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1 Introduction mented in three systems, namélam[5], A\Clam[24], and

(2mega [1]. These systems can be equipped with user inter-

The objectives of this investigation are (a) to study the sifaces KBarnacle[19] for the first two, and QUI for the
ilarities between proof planning and schema-guided pt@ird) that allow user and machine to cooperate in the proof
gramming (i.e., between proof methods and programmip@cess. In addition, techniques developed for proof plan-
schemas), and (b) to express the latter in terms of thieg (e.g., rippling [3]) have been incorporated into other
former, so as to be able to use any proof planner asthsorem provers [21].
existing implementation platform for developing the first
schema-guided developer of (standard or constraint) lo- . .
gic programs. This approach has the pleasant side-e e'cjf Object-Level Logic
that any proof obligations, such as verifications, matchinggoof rules generally contain schematic variables that must
or simplifications, arising during schema-guided prograre instantiated when applying them. Applying a proof rule
ming can also be handled within the plan-guided automatﬁdﬁﬁ%%mlename to a sequent + g requires
theorem prover. At the same time, this approach revealsmatchingh + ¢ with H - G, i.e., finding a substitutioar
opportunity for identifying and integrating useful heurision the schematic variables # + G such thath - g =
ics of when and how to apply what programming schema - G)o, and instantiating the schematic variables in the
which dimension had hitherto been much neglected for pig; - G; accordingly. The result is a node in the proof tree
gramming schemas, but not for proof methods. with label (h + g, rulename), andn children, namely the

We will first revisit plan-guided theorem proving [2] (innodes((H; - G;)o, open). Note thatr must instantiate all
Section 2) and then introduce the notion of schema-guid@d schematic variables in th& - G;.
programming, as a generalisation of schema-guided pro-
gram synthesis (whether through specification decompB&finition 2.1 A partial proof of a conjecture is a tree with
ition [25, 10] or through pre-computation for a specificahe following properties:
tion schema [26, 12]) and of schema-guided program trans- _ ) ) _
formation [27, 6, 23] (in Section 3). This provides us with ® Each node is labeled with a pdif, i), whereS is a
a framework [22] for unifying plan-guided theorem prov- sequent and is either the rule of |nferenqe that Is ap-
ing and schema-guided programming, and allows us thus Plied to that sequent to generate the children (if any)
to encode programming schemas as proof methods (in Sec- Of the node, or the special atoopenif no rule of in-
tion 4). Finally, we outline some first heuristics of when ~ férence has been applied to that sequent. In the latter
and how to apply what programming schema (in Section 5), C€ase, the node is said to bpen

as such_ heurlstlc_s naturally fit Wlthln_thls encoding. In the « The conjecture is the sequent at the root of the tree.

conclusion (Section 6), we summarise and sketch how to

continue this research. ¢ Ifthe application of an inference rule generates no sub-
goals, the (leaf) node at which it is appliectmmplete

2 Plan-Guided Theorem Proving A proof is a partial proof with no open nodes.

When constructing a proof,_ there are typically_many_infe%.z Tactics
ence rules that can be applied at any given point during the

proof, and proofs are normally quite deep. The search spBedinition 2.2 A tactic [13] is a procedure that constructs
of possible proof attempts is therefore very largeroof a piece of object-level proof for a nodé in a partial proof
planning[2] reduces the size of proofs by constructing thetree P,. The tactic constructs a new partial proof tieg

out of larger building blocks (callethethod¥ and further whose root is labeled with the goal and the name of the tac-
reduces the search space by allowing methods to encticeonly by applying primitive rules of inference or other
proof heuristics. Complete proofs plans are automaticalfctics (direct modification of the proof tree is forbidden
refined to compositions of tactics, which then generate cosmce it may be unsound). After the tactic has finished ap-
pletely formal proofs. Proof planning has so far been implplying rules of inferenceP is folded so that only the root



and any open nodes are retained, resulting in a partial prbefiinition 2.5 A method (Name, Input, Pre, Post,
treeP; of depth O or 1 consisting of a root node with a (poSutputs, Tactic) is applicableto a meta-level sequent
sibly zero) number of children (the open nodedj. P; if and only if there exist variable assignments (substitutions
is then grafted inta” in place of nodeX. 61, 02, 03) on the method’s schematic variables such that
Go, = Input 01 andr Pre 0,6> andr Post 919293. The

