ant, we omit them. Our results should be transposed to the
more useful general case where an ad-hoc language can be
dynamically constructed, and even parameterised, such as
through the composition of (open) frameworks [14]. As the
additional theoretical apparatus might obstruct the ideas we
are trying to convey, we shall always stick to minimalism,
and view the identified extensions as future work. We also
ask the reader to bear with us whenever there are (often de-
liberate) theoretical imprecisions or vague terminology (set
between single quotes), as we wish to get some novel ideas
across without getting stuck in theoretical details and nota-
tional clutter, all of which rather belong to a general, thor-
ough, and much more voluminous study.

3.1 Descriptions

Since there is no syntactic difference (under a proviso be-
low) between “formal specifications” and programs, we
wish to unify these two concepts under the single (hope-
fully uncontroversial) concept ofdescription(written inL).

Similarly, there is no practical difference between program
“synthesis (from a formal specification)” (i.e., the transla-
tion of a description into a description in a different lan-
guage) and program transformation (i.e., the modification
of a description into a description in the same language),
and we wish to unify these two concepts under the single
concept ofprogramming. We allow open (or: paramet-
erised) descriptions, together with the corresponding gener-
alised notion of ‘open equivalence’ (or: parametric correct-
ness), also called steadfastness [17]. Note that we consider
the Horn-clausal notation for (open) (standard or constraint)
logic programs to be syntactic sugar for their typed (open)
completions [17]. Hence the following definitions.

Definition 3.1 A relation symbolr occurring in a theoryT
in the languageL is openin T if it is neither ‘defined’ inT
through a formula of the formr(: : :)$ : : :, nor a primitive
symbol inL. A non-open symbol inT is aclosedsymbol
in T . A theory with at least one open symbol is called an
opentheory; otherwise it is aclosedtheory.

Definition 3.2 A descriptionof a relationr is a possibly
open theory that ‘defines’r.
DescriptionD, whether open or closed, is arefinementof
open descriptionT underextension� if � is a set of descrip-
tions ‘defining’ some of the open relations ofT such thatD
andT [ � are ‘open-equivalent.’

Note that closed descriptions thus do not have refine-
ments. We ask the reader to overlook the fact that in our
examples we use a much more general version of the defin-
ition of descriptions and refinements above. Indeed, re-
finements do not necessarily have the same ‘defined’ re-
lation symbol as the open description, refinements do not
necessarily ‘declare’ their formal parameters in the same
order as the open description, refinements may have more
or less formal parameters than the open description, and the
formal parameters of refinements may be of ‘sub-types’ of
the types in the open description. All the considerations so
far are illustrated in the following examples.

Example 3.1 Among the many possible forms [15] of “lo-
gic specifications,” there are theiff-specifications, express-
ing that, under some input conditionir on inputX , a pro-
gram for relationr must succeed if and only if some output
conditionor onX and outputY holds. Formally, this gives
rise to the following open description ofr:8X;Y : term : ir(X)! (r(X;Y )$ or(X;Y )) (iff )

The only open relations areir andor. Now, the (closed)
description8S : seq(term) : 8M : term : true! (member(S;M)$ 9P;Q : seq(term) : append(P; [M jQ]; S))

(Smember)
whereappend is a primitive ofL (with the usual meaning),
is a refinement thereof under the extensionir(S) $ trueor(S;M) $ 9P;Q : seq(term) : append(P; [M jQ]; S)

(�1)
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It “specifies” a program for determining when a termM is
a member of a term sequenceS.

The descriptioniff is very coarse-grained, as virtually
every description is a refinement thereof. So let us decrease
the grain size by refining it forassignment decision prob-
lems, where some assignmentM from a setV into the in-
teger interval1::W has to be found, satisfying some (open)
constraintp. Hence the following (still) open description:8hV;W i : set(term)� int : 8M : set(V � 1::W ) :assignment(hV;W i;M)$8hI; Ji 2M : 8hK;Li 2M : p(I; J;K;L)

(assigndec)
The only open relation isp (assuming that2 is a primitive
of L, with the usual meaning).

