
Introdu
ing esra, a Relational Languagefor Modelling Combinatorial Problems ?Pierre Flener, Justin Pearson, and Magnus �Agren ??Department of Information Te
hnologyUppsala University, Box 337, S { 751 05 Uppsala, Swedenfpierref,justin,agreng�it.uu.seAbstra
t. Current-generation
onstraint programming languages are
onsidered by many, espe
ially in industry, to be too low-level, diÆ-
ult, and large. We argue that solver-independent, high-level relational
onstraint modelling leads to a simpler and smaller language, to more
on
ise, intuitive, and analysable models, as well as to more eÆ
ientand e�e
tive model formulation, maintenan
e, reformulation, and veri-�
ation. All this
an be a
hieved without sa
ri�
ing the possibility ofeÆ
ient solving, so that even time-pressed or less
ompetent modellers
an be well assisted. Towards this, we propose the esra relational
on-straint modelling language, show
ase its elegan
e on some well-knownproblems, and outline a
ompilation philosophy for su
h languages.1 Introdu
tionCurrent-generation
onstraint programming languages are
onsidered by many,espe
ially in industry, to be too low-level, diÆ
ult, and large. Consequently,their solvers are not in as widespread use as they ought to be, and
onstraintprogramming is still fairly unknown in many appli
ation domains, su
h as mole
-ular biology. In order to unleash the proven powers of
onstraint te
hnology andmake it available to a wider range of problem modellers, a solver-independent,higher-level, simpler, and smaller modelling notation is needed.In our opinion, even re
ent
ommer
ial languages su
h as opl [31℄ do not gofar enough in that dire
tion. Many
ommon modelling patterns have not been
aptured in spe
ial
onstru
ts. They have to be painstakingly spelled out ea
htime, at a high risk for errors, often using low-level devi
es su
h as rei�
ation.In re
ent years, modelling languages based on some logi
 with sets and re-lations have gained popularity in formal methods, witness the b [1℄ and z [29℄spe
i�
ation languages, the alloy [16℄ obje
t modelling language, and the Ob-je
t Constraint Language (o
l) [35℄ of the Uni�ed Modelling Language (uml)[27℄. In semanti
 data modelling this had been long advo
ated; most notably viaentity-relationship-attribute (ERA) diagrams.? A previous version of this paper appears pages 63{77 in the informally published pro-
eedings of the Se
ond International Workshop Modelling and Reformulating CSPs,available at http : ==www� users:
s:york:a
:uk=~fris
h=Reformulation=03=.?? The authors' names are ordered a

ording to the Swedish alphabet.

