
Schema-Guided Synthesisof Constraint Logic Programs �Hamza Zidoum, Pierre Flener, and Brahim HnichEmail to: pf@info.fundp.ac.beAbstractBy focusing on the family of assignment problems (such as graph colouring, n-Queens, etc), we showhow to adapt D.R. Smith's Kids approach for the synthesis of constraint programs, rather thanapplicative Re�ne programs with explicit constraint propagation and pruning code. Synthesis isguided by a global search program schema and can be fully automated with little e�ort, due to someinnovative ideas. CLP(Sets) programs are equivalent in expressiveness to our input speci�cations.After optimisations, the synthesised programs would be competitive with hand-crafted ones.1 IntroductionThis work is inspired by D.R. Smith's research on synthesising global search programs (in the Re�nelanguage) from �rst-order logic speci�cations (also in Re�ne) [10, 11, 12]. The basic idea of global searchis to represent and manipulate sets of candidate solutions. Starting from an initial set that contains allsolutions to the given problem, a global search program incrementally extracts solutions from a set, splitssets into subsets, eliminates sets via �lters, and cuts sets, until no set remains to be split.Instead of synthesising Re�ne programs, our work concentrates on synthesising constraint (logic)programs. Constraint Logic Programming (CLP) [7] is a programming paradigm especially suited forsolving combinatorial problems, thanks to its double reasoning: the symbolic reasoning expresses thelogic properties of the problem, while the constraint satisfaction reasoning (over several computationaldomains, such as reals, booleans, �nite domains, sets, . . .) uses constraint propagation to keep the searchspace manageable. We thus only have to synthesise code that (incrementally) poses the constraints,because the actual constraint propagation and pruning are performed by the CLP system.Search problems can be classi�ed into decision problems, which consist in �nding some correct solution,and optimisation problems, which consist in �nding an optimal correct solution given a cost function. Inthis paper, we only deal with decision problems, since optimisation problems can be treated as simpleextensions of decision problems, namely by adding a cost domain and a cost function.Very few works deal with the synthesis and transformation of CLP programs. The authors of [8] showthe possibility of synthesising steadfast CLP programs, however they do not exhibit such a synthesismethod. A manual and informal method for constructing CLP programs from speci�cations is givenin [3]. We here outline a completely automatic and formal method for synthesis, and leave optimisingtransformations for future work.Schema-guided synthesis of CLP programs is also based on a global search schema. We use particularcases of that general schema to instantiate its place-holders. Although we are still working on it, wethink that the number of these particular cases will be small (but probably more than the seven like forKids [10, 11, 12]). In this paper, we only tackle the family of assignment problems.As argued in the conclusion, our work is not simply a transposition of Smith's results from the Re�neworld to the CLP world, because there are several important innovations.2 Speci�cationsSpeci�cations are the input to program synthesis. In order to enable (or at least facilitate) automatedsynthesis, such inputs ought to be formal (though a more adequate terminology would then be to say�Extended Abstracts of LOPSTR'98, Eighth International Workshop on Logic-based Program Synthesis and Trans-formation, 15{19 June 1998, Manchester, UK. Technical Report Series, Department of Computer Science, University ofManchester, ISSN 1361-6161. Report number UMCS-98-6-1. http://www.cs.man.ac.uk/cstechrep/titles98.html1