Example 3.2 Among the many possible forms of logic pro-
grams, there are thedivide-and-conquer programswith one
recursive call. Formally, theirproblem-independentdata-
flow and control-flow can be captured in the following open
description ofr [10, 11]:r(X;Y )  minimal(X);solve(X;Y )r(X;Y )  :minimal(X);decompose(X;H; T );r(T; V );compose(H;V; Y ) (dc)
The only open relations areminimal, solve, decompose,
andcompose. Now, a closed program forreverse, wherereverse(L;R) iff sequenceR is the reverse of sequenceL,
is a refinement ofdc under the extensionminimal(L)  L = [ ]solve(L;R)  R = [ ]decompose(L;H; T )  L = [HdjT ]; H = [Hd]compose(H;T;R)  append(T;H;R)

(�4)
Note that this extension captures theproblem-dependent
computations of thereverse program.

Example 3.3 There also areaccumulator programs, i.e.,
programs that use an accumulator parameter. Formally,
their problem-independentdataflow and control-flow can be
captured in the following open description ofr:r(X;Y )  minimal(W );solve(W;E);r0(X;Y;E)r0(X;Y;A)  minimal(X);Y = Ar0(X;Y;A)  :minimal(X);decompose(X;H; T );compose(A;H;NewA);r0(T; Y;NewA) (dg)

The open relations are the same as in Example 3.2. A more
efficient program forreverse is the (partially evaluated) re-
finement ofdg under the extension�4 above.

3.2 Description Schemas

We can now define description schemas, which are intended
to represent entire families of similar descriptions. Contrary
to descriptions, which are rather syntactic entities, descrip-
tion schemas are semantic entities, as we also want a se-
mantic notion of what it means for a description to be a re-
finement of a description schema. Therefore, a description
schema consists of an open descriptionanda set of axioms,
whose role is to prevent some descriptions from being un-
desired refinements of that open description.

Definition 3.3 A description schemais a couplehT;Ai,
wheretemplateT is an open description, andaxiomsA are
open formulae constraining the refinements ofT .
DescriptionD is arefinementof description schemahT;Ai
if D is a refinement ofT under some extension�, provided
the ‘definitions’ inD ‘satisfy’ the axiomsA.

Example 3.4 The axioms enforcing how divide-and-
conquer programs work are as follows [10, 11]:ir(X;Y )! (r(X;Y )$ or(X;Y )) (Sr)ir(X)! (minimal(X)$ :idec(X)) (Smin)ir(X) ^ :idec(X)! (solve(X;Y )$ or(X;Y )) (Ssolve)idec(X)! (Sdec)(decompose(X;H; T )$ odec(X;H; T ))odec(X;H; T ) ^ or(T; V )! (Scomp)(compose(H;V; Y )$ or(X;Y ))idec(X)! 9H;T : odec(X;H; T ) (A1)idec(X) ^ odec(X;H; T )! ir(T ) ^ T � X (A2)well founded order(�) (A3)
whereir, idec andor, odec are the input and output con-
ditions ofr anddecompose, respectively. The first five ax-
ioms are (specification) descriptions of the relation symbols
in dc, saying that the ‘definitions’ in a (program) description
that is a refinement ofdcmust be ‘open-equivalent’ to these
axioms. The last three axioms constrain the relationships
between the input and output conditions introduced by the
first five axioms. Note that all the specification axioms are
refinements of theiff (specification) description, and that
they are only expressed in terms ofir, idec, or, andodec.
LetDC denote the description schema obtained from tem-
platedc and the axioms above.

Example 3.5 Let DG denote the description schema ob-
tained from templatedg and the axioms fordc, as they also
enforce how accumulator programs work.

Example 3.6 Let Iff denote the description schema ob-
tained from templateiff and the empty set of axioms, as we
do not wish to impose any conditions on the (open) input
and output conditions.

3.3 Programming Schemas

We now introduce programming schemas, for guiding tasks
such as program “synthesis” and transformation.