Sets and set expressions started appearing as modelling devi
es in some
on-straint languages. Set variables are often implemented by the set interval repre-sentation [13℄. In the absen
e of su
h an expli
it set
on
ept, modellers usuallypainstakingly represent a set variable by its
hara
teristi
 fun
tion, namely as asequen
e of 0/1 integer variables, as long as the size of the domain of the set.Relations have not re
eived mu
h attention yet in
onstraint programminglanguages, ex
ept total fun
tions, via arrays. Indeed, a total fun
tion f
an berepresented in many ways [15℄, say as a 1-dimensional array of variables overthe range of f , indexed by its domain, or as a 2-dimensional array of Booleanvariables, indexed by the domain and range of f , or as a 1-dimensional arrayof set variables over the domain of f , indexed by its range, or even with someredundan
y. Other than retrieving the (unique) image under a total fun
tion ofa domain element, there has been no support for relational expressions.Matrix modelling [8, 10, 31℄ has been advo
ated as one way of
apturing
om-mon modelling patterns. Alternatively, it has been argued [11, 15℄ that fun
tions,and hen
e relations, should be supported by an abstra
t datatype (ADT). It isthen the
ompiler that must (help the modeller)
hoose a suitable representa-tion, say in a
ontemporary
onstraint programming language, for ea
h instan
eof the ADT, using empiri
ally or theoreti
ally gained modelling insights.We here demonstrate, as originally
onje
tured in [9℄, that a suitable �rst-order relational
al
ulus is a good basis for a high-level, ADT-based, and solver-independent
onstraint modelling language. It gives rise to very natural andeasy-to-maintain models of
ombinatorial problems. Even in the (temporary)absen
e of a
orresponding high-level sear
h language, this generality does notne
essarily
ome at a loss in solving eÆ
ien
y, as abstra
t relational models aredevoid of representation details so that the results of analysis
an be exploited.Our aims here are only to justify and present our new language,
alled esra,to illustrate its elegan
e and the
exibility of its models by some examples, andto argue that it
an be
ompiled into eÆ
ient models in lower-level (
onstraintprogramming) languages. The syntax, denotational semanti
s, and type systemof the proposed language are dis
ussed in full detail in an online appendix [12℄and a se
ond prototype of the advo
ated
ompiler is under development.The rest of this paper is organised as follows. In Se
tion 2, we present ourrelational language for modelling
ombinatorial problems and deploy it on threereal-life problems before dis
ussing its
ompilation. This allows us to list, inSe
tion 3, the bene�ts of relational modelling. Finally, in Se
tion 4, we
on
ludeas well as dis
uss related and future work.2 Relational Constraint Modelling with esraIn Se
tion 2.1, we justify the design de
isions behind our new esra
onstraintmodelling language, targeted at
onstraint programmers. Then, in Se
tion 2.2,we introdu
e its
on
epts, syntax, type system, and semanti
s. Next, in Se
-tion 2.3, we deploy esra on three real-life problems. Finally, in Se
tion 2.4, wedis
uss the design of our prototype
ompilers for esra.

2.1 Design De
isionsThe key design de
isions for our new relational
onstraint modelling language |
alled esra for Exe
utable Symbolism for Relational Algebra | were as follows.We want to
apture
ommon modelling idioms in a new abstra
t datatypefor relations, so as to design a high-level and simple language. The
onstru
ts ofthe language are orthogonal, so as to keep the language small. Computational
ompleteness is not aimed at, as long as the language is useful for elegantlymodelling a large number of
ombinatorial problems.We fo
us on �nite, dis
rete domains. Relations are built from su
h domainsand sets are viewed as unary relations. Theoreti
al diÆ
ulties are sidesteppedby supporting only bounded quanti�
ation, but not negation nor sets of sets.The language has an ASCII syntax, mimi
king mathemati
al and logi
alnotation as
losely as possible, as well as a LATEX-based syntax, espe
ially usedfor pretty-printing models in that notation.2.2 Con
epts, Syntax, Type System, and Semanti
s of esraFor reasons of spa
e, we only give an informal semanti
s. The interested readeris invited to
onsult [12℄ for a
omplete des
ription of the language. Essentially,the semanti
s of the language is a
onservative extension of existential se
ond-order logi
. Existential quanti�
ation of relations is used to assert that relationsare to be found that satisfy sets of �rst-order
onstraints. This is in
ontrastwith extensions of logi
 programming [6, 25℄ where se
ond-order relations
anbe spe
i�ed re
ursively using Horn
lauses, whi
h needs a mu
h more
arefultreatment of the �xed-point semanti
s.Code ex
erpts are here provided out of the semanti

ontext of any parti
ularproblem statement, just to illustrate the syntax, but a suggested reading in plainEnglish is always provided. In Se
tion 2.3, we will a
tually start from plainEnglish problem statements and show how they
an be modelled in esra. Codeex
erpts are always given in the pretty-printed form, but we indi
ate the ASCIInotation for every symbol where it ne
essarily di�ers.An esra model starts with a sequen
e of de
larations of named domains(or types) as well as named
onstants and de
ision variables that are tied todomains. Then
omes the obje
tive, whi
h is to �nd values for the de
ision vari-ables within their domains so that some
onstraints are satis�ed and possiblysome
ost expression takes an optimal value.The Type System. A primitive domain is a �nite, extensionally given set ofnew names or integers,
omma-separated and en
losed as usual in
urly bra
es.An integer domain
an also be given intensionally as a �nite integer interval,by separating its lower and upper bounds with `: : :' (denoted in ASCII by `..'),without using
urly bra
es. When these bounds
oin
ide, the
orresponding sin-gleton domain n : : : n or fng
an be abbreviated to n. Context always determineswhether an integer n designates itself or the singleton domain fng. A domain
an also be given intensionally using set
omprehension notation.