that the inputs are programs and that synthesis is compilation).De�nition 2.1 (Speci�cations)A speci�cation of a program for a relation r is a �rst-order logic formula of the form:8X : X : 8Y : Y : Ir(X)! (r(X;Y)$ Or(X;Y)) (Sr)where X : X and Y : Y are (possibly empty) lists of sorted variables. Formula Ir is called the inputcondition, constraining the input domain X , whereas formulaOr is called the output condition, describingwhen some output value Y is a correct solution for input value (or problem) X.To simplify some formulas, we consider Ir to be part of the de�nition of X . Often, we then simplydesignate speci�cations by hX ;Y; Ori triples.In this paper, we only consider the family of assignment problems, where a mappingM from a list Vinto the integer interval 1::W has to be found, satisfying certain constraints. Their speci�cations Sassigntake the form hlist(term) � integer; list(V � 1::W); Oassigni, where Oassign is of the form:8hX1; Y1i 2M : 8hX2; Y2i 2M : ^mi=1 Pi(X1; Y1; X2; Y2)! Qi(X1; Y1; X2; Y2) (Oassign)where the Pi and Qi are formulas. This can be considered a speci�cation template. This covers manyproblems, such as graph colouring (see below), Hamiltonian path, n-Queens, etc.Example 2.1 Given a map, the graph colouring problem consists of �nding a mapping M from the listR of its regions to a set of colours (numbered 1::C) so that two adjacent regions (as indicated in anadjacency list A) have di�erent colours. Formally:8hR;C;Ai : list(term) � integer � list(R � R) : 8M : list(R � 1::C) :colouring(hR;C;Ai;M)$ 8hR1; C1i 2M : 8hR2; C2i 2M : member(hR1; R2i; A)! C1 6= C2(Scolour)where member is a primitive (with the usual meaning).3 A Global Search Program Schema for CLPLet us �rst recall a de�nition of (program) schemas [4]:De�nition 3.1 (Program Schemas)A program schema for a programming methodology M is a couple hT;Ai, where template T is an openprogram showing the (problem-independent) data-
ow and control-
ow of programs constructed accord-ing to M , and axioms A constrain the (problem-dependent) programs for the open relations in T suchthat the overall program really re
ects M .We now formalise our global search (GS) schema for CLP programs. Intuitively, the basic idea is asfollows: starting from an initialised descriptor of the full search space, incrementally split that space intosub-spaces, while declaring the domains of the involved variables1 and constraining these variables so asto achieve partial consistency, until no splits are possible and a variablised solution can be extracted. Thena correct solution is generated, by instantiation of the variables in the variablised solution. Compared toSmith's global search schema, ours only computes one correct solution rather than all of them, becausethis is standard practice in CLP. In any case, all solutions can easily be obtained in CLP, due to itsbuilt-in backtracking.3.1 The Global Search TemplateOur global search template is the following open program:r(X;Y) initialise(X;D);rgs(X;D; Y);generate(Y;X)rgs(X;D; Y) extract(X;D; Y)rgs(X;D; Y) split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y) (GS)1Usually, in CLP, domain declaration is done in a separate loop preceding the constraint-posing loop, but our approachis slightly more e�cient because we gain a loop. 2