Definition 3.4 A programming schema is a triplehD1; E;D2i, whereD1 andD2 are description schemas,
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Figure 1: Schema-guided programming through description decomposition

and open formulaE is the condition under which any re-
finement ofD2 under some extension� is ‘open-equivalent’
to the corresponding refinement ofD1 under�.

Note that programming schemas are thus also semantic
entities, just like description schemas. Indeed, there are
two (semantic) description schemasD1 andD2 in each
programming schema, and there is a (semantic) condi-
tion E in it that ensures that passing from a refinement
of D1 to a refinement ofD2 under the same extension
is an ‘open-equivalence’-preserving operation. Otherwise,
passing from a refinement of some open description to a
refinement of some other open description under the same
extension would be subject to rogue extensions and it would
not be guaranteed to be ‘open-equivalence’-preserving.

Example 3.7 The tripleh Iff ; true;DCi is a programming
schema, capturing the “synthesis” of divide-and-conquer
programs from “formal iff-specifications.”

Example 3.8 The triple hDC;E;DGi is a programming
schema, whereE expresses thatcompose is associative and
hase as identity element, withomin(W ) ! osolve(W; e).
It captures the transformation of divide-and-conquer pro-
grams into accumulator programs.

3.4 Towards Automatable Schema-Guided
Programming?

Schema-guided programmingconsists of 6 steps (compare
with proof planning, in Section 2.5):

1. Choose a (specification or program) descriptionD1
that has not been handled yet, and simplify it.

2. Choose a programming schemahhT1; A1i; E;hT2; A2ii. LetOi designate the (non-empty) set of the
open relation symbols of templateTi, for i = 1::2.

3. Find an extension�1 under whichD1 is a refinement of
templateT1. (Under suitable conditions, to be clarified
below, the axiomsA1 can be ignored whenchecking
whether a description is a refinement of a description
schemahT1; A1i.)

4. Check the heuristic conditions and set up the subgoals
by finding an extension�2 such that the equivalence
conditionE holds, i.e.,�1 [ �2 ` E. PartitionO2 into
a non-emptyR2 andS2. Reuse existing (program) de-
scriptionsPR2 for R2, such that they ‘satisfy’ the ax-
iomsA2. ‘Propagate’ the specifications ofPR2 withinA2 so as to get (specification) descriptionsSS2 for S2.

5. ReplaceD1 byT2[�1[�2[PR2 (called the reused de-
scriptions) and addSS2 to the unhandled descriptions.

6. Recurse on the new set of unhandled descriptions.

If any of these steps fail, the schema-guided programmer
backtracks to its last choice point. If there are no remaining
unhandled descriptions, the programming process termin-
ates. The overall result (program) descriptionP2 is then
assembled by conjoining, at each node, the reused descrip-
tions. DescriptionP2 is a refinement ofhT2; A2i by con-
struction.

The process seems automatable, and its search space
is much smaller than in non-schema-guided program-
ming (such as transformational “synthesis,” construct-
ive “synthesis,” or fold/unfold/definition-based transform-
ation). Steps 3 and 4 may require a significant amount of
theorem proving, but the proof obligations are much more
lightweight than in constructive “synthesis,” for instance.
Figure 1 illustrates this process, where a component is a
specification description plus a program description.

Note that schema-guided programming thus amounts to
a recursive description (problem) decomposition process
followed by a recursive description (solution) composition
process, as depicted in tree-form in Figure 2. We dis-
tinguish three kinds of node:programming nodes, which
are labeled with pairs of ‘open-equivalent’ descriptions,re-
use nodes, which are labeled by the reused description,
andproof nodes, which are labeled with proof obligations
(but not with associated descriptions, since proof nodes are
purely for verification of proof obligations and themselves
perform no programming). When a complete tree has been
found, the description variables attached to nodes are (re-
cursively) calculated by taking the union of the description
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variables of their children. In an implementation, we envis-
age that the reuse nodes will not appear explicitly; instead,
their rôle is absorbed into the programming nodes.

