
Schema-Guided Synthesis of CLP Programs ?Hamza Zidoum1, Pierre Flener2, and Brahim Hnich31 UAE University, PO Box 15551, Al-A��n, United Arab Emirates2 Dept of Info Science, Uppsala Univ., S-751 05 Uppsala, Sweden, pierref@csd.uu.se3 Dept of Info Technology, Tampere Univ. of Technology, SF-33101 Tampere, Finland1 Introduction and Speci�cationsThis work is inspired by D.R. Smith's research on synthesising global search (GS)programs (in the Re�ne language) from �rst-order logic speci�cations (also in Re-�ne) [8{10]. We concentrate on synthesising constraint logic programs (CLP) [6]instead. We thus only have to synthesise code that (incrementally) poses the con-straints, because the actual constraint propagation and pruning are performedby the CLP system. We here only tackle the family of decision assignment prob-lems; the families of optimisation assignment problems, decision permutationproblems, and optimisation permutation problems are covered in [4].Speci�cations are the input to program synthesis. In decision assignmentproblems, a mapping M from a list V into the integer interval 1::W has to befound, satisfying certain constraints. Their formal speci�cations take the form8hV;W i : list(term)� int : 8M : list(V � 1::W) :r(hV;W i;M) $ 8hI; Ji; hK;Li 2M : ^mi=1 Pi(I; J;K;L)! Qi(I; J;K;L) (1)where the Pi andQi are formulas. This can be considered a speci�cation template.This covers many problems, such as Hamiltonian path, n-Queens, and graphcolouring , which problem consists of �nding a mappingM from the list R of theregions of a map to a set of colours (numbered 1::C) so that any two adjacentregions (as indicated in an adjacency list A) have di�erent colours:8hR;C;Ai : list(term)� int� list(R�R) : 8M : list(R� 1::C) :col(hR;C;Ai;M)$ 8hR1; C1i; hR2; C2i 2M : hR1; R2i 2 A! C1 6= C2 (2)2 A Global Search Program Schema for CLPA program schema [3] for a programming methodology M (such as divide-and-conquer, generate-and-test, . . .) is a couple hT;Ai, where template T isan open program showing the (problem-independent) data-
ow and control-
owof programs constructed following M , and axioms A constrain the (problem-dependent) programs for the open relations in T such that the overall (closed)program will really be a program constructed following M .? A full version of this extended abstract is published as [4].

The basic idea of our GS schema for CLP is to start from an initialiseddescriptor of the search space, to incrementally split that space into subspaces,while declaring the domains of the involved variables and constraining them toachieve partial consistency, until no splits are possible and a variablised solutioncan be extracted. Then a correct solution is generated, by instantiation of thevariables in the variablised solution. Our GS template is thus the open program:r(X;Y) initialise(X;D);rgs(X;D; Y);generate(Y;X)rgs(X;D; Y) extract(X;D; Y)rgs(X;D; Y) split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y) (GS)where the open relations are informally speci�ed as follows: initialise(X;D)i� D is the descriptor of the initial space of candidate solutions to problemX ; extract(X;D; Y) i� the variablised solution Y to problem X is directly ex-tracted from descriptor D; split(D;X;D0; �) i� descriptor D0 describes a sub-space of D wrt problem X , such that D0 is obtained by adding � to descriptor D;constrain(�;D;X) i� adding � to D leads to a descriptor de�ning a subspace ofD that may contain correct solutions to problem X ; generate(Y;X) i� correctsolution Y to problem X is enumerated from the constraint store, which is animplicit parameter representing X . Formalising this is the role of the axioms, asshown in [4]. There we also establish in what sense our GS schema is correct.3 Schema Particularisations and the Synthesis MethodUsing the GS schema like the divide-and-conquer schema was used in [7, 3] toguide synthesis puts heavy demands on automated theorem proving and turnsout much more di�cult [8]. Fortunately, a large percentage of GS programs fallsinto one of 7 families identi�ed by Smith, each representing a particular case ofthe GS schema (in the sense that programs for all its open relations are ade-quately chosen in advance), here called a particularisation. In [4], we exhibit ourparticularisations for assignment and permutation problems, and show how toimplement them as programs, called closures, because they \close" the open pro-gram GS. We also de�ne the notion of speci�cation reduction, expressing whenit su�ces to invoke a program Pg of speci�cation Sg to implement a new speci�-cation Sr. The synthesis method is then as follows: Given a speci�cation Sr, �nd(through a linear subcase of the decidable second-order semi-uni�cation) a sub-stitution � under which Sr reduces to the speci�cation template Sg attached tosome particularisation Pg of the GS schema, and then obtain a (closed) programthat correctly implements Sr by taking the GS template and Cg�.Example Given speci�cation (2), the fully automatically synthesisable programconsists of the GS template and the following code:

Pinit : initialise(X;D) D = hV; []iPextr : extract(; D; Y) D = h[]; Y iPsplit : split(D;X;D0; �) D = h[I jT];Mi;J in 1::W;� = hI; Ji;D0 = hT; [�jM]iPconstr : constrain(; D;) D = h ; []iconstrain(�;D; h ; ; Ai) � = hR1; C1i;D = h ; [hR2; C2ijM 0]i;hR1; R2i 2 A! C1 6= C2;constrain(�; h ;M 0i; h ; ; Ai)Pgen : generate(M;) M = []generate(M;) M = [h ; JijM 0];indomain(J);generate(M 0;)4 ConclusionAt least one order of magnitude is gained in e�ciency by switching from an ordi-nary symbolic language to a constraint one, and our automatically synthesisableCLP(FD) [2] programs are only 3 to 5 times slower than carefully hand-craftedones [2], which is encouraging since none of the obvious problem-speci�c op-timising transformations have been performed yet on our programs. Since oursynthesis is fully automatable, starting from short and elegant formal speci�ca-tions (which can even be generated from some form of controlled English [5]),our approach seems viable. Our formal speci�cation language is equivalent in itsexpressiveness to CLP(Sets) programming languages, such as CLPS [1]. We thusaim at new ways of compiling CLP(Sets) programs. Comparing execution timesis still meaningless because of the prototypical nature of CLP(Sets) compilers.The synthesised programs are not small (minimum 33 atoms, in a very expres-sive programming language), and making them steadfast reusable componentsfor a programming-in-the-large approach by embedding their whole developmentin a framework-based approach [3] is straightforward.Our results are more than a simple transcription of the Kids approach fromRe�ne to CLP, as they also re
ect some new ideas.First, we fully exploited CLP [as opposed to Re�ne, which is \only" an ordi-nary symbolic language], by signi�cantly modifying the original GS schema, so

that it re
ects a constrain-and-generate programming methodology. Much of theconstraint solving machinery that needs to be pushed into Re�ne programs, atsynthesis time or at optimisation time, is already part of the CLP(FD) languageand is implemented there once and for all in a particularly e�cient way.Second, we introduced the notion of speci�cation template. This has nicee�ects on the Kids approach, as shown in the next two items.Third, the substitution under which a speci�cation reduces to a speci�cationtemplate can be easily computed, so that there is no need of an automatedtheorem prover, at synthesis time, to compute it.Fourth, the derivation of consistency-constraint-posing code can be calling-context-dependent, leading to rather e�ective (namely incremental) constraint-posing code [in contrast to Smith's calling-context-independent derivation of�lters [8, 9] and cuts [10], which may be non-incremental]. Such code can evenbe pre-synthesised, for a given particularisation, so that there is no need of anautomated theorem prover, at synthesis time, to derive its speci�cation. [Asopposed to �lters and cuts] no forward constraints need to be posed, not evenfor e�ciency reasons, due to the way CLP programs work [as opposed to Re�neones]: Solution construction (through generate) actually only starts in CLP onceall constraints have been posed, and posing any forward constraints would thusbe not only super
uous but also a way of slowing down the program, becausethe forward constraints of time t will become backward constraints at timeslarger than t and all constraints would thus have been posed twice. This doesnot prevent CLP from performing forward checks during solution generation.All this means that synthesis can be fully automatic, without using anyautomated theorem prover, for some families of problems.References1. F. Ambert, B. Legeard, et E. Legros. Programmation en logique avec contraintessur ensembles et multi-ensembles h�er�editairement �nis. TSI 15(3):297{328, 1996.2. D. Diaz and Ph. Codognet. A minimal extension of the WAM for clp(FD). In: D.S.Warren (ed), Proc. of ICLP'93, pp. 774{790. The MIT Press, 1993.3. P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis of stead-fast programs. Proc. of ASE'97, pp. 153{160. IEEE Computer Society Press, 1997.4. P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logicprograms. Proc. of ASE'98. IEEE Computer Society Press, 1998.5. N.E. Fuchs and U. Schwertel. Attempto Controlled English | Not just anotherlogic speci�cation language. This volume.6. J. Ja�ar and M.J. Maher. Constraint logic programming: A survey. J. of LogicProgramming 19{20:503{582, 1994.7. D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti�cial In-telligence 27(1):43{96, 1985.8. D.R. Smith. The structure and design of global search algorithms. TRKES.U.87.12, Kestrel Institute, 1988.9. D.R. Smith. Kids: A semiautomatic program development system. IEEE Trans.Software Engineering 16(9):1024{1043, 1990.10. D.R. Smith. Towards the synthesis of constraint propagation algorithms. In: Y.Deville (ed), Proc. of LOPSTR'93, pp. 1{9, Springer-Verlag, 1994.