where the open relations are informally speci�ed as follows:� initialise(X;D) means that D is the descriptor of the initial space of candidate solutions to X;� extract(X;D; Y) means that the variablised solution Y to problem X is directly extracted fromdescriptor D;� split(D;X;D0; �) means that descriptor D0 describes a subspace of D wrt problem X, such that D0is obtained by adding � to descriptor D;� constrain(�;D;X) means that adding � to descriptor D leads to a descriptor de�ning a sub-spaceof D that may contain correct solutions to problem X;� generate(Y;X) means that correct solution Y to problem X is enumerated (by instantiation of thevariables in the initially variablised solution Y) from the constraint store, which represents X.Formalising this is the role of the axioms, shown next.3.2 The Global Search AxiomsLet D be the type of the search space descriptors, and let � be the type of the elements of the partialsolutions stored in descriptors. First, the following axioms are the speci�cations of the open relations ofthe GS template: 8X : X : 8D : D : initialise(X;D) $ Oinit(X;D) (Sinit)8X : X : 8D : D : 8Y : Y : extract(X;D; Y)$ Oextr(X;D; Y) (Sextr)8D;D0 : D : 8X : X : 8� : � : split(D;X;D0; �)$ Osplit(D;X;D0; �) (Ssplit)8� : � : 8D : D : 8X : X : constrain(�;D;X) $ Oconstr(�;D;X) (Sconstr)8Y : Y : 8X : X : generate(Y;X) $ Or(X;Y) (Sgen)The output conditions of these speci�cations are constrained by the next axioms.Second, the following axiom expresses that all correct solutions Y to problem X are contained in thecomputed initial space for X:8X : X : 8Y : Y : Or(X;Y)! 9D : D : Oinit(X;D) ^ satisfies(Y;D) (A1)where satisfies(Y;D) means that (possibly variablised) solution Y is in the space described by descriptorD, which is the case if Y can be extracted after a �nite number of applications of split to D. Formally:8X : X : 8Y : Y : 8D : D :satisfies(Y;D) $ 9k : integer : 9D0 : D : 9� : � : splitk(D;X;D0; �) ^Oextr(X;D; Y)where :split0(D;X;D0; �)$ D = D0and; for all k : integer :splitk+1(D;X;D0; �)$ 9D00 : D : 9�0 : � : Osplit(D;X;D00; �0) ^ splitk(D00; X;D0; �) (A2)Finally, we want to fully exploit CLP features to eliminate spaces from further consideration. Con-straint satisfaction can be used to prune o� branches of the search tree that cannot yield solutions. Givena space described by D and a (possibly still variablised) solution Y to problem X, if splitting D into D0makes D0 contain the solution Y , then constrain must succeed. Formally:8X : X : 8Y : Y : 8D;D0 : D : 8� : � :Or(X;Y) ^Osplit(D;X;D0; �) ^ satisfies(Y;D0)! Oconstr(�;D;X) (A3)Conversely, the contrapositive of this axiom shows that if constrain fails, then the new space described byD0 (which is D plus �) does not contain any solution to X. CLP languages contain a decision procedure,called SAT , which checks whether a constraint store is satis�able [7].This last axiom sets up a necessary condition that constrain must establish. Given the left-hand sideof the implication, such a condition can be derived using automated theorem proving (ATP) technology,as shown in [9, 10] for instance. Of course, we are not interested in too weak such a condition, such as thetrivial solution true, but rather in a stronger one. However, deriving the absolutely strongest one (whichestablishes equivalence rather than implication) is impractical, because �nding it may take too much timeor may even turn out to be beyond current ATP possibilities, and because such a perfect constrain wouldbe too expensive to evaluate (since it would eliminate all backtracking in the solution generation). So we3

should (automatically, if possible) derive the strongest \possible and reasonable" condition, the criteriafor these quali�ers being rather subjective. Fortunately, for the family of assignment problems tackledin this paper, it turns out that this condition can be easily manually pre-computed (see Example 4.1)at schema-design time, for any such problems, in an optimal way, so that no ATP technology is thennecessary at synthesis time!Also note that the derivation of the output condition of constrain depends on the calling contextof constrain, namely that it is invoked after split: this gives rise to rather e�ective (namely incremen-tal) constraint-posing code [and stands in contrast to Smith's calling-context-independent derivation of�lters [10, 11] and cuts [12], which thus tend to be non-incremental]. (Sentences between [. . .] are forunderstanding the di�erences with Smith's work.) Notice that constrain just poses constraints on thesearch space, the actual solutions being enumerated by generate once all constraints have been posed,because we use a constraint language.3.3 Correctness of the Global Search Program SchemaNow we de�ne a notion of correctness, and establish that our global search schema is correct.De�nition 3.2 (Total correctness)A closed program Pr for a relation r is totally correct wrt its speci�cation hX ;Y; Ori if for all X : X andY : Y we have that Or(X;Y) i� Pr ` r(X;Y).This can be generalised to open programs, the correctness criterion being then called steadfastness [4].Theorem 3.1 (Correct schema)Given a speci�cation Sr for a relation r, any closed programGS[Pinit[Pextr[Psplit[Pconstr[Pgen suchthat Pinit, Pextr, Psplit, Pconstr, Pgen are totally correct wrt Sinit, Sextr, Ssplit, Sconstr, Sgen, respectively,and such that the axioms A1 to A3 hold, is totally correct wrt Sr .Proof. Outline: Let Pr be the �rst clause of GS, and let Prgs be the remaining two clauses of GS.First, prove that Prgs is steadfast wrt the following speci�cation:8X : X : 8D : D : 8Y : Y : rgs(X;D; Y)$ satisfies(Y;D) ^Or(X;Y) (Srgs)and the axioms of the GS schema. Second, prove that Pr is steadfast wrt to Sr and Srgs. 24 Schema ParticularisationsIn theory, one could use the global search schema in a way analogous to the way the divide-and-conquerschema was used in [9, 4] to guide synthesis, namely by following a strategy of (a) arbitrarily choosingprograms for some of the open relations (satisfying the axioms of course) from a pool of frequently usedsuch programs, (b) propagating their concrete speci�cations across the axioms to set up concrete speci-�cations for the remaining open relations, (c) calling a schema-guided synthesiser to generate programsfrom these speci�cations, and (d) assembling the overall synthesised program from the template, thechosen programs, and the generated programs. However, in general this puts heavy demands on ATPtechnology, and in particular this turns out much more di�cult for the global search schema than forthe divide-and-conquer one [10]. Fortunately, a very large percentage of global search programs falls intoone of seven families identi�ed by Smith, each representing a particular case of the global search schema(in the sense that programs for all its open relations are adequately chosen in advance), here called aparticularisation. We here investigate the family of assignment problems, which amounts to enumeratingmappings from a �nite list into a �nite integer interval, other families enumerating permutations of agiven list, sublists of (given or bounded) length k over a given list, sequences over a given list, etc [10].De�nition 4.1 (Particularisations)A particularisation of the global search schema is a set of formulas de�ning D, �, satisfies, Oinit, Oextr,Osplit, and Oconstr, such that the axioms A1 to A3 are satis�ed.Example 4.1 The formulas below, denoted by Passign, constitute a particularisation of the global searchschema for assignment problems. It enumerates mappings from a list V into an interval 1::W , where theproblem tuple X has the form hV;W; : : :i. Descriptors take the form hT;M i, and the idea is to gradually4