Obviously, the resulting (program) description can be fed
back into a schema-guided programmer (for transforma-
tion purposes), yielding an iterative programming process
that stops whenever no suitable programming schema can
be found to continue. There is thus a smooth unification,
and hence integration, of program “synthesis” and program
transformation. This notion has no counterpart in theorem
proving, where conjectures (the problems) and proofs (the
solutions) are two different concepts, so that a proof cannot
subsequently become a conjecture and be fed back into the
theorem prover.

If the whole iterative process is started from a program-
ming schemahD1; E;D2i where the set of axioms ofD1
is empty, and if each new iteration chooses a programming
schema whose first description schema is a refinement of
the second description schema of the previous iteration,
then it does not matter that Step 3 never verifies whether
the axioms are ‘satisfied,’ and the final description is then
indeed ‘open-equivalent’ to the initial one.

An interesting extreme case of schema-guided program-
ming occurs whenO2 = O1 andA2 = A1. Indeed, it then
suffices to setR2 = O1(= O2), and henceS2 = ;, so that
one can re-use the known descriptions�1 asPR2 (because,
by Step 3,�1 is the set of descriptions forO1), and henceSS2 = PS2 = ;. In other words, schema-guided program-
ming then simply amounts to replacing the template part of
a refinement by another template. The reuse and ‘propag-
ate’ parts of Step 4 of schema-guided programming then
become trivial, eliminating the need for the most difficult
theorem proving obligations! Also, the tree of description
decomposition and description composition then reduces to
its root. Examples of this extreme case are the global search
(synthesis) programming schemas of [12] for assignment
and permutation problems, whereA2 = A1 = ;, and
the hDC;E;DGi (transformation) programming schema,
whereA2 = A1 6= ;. We call thisschema-guided pro-
gramming through pre-computationbecause the program-
ming act is carefully pre-computed, by hand and off-line,
for the problem-independent part of an entire family of de-
scriptions.

4 A Unified View of Proof-Planning
and Schema-Guided Programming

Both plan-guided theorem proving and schema-guided pro-
gramming tackle some branch of general problem solving
in a way that aims at organising and reducing the search
space. Both feature a recursive problem decomposition pro-
cess followed by a recursive solution composition process:
composition of description fragments in the one, and com-
position of proof fragments in the other. Hence it is not
surprising that there is a unified view encompassing both of
them, and that (the more recent) programming schemas can
actually even be encoded as (the more established)Clam
proof methods, as shown by the following slot-by-slot ana-
lysis for a programming schemahhT1; A1i; E; hT2; A2ii:� The name is set to the name of the programming

schema.� The input pattern is set to templateT1. (Remember
that the axiomsA1 can sometimes be ignored.)� The pre-condition is set to code that checks the ap-
plicability conditions (see below) and the equivalence
conditionE. Note that checking these conditions may
(partially) instantiate some open relations of the pro-
gramming schema.� The post-condition is set to code that chooses some
open relationsR2 in templateT2, then chooses re-
usable descriptionsPR2 for them, ‘propagates’ their
specifications within the axiomsA2 so as to get (spe-
cification) descriptionsSS2 of the remaining open re-
lationsS2 in T2. Again, checking this condition may
(partially) instantiate some open relations of the pro-
gramming schema.� The output patterns are set to the (specification) de-
scriptions obtained by the post-condition, plus any
proof obligations that need to be verified.� The tactic is set to code that assembles the result de-
scription by concatenating the reused descriptions and
the (recursively) programmed descriptions, and gener-
ates the object-level proofs of any proof obligations.
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This encoding enables us to useClam, or �Clam rather, as
an implementation platform for developing the first schema-
guided developer of (standard or constraint) logic programs.
This approach has the pleasant side-effect that any proof
obligations, such as matchings or formula simplifications,
arising during schema-guided programming can also be
handled within�Clam. There are thus indeed three kinds
of nodes in the programming search space (see Figure 2).

Our approach reveals an opportunity for identifying and
integrating useful heuristics of when and how to apply what
programming schema, which dimension had hitherto been
much neglected for programming schemas, but obviously
not for proof methods. An initial study of such applicability
heuristics is made in the following section.

