
MiniZinc with Strings

Roberto Amadini1, Pierre Flener2, Justin Pearson2,
Joseph D. Scott2, Peter J. Stuckey1, and Guido Tack3

1 University of Melbourne, Victoria, Australia
2 Uppsala University, Uppsala, Sweden

3 Monash University, Australia

Abstract. Strings are extensively used in modern programming lan-
guages and constraints over strings of unknown length occur in a wide
range of real-world applications such as software analysis and verifica-
tion, testing, model checking, and web security. Nevertheless, practically
no constraint programming solver natively supports string constraints.
We introduce string variables and a suitable set of string constraints as
builtin features of the MiniZinc modelling language. Furthermore, we
define an interpreter for converting a MiniZinc model with strings into
a FlatZinc instance relying only on integer variables. This conversion is
obtained via rewrite rules, and does not require any extension of the ex-
isting FlatZinc specification. This provides a user-friendly interface for
modelling combinatorial problems with strings, and enables both string
and non-string solvers to actually solve such problems.

1 Introduction

Strings are widely adopted in modern programming languages for representing
input/output data as well as actual commands to be executed dynamically. The
latter is particularly critical for security reasons: consider, e.g., the dynamic
execution of a malicious SQL query that might dump a database or delete entire
tables. Apart from security issues, tracking (an approximation of) the possible
values of a string variable can also help in bug detection and code optimisation.

String analysis — needed in real-life applications such as test-case genera-
tion [13], program analysis [8], model checking [17], web security [5] — is an active
and growing field, [11, 25, 28], and requires the processing of string constraints
such as string (in-)equality, concatenation, and so on. Nevertheless, in constraint
programming (CP), practically no solver natively supports string constraints.
To our knowledge, the only exception is a new extension [33,36] with bounded-
length string variables of the Gecode solver [18], here called Gecode+S for
convenience, which will become part of the official Gecode release. Empirical
results show that Gecode+S is usually better than dedicated string solvers such
as Hampi [23], Kaluza [32], and Sushi [14].

In this paper we take a further step towards the definition and solving of
string constraints. The three contributions of this paper are as follows.

First, an extension of the MiniZinc [30] modelling language by string vari-
ables of possibly unknown length. MiniZinc enables the specification of con-
straint problems over (sets of) integers and real numbers, but currently does not
allow models containing string variables. Thanks to the extension we describe, a
MiniZinc user can now naturally define and solve a MiniZinc model containing
string variables and constraints, as well as other constraints on other variable
types.

Second, we provide a solver independent conversion of MiniZinc models with
strings into equivalent FlatZinc instances containing only integer variables. Thus,
every solver supporting FlatZinc can now solve a MiniZinc model with strings.
This conversion follows the padding representation advocated in [21] and imple-
mented in [35]. However, we underline that our contribution is orthogonal to [35]
and generalises its work (see Section 4.2): our MiniZinc formulation does not im-
pose restrictions on the string length (enabling us to express unbounded-length
strings), and further allows any solver to use its preferred string representation
(e.g., bit vectors or automata), and handles a superset of the constraints of [35].

Third, we provide an experimental evaluation on the Norn string bench-
mark [1] used in Gecode+S [33, 36] and the state-of-the-art constraint solvers
Chuffed [10], Gecode [18], iZplus [15], Picat-SAT [43], MZN/Gurobi [4],
MZN/Yices2 [9] and MZN/OscaR.cbls [7]. Results indicate that native sup-
port for string variables usually pays off, but not always, in which case the
technology of the best solver varies. Indeed, we show that — despite longer
flattening times — sometimes our conversion is more beneficial than using a
dedicated string solver.

Paper Structure. Section 2 gives some background notions about string vari-
ables, MiniZinc and FlatZinc. Sections 3 and 4 describe the string extensions
we implemented for MiniZinc and FlatZinc. Section 5 presents the experimental
results before we discuss related work in Section 6 and conclude in Section 7.

2 Background

MiniZinc [30] is a flexible and user-friendly modelling language for representing
constraint problems. The motto is model once, solve anywhere: each MiniZinc
model is solver-independent, although it may contain annotations to communi-
cate with the underlying solver.

MiniZinc supports the most common global constraints (constraints defined
over an arbitrary number of variables [3]) and allows the separation between
model and data: a MiniZinc model can be defined as a generic template to be
instantiated by different data.

As an example, consider the n-queens problem, where n ≥ 4 queens have to
be placed on an n×n chessboard in such a way that they do not attack each other.
This problem can be modelled in MiniZinc in terms of an unspecified number n
of queens, and then instantiated by providing the value of parameter n.

FlatZinc is a solver-specific target language for MiniZinc. Each MiniZinc
model (together with corresponding data, if any) is converted into FlatZinc in the
form required by a solver. In other terms, from the same MiniZinc model different
FlatZinc instances can be derived according to solver-specific redefinitions.

For example, the n-queens problem can be modelled with the well-known
alldifferent([x1, . . . , xn]) global constraint, which holds if and only if all vari-
ables xi take different values. In this case a solver can decide to keep the con-
straint as is or to unfold it into the logical conjunction

∧
1≤i<j≤n xi 6= xj .

Following the approach of [23, 32, 33, 35, 36] we focus in this work on con-
straint solving over bounded string variables, i.e., string variables x having a
bounded length `, with |x| ≤ ` ∈ N. We point out that our MiniZinc language
extension allows us to express problems with unbounded string variables. Note
that, while problems over bounded-length string variables are trivially decidable,
satisfiability with unbounded-length strings is not decidable in general [16].