build up the (initially empty) mappingM , whose domain is a sublist of V and whose range is 1::W , suchthat list T has the elements of V that have not been mapped to elements in 1::W yet. Formally:D = fhT;M ijT � V ^M 2 list((V n T) � 1::W)g� = fhX1; Y1ijX1 2 V ^ Y1 2 1::Wg8Y : Y : 8D : D : satisfies(Y;D) $ 9M : Y : D = h ;M i ^ 8hX1; Y1i 2M : hX1; Y1i 2 Y8X : X : 8D : D : Oinit(X;D)$ D = hV; []i8X : X : 8D : D : 8Y : Y : Oextr(X;D; Y)$ D = h[]; Y i8D;D0 : D : 8X : X : 8� : � : Osplit(D;X;D0; �)$D = h[X1jT];M i ^ Y1 in 1::W ^ � = hX1; Y1i ^D0 = hT; [�jM]i8hX1; Y1i : � : 8M : Y : 8X : X : Oconstr(hX1; Y1i; h ;M i; X)$8hX2; Y2i 2M : ^mi=1 Pi(X1; Y1; X2; Y2)! Qi(X1; Y1; X2; Y2)where in is a primitive (with the usual meaning).Especially notice the de�nition of Oconstr: once satisfies and Osplit had been chosen, and consideringthat Or has the form of Oassign (see Section 2), it became possible for us to hand-derive the indicatedOconstr in a way satisfying axiom A3. It is indeed as strong a necessary condition as \possible andreasonable", as it just poses an incremental consistency constraint: � = hX1; Y1i being the most recentlyadded couple (by split) to the descriptor D, which contains the partial mapping M constructed so far,it su�ces to backward-check whether hX1; Y1i is consistent with every hX2; Y2i of M . Note that thisconstraint is thus nothing but Oassign where the outermost universal quanti�cation has been strippedaway! It is also important to understand that [as opposed to Smith's �lters and cuts] no forward constraintneeds to be posed (establishing whether the new partial mapping can possibly be part of a correctsolution), not even for e�ciency reasons, due to the way in which CLP programs work [as opposed toRe�ne ones]: solution construction (through generate) actually only starts in CLP once all constraintshave been posed, and posing any forward constraints would thus be not only super
uous but also a wayof slowing down the program, because the forward constraints of time t will become backward constraintsat times larger than t and all constraints would thus have been posed twice. (This does not prevent CLPfrom performing forward checks during solution generation.)Theorem 4.1 (Implementation of Passign)The programs Pinit, Pextr, Psplit, Pconstr, Pgen below, denoted by Cassign (where the C stands for closure,because it \closes" the open program GS), are totally correct wrt the axioms Sinit, Sextr, Ssplit, Sconstr,Sgen, respectively, after they have been unfolded wrt satisfies, Oinit, Oextr, Osplit, Oconstr, using theparticularisation Passign above.Pinit : initialise(X;D) D = hV; []iPextr : extract(; D; Y) D = h[]; Y iPsplit : split(D;X;D0; �) D = h[X1jT];M i;Y1 in 1::W;� = hX1; Y1i;D0 = hT; [�jM]iPconstr : constrain(; D;) D = h ; []iconstrain(�;D;X) � = hX1; Y1i;D = h ; [hX2; Y2ijM 0]i;^mi=1Pi(X1; Y1; X2; Y2)! Qi(X1; Y1; X2; Y2);constrain(�; h ;M 0i; X)Pgen : generate(M;) M = []generate(M;) M = [h ; Y1ijM 0];indomain(Y1);generate(M 0;) 5

