Schema-Guided Synthesis
of Constraint Logic Programs *

Hamza Zidoum, Pierre Flener, and Brahim Hnich
Email to: ptQinfo.fundp.ac.be

Abstract

By focusing on the family of assignment problems (such as graph colouring, n-Queens, etc), we show
how to adapt D.R. Smith’s KiDs approach for the synthesis of constraint programs, rather than
applicative Refine programs with explicit constraint propagation and pruning code. Synthesis is
guided by a global search program schema and can be fully automated with little effort, due to some
innovative ideas. CLP(Sets) programs are equivalent in expressiveness to our input specifications.
After optimisations, the synthesised programs would be competitive with hand-crafted ones.

1 Introduction

This work is inspired by D.R. Smith’s research on synthesising global search programs (in the Refine
language) from first-order logic specifications (also in Refine) [10, 11, 12]. The basic idea of global search
is to represent and manipulate sets of candidate solutions. Starting from an initial set that contains all
solutions to the given problem, a global search program incrementally eztracts solutions from a set, splits
sets into subsets, eliminates sets via filters, and cuts sets, until no set remains to be split.

Instead of synthesising Refine programs, our work concentrates on synthesising constraint (logic)
programs. Constraint Logic Programming (CLP) [7] is a programming paradigm especially suited for
solving combinatorial problems, thanks to its double reasoning: the symbolic reasoning expresses the
logic properties of the problem, while the constraint satisfaction reasoning (over several computational
domains, such as reals, booleans, finite domains, sets, ...) uses constraint propagation to keep the search
space manageable. We thus only have to synthesise code that (incrementally) poses the constraints,
because the actual constraint propagation and pruning are performed by the CLP system.

Search problems can be classified into decision problems, which consist in finding some correct solution,
and optimisation problems, which consist in finding an optimal correct solution given a cost function. In
this paper, we only deal with decision problems, since optimisation problems can be treated as simple
extensions of decision problems, namely by adding a cost domain and a cost function.

Very few works deal with the synthesis and transformation of CLP programs. The authors of [§] show
the possibility of synthesising steadfast CLP programs, however they do not exhibit such a synthesis
method. A manual and informal method for constructing CLP programs from specifications is given
in [3]. We here outline a completely automatic and formal method for synthesis, and leave optimising
transformations for future work.

Schema-guided synthesis of CLP programs is also based on a global search schema. We use particular
cases of that general schema to instantiate its place-holders. Although we are still working on it, we
think that the number of these particular cases will be small (but probably more than the seven like for
Kips [10, 11, 12]). In this paper, we only tackle the family of assignment problems.

As argued in the conclusion, our work 1s not simply a transposition of Smith’s results from the Refine
world to the CLP world, because there are several important innovations.

2 Specifications

Specifications are the input to program synthesis. In order to enable (or at least facilitate) automated
synthesis, such inputs ought to be formal (though a more adequate terminology would then be to say

*Extended Abstracts of LOPSTR’98, Eighth International Workshop on Logic-based Program Synthesis and Trans-
formation, 15-19 June 1998, Manchester, UK. Technical Report Series, Department of Computer Science, University of
Manchester, ISSN 1361-6161. Report number UMCS-98-6-1. http://www.cs.man.ac.uk/cstechrep/titles98.html

that the inputs are programs and that synthesis is compilation).

Definition 2.1 (Specifications)
A specification of a program for a relation r is a first-order logic formula of the form:

VX X VY Y. L(X) — (r(X,Y) = O:(X,Y)) (Sr)

where X : X and Y : Y are (possibly empty) lists of sorted variables. Formula I, is called the input
condition, constraining the input domain X', whereas formula O, 1s called the output condition, describing
when some output value Y is a correct solution for input value (or problem) X.

To simplify some formulas, we consider I, to be part of the definition of A'. Often, we then simply
designate specifications by (X', Y, O,) triples.