Notation. Given a fixed alphabet Σ, a string x ∈ Σ∗ is a finite sequence of
|x| ≥ 0 characters of Σ, where |x| is the length of x. Let ASC denote the set of
the ASCII symbols: we define the function I : ASC→ [1, 128] such that I(a) = k
if and only if a is the k-th ASCII symbol.

The symbols =, 6=, and � respectively denote string equality, inequality, and
lexicographical order on Σ∗. The concatenation of x and y is denoted by x · y,
while xn denotes the iterated concatenation of x for n times; x0 denotes the
empty string ε, while x−1 denotes the reverse of x.

If x is a string (resp., an array), then we denote by x[i] its i-th character
(resp., element) and by x[i..j] the subsequence x[i]x[i + 1] · · ·x[j]; indices start
from 1 in both cases. The symbol ∈ is used for both set membership and character
occurrence within a string.

3 MiniZinc with Strings

MiniZinc supports plenty of builtins (e.g., comparisons, basic and advanced nu-
meric operations, set operations, logical operators, . . .) and global constraints. It
currently permits four types of variables (i.e., Booleans, integers, floats, and sets
of integers) while strings can only be fixed literals, used for formatting output
or defining model annotations.

Our first contribution is introducing string variables, i.e., variables x ∈ Σ∗,
where Σ is a given alphabet. As a first step, we assume that the alphabet Σ is
always the set ASC of ASCII characters. Although we focus on bounded-length
strings, we do not impose any limitation on the maximum string length `.

Figure 1 shows three string variable declarations in a MiniZinc model. Vari-
able x belongs to ASC∗ but its maximum length is not specified: a solver can
choose the preferred upper bound ` for its length or consider it unbounded. For
example, a solver using automata for representing strings does not need to set a
maximum length since it can represent strings of arbitrary length. Conversely, a
bounded-length string solver such as Gecode+S has to fix a maximum string

1 int: N;
2 var string: x;
3 var string(N): y;
4 var string (500) of {"a", "b", "c"}: z;

Fig. 1. Examples of string variable declarations.

Table 1. MiniZinc string constraints, for each x, y, z ∈ ASC∗, a, b ∈ ASC, n,m, q, q0 ∈
N, S ⊆ ASC, F ⊆ N, D ∈ Nq×|S|, and N ∈ P(N)q×|S|.

Constraint MiniZinc Syntax Description
x = y, x 6= y x = y, x != y (in-)equality

x ≺ y, x � y, x � y, x � y x < y, x <= y, x >= y, x > y lexicographic order
x ∈ S∗ x in S character set
x ∈ S∗ str_alphabet(x, S) alphabet
x ∈ [a, b]∗ str_range(x, a, b) character range
z = x · y z = x ++ y concatenation
a = x[n] a = x[n] character access

y = x[n..m] y = str_sub(x, n, m) sub-string
y = xn y = str_pow(x, n) iterated concatenation
y = x−1 y = str_rev(x) reverse
n = |x| n = str_len(x) length

x ∈ LD(q, S,D, q0, F) str_dfa(x, q, S, D, q0, F) DFA membership
x ∈ LN(q, S,N, q0, F) str_nfa(x, q, S, N, q0, F) NFA membership
GCC(x,A,N) str_gcc(x, A, N) global cardinality

length `. This tricky part is analogous to a MiniZinc declaration of the form “var
int: i” for an integer variable i: a finite-domain solver assumes the domain of
i to be finite and chooses its preferred bounds, while for a MIP solver i is un-
bounded. The length of y in Figure 1 can be at most N, where N is an integer
parameter to be initialised within the model or in a separate data file. Variable
z even has a constrained alphabet: z ∈ {w ∈ {"a", "b", "c"}∗ | |w| ≤ 500}.

Given that we now have string variables, inspired by [33,35,36], we introduce
the string constraints specified in Table 1. A constraint for membership in a
context-free language could be added; it was considered in [33,35,36] for inclusion
in Gecode+S, but not implemented for time-reasons as the state-of-the-art
propagator of [21] for fixed-length string variables needs work to be generalised
to bounded-length string variables.

The constraints =, 6=,≺,�,�,� have the semantics of their standard defini-
tions. Given S ⊆ ASC, the semantics of x ∈ S∗ is ∀a : a ∈ x =⇒ a ∈ S, while
x ∈ S also enforces the reverse implication, i.e., ∀a : a ∈ x ⇐⇒ a ∈ S.

The constraint str_range offers a shortcut for defining a set of strings over
a range of characters: [a, b]∗ = {c ∈ ASC | a ≤ c ≤ b}∗, so for instance
["a", "d"]∗ = {"a", "b", "c", "d"}∗. The function x[i..j] returns the substring
x[n]x[n + 1] · · ·x[m], where n = max(1, i) and m = min(j, |x|). In particular,
i > j implies x[i..j] = ε.

1 int: m;
2 var int: n;
3 var string(m): x;
4 constraint x = str_rev(x);
5 constraint str_range(x, "a", "z");
6 constraint str_len(x) mod 2 = 1;
7 constraint str_gcc(x, ["a", "b", "c"], [n, n, n]);
8 constraint n > 0;
9 solve minimize str_len(x);

Fig. 2. A model for finding minimum-odd-length palindromes with the same, positive
number of a’s, b’s, and c’s. An optimal solution must have n = 2 ∧ |x| = 7.