For example, a tactic may strip all universal quantifierssult of the method application is a list of output goals,
from the front of a goal and then apply a lemma. We conamelyOutputs 6, 665.
sider tactics to be derived rules of inference, and therefore
allow tactics as well as primitive rules of inference in Defin- In Clam, pre- and post-conditions are pieces of Prolog
ition 2.1. As in LCF [13], a tactic language is defined thaode. A method’s pre-conditions thus determine the context
providestacticals for composing tactics. in which the method will apply. The same object-level tac-
tic may be represented by several methods, each operating
in different circumstances, allowing us to distinguish situ-
ations in which it isdesirableto apply a tactic from those
In the preceding sections, we have defined the object-leevhich itis possible It also has explanational value, since
logic of formal proofs. It is implemented in a tactic-base@pplying the tactic in different circumstances may have a
theorem prover. IfClam[5], the default object-level the-different intuitive meaning, for example the rewriting tactic
orem prover igDyster[4], a version oNuPRL[7]. We now is used during rippling, symbolic evaluation, and weak fer-
define the meta-level logic, in which abstractions of tactigéisation, methods which have clearly distinguished roles in
(method} operate on abstractions of object-level sequeitfie proof process. The terminology for describing object-
(meta-level sequents level proofs can be abstracted to the meta-level (compare

with Definition 2.1):

2.3 Meta-Level Logic

Definition 2.3 A meta-level sequeid an abstraction of an
object-level sequent that may be annotated to help guldfinition 2.6 A partial proof planof a conjecture is a tree
subsequent proof (e.g., the wave fronts in rippling), contaith the following properties:

meta-variablegi.e., existentially quantified variables of the .
language in which the planner is written), and may have
some hypotheses added or deleted.

Each node is labeled with a pdif, R), whereS is a
meta-level sequent anfl is either the method that is
applied to that sequent to generate the children (if any)
of the node, or the special atampenif no method has
been applied to that meta-level sequent. In the latter
case, the node is said to bpen

In contrast to object-level sequents, meta-level sequents
can contain schematic variables. We call schematic vari-
ables that occur in a proaheta-variables They have
an important role irmiddle-out reasoningin which terms The meta-level sequent at the root of the tree is a (pos-
such as existentially quantified variables are replaced in the sibly annotated) abstraction of the conjecture.
meta-level sequents by meta-variables. The meta-variables
are successively instantiated as a side-effect of subsequent If the application of a method generates no subgoals,
proof planning steps, allowing steps such as the choice of then the (leaf) node at which it is applieddsmplete

existential witness to be delayed until later in the proof. . . .
A proof planis a partial proof plan with no open nodes.

2.4 Methods In practice, the meta-level sequent at the root of the tree is

. , ) _ Qjintactically identical to the initial conjecture. Aspects of
Tactics _construct pIeces ofobject-llevel proof; methods CQbstraction and/or annotation are introduced further down
struct pieces of meta-level proof, i.e., schematic proofs.

in the tree by the application of methods.

Definition 2.4 A methodis a tuple with 6 elements: .
2.5 Construction of the Proof Plan

e Name(Parameters): the name and formal parameters o
of the method. We now demonstrate how methods work by describing how

Clam constructs a proof plan. Details of proof plan con-
¢ Input: the input pattern to which the method appliesstruction may differ considerably between different plan-
N - ners. A completed proof plan i@lamhas a tree structure.
e Pre-conditions: conditions that must hold for thFhitiaIIy, the partial proof planPP, is set to the tree with
method to apply. one node, which is labeled with the conjecture to be proved

e Post-conditions: conditions that must hold after thand the reserved tokepen Then,proof planningconsists

method has been applied. o the following 6 steps:

¢ Outputs: a list of output patterns. 1. Choose a leaf node = (G, open) from PP.

Choose a proof methadl = (Name, Input, Pre,

e Tactic(Parameters): the name and parameters (if any%' Post, Outputs, Tactic)

of the tactic that constructs the piece of the object-level
proof corresponding to this method. 3. Find an assignment of schematic and meta-level vari-
ables (substitutiofl;) such thatG 6; = Input6;.