The only prede�ned primitive domains are the sets N (denoted in ASCII by`nat') and Z (denoted in ASCII by `int'), whi
h are `0 : : : sup' and `inf : : : sup'respe
tively, where the prede�ned
onstant identi�ers `inf' and `sup' stand for thesmallest negative and largest positive representable integers respe
tively. User-de�ned primitive domains are de
lared after the `dom' keyword and initialisedat
ompile-time, using the `=' symbol, or at run-time, via a data�le, otherwiseintera
tively.Example 1. The statement dom Varieties ;Blo
ksde
lares two domains
alled Varieties and Blo
ks that are to be initialised at run-time. As in opl [31℄, this neatly separates the problem model from its instan
edata, so that the a
tual
onstraint satisfa
tion problem is obtained at run-time.Similarly, the statementdom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gwhere g; s; w are integer-
onstant identi�ers (assumed previously de
lared, in away shown below), de
lares integer domains
alled Players , Weeks , and Groupsthat are initialised at
ompile-time.Finally, the de
larationdom Even = fi j i : 0 : : : 100 j i % 2 = 0ginitialises the domain Even of all even natural numbers up to 100.The usual binary in�x �
onstru
tor (denoted in ASCII by `#') allows the
onstru
tion of Cartesian produ
ts.The only
onstru
ted domains are relational domains. In order to simulta-neously
apture frequently o

urring multipli
ity
onstraints on relations, weo�er a parameterised binary in�x � domain
onstru
tor. The relational domainA M1�M2 B, where A and B are (possibly Cartesian produ
ts of) primitive do-mains, designates a set of binary relations in A�B. The optional M1 and M2,
alled multipli
ities, must be integer sets and have the following semanti
s: forevery element a of A, the number of elements of B related to a must be in M1,while for every element b of B, the number of elements of A related to b mustbe in M2.1 An omitted multipli
ity stands for N.Example 2. The
onstru
ted domainVarieties r�k Blo
ksdesignates the set of all relations in Varieties�Blo
ks where every variety o

ursin exa
tly r blo
ks and every blo
k
ontains exa
tly k varieties. These are twoo

urren
es where an integer abbreviates the singleton domain
ontaining it.1 Note that our syntax is the opposite of the uml one, say, where the multipli
ities arewritten in the other order, with the same semanti
s. That
onvention
an howevernot be usefully upgraded to Cartesian produ
ts of arity higher than 2.

In the absen
e of su
h fa
ilities for relations and their multipli
ities, a re-lational domain would have to be modelled using arrays, say. This may be apremature
ommitment to a
on
rete data stru
ture, as the modeller may notknow yet, espe
ially prior to experimentation, whi
h parti
ular (array-based)representation of a relational de
ision variable will lead to the most eÆ
ientsolving. The problem
onstraints, in
luding the multipli
ities, would have to beformulated in the
onstraints part of the model, based on the
hosen represen-tation. If the experiments revealed that another representation should be tried,then the modeller would have to �rst painstakingly reformulate the de
larationof the de
ision variable as well as all its
onstraints. Our ADT view of relationsover
omes this
aw: it is now the
ompiler that must (help the modeller)
hoosea suitable representation for ea
h instan
e of the ADT by using empiri
ally ortheoreti
ally gained insights. Also, multipli
ities need not be
ome
ounting
on-straints, but are su