The constraint x ∈ LD(q, S,D, q0, F) constrains x to be accepted by the de-
terministic finite automaton (DFA) 〈Q,S, δ, q0, F 〉 where: Q = {1, . . . , q} is the
state set, S = {a1, . . . , a|S|} is the alphabet, δ : Q × S → Q is the transition
function such that D[i, j] = k ⇐⇒ δ(i, aj) = k, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states. The same applies to the non-deterministic fi-
nite automaton (NFA) constraint x ∈ LN(q, S,N, q0, F), with the only difference
that, while D[i, j] ∈ Q, in this case N [i, j] ⊆ Q.

Finally, we add a global cardinality constraint GCC(x,A,N) for strings, stat-
ing that each character A[i] ∈ ASC must occur exactly N [i] times in string x.

The constraints in Table 1 express all those used in existing string solvers [1,
14,23,24,32,41] and reflect the most used string operations in modern program-
ming languages. We are not aware of string solvers supporting constraints like
lexicographic ordering and global cardinality, but these are natural for a CP
solver.

Some constraints are redundant. For example we have that x[i] = x[i..i] and
y = x[i..j] ⇐⇒ (∃y1, y2 ∈ ASC∗) x = y1 · y · y2 ∧ |y1| = i − 1 ∧ |y1 · y| = j.
The rationale behind such redundancy is to ease the model writing and to allow
solvers to define a specialised treatment for each constraint in order to optimise
the solving process.

The constraint set we added to MiniZinc is intended to be an extensible
interface for the definition of string problems to be solved by fixed, bounded,
and unbounded-length string solvers.

Consider the MiniZinc model in Figure 2, encoding the problem of finding a
minimum-length palindrome string belonging to {"a", . . . , "z"}∗, having an odd
length, and containing the same, positive number of occurrences of "a", "b", and
"c". We can see in this example the potential of MiniZinc with strings: the model
is succinct and readable, it allows the specification of optimisation problems and
not just of satisfaction problems, it accepts constraints over different types than
just strings, it does not impose any bounds on the lengths of the strings, and
it enables expressing the membership of a string variable to a context-sensitive
language.

A more interesting example is provided in Figure 3, where we show a simpli-
fied way to detect a potential SQL injection attack in a script. An SQL injection
is a technique where a malicious SQL statement is injected into a regular SQL

1 string sql;
2 var int: m; var int: n;
3 var string: pref; var string: suff; var string expr;
4 constraint sql = pref ++ expr ++ str_pow(" ", m) ++ "=" ++ str_pow(" ", n) ++

expr ++ suff;
5 constraint str_len(expr) > 0;
6 solve satisfy;

Fig. 3. A model for detecting a possible SQL injection.

command. A well-known example is the injection of the condition " OR 1=1 "
into the WHERE clause of an SQL query. Since every Boolean expression contain-
ing such a condition evaluates to true, an SQL injection of this type may cause
the deletion or communication of tables of a database. The model in Figure 3
is actually more general, by detecting an injection into the parametric string
sql of a substring of the form expr · bm = bn · expr, where expr can be any
non-empty string while bm and bn are arbitrary sequences of m and n blanks re-
spectively, where m and n are non-negative integer variables. The prefix pref
and the suffix suff of sql can be any string. Clearly, this simplified example
is not general enough to cover all the possible SQL injections. Nonetheless, this
MiniZinc model is strictly more powerful than when using only regular expres-
sions: the constraint in line 4 cannot be replaced by an equivalent str_dfa or
str_nfa constraint, but could alternatively be modelled using the mentioned
constraint for membership in a context-free language, which is not considered in
this paper.

4 FlatZinc with(out) Strings

MiniZinc is a solver-independent modelling language. In practice, this is achieved
by the MiniZinc compiler, which can translate any MiniZinc model into a spe-
cialised FlatZinc instance for a particular solver, using a solver-specific library
of suitable redefinitions for basic and global constraints.

In order to extend MiniZinc with support for string variables, our second
contribution consists of two redefinition libraries to perform different conversions:

– a string-to-string conversion F str that flattens a model M with string con-
straints into a FlatZinc instance F str(M) with all such constraints preserved;

– a string-to-integers conversion F int that flattens a modelM with string con-
straints into a FlatZinc instance F int(M) with string constraints transformed
into integer constraints.

We now discuss these two conversions in turn.

4.1 The F str Conversion

The conversion F str is straightforward and we omit its technical details. Each
string predicate is preserved in the resulting FlatZinc instance, with a few ex-
ceptions in order to be consistent with the FlatZinc syntax. For example, the

1 array [1..3] of string: X_INTRODUCED_3 = ["a","b","c"];
2 var int: n :: output_var;
3 var string (100): x :: output_var;
4 var string: X_INTRODUCED_0 :: var_is_introduced :: is_defined_var;
5 var int: X_INTRODUCED_1 :: var_is_introduced :: is_defined_var;
6 constraint str_eq(x,X_INTRODUCED_0);
7 constraint str_range(x,"a","z");
8 constraint int_mod(X_INTRODUCED_1 ,2,1);
9 constraint str_gcc(x,X_INTRODUCED_3 ,[n,n,n]);

10 constraint int_le(1,n);
11 constraint str_rev(x,X_INTRODUCED_0) :: defines_var(X_INTRODUCED_0);
12 constraint str_len(x,X_INTRODUCED_1) :: defines_var(X_INTRODUCED_1);
13 solve minimize X_INTRODUCED_1;

Fig. 4. FlatZinc instance resulting from F str applied to the MiniZinc model in Figure 2.

constraints x = y and x != y are rewritten into str_eq(x, y) and str_neq(x,
y) respectively. Similarly, a string function is rewritten into a corresponding Flat-
Zinc predicate; e.g., n = str_len(x) is translated into str_len(x, n), while z
= x ++ y translates into str_concat(x, y, z).