4. Check the heuristic conditions and set up the subimilarly, there is no practical difference between program
goals by finding assignments of schematic and metaynthesis (from a formal specification)” (i.e., the transla-
level variables (substitution8, and #s) such that tion of a description into a description in a different lan-
F Pref,6, and- Post 6160-05. guage) and program transformation (i.e., the modification

. . of a description into a description in the same language),

5. Replace L in PP with a node that has labelang we wish to unify these two concepts under the single
(G 6.6:05, M 6,6,63), and one child for each ele-concept ofprogramming We allow open (or: paramet-
ment of the (possibly empty) list of subgoalgised) descriptions, together with the corresponding gener-
Outputs 616203. alised notion of ‘open equivalence’ (or: parametric correct-

ness), also called steadfastness [17]. Note that we consider

the Horn-clausal notation for (open) (standard or constraint)

If any of these steps fail, the planner backtracks to its 14@gic programs to be syntactic sugar for their typed (open)
choice point (for example, choosing a different open leg@mpletions [17]. Hence the following definitions.
node fromPP, choosing a different method to apply, or
finding alternative substitutions that satisfy the pre- afffinition 3.1 A relation symbol- occurring in a theory”
post-conditions). If there are no remaining open leaf nod#sthe language is openin T' if it is neither ‘defined’ inT’
the planning process terminates. Different strategies f8fough aformula of the form(...) <+ ..., nor a primitive
ordering the planning of open subgoals yield depth-fir§ymbol inL. A non-open symbol iff" is aclosedsymbol
breadth-first, iterative deepening, or best-first [20] plannifiy - A theory with at least one open symbol is called an
strategies, all of which are implemented@am A pro- Opentheory; otherwise it is alosedtheory.
cedure for constructing the object level proof is formed by o ) ) )
replacing each method in the tree by its associated ta&g%f'”'t'on 3.2 A descriptionof a relationr is a possibly
with associated parameters. open theory that ‘defines’ o

Applying a method at the meta-level is usually signifi@€scriptionD, whether open or closed, israfinemenof
antly faster than applying the corresponding tactic at tAB€N des_crlptloﬁ‘ underextensiord if 9_|s a set of descrip-
object-level. The fact that tactics (and by analogy methodi@ns ‘defining’ some of the open relationsBisuch thatD
combine many low-level proof steps into a larger high-lev@d?’ U 6 are ‘open-equivalent.
steps, and that methods encode heuristics, means that proof o )
plans are relatively short and can be generated with littleNOte that closed descriptions thus do not have refine-
search. For example, a proof plan containing 17 method Qb@nts. We ask the reader to overlook the f_act that in our
plications generated automatically Bfamwas expanded examples we use a much more general version of the defin-

upon tactic execution to@ysterproof which contained 665 /tion Of descriptions and refinements above. Indeed, re-
applications of inference rules [5]. finements do not necessarily have the same ‘defined’ re-

lation symbol as the open description, refinements do not
necessarily ‘declare’ their formal parameters in the same
3 Schema-guided Programming order as the open description, refinements may have more
or less formal parameters than the open description, and the
We consider that all formulae (such as formal specificatiof@gmal parameters of refinements may be of ‘sub-types’ of
and programs) are within some predetermined, typed, fifte types in the open description. All the considerations so
order logic languagé&. This language is gradually intro-far are illustrated in the following examples.
duced as we go along. Whenever types are not so import-
ant, we omit them. Our results should be transposed to frgample 3.1 Among the many possible forms [15] of “lo-
more useful general case where an ad-hoc language caflib&pecifications,” there are tfifé-specificationsexpress-
dynamically constructed, and even parameterised, suchgsthat, under some input conditiép on input.X, a pro-
through the composition of (open) frameworks [14]. As tH@ram for relation must succeed if and only if some output
additional theoretical apparatus might obstruct the ideas @@hditiono,. on X and outpult” holds. Formally, this gives
are trying to convey, we shall always stick to minimalisnfise to the following open description of
and view the identified extensions as future work. We also .
ask the reader to bear with us whenever there are (often de?X, Y : term . ir(X) = (r(X,Y) ¢ 0,(X,Y))  (iff)
liberate) theoretical imprecisions or vague terminology (set
between single quotes), as we wish to get some novel idé\g
across without getting stuck in theoretical details and nota®

tional clutter, all of which rather belong to a general, thor-VS . seq(term) . VM : term . true — (member(S, M)
ough, and much more voluminous study.