In this paper, we only consider the family of assignment problems, where a mapping M from a list V
into the integer interval 1..WW has to be found, satisfying certain constraints. Their specifications Sqssign
take the form (list(term) x integer, list(V x 1. W), Oassign), Where Ogssign is of the form:

VX1, V) e M. V{(Xo,Ya) e M. ALy Pi(X1,Y1, X0, Ya) — Qi(X1, Y1, X2, Y2) (Oassign)

where the P; and (J; are formulas. This can be considered a specification template. This covers many
problems, such as graph colouring (see below), Hamiltonian path, n-Queens, etc.

Example 2.1 Given a map, the graph colouring problem consists of finding a mapping M from the list
R of its regions to a set of colours (numbered 1..C') so that two adjacent regions (as indicated in an
adjacency list 4) have different colours. Formally:

Y(R,C, A) : list(term) x integer x list(R x R). VM : list(R x 1..C).
colouring({R,C, Ay, M) = V{(Ry,C1) € M .¥{Ra,Cs) € M . member({R1, Ra2), A) — C1 # C5
(Scolour)

where member is a primitive (with the usual meaning).

3 A Global Search Program Schema for CLP

Let us first recall a definition of (program) schemas [4]:

Definition 3.1 (Program Schemas)

A program schema for a programming methodology M is a couple (T, A), where template T is an open
program showing the (problem-independent) data-flow and control-flow of programs constructed accord-
ing to M, and azioms A constrain the (problem-dependent) programs for the open relations in 7" such
that the overall program really reflects M.

We now formalise our global search (GS) schema for CLP programs. Intuitively, the basic idea is as
follows: starting from an initialised descriptor of the full search space, incrementally split that space into
sub-spaces, while declaring the domains of the involved variables! and constraining these variables so as
to achieve partial consistency, until no splits are possible and a variablised solution can be extracted. Then
a correct solution is generated, by instantiation of the variables in the variablised solution. Compared to
Smith’s global search schema, ours only computes one correct solution rather than all of them, because
this is standard practice in CLP. In any case, all solutions can easily be obtained in CLP, due to its
built-in backtracking.

3.1 The Global Search Template
Our global search template is the following open program:

r(X,Y) «— initialise(X, D),
rgs(X,D,Y),
generate(Y, X)
extract(X, D,Y)
split(D, X, D',),
constrain(é, D, X),
rgs(X, DY)

1Usually, in CLP, domain declaration is done in a separate loop preceding the constraint-posing loop, but our approach
is slightly more efficient because we gain a loop.

where the open relations are informally specified as follows:
o initialise(X, D) means that D is the descriptor of the initial space of candidate solutions to X;

o extract(X, D,Y) means that the variablised solution ¥ to problem X is directly extracted from
descriptor D;

o split(D, X, D', §) means that descriptor D’ describes a subspace of D wrt problem X, such that D/
is obtained by adding é to descriptor D;

e constrain(é, D, X) means that adding é to descriptor D leads to a descriptor defining a sub-space
of D that may contain correct solutions to problem X;

o generate(Y, X) means that correct solution Y to problem X is enumerated (by instantiation of the
variables in the initially variablised solution Y7) from the constraint store, which represents X.

Formalising this is the role of the axioms, shown next.

3.2 The Global Search Axioms

Let D be the type of the search space descriptors, and let A be the type of the elements of the partial
solutions stored in descriptors. First, the following axioms are the specifications of the open relations of
the G'S' template:

VX 1 X.VD :D.initialise(X, D) — Oinir(X, D) (Sinit)

VX X YD :D.VY : Y. extract(X,D,Y) — Ocptr(X, DY) (Sextr)
VD,D' :D. VX : X .VY6: A split(D, X, D, 6) — Ospiie(D, X, D',) (Sspiit)
V8: A VD :D. VX : X . constrain(8, D, X) < Oconstr(6, D, X) (Sconstr)

)

VY 1 Y. VX : X . generate(Y, X) < 0,(X,Y) (Sgen

The output conditions of these specifications are constrained by the next axioms.
Second, the following axiom expresses that all correct solutions Y to problem X are contained in the
computed initial space for X:

VX X VY Y. 0x(X)Y) = 3D :D. Oinir(X, D) A satisfies(Y, D) (A1)

where satisfies(Y, D) means that (possibly variablised) solution Y is in the space described by descriptor
D, which is the case if Y can be extracted after a finite number of applications of split to D. Formally:

VX X VY :Y.VD:D.

satisfies(Y, D) « Tk :integer . AD' : D .36 : A split* (D, X, D', 6) A Ocptr(X, D,Y)
where :

split® (D, X, D', §) = D =D’
and, for all k : integer :

split*+1(D, X, D', §) — D" : D . 38" : A Oupir(D, X, D", 6') A splith (D", X, D',)

(A2)

Finally, we want to fully exploit CLP features to eliminate spaces from further consideration. Con-
straint satisfaction can be used to prune off branches of the search tree that cannot yield solutions. Given
a space described by D and a (possibly still variablised) solution Y to problem X, if splitting D into D’
makes D' contain the solution Y, then constrain must succeed. Formally:

VXX VY. Y. VD, D :D.V6:A.

Or(X,Y) A Ogpiie(D, X, D', 8) A satisfies(Y, D') — Oonstr(8, D, X) (4s)

Conversely, the contrapositive of this axiom shows that if constrain fails, then the new space described by
D’ (which is D plus é) does not contain any solution to X. CLP languages contain a decision procedure,
called SAT, which checks whether a constraint store is satisfiable [7].

This last axiom sets up a necessary condition that constrain must establish. Given the left-hand side
of the implication, such a condition can be derived using automated theorem proving (ATP) technology,
as shown in [9, 10] for instance. Of course, we are not interested in too weak such a condition, such as the
trivial solution ¢rue, but rather in a stronger one. However, deriving the absolutely strongest one (which
establishes equivalence rather than implication) is impractical, because finding it may take too much time
or may even turn out to be beyond current ATP possibilities, and because such a perfect constrain would
be too expensive to evaluate (since it would eliminate all backtracking in the solution generation). So we

should (automatically, if possible) derive the strongest “possible and reasonable” condition, the criteria
for these qualifiers being rather subjective. Fortunately, for the family of assignment problems tackled
in this paper, it turns out that this condition can be easily manually pre-computed (see Example 4.1)
at schema-design time, for any such problems, in an optimal way, so that no ATP technology is then
necessary at synthesis time!

Also note that the derivation of the output condition of constrain depends on the calling context
of constrain, namely that it is invoked after split: this gives rise to rather effective (namely incremen-
tal) constraint-posing code [and stands in contrast to Smith’s calling-context-independent derivation of
filters [10, 11] and cuts [12], which thus tend to be non-incremental]. (Sentences between [...] are for
understanding the differences with Smith’s work.) Notice that constrain just poses constraints on the
search space, the actual solutions being enumerated by generate once all constraints have been posed,
because we use a constraint language.

3.3 Correctness of the Global Search Program Schema

Now we define a notion of correctness, and establish that our global search schema is correct.

Definition 3.2 (Total correctness)
A closed program P, for a relation r is totally correct wrt its specification (X', Y, O,) if for all X : X and
Y : Y we have that O,(X,Y) iff P, F r(X,Y).

This can be generalised to open programs, the correctness criterion being then called steadfastness [4].

Theorem 3.1 (Correct schema)

Given a specification S, for a relation r, any closed program GSU PinisU Pegtr U Popiit U Peopstr U Pyen such
that Pinita Pextra Psplita Pconstra Pgen are tOtaHy correct wrt Sinita Sextra Ssplita Sconstra Sgena respeCtiVGIYa
and such that the axioms A; to Az hold, 1s totally correct wrt S,.