Figure 4 gives the FlatZinc instance obtained by the F str conversion of the
MiniZinc model in Figure 2, assuming that the length-bound parameter m is
instantiated with value 100 (see line 3).
F str is a straightforward and fast conversion aimed at solvers supporting

(some of) the constraints of Table 1. At present, to the best of our knowledge,
the only CP solver with such a capability is the new Gecode+S [33, 36].

4.2 The F int Conversion

When extending MiniZinc with new features, the goal is to be always conser-
vative: the compiler should produce FlatZinc code executable by any current
FlatZinc solver, albeit less efficiently than by a solver with native support for
the new features. Hence we also develop the F int conversion.

The underlying idea of F int is to map each string variable x to an integer
variable `x ∈ [0, n] representing the string length |x| and an array X ∈ [0, 128]n

of n integer variables representing the string itself; we choose n = min
(
|x|, `

)
,

where |x| denotes the upper bound on |x| if it is specified in the model and |x| = `
otherwise, as we cannot exceed the maximum string length `. For i = 1, . . . , n
the invariant i > `x ⇐⇒ X[i] = 0 enforces that the end X[|x| + 1] · · ·X[n]
of the array X is padded with trailing zeros. The notation (∀i=1,...,|x|) P (i) is
actually a shortcut for the constraint (∀i∈[1,`x]) i ≤ |x| → P (i), and similarly
for existential quantification, where `x denotes the current upper bound of the
domain of `x.

The main issue of F int is the maximum size `, since FlatZinc does not allow
dynamic-length arrays. We set ` = 1000 by default and issue a warning to the
user if an unbounded string variable is artificially restricted by this transforma-
tion. The user (and in fact each solver) can override this parameter.

Vstr(x, n, S) 7→ {A(x)} (1)

A(x) 7→ 〈X〉

{
n = min(|x|, `), Varr(X,n, 0..I(D(x))),
Vint(`x, 0..n), `x = |x|, (∀i∈[1,n]) i > `x ⇐⇒ X[i] = 0

}
(2)

x ∈ S∗ 7→
{
(∀i∈[1,|x|]) A(x)[i] ∈ {0} ∪ I(S)

}
(3)

x ∈ S∗ 7→
{
x ∈ S, (∀i∈I(S))(∃j∈[1,|x|]) A(x)[j] = i

}
(4)

x ∈ [a, b]∗ 7→
{
(∀i∈[1,|x|]) A(x)[i] ∈ {0} ∪ [I(a), I(b)]

}
(5)

x = y 7→ {|x| = |y|, (∀i∈[1,|x|]) A(x)[i] = A(y)[i]} (6)
x 6= y 7→ {|x| = |y| → (∃i∈[1,|x|]) A(x)[i] 6= A(y)[i]} (7)
x � y 7→ {lex_lesseq(A(x),A(y))} (8)

GCC(x,A,N) 7→ {global_cardinality(A(x), [I(a) | a ∈ A], N)} (9)

|x| 7→ 〈n〉 {Vint(n, 0..`)} (10)

x−1 7→ 〈y〉
{
Vstr(y), |x| = |y|, (∀i∈[1,|x|]) A(y)[i] = A(x)[|x| − i+ 1]

}
(11)

x · y 7→ 〈z〉

{
Vstr(z), |z| = |x|+ |y|, (∀i∈[1,|x|]) A(z)[i] = A(x)[i],
(∀j∈[1,|y|]) A(z)[j + |x|] = A(y)[j]

}
(12)

xn 7→ 〈y〉

{
Vstr(y), |y| = n|x|,
(∀i∈[1,|x|],j∈[1,|y|]) A(x)[i] = A(y)[|x|(j − 1) + i]

}
(13)

x[i..j] 7→ 〈y〉


n = max(1, i), m = min(|x|, j),
Vstr(y), |y| = max(0,m− n+ 1),

(∀k∈[1,|y|]) A(y)[k] = A(x)[k + n− 1]

 (14)

x[i] 7→ 〈y〉

{
Vstr(y), |y| ≤ 1,

(i ∈ [0, |x|] ∧ A(y)[1] = A(x)[i]) ∨ (i /∈ [0, |x|] ∧ y = ε)

}
(15)

x ∈ LD(q, S,D, q0, F) 7→

s = |S|+ 1, D′ ∈ [1, q]q×s, T = sort(I(S)),

(∀i∈[1,q],j∈[1,s]) D′[i, j] =

{
0 if j = 1 ∧D[i, j] /∈ F
D[i, j] otherwise

Varr(X, |x|, 0..|x|), regular(X, q, s,D′, q0, F),

(∀i∈[1,|x|]) A(x)[i] =

{
T [X[i]− 1] if X[i] > 1

0 otherwise


(16)

Fig. 5. Rewrite rules of F int.

The F int conversion follows the padding representation advocated in [21]
and implemented in [35]: it works through the rewrite rules listed in Figure 5.
This conversion is specified as a library containing the rewrite rules expressed in
the MiniZinc language itself and does not require any extension of the existing
FlatZinc specification.1 Each rewrite rule has one of the following forms:

– P 7→ {C1, . . . , Cn}, meaning that predicate P is rewritten into the constraint
conjunction C1 ∧ · · · ∧ Cn; or

– F (x1, . . . , xk) 7→ 〈E〉{C1, . . . , Cn}, meaning that function F is rewritten into
expression E subject to constraint C1 ∧ · · · ∧ Cn.