Note that all but the recursive clause for constrain of these programs are problem-independent. Also notethat we have thus hand-synthesised in advance programs for the relations de�ned by the particularisation:some of these syntheses were trivial, for the others we used a divide-and-conquer schema for guidance [9, 4].Finally, notice that Sassign (see Section 2), Passign, and Cassign share the free variables V , W , m, Pi,Qi (which represent the problem to be solved): therefore, if a problem-dependent substitution for thesevariables is applied to Sassign, then it must also be applied to Passign and Cassign. Finding such asubstitution is the objective of the notion of speci�cation reduction, which we examine now.5 Speci�cation ReductionGiven a speci�cation Sr for which no program has been written yet, and given a speci�cation Sg forwhich a program Pg has already been written, we now examine the conditions under which it su�ces toinvoke Pg in order to (partially) implement Sr . We then say that Sr reduces to Sg , or that Sg generalisesSr . Basically, this requires that the set of correct solutions to Sg contains those to Sr , provided therelater is an elimination of the solutions to Sg that are not solutions to Sr . Formally:De�nition 5.1 (Speci�cation Reduction)A speci�cation Sr = hXr;Yr; Ori for a relation r reduces to a speci�cation Sg = hXg;Yg; Ogi for r withsubstitution � if 8Xr : Xr : 9Xg : Xg : 8Yr : Yr : Xr = Xg� ^ Yr = Yg� ^Or(Xr ; Yr) = Og(Xg ; Yr)�.Computing such a substitution often involves second-order semi-uni�cation, which is decidable butNP-complete in general, though linear in the case of higher-order patterns [6], where all predicate variables(such as the Pi and Qi) apply to distinct variables only, which is the case here. It even turns out that �can be manually pre-computed, for any assignment problem, as illustrated in the following example:Example 5.1 The speci�cation Scolour (see Example 2.1) reduces to Sassign (see Section 2) with:� = fX=hR;C;Ai; V=R; W=C; m=1; P1=�J;K;L;M : member(hJ; Li; A); Q1=�J;K;L;M : K 6=MgNote that A is free in the �-term substituted for P1: this does not pose a problem because hR;C;Ai issubstituted for X, which is universally quanti�ed wherever P1 occurs.6 The Synthesis MethodThe synthesis method becomes apparent now: given a speci�cation Sr, �nd a substitution � under whichit reduces to the generic speci�cation Sg attached to some particularisation Pg of the global search schema,and then apply � to Pg and to the closure Cg, so as to obtain a (closed) program correctly implementingSr by taking the GS template and Cg�.For assignment problems, note how the elimination of the solutions to Sassign that are not solutions toSr is performed [without explicitly inserting Or at the end of the synthesised program, like Smith does]:Oassign has predicate variables Pi and Qi, which also appear in Passign (and thus in the closure Cassign)and which become instantiated to the particular conditions in Sr , which thus wind up, as we have seen,in the recursive clause for constrain. [In Smith's approach, Oassign is true, and the post-condition Orof the particular problem can thus not appear in the search part of the synthesised code, except maybein a �lter or a cut, whose derivation is however often not fully automatic and which �lter or cut is notnecessarily \reasonable".]Example 6.1 Given the speci�cation Scolour (see Example 2.1), the fully automatically synthesisedprogram thus consists of the GS template (see Section 3.1) and the closure Cassign of Theorem 4.1,where the problem-dependent recursive clause for constrain is:constrain(�;D; h ; ; Ai) � = hR1; C1i;D = h ; [hR2; C2ijM 0]i;member(hR1; R2i; A)! C1 6= C2;constrain(�; h ;M 0i; h ; ; Ai)by virtue of the substitution � (see Example 5.1). Note that we here use P ! Q to denote not(P);Q,where ; =2 denotes disjunction and can easily be implemented by the two clauses P ;Q P and P ;Q Q,using the meta-variable facility of CLP. The usage of negation-as-failure (denoted by not) is not dangeroushere, because the synthesised program guarantees that the thus negated atom is ground at that moment.6