in
tly and
onveniently
aptured in the de
laration.We view sets as unary relations: A M , where A is a domain andM an integerset,
onstru
ts the domain of all subsets of A whose
ardinality is in M . Themultipli
ity M is mandatory here; otherwise there would be ambiguity whethera value of the domain A is an element or an arbitrarily sized subset of A.For total and partial fun
tions, the left-hand multipli
ity M1 is 1 : : : 1 and0 : : : 1 respe
tively. In order to dispense with these left-hand multipli
ities fortotal and partial fun
tions, we o�er the usual �! and 6�! (denoted in ASCIIby `->' and `+>') domain
onstru
tors respe
tively, as shorthands. They may stillhave right-hand multipli
ities though.For inje
tions, surje
tions, and bije
tions, the right-hand multipli
ity M2 is0 : : : 1, 1 : : : sup, and 1 : : : 1 respe
tively. Rather than elevating these parti
ular
ases of fun
tions to �rst-
lass
on
epts with an invented spe
i�
 syntax in esra,we prefer keeping our language lean and
lose to mathemati
al notation.Example 3. The
onstru
ted domain(Players �Weeks) �!s�w Groupsdesignates the set of all total fun
tions from Players �Weeks into Groups su
hthat every group is related to exa
tly sw (player,week) pairs.We provide no support (yet) for bags and sequen
es, as relations provideenough
hallenges for the time being. Note that a bag
an be modelled as a totalfun
tion from its domain into N, giving the repetition
ount of ea
h element.Similarly, a sequen
e of length n
an be modelled as a total fun
tion from 1 : : : ninto its domain, telling whi
h element is at ea
h position. This does not meanthat the representation of bags and sequen
es is �xed (to the one of total fun
-tions), be
ause, as we shall see in Se
tion 2.4, the various relations (and thustotal fun
tions) of a model need not have the same representation.Modelling the Instan
e Data and De
ision Variables. All identi�er de
-larations are strongly typed and denote variables that are impli
itly universally

quanti�ed over the entire model, with the
onstants expe
ted to be ground beforesear
h begins while the de
ision variables
an still be unbound at that moment.Like the user-de�ned primitive domains,
onstants help des
ribe the instan
edata of a problem. A
onstant identi�er is de
lared after the `
st' keyword andis tied to its domain by `:', meaning set membership. Constants are initialisedat
ompile-time, using the `=' symbol, or at run-time, via a data�le, otherwiseintera
tively. Again, run-time initialisation provides a neat separation of problemmodels and problem instan
es.Example 4. The statement
st r; k; � : Nde
lares three natural number
onstants that are to be initialised at run-time.As already seen in Examples 2 and 3, the availability of total fun
tions makesarrays unne
essary. The statement
st CrewSize : Guests �! N; SpareCap : Hosts �! Nde
lares two natural-number fun
tions, to be provided at run-time.A de
ision-variable identi�er is de
lared after the `var' keyword and is tiedto its domain by `:'.Example 5. The statementvar BIBD : Varieties r�k Blo
ksde
lares a relation
alled BIBD of the domain of Example 2.Modelling the Cost Expression and the Constraints. Expressions and�rst-order logi
 formulas are
onstru
ted in the usual way.For numeri
 expressions, the arguments are either integers or identi�ers of thedomain N or Z, in
luding the prede�ned
onstants `inf' and `sup'. Usual unary(�, `abs' for absolute value, and `
ard' for the
ardinality of a set expression),binary in�x (+, �, �, = for integer quotient, and % for integer remainder), andaggregate (P, denoted in ASCII by `sum') arithmeti
 operators are available. Asum is indexed by lo
al variables ranging over �nite sets, whi
h may be �lteredon-the-
y by a
ondition given after the `j' symbol (read `su
h that').Sets obey the same rules as domains. So, for set expressions, the argumentsare either set identi�ers or (intensionally or extensionally) given sets, in
ludingthe prede�ned sets N and Z. Only the (unparameterised) binary in�x domain
onstru
tor � and its spe
ialisations �! and 6�! are available as operators.Finally fun
tion expressions are built by applying a fun
tion identi�er to anargument tuple. We have found no use yet for any other operators on fun
tions(but see the dis
ussion of future work in Se
tion 4).