We use a more readable meta-syntax instead of using MiniZinc/FlatZinc di-
rectly. We denote by D(x) ⊆ ASC the auxiliary function that returns the set
of characters that may occur in x, and by I(S) the set {I(a) | a ∈ S} of the
ASCII codes for each character of S. Given D ⊆ N and S ⊆ ASC, the constructs
Vint(n,D), Vstr(x,m, S), and Varr(X,m,D) denote respectively: an integer vari-
able declaration var D: n, a string variable declaration var string(m) of S:
x, and an array of integer variables declaration array[1..m] of var D: X. If a
parameter is omitted, then we assume D = [0, 128], m = `, and S = ASC.

Rule (1) of Figure 5 transforms a declaration of a string variable x into
the corresponding declaration of an array X of integer variables via the A(x)
function of Rule (2), which enforces the properties of X described above. It is
important to note that this transformation relies on the same array of integer
variables being returned by A(x) for a variable x, even if the function is called
multiple times. This is achieved through the common subexpression elimination
mechanism built into MiniZinc functions [37].

Rules (3) to (9) are examples of predicate rewriting. In particular, the latter
two rules take advantage of MiniZinc expressiveness by rewriting x � y and
GCC(x,A,N) in terms of the lex_lesseq and the global_cardinality global
constraints over integers. The rewrite rules for predicates ∈, ∈ , =, and 6= are
intuitive.

Rules (10) to (15) are examples of function rewriting: a string variable is cre-
ated, constrained, and then returned. We can see that dealing with special cases
enables us to reduce the number of generated constraints; e.g., see Rules (14)
and (15).

Rule (16) for str_dfa predicate is tricky. Indeed, the regular global con-
straint cannot straightforwardly encode x ∈ LD(q, S,D, q0, F) since the “empty
character” 0 might occur in A(x). In order to agree with the semantics of
regular, it is necessary to increment the number s of its symbols (so, the i-th
character of S becomes the (i+ 1)-st symbol of the DFA encoded by regular),
and to add a column at the head of D for dealing with the 0 character (ma-
trix D′ is the result of this addition — note that the state 0 is always a failing
state).2 If regular is satisfiable, then the accepted sequence X is re-mapped to

1 This library, called nostrings.mzn, is publicly available at https://bitbucket.org/
jossco/gecode-string.

2 Details at http://www.minizinc.org/doc-lib/doc-globals-extensional.html

https://bitbucket.org/jossco/gecode-string
https://bitbucket.org/jossco/gecode-string
http://www.minizinc.org/doc-lib/doc-globals-extensional.html

a corresponding string thanks to the auxiliary array T . The rule for str_nfa is
analogous.

We remark that the F int converter enables the solving of string problems by
any solver. Clearly, this is achieved at the expense of efficiency. Indeed, several
new constraints and reifications are introduced.

Consider for example the model M of Figure 2: the F str(M) conversion is
instantaneous and produces a FlatZinc instance of only 13 lines, regardless of the
maximum length m of string variable x (see Figure 4). Conversely, the F int(M)
conversion can be considerably less efficient depending on the m parameter. For
example, if m = 100, then F int(M) consists of 4,511 lines; if m = 1000, then a
FlatZinc instance of 45,011 lines is produced.

5 Evaluation

Our third contribution is an evaluation of our framework with different solvers.
We compared the string CP solver Gecode+S [33, 36] against various state-of-
the-art constraint solvers, namely:

– Chuffed [10] is a CP solver with lazy clause generation [31];
– Gecode [18] is a CP solver;
– iZplus [15] is a CP solver that also exploits local search;
– Picat-SAT [43] translates a CP problem into a Boolean satisfiability (SAT)

problem, solved by Lingeling;
– MZN/Gurobi [4] translates a MiniZinc (MZN) model into a mixed-integer

linear program, solved by Gurobi Optimizer [20];
– MZN/Yices2 [9] translates a MiniZinc model into a SAT modulo theories

(SMT) model without string variables, solved by Yices2;
– MZN/OscaR.cbls [7] translates a MiniZinc model in a constraint-based lo-

cal search model and a black-box search procedure, run by OscaR.cbls [12].

There is a lack of standardised and challenging string benchmarks [21,33,35,36].
However, we stress that the goal of this paper is not an evaluation of solver
performance, but the introduction of a framework for modelling string prob-
lems easily, with solving by both string and non-string solvers. Moreover, one
of the benefits of introducing string variables and constraints in MiniZinc is the
possibility of designing and comparing challenging and standard benchmarks.

We picked five problems from the Norn benchmark [1]: anbn, ChunkSplit,
HammingDistance, Levenshtein, and StringReplace (we use the same names as
in [1]). We also used our Palindrome problem of Figure 2 and our SQL injection
problem of Figure 3. All these problems have no parameters, except for the
maximum string length `. For each problem, we:

1. wrote a MiniZinc model M with parametric bound ` on string length;
2. obtained FlatZinc instances FM (f, `) by flattening M with f ∈ {F str,F int}

and ` ∈ {250, 500, 1000};

Table 2. Runtimes of the solvers. Bold font indicates the best performance for each
problem instance.