< 3P, Q : seq(term) . append(P,[M|Q],S))
Smember)
3.1 Descriptions whereappend is a primitive of £ (with the usual meaning),

. . L . is arefinement thereof under the extension
Since there is no syntactic difference (under a proviso be-

low) between “formal specifications” and programs, we i,.(S) < true
wish to unify these two concepts under the single (hopey,.(S, M) < 3P,Q : seq(term) . append(P,[M|Q], S)
fully uncontroversial) concept afescription(written in £). 01)

6. Recurse on the new partial proof plan.

g only open relations arg ando,. Now, the (closed)
scription



It “specifies” a program for determining when a tefmis
a member of a term sequenge

The descriptionff is very coarse-grained, as virtuall
every description is a refinement thereof. So let us decr
the grain size by refining it foassignment decision prob

lems where some assignmehf from a setV” into the in-

teger intervall..W has to be found, satisfying some (operﬂ-I

constrainip. Hence the following (still) open description:

Y(V,W) : set(term) x int. VM : set(V x 1.W).
assignment((V,W), M) <
Y(I,J)ye M .V(K,Lye M .p(I,J,K,L)
(aSSigndec)
The only open relation ig (assuming that is a primitive
of £, with the usual meaning).

3.2 Description Schemas

We can now define description schemas, which are intended

%o represent entire families of similar descriptions. Contrary
edse o . . " )
0 descriptions, which are rather syntactic entities, descrip-

tion schemas are semantic entities, as we also want a se-
antic notion of what it means for a description to be a re-
nement of a description schema. Therefore, a description
schema consists of an open descriptioda set of axioms,
whose role is to prevent some descriptions from being un-
desired refinements of that open description.

Definition 3.3 A description schemés a couple(T, A),
wheretemplate?” is an open description, arackiomsA are
open formulae constraining the refinement§'of
DescriptionD is arefinemenof description schemg’, A)
if D is a refinement of' under some extensiah provided

Example 3.2 Among the many possible forms of logic prothe ‘definitions’ inD ‘satisfy’ the axiomsA.

grams, there are thdivide-and-conquer programaith one
recursive call. Formally, theiproblem-independerdata-

Example 3.4 The axioms enforcing how divide-and-

flow and control-flow can be captured in the following ope#Pnauer programs work are as follows [10, 11]:

description of- [10, 11]:

r(X,Y) <+ minimal(X),
solve(X,Y)

r(X,Y) <+ -—minimal(X), (de)
decompose(X,H,T),
r(T,V),

compose(H,V,Y)

The only open relations ar@inimal, solve, decompose,
andcompose. Now, a closed program fateverse, where
reverse(L, R) iff sequenceR is the reverse of sequenfe
is a refinement oflc under the extension

manimal(L) < L =[]
solve(L,R) + R=1]]
decompose(L,H,T) <« L =[HdT),H = [Hd]
compose(H,T,R) <« append(T,H,R)

(04)

Note that this extension captures thmblem-dependent

computations of theeverse program.

Example 3.3 There also areaccumulator programsi.e.,
programs that use an accumulator parameter.

i»(X,Y) = (r(X,)Y) & 0.(X,Y)) (Sr)

ir(X) = (minimal(X) < —igec(X)) (Smin)

i (X)) A —igec(X) = (solve(X,Y) ¢+ 0,.(X,Y))  (Ssotve)

Z.dec(){) — (Sdec)
(decompose(X, H,T) > 04ec(X,H,T))

0dec (X, H,T) No.(T,V) — (Scomp)
(compose(H,V,Y) + 0,(X,Y))

idec(X) = AH, T . 04e.(X, H,T) (Ar)

idgec(X) N ogec (X, H,T) = i, (T)ANT < X (Az)

well_founded_order(<) (As3)

wherei,., igec ando,, o4, are the input and output con-
ditions ofr anddecompose, respectively. The first five ax-
ioms are (specification) descriptions of the relation symbols
in dc, saying that the ‘definitions’ in a (program) description
that is a refinement afc must be ‘open-equivalent’ to these
axioms. The last three axioms constrain the relationships
between the input and output conditions introduced by the
first five axioms. Note that all the specification axioms are
refinements of théff (specification) description, and that
they are only expressed in termsQf igec, 05, @ndogec.

Let DC denote the description schema obtained from tem-
platedc and the axioms above.

Formally,

their problem-independentdataflow and control-flow can Bgample 3.5 Let DG denote the description schema ob-

captured in the following open descriptionsof

r(X,Y) <« minimal(W),
solve(W, E),
(XY, E)
r"(X,Y,A) <« minimal(X),
Y=A (dg)
r(X,Y,A) +« —minimal(X),

decompose(X,H,T),
compose(A, H, NewA),
(T,Y, NewA)

tained from templatdg and the axioms fodic, as they also
enforce how accumulator programs work.