Proof. Outline: Let P, be the first clause of S, and let Py, be the remaining two clauses of G'S.
First, prove that P, is steadfast wrt the following specification:

VX X . VD :D.VY : Y.rgs(X,D,Y) — satisfies(Y, D) A O,.(X,Y) (Srgs)

and the axioms of the GS schema. Second, prove that P, is steadfast wrt to S, and S,4;. 0O

4 Schema Particularisations

In theory, one could use the global search schema in a way analogous to the way the divide-and-conquer
schema was used in [9, 4] to guide synthesis, namely by following a strategy of (a) arbitrarily choosing
programs for some of the open relations (satisfying the axioms of course) from a pool of frequently used
such programs, (b) propagating their concrete specifications across the axioms to set up concrete speci-
fications for the remaining open relations, (¢) calling a schema-guided synthesiser to generate programs
from these specifications, and (d) assembling the overall synthesised program from the template, the
chosen programs, and the generated programs. However, in general this puts heavy demands on ATP
technology, and in particular this turns out much more difficult for the global search schema than for
the divide-and-conquer one [10]. Fortunately, a very large percentage of global search programs falls into
one of seven families identified by Smith, each representing a particular case of the global search schema
(in the sense that programs for all its open relations are adequately chosen in advance), here called a
particularisation. We here investigate the family of assignment problems, which amounts to enumerating
mappings from a finite list into a finite integer interval, other families enumerating permutations of a
given list, sublists of (given or bounded) length k over a given list, sequences over a given list, etc [10].

Definition 4.1 (Particularisations)
A particularisation of the global search schema is a set of formulas defining D, A, satisfies, Oipit, Ocrrr,
Ospist, and Oconsir, such that the axioms A; to Az are satisfied.

Example 4.1 The formulas below, denoted by Py;.4n, constitute a particularisation of the global search
schema for assignment problems. It enumerates mappings from a list V into an interval 1..W where the
problem tuple X has the form (V, W, ...). Descriptors take the form (7, M), and the idea is to gradually

build up the (initially empty) mapping M, whose domain is a sublist of V' and whose range is 1..1¥, such
that list 7" has the elements of V' that have not been mapped to elements in 1..W yet. Formally:

D= {(T,M)|T CV AM €list(V\T) x 1..W)}

A={{X1,Y)|X1eVAY €1.W}
VY Y.YD :D.satisfies(Y,D) = 3IM : Y. D= (_, M) AV(X), Y1) E M. (X;, V1) €Y
VX 1 X YD D Oiir(X, D) = D = (V,[])
YX X YD :D.YY Y. Oupen(X,D,Y) = D = ([],Y)

VD, D' :D VX : X V6:A. Ogpiis(D, X, D', 6) —
D= ([X4|T], MyAY; in LW AGS = (X1, Y1) A D' = (T, [§|M])

V(Xl,Y1> A LYM y VX X Oconstr(<X1;Y1>a <_, M),X) —
V(X2 Yo) € M. ALy Pi(X1, Y1, X0, Ys) — Qi(X1, Y7, X0, Y5)

where in is a primitive (with the usual meaning).

Especially notice the definition of Ocopnsir: once satisfies and O,py¢ had been chosen, and considering
that O, has the form of Oussign (see Section 2), it became possible for us to hand-derive the indicated
Oconstr 1N a way satisfying axiom As. It is indeed as strong a necessary condition as “possible and
reasonable”, as it just poses an incremental consistency constraint: § = (X7,Y7) being the most recently
added couple (by split) to the descriptor D, which contains the partial mapping M constructed so far,
it suffices to backward-check whether (X;,¥7) is consistent with every (Xs,Y2) of M. Note that this
constraint is thus nothing but Ogss;yn Where the outermost universal quantification has been stripped
away! It is also important to understand that [as opposed to Smith’s filters and cuts] no forward constraint
needs to be posed (establishing whether the new partial mapping can possibly be part of a correct
solution), not even for efficiency reasons, due to the way in which CLP programs work [as opposed to
Refine ones]: solution construction (through generate) actually only starts in CLP once all constraints
have been posed, and posing any forward constraints would thus be not only superfluous but also a way
of slowing down the program, because the forward constraints of time ¢ will become backward constraints
at times larger than ¢ and all constraints would thus have been posed twice. (This does not prevent CLP
from performing forward checks during solution generation.)