Chuffed Gecode iZplus MZN/Gurobi Picat-SAT Gecode+S
` 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000

anbn 0.9 2 4.5 2.6 16.8 145.2 2.2 6.8 22.7 9.7 20.7 54.7 2.1 3.9 7.2 0.4 2.7 28.2
Chunk. 4.7 14.9 n/a 3.5 8 26 7.2 22.2 24.8 t/o t/o t/o 46.8 152 291.1 1.4 14.2 187.9
Hamm. 25.7 283.6 n/a 84.6 t/o t/o t/o t/o t/o 363.6 t/o t/o 46.8 454 t/o 0.6 3.8 37.4
Leven. 1.3 2.6 6 1.2 2.3 5.4 3.7 19.5 8.1 91 345.7 t/o 1.7 3.8 26.8 0.1 0.1 0.1
Str.Rep. 2.4 6.8 23.2 t/o t/o t/o 3.1 9.7 44.2 264.2 t/o t/o 28.3 148.1 t/o 0.2 0.8 4.7
Palind. 1.6 23.4 90 t/o t/o t/o 0.8 2.3 7.1 119.5 t/o t/o 16.6 93.7 504.5 n/a n/a n/a
SQLInj. 17.9 399.8 n/a 4.6 10.2 396.3 108.9 431.1 617.9 t/o t/o t/o 83.3 148.7 502.6 0.5 0.1 0.1

3. solved each FM (F str, `) with Gecode+S (we extended the FlatZinc inter-
preter of Gecode for handling F str builtins) and each FM (F int, `) with the
other solvers.

We ran the experiments on Ubuntu 15.10 machines with 16 GB of RAM and
2.60 GHz Intel® i7 CPU. The source code for Gecode+S and the used MiniZinc
models are available at https://bitbucket.org/jossco/gecode-string. The
versions of the solvers with results in Table 2 are those used by the sunny-cp
portfolio solver [2], version 2.2, in the MiniZinc Challenge 2016.3 We do not
compare with the Norn solver, as our results are incomparable with those of
an unbounded-length solver such as Norn, which generates the language of all
satisfying assignments for each string variable.

Table 2 shows the runtimes, in seconds, to conclude the search, i.e., the time
needed by a solver to prove the (un-)satisfiability of a problem (for satisfaction
problems) or to find and prove an optimal solution (for Palindrome, the only
optimisation problem). The ‘t/o’ abbreviation means that the time-out of 600
seconds was reached, while ‘n/a’ means that a solver failed prematurely (e.g.,
due to a segmentation fault) or is not applicable. For instance, Gecode+S is
not applicable to the Palindrome problem since it does not implement the GCC
constraint, which, to the best of our knowledge, has not been proposed before
in the literature. Our MiniZinc extension (see Table 1) covers all the constraints
implemented by Gecode+S.

The chosen solvers whose results are not listed in Table 2 were not competi-
tive on the chosen problems. Local search, performed by MZN/OscaR.cbls, is
by design unable to prove unsatisfiability and thus always times out on the un-
satisfiable anbn, Hamming, and StringReplace problems. Further, the black-box
local search performed by MZN/OscaR.cbls unfortunately meanders on some
of the chosen satisfiable problems and optimisation problems upon flattening by
the F int conversion: our future work includes integrating the extension [6] for
string variables and constraints of OscaR.cbls [12] into MZN/OscaR.cbls,
so that the F str conversion can be used instead. Similarly, MZN/Yices2 makes
the state-of-the-art SMT solver Yices2 suffer from the result of the composi-

3 sunny-cp is available at https://github.com/CP-Unibo/sunny-cp. We actually
took advantage of its architecture for running and evaluating the solvers in Table 2.

https://bitbucket.org/jossco/gecode-string
https://github.com/CP-Unibo/sunny-cp

250 500 1000
0.0

0.1

1.0

10.0

100.0

1000.0

Gecode+S Gecode Chuffed Picat-SAT iZplus MZN/Gurobi

Maximum String Length

F
la

tt
e

n
in

g
 T

im
e

 (

lo
g

.
s

c
a

le
)

Fig. 6. Average time (in seconds) taken by F int or F str.

tion of the F int conversion with the FlatZinc-to-SMT-LIB-format conversion [9],
which has not been modernised for a while. We hope that somebody will enable
the use of the F str conversion so that SMT solvers with a string theory — such
as CVC4 [27], S3 [39], and Z3str2 [41] — can be used instead, though not for
optimisation problems.

All the runtimes in Table 2 include the FlatZinc flattening time. As ex-
plained at the end of Section 4, this time is far greater when the F int conversion
is used. This is clearly noticeable in Figure 6, where the average flattening time
(in seconds) taken by F int (for all the solvers except Gecode+S) or F str (for
Gecode+S) is shown.4 As mentioned at the end of Section 4, this time is pro-
portional to the maximum string length `.

While Gecode, Chuffed, Picat-SAT, and iZplus have comparable per-
formance, the flattening time for MZN/Gurobi is remarkably higher. This is
due to the fact that the complex reified expressions created by F str must be lin-
earized for use with MZN/Gurobi and hence this further expands the resulting
FlatZinc. The average percentage of the total solving time (when a problem is
solved) taken by F int is 42.41% for iZplus, 47.10% for Chuffed, 55.97% for
Gecode, and 62.36% for MZN/Gurobi. Conversely, the average percentage of
the total solving time taken by F str for Gecode+S is only 6.95%.

The message of this evaluation is twofold. On the one hand, the Gecode+S
CP solver is by far the best solver overall, due to its native string support
and the short flattening times via F str to FlatZinc. On the other hand, solvers
without native string support sometimes benefit from F int for being faster than

4 We assume a flattening time of T = 600 seconds when the conversion time exceeded
the time limit T . This happened only for MZN/Gurobi.

Gecode+S despite longer flattening times. This is interesting and should stim-
ulate further development of native string support in CP solvers.