Example 6. The numeri
 expressionXg:Guests j S
hedule(g;p)=hCrewSize(g)denotes the sum of the
rew sizes of all the guest boats that are s
heduled tovisit host h at period p, assuming this expression is within the s
ope of the lo
alvariables h and p. The nested fun
tion expression CrewSize(g) stands for thesize of the
rew of guest g, whi
h is a natural number a

ording to Example 4.Atoms are built from numeri
 expressions with the usual
omparison predi-
ates, su
h as the binary in�x =, 6=, and � (denoted in ASCII by `=', `!=', and`=<' respe
tively). Atoms also in
lude the prede�ned `true' and `false', as well asreferen
es to the elements of a relation. We have found no use yet for any otherpredi
ates. Note that `2' is unne
essary as x 2 S is equivalent to S(x).Example 7. The atom BIBD(v1; i) stands for the truth value of variety v1 beingrelated to blo
k i in the BIBD relation of Example 5.Formulas are built from atoms. The usual binary in�x
onne
tives (^, _,),(, and,, denoted in ASCII by `/\', `\/', `=>', `<=', and `<=>' respe
tively) andquanti�ers (8 and 9, denoted in ASCII by `forall' and `exists' respe
tively) areavailable. A quanti�ed formula is indexed by lo
al variables ranging over �nitesets, whi
h may be �ltered on-the-
y by a
ondition given after the `j' symbol(read `su
h that'). As we provide a ri
h (enough) set of predi
ates, we are onlyinterested in models that
an be formulated positively, and thus dispense withthe negation
onne
tive. The usual typing and pre
eden
e rules for operatorsand
onne
tives apply. All binary operators asso
iate to the left.Example 8. The formula8(p : Periods ; h : Hosts)0� Xg:Guests j S
hedule(g;p)=hCrewSize(g)1A � SpareCap(h)
onstrains the spare
apa
ity of any host boat h not to be ex
eeded at any periodp by the sum of the
rew sizes of all the guest boats that are s
heduled to visithost h at period p.A generalisation of the 9 quanti�er turns out to be very useful. We de�ne
ount(Multipli
ity)(x : Set j Condition)to hold if and only if the
ardinality of the set
omprehension fx : Set j Conditiongis in the integer set Multipli
ity . So9(x : Set j Condition)is a
tually synta
ti
 sugar for
ount(1 : : : sup)(x : Set j Condition)

Example 9. The formula8(v1 < v2 : Varieties)
ount(�)(j : Blo
ks j BIBD(v1; j) ^ BIBD(v2; j))says that ea
h ordered pair of varieties v1 and v2 o

urs together in exa
tly �blo
ks, via the BIBD relation. Regarding the ex
erpt `v1 < v2 : Varieties ', notethat multiple lo
al variables
an be quanti�ed at the same time, and that a�ltering
ondition on them may then be pushed a
ross the `j' symbol.Example 10. Assuming that the fun
tion S
hedule is of the domain of Example 3and thus returns a group, the formula8(p1 < p2 : Players)
ount(0 : : : 1)(v :Weeks j S
hedule(p1; v) = S
hedule(p2; v))says that there is at most one week where any ordered pair of players p1 and p2is s
heduled to play in the same group.A
ost expression is a numeri
 expression that has to be optimised. The
on-straints on the de
ision variables of a model are a
onjun
tion of formulas, using^ as the
onne
tive. The obje
tive of a model is either to solve its
onstraints:solve Constraintsor to minimise the value of its
ost expression subje
t to its
onstraints:minimise CostExpression su
h that Constraintsor similarly for maximising. A model
onsists of a sequen
e of domain,
onstant,and de
ision-variable de
larations followed by an obje
tive, without separators.Example 11. Putting together
ode fragments from Examples 1, 4, 5, and 9, weobtain the model of Figure 2 two pages ahead, dis
ussed in Se
tion 2.3.The grammar of esra is des
ribed in Figure 1. For brevity and ease of read-ing, we have omitted most synta
ti
-sugar options as well as the rules for iden-ti�ers, names, and numbers. The notation hntis� stands for a sequen
e of zeroor more o