Example 3.6 Let Iff denote the description schema ob-

tained from templatéf and the empty set of axioms, as we

do not wish to impose any conditions on the (open) input
and output conditions.

3.3 Programming Schemas

We now introduce programming schemas, for guiding tasks
such as program “synthesis” and transformation.

The open relations are the same as in Example 3.2. A more
efficient program foreverse is the (partially evaluated) re-pefinition 3.4 A programming schemais a triple

finement ofdg under the extensiofy, above.

(D1, E,D,), whereD; and D, are description schemas,
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Figure 1: Schema-guided programming through description decongposit

and open formul& is the condition under which any re- 4. Check the heuristic conditions and set up the subgoals
finement ofD, under some extensidhs ‘open-equivalent’ by finding an extensiod, such that the equivalence
to the corresponding refinementBf underd. conditionE holds, i.e.f; U, F E. PartitionO, into

a non-emptyRR, andS,. Reuse existing (program) de-
scriptionsPg, for R,, such that they ‘satisfy’ the ax-
ioms A,. ‘Propagate’ the specifications &%, within

A so as to get (specification) descriptidhs, for Ss.

Note that programming schemas are thus also semantic
entities, just like description schemas. Indeed, there are
two (semantic) description scheméy and D, in each
programming schema, and there is a (semantic) condi-

tion E in it that ensures that passing from a refinement ReplaceD; by T, U6, U6, U P, (called the reused de-

of D, to a refinement ofD, under the same extension  scriptions) and add's, to the unhandled descriptions.
is an ‘open-equivalence’-preserving operation. Otherwise,

passing from a refinement of some open description to &. Recurse on the new set of unhandled descriptions.

refinement of some other open description under the same

extension would be subject to rogue extensions and it wotfi@ny of these steps fail, the schema-guided programmer
not be guaranteed to be ‘open-equivalence’-preserving. backtracks to its last choice point. If there are no remaining
unhandled descriptions, the programming process termin-

Example 3.7 The triple( Iff, irue, DC) is a programming ates. The overall result (program) descriptiBnis then
schema, capturing the “synthesis” of divide-and-conqug§sembled by conjoining, at each node, the reused descrip-
programs from “formal iff-specifications. tions. DescriptionP; is a refinement ofT5, A5) by con-

. : . struction.
Example 3.8 The triple (DC, E, DG) 'S & programming -, process seems automatable, and its search space
schema, wher& expresses thabmpose is associative and . . .
. . . is much smaller than in non-schema-guided program-
hase as identity element, with,,,;,,(W) — 0010 (W, €). . . u -
: L ming (such as transformational “synthesis,” construct-
It captures the transformation of divide-and-conquer pro- ) -
: ive “synthesis,” or fold/unfold/definition-based transform-
grams into accumulator programs. ; : N
ation). Steps 3 and 4 may require a significant amount of
) theorem proving, but the proof obligations are much more
3.4 Towards AUtomatame Schema-Guided jightweight than in constructive “synthesis,” for instance.
Programming? Figure 1 illustrates this process, where a component is a
pecification description plus a program description.
Note that schema-guided programming thus amounts to
a recursive description (problem) decomposition process
1. Choose a (specification or program) descriptidn followed by a recursive description (solution) composition
that has not been handled yet, and simplify it. process, as depicted in tree-form in Figure 2. We dis-

tinguish three kinds of nodeprogramming nodeswhich

gre labeled with pairs of ‘open-equivalent’ descriptiaes,

use nodeswhich are labeled by the reused description,

and proof nodeswhich are labeled with proof obligations

3. Find an extensiofy, under whichD; is a refinementof (but not with associated descriptions, since proof nodes are
templatel’ . (Under suitable conditions, to be clarifiegburely for verification of proof obligations and themselves
below, the axioms4; can be ignored whenhecking perform no programming). When a complete tree has been
whether a description is a refinement of a descriptiéound, the description variables attached to nodes are (re-
schemaTy, Ar).) cursively) calculated by taking the union of the description

Schema-guided programmingnsists of 6 steps (compareS
with proof planning, in Section 2.5):

2. Choose a programming schem&(T,A,),E,
(T, As)). Let O; designate the (non-empty) set of th
open relation symbols of templatg, fori = 1..2.