8 10 12 14 16
Number of queens

2.0

3.0

4.0

5.0

6.0

lo
g 10

[R
un

tim
e

(m
s)

]

Synthesised LP

Synthesised clp(FD) (a) n-Queens 10 20 30 40
Number of regions

2.0

3.0

4.0

5.0

6.0

lo
g 10

[R
un

tim
e

(m
s)

]

Synthesised clp(FD)

Synthesised LP(b) Graph ColouringFigure 1: Benchmarks7 BenchmarksIn the following table, we �rst compare our synthesised CLP programs (run under clp(FD) [2]) with the(standard) logic program counterparts (also run under clp(FD)) of Kids-synthesised Re�ne programs(with hand-derived �lters). This shows that at least one order of magnitude is gained in e�ciency byswitching from an ordinary symbolic language to a constraint one (a comparison with the more recentSpecWare and PlanWare [12] systems of Kestrel Institute is underway). We chose Finite Domains (FD)as constraint domain because of the well-known high performance of CLP(FD).Map Colouring (France) Hamiltonian Path 8-QueensSynthesised CLP(FD) programs 27,150 ms 50 ms 100 msSynthesised LP programs over
ow 527 ms 3260 msHand-crafted CLP(FD) programs [2] 5,230 ms 20 ms 30 msTable 1: BenchmarksWe also compare our synthesised CLP(FD) programs with hand-crafted CLP(FD) programs. This showsthat our automatically synthesised CLP(FD) programs are only 3 to 5 times slower than carefully hand-crafted ones, which is encouraging since none of the obvious problem-speci�c optimising transformationshave been performed yet on our programs. Since our synthesis is fully automatic, starting from shortand elegant speci�cations, our approach thus seems viable.Our speci�cation language is equivalent in its high expressiveness to the CLP(Sets) programminglanguages (such as CLPS [1], Cojunto [5]); we thus do not aim at synthesising CLP(Sets) programs, butrather at alternative ways of compiling them. Comparing execution times is however still meaninglessbecause of the prototypical nature of CLP(Sets) compilers (which sort-of normalise the programs intoProlog programs and add constraint-solving code in Prolog).In Figure 1 above, a further comparison is made between the synthesised CLP(FD) programs and thecorresponding synthesised LP programs, for the n-Queens and graph colouring problems. The minimumone order of magnitude gain con�rms that we fully exploit constraint propagation to reduce the searchspace by cutting o� spaces that do not lead to correct solutions.8 ConclusionWe have outlined how to fully automatically synthesise CLP programs for assignment problems, and wehave shown that our results are competitive. We hope to replicate this e�ort for the other six families ofglobal search problems identi�ed by Smith [10].The synthesised programs are not small (minimum 33 atoms, in a very expressive programminglanguage), and making them steadfast reusable components for a programming-in-the-large approach byembedding their whole development in a framework-based approach [4] should not be too di�cult.The results presented in this paper are however not just a simple transcription of the Kids approachfrom Re�ne to CLP, but they also re
ect new ideas, as indicated all over this paper. In summary:� We fully exploited CLP features [as opposed to Re�ne, which is \only" an ordinary symboliclanguage], by signi�cantly modifying the original global search schema, so that it re
ects a constrain-and-generate programming methodology. We argue for our choice of CLP(FD) as target language7