Theorem 4.1 (Implementation of Passign)

The programs Pinit, Pectr, Psplit, Peonstr, Pgen below, denoted by Cossign (where the C stands for closure,
because it “closes” the open program G'S), are totally correct wrt the axioms Sinit, Sewtr, Ssplit, Sconstr,
Sgen, Tespectively, after they have been unfolded wrt satisfies, Oinit, Ocrtr, Ospiit, Oconstr, using the
particularisation Py, above.

e(X,D) —
=(V.[])
P extract(DY)~

Pinit : zmtzalzs

=([1Y
Popiis splzt(D X, D', 8) —
D = ([X1|T], M),
Yy in 1..W,
6 — <X1aY1>a
D' = (T, [5|M])

Peonstr : constrain(-, D,) —
D=(1[]
constrain(é, D, X) —
6= <X1aY1>a
D = (., [(X2, Y2)|M']),
AL Pi(X1, Y1, Xo, Vo) — Qi(Xy, Y1, Xo, Va),
constrain(é, (-, M), X)
Pyer © generate(M,) —
M =]
generate(M,) —
M= [(-a Y1>|M/]a
indomain(Yy),
generate(M',)

Note that all but the recursive clause for constrain of these programs are problem-independent. Also note
that we have thus hand-synthesised in advance programs for the relations defined by the particularisation:
some of these syntheses were trivial, for the others we used a divide-and-conquer schema for guidance [9, 4].
Finally, notice that Sgssign (see Section 2), Pugsign, and Cassign share the free variables V, W, m, B,
Q); (which represent the problem to be solved): therefore, if a problem-dependent substitution for these
variables is applied to Sgssign, then it must also be applied to Pyssgn and Cussign. Finding such a
substitution 1s the objective of the notion of specification reduction, which we examine now.

5 Specification Reduction

Given a specification S, for which no program has been written yet, and given a specification S, for
which a program P, has already been written, we now examine the conditions under which it suffices to
invoke P, in order to (partially) implement S,. We then say that S, reduces to Sy, or that S, generalises
Sy. Basically, this requires that the set of correct solutions to S; contains those to S, provided there
later is an elimination of the solutions to S, that are not solutions to S,. Formally:

Definition 5.1 (Specification Reduction)
A specification S, = (X,,V,, O,) for a relation r reduces to a specification S, = (X,,V,, O,) for r with
substitution # if VX, : A, . 3X, : X, VY, V. X, = X0 AV, = V00 0.(X,,Y;,) = 0,(X,, Y,)0.

Computing such a substitution often involves second-order semi-unification, which is decidable but
NP-complete in general, though linear in the case of higher-order patterns [6], where all predicate variables
(such as the P; and @;) apply to distinct variables only, which is the case here. Tt even turns out that ¢
can be manually pre-computed, for any assignment problem, as illustrated in the following example:

Example 5.1 The specification Scoour (see Example 2.1) reduces to Syssign (see Section 2) with:
0 = {X/(R,C,A), V/R, W/C, m/1, Py/M,K,L, M. member({J,L), A), Qi/\,K,L, M.K # M}

Note that A is free in the A-term substituted for Pi: this does not pose a problem because (R, C, A) is
substituted for X, which is universally quantified wherever P; occurs.

6 The Synthesis Method

The synthesis method becomes apparent now: given a specification 5, find a substitution § under which
it reduces to the generic specification 5, attached to some particularisation P, of the global search schema,
and then apply 6 to P, and to the closure C, so as to obtain a (closed) program correctly implementing
Sy by taking the G'S template and C,0.