DO, D1
Schemal

D1 =D3 + D5 + D11y Proof node

D3=D7+D9 ® Reuse node
B? = Béo - Programming node (schemal applied)
= o -

Figure 2: Description decomposition and description composition

variables of their children. In an implementation,we envi¢4 A Unified View of Proof-Planning

age that the reuse nodes will not appear explicitly; instead, and Schema-Guided Programming
their rdle is absorbed into the programming nodes.

Obviously, the resulting (program) description can be f&pth plan-guided theorem proving and schema-guided pro-
back into a schema-guided programmer (for transfornff&mming tackle some branch of general problem solving
tion purposes), yielding an iterative programming proce§s@ Way that aims at organising and reducing the search
that stops whenever no suitable programming schema EBACE: Both feature a recursive problem decomposition pro-
be found to continue. There is thus a smooth unificatigi€Ss followed by a recursive solution composition process:
and hence integration, of program “synthesis” and progr&@mposition of description fragments in the one, and com-
transformation. This notion has no counterpart in theordifsition of proof fragments in the other. Hence it is not
proving, where conjectures (the problems) and proofs (f¢/Prising that there is a unified view encompassing both of
solutions) are two different concepts, so that a proof caniogm. and that (the more recent) programming schemas can

subsequently become a conjecture and be fed back intodiially even be encoded as (the more establistiéatn
theorem prover. proof methods, as shown by the following slot-by-slot ana-

lysis for a programming schen{él’, A ), E, (T», As)):

If the whole iterative process is started from a program-
ming schemda D1, E, D,) where the set of axioms db; e The name is set to the name of the programming
is empty, and if each new iteration chooses a programming Schema.
schema whose first description schema is a refinement of
the second description schema of the previous iterations The input pattern is set to templalg. (Remember
then it does not matter that Step 3 never verifies whether that the axiomsl; can sometimes be ignored.)
the axioms are ‘satisfied,” and the final description is then
indeed ‘open-equivalent to the initial one. e The pre-condition is set to code that checks the ap-

plicability conditions (see below) and the equivalence

An interesting extreme case of schema-guided program- conditionE. Note that checking these conditions may
ming occurs whei, = O; andA, = A;. Indeed, it then (partially) instantiate some open relations of the pro-
suffices to seRy; = O; (= O2), and hence&: = 0, so that gramming schema.
one can re-use the known descriptighsas Pr, (because,
by Step 36, is the set of descriptions fap, ), and hence e The post-condition is set to code that chooses some
Ss, = Ps, = 0. In other words, schema-guided program-  open relationsR, in templateT,, then chooses re-
ming then simply amounts to replacing the template part of usable description®y, for them, ‘propagates’ their
a refinement by another template. The reuse and ‘propag- specifications within the axiomd, so as to get (spe-
ate’ parts of Step 4 of schema-guided programming then cification) descriptions's, of the remaining open re-
become ftrivial, eliminating the need for the most difficult  lations S, in T5. Again, checking this condition may
theorem proving obligations! Also, the tree of description (partially) instantiate some open relations of the pro-
decomposition and description composition then reduces to gramming schema.
its root. Examples of this extreme case are the global search
(synthesis) programming schemas of [12] for assignmenk The output patterns are set to the (specification) de-
and permutation problems, whes, = A; = (§, and scriptions obtained by the post-condition, plus any
the (DC, E, DG) (transformation) programming schema, proof obligations that need to be verified.
where s = A; # (. We call thisschema-guided pro-
gramming through pre-computatidrecause the program- e The tactic is set to code that assembles the result de-
ming act is carefully pre-computed, by hand and off-line, scription by concatenating the reused descriptions and
for the problem-independent part of an entire family of de- the (recursively) programmed descriptions, and gener-
scriptions. ates the object-level proofs of any proof obligations.