by the fact that it is especially suited for solving combinatorial problems. Indeed, much of theconstraint solving machinery that needs to be pushed intoRe�ne programs, be it at synthesis time orat transformation/optimisation time, is already part of the CLP(FD) language and is implementedthere once and for all in a particularly e�cient way.� We introduced the notion of speci�cation template, by illustrating it on the family of assignmentproblems. This has widespread e�ects on the Kids approach, as shown below.� As we showed for the Passign particularisation, the substitution under which a given speci�cationreduces to a speci�cation template like Sassign can be pre-computed, so that there is no need touse a theorem prover, at synthesis time, to derive it.� As we showed for the Passign particularisation, the derivation of consistency-constraint-posing codecan be calling-context-dependent [as opposed to Smith's �lter and cut derivation]. Also, such codecan even be pre-synthesised, for a given particularisation, so that there is no need to use a theoremprover, at synthesis time, to derive its speci�cation.All this means that synthesis can be fully automatic, without any usage of a theorem prover, for certainfamilies of problems. We plan to add an automated reasoning layer for problems that do not �t ourpredetermined families. There are a lot of opportunities for automatically transforming/optimising thesynthesised programs, hopefully bringing them on a par with hand-crafted programs.AcknowledgmentsWe wish to thank Doug Smith for his pioneering work that inspired us. The �rst author is supported bya post-doctoral scholarship awarded by Bilkent University.References[1] F. Ambert, B. Legeard, and E. Legros. Programmation en logique avec contraintes sur ensembles etmulti-ensembles h�er�editairement �nis. Techniques et Sciences Informatiques 15(3):297{328, 1996.[2] D. Diaz and Ph. Codognet. A minimal extension of the WAM for clp(FD). In D.S. Warren (ed),Proc. of ICLP'93, pp. 774{790. The MIT Press, 1993.[3] Y. Deville and P. Van Hentenryck. Construction of CLP programs. In D.R. Brough (ed), LogicProgramming: New Frontiers, pp. 112{135, Kluwer Academic Publishers, 1992.[4] P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis of steadfast programs. InM. Lowry and Y. Ledru (eds), Proc. of ASE'97, pp. 153{160. IEEE Computer Society, 1997.[5] C. Gervet. Interval propagation to reason about sets: De�nition and implementation of a practicallanguage. Constraints 1(3):191{244, 1997.[6] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthesis. In D.S. Warren(ed), Proc. of ICLP'93, pp. 441{455. The MIT Press, 1993.[7] J. Ja�ar and M.J. Maher. Constraint logic programming: A survey. J. of Logic Programming 19{20:503{582, 1994.[8] K.-K. Lau and M. Ornaghi. A formal approach to deductive synthesis of constraint logic programs.In J.W. Lloyd (ed), Proc. of ILPS'95, pp. 543{557. The MIT Press, 1995.[9] D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti�cial Intelligence 27(1):43{96, 1985.[10] D.R. Smith. The structure and design of global search algorithms. Technical Report KES.U.87.12,Kestrel Institute, 1988.[11] D.R. Smith. kids: A semiautomatic program development system. IEEE Trans. Software Engineer-ing 16(9):1024{1043, 1990.[12] D.R. Smith. Towards the synthesis of constraint propagation algorithms. In Y. Deville (ed), Proc. ofLOPSTR'93, pp. 1{9, Springer-Verlag, 1994. 8