urren
es of the non-terminal hnti, separated by symbol s. Similarly,hntis+ stands for one or more o

urren
es of hnti, separated by s. The typingrules ensure that the equality predi
ates = and 6= are only applied to expres-sions of the same type, that the other
omparison predi
ates, su
h as �, are onlyapplied to numeri
 expressions, and so on.2.3 ExamplesWe now show
ase the elegan
e and
exibility of our language on three real-life problems, namely Balan
ed In
omplete Blo
k Designs, the So
ial Golfersproblem, and the Progressive Party problem.

hModeli ::= hDe
li+ hObje
tiveihDe
li ::= hDomDe
li j hCstDe
li j hVarDe
lihDomDe
li ::= dom hIdi [= hSeti ℄hCstDe
li ::=
st hIdi [= hTuplei j hSeti ℄ : hSetExprihVarDe
li ::= var hIdi : hSetExprihObje
tivei ::= solve hFormulaij (minimise j maximise) hNumExpri su
h that hFormulaihExpri ::= hIdi j hNamei j hTuplei j hNumExpri j hSetExpri j hFun
Appli j (hExpri)hNumExpri ::= hIdi j hInti j hNati j inf j sup j hFun
Applij hNumExpri (+ j - j * j / j %) hNumExprij (- j abs) hNumExprij
ard hSetExprij sum (hQuantExpri) (hNumExpri)hSetExpri ::= hSeti j hSetExpri [hSeti℄j hSetExpri ([[hSeti℄#[hSeti℄℄ j #) hSetExprij hSetExpri ([->[hSeti℄℄ j -> j [+>[hSeti℄℄ j +>) hSetExprihSeti ::= hIdi j int j natj { hTuplei,� } j { hComprExpri }j hNumExpri..hNumExpri j hNumExprihComprExpri ::= hExpri | (hIdTuplei&+ in hSetExpri)/\+ [| hFormulai ℄hFun
Appli ::= hIdi hTupleihTuplei ::= (hExpri,+) j hExprihFormulai ::= true j false j hRelApplij hFormulai (/\ j \/ j => j <= j <=>) hFormulaij hNumExpri (< j =< j = j >= j > j !=) hNumExprij forall (hQuantExpri) (hFormulai)j
ount (hSeti) (hQuantExpri)hRelAppli ::= hIdi hTupleihQuantExpri ::= ((hRelQvarsi j hIdTuplei&+) in hSetExpri),+ [| hFormulai ℄hRelQvarsi ::= hExpri (< j =< j = j >= j > j !=) hExprihIdTuplei ::= hIdi j (hIdi,+)Fig. 1. The grammar of esra

dom Varieties ;Blo
ks
st r; k; � : Nvar BIBD : Varieties r�k Blo
kssolve8(v1 < v2 : Varieties)
ount(�)(j : Blo
ks j BIBD(v1; j) ^ BIBD(v2; j))Fig. 2. A pretty-printed esra model for BIBDsdom Varieties, Blo
ks
st r, k, lambda : natvar BIBD : Varieties [r#k℄ Blo
kssolveforall (v1 < v2 : Varieties)
ount (lambda) (j : Blo
ks | BIBD(v1,j) /\ BIBD(v2,j))Fig. 3. An esra model for BIBDsBalan
ed In
omplete Blo
k Designs. Let V be any set of v elements,
alledvarieties. A balan
ed in
omplete blo
k design (BIBD) is a bag of b subsets ofV ,
alled blo
ks, ea
h of size k (
onstraint C1), su
h that ea
h pair of distin
tvarieties o

urs together in exa
tly � blo
ks (C2), with 2 � k < v. An implied
onstraint is that ea
h variety o