This encoding enables us to uSam, or AClamrather, as schem# Iff, true, DC'), one has to reuse a description for
an implementation platform for developing the first scheméecompose, which is the open relation i C' that plays the
guided developer of (standard or constraint) logic programsle of R,. Ripple analysis effectively makes this choice, or
This approach has the pleasant side-effect that any privein again be made through a complexity analysis, leading
obligations, such as matchings or formula simplification, a particularly good choice among a base of re-usable de-
arising during schema-guided programming can also $&iptions.
handled within\Clam There are thus indeed three kinds
of nodes in the programming search space (see Figure 2). .
Our approach reveals an opportunity for identifying a Conclusion
integrating useful heuristics of when and how to apply what
programming schema, which dimension had hitherto bedfg have developed a unified view of plan-guided theorem
much neglected for programming schemas, but obviougkpving, schema-guided program synthesis (whether
not for proof methods. An initial study of such applicabilitghrough ~ description decomposition or through pre-
heuristics is made in the following section. computation for a description schema), and schema-guided
program transformation. We have designated the latter two
. L L processes by the term schema-guided programming. This
5 Applicability Heuristics allowed us to encode programming schemas\&tam
proof methods, so as to be able to u€glamas an imple-
Step 2 of schema-guided programming states that some pi@ntation platform for developing the first schema-guided
gramming schema has to be chosen, but it does not say kfeloper of (standard or constraint) logic programs.
this choice can be made best. Fortunately, the encodingrgfs approach has the pleasant side-effect that any proof
a programming schema a£amproof method reveals thegpligations, such as condition verifications, matchings, or
opportunity of adding applicability conditions to the presimplifications, arising during schema-guided program-
condition slot. Here follows a loose collection of first Corh']ing can also be handled withxClam At the same time,
siderations that can be applied when devising such heurigls approach revealed an opportunity for identifying and
ics, which are needed at two levels. integrating useful heuristics of when and how to apply
what programming schema, which dimension had hitherto
When to apply what programming schema? One may been much neglected for programming schemas, but not
prefer some schema due to a complexity analysis of flee proof methods. Existing proof planning heuristics, for
given description and of the schemas. Preliminary ideas éxxample rippling and ripple analysis, were also useful for
wards this can be foundin [25, 9, 8, 18, 27, 6]. For instanashema selection and application.
refinements of th& G schema (or any other schema captur- Plan-guided theorem proving gains from this cross-
ing some generalisation process [9]), if any, are preferakdetilisation by the provision of significant and yet feasible
to refinements of th& C schema. challenges. We generalised proof planning by splitting the
An implicit heuristic can be achieved by ordering theodes of a proof (plan) tree into three kinds: programming
schemas (as methods), such that the programming schenuates, reuse nodes, and proof nodes. This allowed us to
with the most refined left-hand side description schema&e much of the proof process off-line to pencil and paper,
are considered first. Ex aequos can be handled by takiagulting in a more flexible and practical framework than
the complexity considerations above into account. By those based purely on proof. Schema-guided programming
token, ( Iff, true, DG) comes beforé Iff, true, DC'). The gains from this cross-fertilisation by the provision of a uni-
earlier schemas thus become the ones with the least amdommh implementation platform for programming, its proof
of proof obligations (because they feature less axiomshligations, and its heuristics.
whereas the later schemas basically become fallbacks, witur approach explicitly makes a lot of program reuse,
more proof obligations. and thus fits well into the setting of component-based soft-
ware development (in computational logic) [16].
How to apply a chosen programming schema? Given Future work includes the usage of th€lamproof plan-
a programming schema, there may be several ways to @@t t0 schema-guided programming by extension of the
ply it. For instance, fof Iff, true, DC), one has to give pProof (plan) tree with the additional kinds of nodes, the de-
roles in thedc (program) description to the formal paravelopment of heuristics for programming schemas (in par-
meters in the (specification) descriptitif. Indeed, one ticular for divide-and-conquer), and the implementation of
of them has to be the induction parameter, and the otifeg first schema-guided programming methods. In the more
the result parameter (see Example 3.2). This can be délifant future, we hope to use tBarnacleinterface to
based on the type information Iff : only a parameter of Clamor A\Clamfor cooperative programming.
an inductively defined type can be the induction parameter.
T_his choice.can b_e further refine_d using an existing tecﬂ'cknowledgements
nique from inductive proof planning, nametipple ana-
lysis [3]. One can also augment (specification) descriphis work was partly sponsored by the EPSRC (Engin-
tions with modes and determinism information [9], becausering and Physical Sciences Research Council, United
a known heuristic [9] says that parameters declared to Kiegdom), under grant GR/M/32443 fddnifying Proof
ground at call-time are particularly good candidates for tRdans and Schemas for Program Synthesis and Transform-
induction parameter role. Next, for the same programmiation. The second author is supported by EPSRC grant
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