6 Related Work

Gecode+S [33,36] is currently the only CP solver that handles bounded-length
string variables; its representation of string variables improves over the prefix-
suffix pairs representation [34] and the open-sequence representation [35]. Fixed-
length Boolean string variables, that is bit vectors, are handled in a CP fashion
in [29]. Older CP approaches are surveyed in [33].

Apart from these systems, there are a number of string solvers, some custom-
made and some others relying on existing solving technologies such as satisfia-
bility modulo theories (SMT). We now discuss three approaches.

Bit-vector solvers map string constraints into bit-vector constraints. Exam-
ples of solvers using this approach are Hampi [23, 24] and Kaluza [32]. The
effectiveness of this approach appears to be limited when compared with other,
more recent string solving techniques [22,41].

Automaton-based solvers rely on regular expressions or (simplified) context-
free grammars in order to represent strings and handle string constraints. Ex-
amples of these approaches are StrSolve [22], Stranger [40], PASS [26], and
PISA [26]. While they can naturally deal with unbounded-length strings, the
main drawback of these solvers is their inability to capture other variable types,
such as integers. For example, as observed in [41], the PISA solver can pro-
vide good performance but cannot model string lengths and symbolic arithmetic
operations.

Word-based string solvers, according to [41], are SMT solvers that treat
strings without abstractions or representation conversions. They take advantage
of already defined theories, and enable a precise modelling of unbounded strings
and length constraints. For instance, Z3str [42], Z3str2 [41], and Z3strBV [38]
extend the well-known SMT solver Z3. Other SMT-based string solvers are
Sushi [14], CVC4 [27], and Norn [1]. Although it is out of the scope of this
paper to provide a comparison with all of them, we remark that Gecode+S
provides a better performance than Sushi in the evaluation reported in [33].

7 Conclusion

We presented an extension of the MiniZinc language that allows users to model
and solve combinatorial problems with strings. The framework we propose is
expressive enough to encode the most used string operations in modern pro-
gramming languages, and — via proper FlatZinc translations — it also enables
both string and non-string solvers to solve such problems. All the solvers having
a FlatZinc interface can now solve string problems without manual intervention.

We took advantage of our framework for evaluating the state-of-the-art con-
straint solvers — Chuffed, Gecode, iZplus Picat-SAT, MZN/Gurobi,

MZN/Yices2, and MZN/OscaR.cbls — on problems with bounded-length
strings. The results indicate that, despite longer flattening times, sometimes our
FlatZinc decomposition can be more beneficial than using a dedicated string
solver.

We are not aware of similar works in CP, and we see our work as a solid start-
ing point for the handling of string variables and constraints with the MiniZinc
toolchain. We hope our extension encourages the development of further CP
solvers that can natively deal with strings. This will hopefully lead to the cre-
ation of new, challenging string benchmarks, and to the development of dedicated
search heuristics (e.g., heuristics based on character frequencies in a string).

We are planning to enhance our framework by adding new search annotations,
constraints, and features, as well extending the string domain from ASCII to
other alphabets, such as Unicode. In particular, the useful missing constraint for
membership in a context-free language should at least have a default handling
under the F int conversion, if not a propagator in Gecode+S used via the F str

conversion.
Finally, non-character alphabets could be useful, such as for the generation

of protocol logs [19], where the natural model would use strings of timestamps.

Acknowledgements. The authors from the University of Melbourne are sup-
ported by the Australian Research Council (ARC) through Linkage Project
Grant LP140100437. The authors in Sweden are supported by the Swedish Re-
search Council (VR) through Project Grant 2015-04910. Many thanks to Gustav
Björdal for having run the experiments on his local-search backend [7] for Mini-
Zinc. Many thanks also to all the referees and to the audience of LOPSTR 2016
for their thoughtful feedback.

References

1. P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-
man. Norn: An SMT solver for string constraints. In CAV, volume 9206 of LNCS,
pages 462–469. Springer, 2015.

2. R. Amadini, M. Gabbrielli, and J. Mauro. A multicore tool for constraint solving.
In IJCAI, pages 232–238. AAAI Press, 2015.

3. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint cat-
alogue: Past, present and future. Constraints, 12(1):21–62, March 2007. The
catalogue is available at http://sofdem.github.io/gccat/.

4. G. Belov, P. J. Stuckey, G. Tack, and M. Wallace. Improved linearization of con-
straint programming models. In CP, volume 9892 of LNCS, pages 49–65. Springer,
2016.

5. P. Bisht, T. L. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan. WAPTEC:
Whitebox analysis of web applications for parameter tampering exploit construc-
tion. In CCS, pages 575–586. ACM, 2011.

6. G. Björdal. String variables for constraint-based local search. Master’s thesis,
Department of Information Technology, Uppsala University, Sweden, August 2016.
Available at http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501.

http://sofdem.github.io/gccat/
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301501

7. G. Björdal, J.-N. Monette, P. Flener, and J. Pearson. A constraint-based local
search backend for MiniZinc. Constraints, 20(3):325–345, July 2015.

8. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In TACAS, volume 5505 of LNCS, pages 307–321.
Springer, 2009.

9. M. Bofill, J. Suy, and M. Villaret. A system for solving constraint satisfaction
problems with SMT. In SAT, volume 6175 of LNCS, pages 300–305. Springer,
2010.

10. G. Chu. Improving Combinatorial Optimization. PhD thesis, Department of Com-
puting and Information Systems, University of Melbourne, Australia, 2011.

11. G. Costantini, P. Ferrara, and A. Cortesi. A suite of abstract domains for static
analysis of string values. Software: Practice and Experience, 45(2):245–287, 2015.