urs in the same number of blo
ks (C3), namelyr = �(v � 1)=(k � 1). A BIBD is parameterised by a 5-tuple hv; b; r; k; �i ofparameters. Originally intended for the design of statisti
al experiments, BIBDsalso have appli
ations in
ryptography and other domains. See Problem 28 athttp://www.
splib.org for more information.The instan
e data
an be de
lared as the two domainsVarieties and Blo
ks , ofimpli
it sizes v and b respe
tively, as well as the three natural-number
onstantsr, k, and �, as in Examples 1 and 4. A unique relational de
ision variable,BIBD ,
an then be de
lared as in Example 5, thereby immediately taking
areof the
onstraints C1 and C3. The remaining
onstraint C2
an be modelled asin Example 9. Figure 2 shows the resulting pretty-printed esra model, whileFigure 3 shows it in ASCII notation.For
omparison, an opl [31℄ model is shown in Figure 4, where `= ...' meansthat the value is to be found in a
orresponding data�le. The de
ision variableBIBD is a 2-dimensional array of integers 0 or 1, indexed by the varieties andblo
ks, su
h that BIBD[i,j℄ = 1 i� variety i is
ontained in blo
k j. Further-more, the
onstraints C1 and C3, whi
h we
ould
apture by multipli
ities in theesra model, need here to be stated in more length. Finally, the
onstraint C2is stated using a higher-order
onstraint:2 for ea
h ordered pair of varieties v1and v2, the number of times they appear in the same blo
k, that is the numberof blo
ks j where BIBD(v1,j) = 1 = BIBD(v2,j) holds, must equal lambda.In an opl model, one needs to de
ide what
on
rete datatypes to use forrepresenting the abstra
t de
ision variables of the original problem statement.2 A higher-order
onstraint refers to the truth value of another
onstraint. In opl, thelatter is nested in parentheses, truth is represented by 1, and falsity by 0.

enum Varieties = ..., Blo
ks = ...;int r = ...; int k = ...; int lambda = ...;range Boolean 0..1;var Boolean BIBD[Varieties,Blo
ks℄;solve {forall(j in Blo
ks) sum(i in Varieties) BIBD[i,j℄ = k;forall(i in Varieties) sum(j in Blo
ks) BIBD[i,j℄ = r;forall(ordered v1,v2 in Varieties)sum(j in Blo
ks) (BIBD[v1,j℄ = 1 = BIBD[v2,j℄) = lambda;... symmetry-breaking
ode ...}; Fig. 4. An opl model for BIBDsIn this
ase, we
hose a 2-dimensional 0/1 array BIBD, indexed by Varietiesand Blo
ks. We
ould just as well have
hosen a di�erent representation, say (ifopl had set variables) a 1-dimensional array BIBD, indexed by Blo
ks, of subsetsof Varieties. Su
h a
hoi
e a�e
ts the formulation of every
onstraint and the
ost expression, but is premature as even expert intuition is weak in predi
tingwhi
h representation
hoi
e leads to the best solving eÆ
ien
y. Consequently, themodeller has to frequently reformulate the
onstraints and the
ost expressionwhile experimenting with di�erent representations. No su
h
hoi
es have to bemade in an esra model, making esra a more
onvenient modelling language.As a
onsequen
e to su
h representation
hoi
es, one often introdu
es an as-tronomi
al amount of symmetries into an opl model that are not present in theoriginal problem statement [10℄. For example, given a solution, any two rowsor
olumns in the array BIBD
an be swapped, giving a di�erent, but symmet-ri
ally equivalent, solution. Su
h symmetries need to be addressed in order toa
hieve eÆ
ient solving. Hen
e, symmetry-breaking
ode [10, 32℄ would have tobe inserted, as indi
ated in Figure 4. Sin
e su
h
hoi
es are postponed to the
ompilation phase in esra (see Se
tion 2.4), any symmetries
ons
iously intro-du
ed
an be handled (automati
ally) in that pro
ess.The So
ial Golfers Problem. In a golf
lub, there are n players, ea
h ofwhom plays golf on
e a week (
onstraint C1) and always in g groups of size s(C2), hen
e n = gs. The obje
tive is to determine whether there is a s
hedule ofw weeks of play for these golfers, su
h that there is at most one week where anytwo distin
t players are s
heduled to play in the same group (C3). An implied
onstraint is that every group o