For assignment problems, note how the elimination of the solutions to Sqss:4n that are not solutions to
Sy is performed [without explicitly inserting O, at the end of the synthesised program, like Smith does]:
Ogssign has predicate variables P; and);, which also appear in Puysign (and thus in the closure Cyssign)
and which become instantiated to the particular conditions in S, which thus wind up, as we have seen,
in the recursive clause for constrain. [In Smith’s approach, Ogssign is true, and the post-condition O,
of the particular problem can thus not appear in the search part of the synthesised code, except maybe
in a filter or a cut, whose derivation is however often not fully automatic and which filter or cut is not
necessarily “reasonable”]

Example 6.1 Given the specification Scoour (see Example 2.1), the fully automatically synthesised
program thus consists of the G'S template (see Section 3.1) and the closure Caysign of Theorem 4.1,
where the problem-dependent recursive clause for constrain is:

constrain(é, D, (-, , A)) —
8§ = {Ry,CY),
D = (., [(R2, C2)|M']),
member({Ry, Ra), A) — C1 # C,
constrain(é, (-, M), {_, -, A))

by virtue of the substitution # (see Example 5.1). Note that we here use P — @ to denote not(P); Q,
where ; /2 denotes disjunction and can easily be implemented by the two clauses P;Q < P and P; Q) «— @,
using the meta-variable facility of CLP. The usage of negation-as-failure (denoted by not) is not dangerous
here, because the synthesised program guarantees that the thus negated atom is ground at that moment.

a
o
L[]

.

Synthesised LP /‘."""

a0 | ;
_~synthesised LP

log,[Runtime (ms)]
log,[Runtime (ms)]
B
o

w

o
)
3
¢

e

}

Synthesised clp(FD) Synth d clp(FD)
T ynthesised clp

N

o

N

o
.
S M

8 10 12 14 16 20 30 40
Number of queens Number of regions
(a) n-Queens (b) Graph Colouring

Figure 1: Benchmarks

7 Benchmarks

In the following table, we first compare our synthesised CLP programs (run under ¢/p(F D) [2]) with the
(standard) logic program counterparts (also run under e¢lp(F D)) of KiDs-synthesised Refine programs
(with hand-derived filters). This shows that at least one order of magnitude is gained in efficiency by
switching from an ordinary symbolic language to a constraint one (a comparison with the more recent
Spec Ware and Plan Ware [12] systems of Kestrel Institute is underway). We chose Finite Domains (FD)
as constraint domain because of the well-known high performance of CLP(FD).

| || Map Colouring (France) | Hamiltonian Path | 8-Queens |

Synthesised CLP(FD) programs 27,150 ms 50 ms 100 ms
Synthesised LP programs overflow 527 ms | 3260 ms
Hand-crafted CLP(FD) programs [2] 5,230 ms 20 ms 30 ms

Table 1: Benchmarks

We also compare our synthesised CLP(FD) programs with hand-crafted CLP(FD) programs. This shows
that our automatically synthesised CLP(FD) programs are only 3 to 5 times slower than carefully hand-
crafted ones, which is encouraging since none of the obvious problem-specific optimising transformations
have been performed yet on our programs. Since our synthesis is fully automatic, starting from short
and elegant specifications, our approach thus seems viable.

Our specification language is equivalent in its high expressiveness to the CLP(Sets) programming
languages (such as CLPS [1], Cojunto [5]); we thus do not aim at synthesising CLP(Sets) programs, but
rather at alternative ways of compiling them. Comparing execution times is however still meaningless
because of the prototypical nature of CLP(Sets) compilers (which sort-of normalise the programs into
Prolog programs and add constraint-solving code in Prolog).

In Figure 1 above, a further comparison is made between the synthesised CLP(FD) programs and the
corresponding synthesised LP programs, for the n-Queens and graph colouring problems. The minimum
one order of magnitude gain confirms that we fully exploit constraint propagation to reduce the search
space by cutting off spaces that do not lead to correct solutions.

8 Conclusion

We have outlined how to fully automatically synthesise CLP programs for assignment problems, and we
have shown that our results are competitive. We hope to replicate this effort for the other six families of
global search problems identified by Smith [10].