12. R. De Landtsheer and C. Ponsard. OscaR.cbls: An open source framework for
constraint-based local search. In ORBEL-27, the 27th annual conference of the
Belgian Operational Research Society, 2013. Available at http://www.orbel.be/
orbel27/pdf/abstract293.pdf; the OscaR.cbls solver is available from https:
//bitbucket.org/oscarlib/oscar/wiki/CBLS.

13. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database
applications. In ISSTA, pages 151–162. ACM, 2007.

14. X. Fu, M. C. Powell, M. Bantegui, and C. Li. Simple linear string constraints.
Formal Aspects of Computing, 25(6):847–891, 2013.

15. T. Fujiwara. iZplus description. http://www.minizinc.org/challenge2016/
description_izplus.txt, 2016.

16. V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard. Word equations
with length constraints: What’s decidable? In HVC, volume 7857 of LNCS, pages
209–226. Springer, 2013.

17. G. Gange, J. A. Navas, P. J. Stuckey, H. Søndergaard, and P. Schachte. Unbounded
model-checking with interpolation for regular language constraints. In TACAS,
volume 7795 of LNCS, pages 277–291. Springer, 2013.

18. Gecode Team. Gecode: Generic constraint development environment, 2016. Avail-
able at http://www.gecode.org.

19. O. Grinchtein, M. Carlsson, and J. Pearson. A constraint optimisation model for
analysis of telecommunication protocol logs. In Tests and Proofs, volume 9154 of
LNCS, pages 137–154. Springer, 2015.

20. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2016. Available
at http://www.gurobi.com.

21. J. He, P. Flener, and J. Pearson. Solving string constraints: The case for constraint
programming. In CP, volume 8124 of LNCS, pages 381–397. Springer, 2013.

22. P. Hooimeijer and W. Weimer. StrSolve: Solving string constraints lazily. Auto-
mated Software Engineering, 19(4):531–559, 2012.

23. A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI:
A solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Transactions on Software Engineering and Methodology, 21(4):article
25, 2012.

24. A. Kieżun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: A
solver for string constraints. In ISSTA 2009, pages 105–116. ACM, 2009.

25. S. Kim, W. Chin, J. Park, J. Kim, and S. Ryu. Inferring grammatical summaries
of string values. In APLAS, volume 8858 of LNCS, pages 372–391. Springer, 2014.

26. G. Li and I. Ghosh. PASS: String solving with parameterized array and interval
automaton. In HVC, volume 8244 of LNCS, pages 15–31. Springer, 2013.

http://www.orbel.be/orbel27/pdf/abstract293.pdf
http://www.orbel.be/orbel27/pdf/abstract293.pdf
https://bitbucket.org/oscarlib/oscar/wiki/CBLS
https://bitbucket.org/oscarlib/oscar/wiki/CBLS
http://www.minizinc.org/challenge2016/description_izplus.txt
http://www.minizinc.org/challenge2016/description_izplus.txt
http://www.gecode.org
http://www.gurobi.com

27. T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory
solver for a theory of strings and regular expressions. In CAV, volume 8559 of
LNCS, pages 646–662. Springer, 2014.

28. M. Madsen and E. Andreasen. String analysis for dynamic field access. In CC,
volume 8409 of LNCS, pages 197–217. Springer, 2014.

29. L. D. Michel and P. Van Hentenryck. Constraint satisfaction over bit-vectors. In
CP, volume 7514 of LNCS, pages 527–543. Springer, 2012.

30. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
MiniZinc: Towards a standard CP modelling language. In CP, volume 4741 of
LNCS, pages 529–543. Springer, 2007.

31. O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

32. P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for JavaScript. In S&P, pages 513–528. IEEE Computer
Society, 2010.

33. J. D. Scott. Other Things Besides Number: Abstraction, Constraint Propagation,
and String Variable Types. PhD thesis, Department of Information Technology,
Uppsala University, Sweden, 2016. Available at http://urn.kb.se/resolve?urn=
urn:nbn:se:uu:diva-273311.

34. J. D. Scott, P. Flener, and J. Pearson. Bounded strings for constraint programming.
In ICTAI, pages 1036–1043. IEEE Computer Society, 2013.

35. J. D. Scott, P. Flener, and J. Pearson. Constraint solving on bounded string
variables. In CPAIOR, volume 9075 of LNCS, pages 375–392. Springer, 2015.

36. J. D. Scott, P. Flener, J. Pearson, and C. Schulte. Design and implementation of
bounded-length sequence variables. In CPAIOR, LNCS. Springer, 2017.

37. P. J. Stuckey and G. Tack. MiniZinc with functions. In CPAIOR, volume 7874 of
LNCS, pages 268–283. Springer, 2013.

38. S. Subramanian, M. Berzish, Y. Zheng, O. Tripp, and V. Ganesh. A solver for a
theory of strings and bit-vectors. CoRR, abs/1605.09446, 2016.

39. M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability
detection in web applications. In SIGSAC, pages 1232–1243. ACM, 2014.

40. F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis
tool for PHP. In TACAS, volume 6015 of LNCS, pages 154–157. Springer, 2010.

41. Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and X. Zhang. Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In CAV, volume 9206 of LNCS, pages 235–254. Springer, 2015.

42. Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-based string solver for web
application analysis. In SIGSOFT, pages 114–124. ACM, 2013.

43. N. Zhou and H. Kjellerstrand. The Picat-SAT compiler. In PADL, volume 9585
of LNCS, pages 48–62. Springer, 2016.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311

	MiniZinc with Strings