5 Applicability Heuristics

Step 2 of schema-guided programming states that some pro-
gramming schema has to be chosen, but it does not say how
this choice can be made best. Fortunately, the encoding of
a programming schema as aClamproof method reveals the
opportunity of adding applicability conditions to the pre-
condition slot. Here follows a loose collection of first con-
siderations that can be applied when devising such heurist-
ics, which are needed at two levels.

When to apply what programming schema? One may
prefer some schema due to a complexity analysis of the
given description and of the schemas. Preliminary ideas to-
wards this can be found in [25, 9, 8, 18, 27, 6]. For instance,
refinements of theDG schema (or any other schema captur-
ing some generalisation process [9]), if any, are preferable
to refinements of theDC schema.

An implicit heuristic can be achieved by ordering the
schemas (as methods), such that the programming schemas
with the most refined left-hand side description schemas
are considered first. Ex aequos can be handled by taking
the complexity considerations above into account. By this
token,h Iff; true;DGi comes beforeh Iff; true;DCi. The
earlier schemas thus become the ones with the least amount
of proof obligations (because they feature less axioms),
whereas the later schemas basically become fallbacks, with
more proof obligations.

How to apply a chosen programming schema? Given
a programming schema, there may be several ways to ap-
ply it. For instance, forh Iff; true;DCi, one has to give
roles in thedc (program) description to the formal para-
meters in the (specification) descriptionIff. Indeed, one
of them has to be the induction parameter, and the other
the result parameter (see Example 3.2). This can be done
based on the type information inIff : only a parameter of
an inductively defined type can be the induction parameter.
This choice can be further refined using an existing tech-
nique from inductive proof planning, namelyripple ana-
lysis [3]. One can also augment (specification) descrip-
tions with modes and determinism information [9], because
a known heuristic [9] says that parameters declared to be
ground at call-time are particularly good candidates for the
induction parameter role. Next, for the same programming

schemah Iff; true;DCi, one has to reuse a description fordecompose, which is the open relation inDC that plays the
role ofR2. Ripple analysis effectively makes this choice, or
it can again be made through a complexity analysis, leading
to a particularly good choice among a base of re-usable de-
scriptions.

6 Conclusion

We have developed a unified view of plan-guided theorem
proving, schema-guided program synthesis (whether
through description decomposition or through pre-
computation for a description schema), and schema-guided
program transformation. We have designated the latter two
processes by the term schema-guided programming. This
allowed us to encode programming schemas as�Clam
proof methods, so as to be able to use�Clamas an imple-
mentation platform for developing the first schema-guided
developer of (standard or constraint) logic programs.
This approach has the pleasant side-effect that any proof
obligations, such as condition verifications, matchings, or
simplifications, arising during schema-guided program-
ming can also be handled within�Clam. At the same time,
this approach revealed an opportunity for identifying and
integrating useful heuristics of when and how to apply
what programming schema, which dimension had hitherto
been much neglected for programming schemas, but not
for proof methods. Existing proof planning heuristics, for
example rippling and ripple analysis, were also useful for
schema selection and application.

Plan-guided theorem proving gains from this cross-
fertilisation by the provision of significant and yet feasible
challenges. We generalised proof planning by splitting the
nodes of a proof (plan) tree into three kinds: programming
nodes, reuse nodes, and proof nodes. This allowed us to
take much of the proof process off-line to pencil and paper,
resulting in a more flexible and practical framework than
one based purely on proof. Schema-guided programming
gains from this cross-fertilisation by the provision of a uni-
form implementation platform for programming, its proof
obligations, and its heuristics.

Our approach explicitly makes a lot of program reuse,
and thus fits well into the setting of component-based soft-
ware development (in computational logic) [16].

Future work includes the usage of the�Clamproof plan-
ner to schema-guided programming by extension of the
proof (plan) tree with the additional kinds of nodes, the de-
velopment of heuristics for programming schemas (in par-
ticular for divide-and-conquer), and the implementation of
the first schema-guided programming methods. In the more
distant future, we hope to use theXBarnacleinterface to
Clamor �Clam for cooperative programming.
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