The synthesised programs are not small (minimum 33 atoms, in a very expressive programming
language), and making them steadfast reusable components for a programming-in-the-large approach by
embedding their whole development in a framework-based approach [4] should not be too difficult.

The results presented in this paper are however not just a simple transcription of the Kibs approach
from Refine to CLP, but they also reflect new ideas, as indicated all over this paper. In summary:

o We fully exploited CLP features [as opposed to Refine, which is “only” an ordinary symbolic
language], by significantly modifying the original global search schema, so that it reflects a constrain-
and-generate programming methodology. We argue for our choice of CLP(FD) as target language

by the fact that it is especially suited for solving combinatorial problems. Indeed, much of the
constraint solving machinery that needs to be pushed into Refine programs, be it at synthesis time or
at transformation/optimisation time, is already part of the CLP(FD) language and is implemented
there once and for all in a particularly efficient way.

e We introduced the notion of specification template, by illustrating it on the family of assignment
problems. This has widespread effects on the Kips approach, as shown below.

o As we showed for the Py, particularisation, the substitution under which a given specification
reduces to a specification template like Sqss;4n can be pre-computed, so that there is no need to
use a theorem prover, at synthesis time, to derive it.

o As we showed for the Pyg;4n particularisation, the derivation of consistency-constraint-posing code
can be calling-context-dependent [as opposed to Smith’s filter and cut derivation]. Also, such code
can even be pre-synthesised, for a given particularisation, so that there is no need to use a theorem
prover, at synthesis time, to derive its specification.

All this means that synthesis can be fully automatic, without any usage of a theorem prover, for certain
families of problems. We plan to add an automated reasoning layer for problems that do not fit our
predetermined families. There are a lot of opportunities for automatically transforming/optimising the
synthesised programs, hopefully bringing them on a par with hand-crafted programs.

Acknowledgments

We wish to thank Doug Smith for his pioneering work that inspired us. The first author is supported by
a post-doctoral scholarship awarded by Bilkent University.

References

[1] F. Ambert, B. Legeard, and E. Legros. Programmation en logique avec contraintes sur ensembles et
multi-ensembles héréditairement finis. Techniques et Sciences Informatiques 15(3):297-328, 1996.

[2] D. Diaz and Ph. Codognet. A minimal extension of the WAM for clp(FD). In D.S. Warren (ed),
Proc. of ICLP’93, pp. 7T74-790. The MIT Press, 1993.

[3] Y. Deville and P. Van Hentenryck. Construction of CLP programs. In D.R. Brough (ed), Logic
Programmang: New Frontiers, pp. 112-135, Kluwer Academic Publishers, 1992.

[4] P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis of steadfast programs. In
M. Lowry and Y. Ledru (eds), Proc. of ASE’97, pp. 153-160. IEEE Computer Society, 1997.

[5] C. Gervet. Interval propagation to reason about sets: Definition and implementation of a practical
language. Constraints 1(3):191-244, 1997.

[6] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthesis. In D.S. Warren
(ed), Proc. of ICLP’93, pp. 441-455. The MIT Press, 1993.

[7] J. Jaffar and M.J. Maher. Constraint logic programming: A survey. J. of Logic Programming 19—
20:503-582, 1994.

[8] K.-K. Lau and M. Ornaghi. A formal approach to deductive synthesis of constraint logic programs.
In J.W. Lloyd (ed), Proc. of ILPS’95, pp. 543-557. The MIT Press, 1995.

[9] D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelligence 27(1):43-
96, 1985.

[10] D.R. Smith. The structure and design of global search algorithms. Technical Report KES.U.87.12,
Kestrel Institute, 1988.

[11] D.R. Smith. KIDs: A semiautomatic program development system. IEEE Trans. Software Engineer-
ing 16(9):1024-1043, 1990.

[12] D.R. Smith. Towards the synthesis of constraint propagation algorithms. In Y. Deville (ed), Proc. of
LOPSTR’93, pp. 1-9, Springer-Verlag, 1994.