urs exa
tly sw times a
ross the s
hedule (C4).See Problem 10 at http://www.
splib.org for more information.The instan
e data
an be de
lared as the three natural-number
onstantsg, s, and w, via `
st g; s; w : N', as well as the three domains Players , Weeks ,and Blo
ks , as in Example 1. A unique de
ision variable, S
hedule ,
an then bede
lared using the fun
tional domain in Example 3, thereby immediately taking
are of the
onstraints C1 (be
ause of the totality of the fun
tion) and C4. The

st g; s; w : Ndom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gvar S
hedule : (Players �Weeks) �!s�w Groupssolve8(p1 < p2 : Players)
ount(0 : : : 1)(v :Weeks j S
hedule(p1; v) = S
hedule(p2; v))^ 8(h : Groups ; v : Weeks)
ount(s)(p : Players j S
hedule(p; v) = h)Fig. 5. A pretty-printed esra model for the So
ial Golfers problem
onstraint C3
an be modelled as in Example 10. The
onstraint C2
an be statedusing the
ount quanti�er, as seen in the pretty-printed esra model of Figure 5.Note the di�erent style of modelling sets of unnamed obje
ts, via the separa-tion of models from the instan
e data,
ompared to Figure 2. There we introdu
etwo sets without initialising them at the model level, while here we introdu
ethree uninitialised
onstants that are then used to arbitrarily initialise threedomains of desired
ardinalities. Both models
an be reformulated in the otherstyle. The bene�t of su
h sets of unnamed obje
ts is that their elements are indis-tinguishable, so that lower-level representations of relational de
ision variableswhose domains involve su
h sets are known to introdu
e symmetries.The Progressive Party Problem. The problem is to timetable a party ata ya
ht
lub. Certain boats are designated as hosts, while the
rews of theremaining boats are designated as guests. The
rew of a host boat remainson board throughout the party to a
t as hosts, while the
rew of a guest boattogether visits host boats over a number of periods. The spare
apa
ity of anyhost boat is not to be ex
eeded at any period by the sum of the
rew sizes ofall the guest boats that are s
heduled to visit it then (
onstraint C1). Any guest
rew
an visit any host boat in at most one period (C2). Any two distin
t guest
rews
an visit the same host boat in at most one period (C3). See Problem 13at http://www.
splib.org for more information.The instan
e data
an be de
lared as the three domains Guests, Hosts, andPeriods , via `dom Guests;Hosts;Periods ', as well as the two fun
tional
onstantsSpareCap and CrewSize , as in Example 4. A unique fun
tional de
ision variable,S
hedule ,
an then be de
lared via `var S
hedule : (Guests�Periods) �! Hosts '.The
onstraint C1
an now be modelled as in Example 8. The
onstraints C2and C3
an be stated using the
ount quanti�er, as seen in the pretty-printedesra model of Figure 6.2.4 Compiling Relational ModelsA
ompiler for esra is
urrently under development. It is being written in o
aml(http://www.o
aml.org) and
ompiles esra models into SICStus Prolog [5℄�nite-domain
onstraint programs. Our
hoi
e of target language is motivatedby its ex
ellent
olle
tion of global
onstraints and by our
ollaboration with itsdevelopers on designing new global
onstraints.

dom Guests ; Hosts ; Periods
st SpareCap : Hosts �! N; CrewSize : Guests �! Nvar S
hedule : (Guests � Periods) �! Hostssolve8(p : Periods ; h : Hosts) Pg:Guests j S
hedule(g;p)=hCrewSize(g)! � SpareCap(h)^ 8(g : Guests ; h : Hosts)
ount(0 : : : 1)(p : Periods j S
hedule(g; p) = h)^ 8(g1 < g2 : Guests)
ount(0 : : : 1)(p : Periods j S
hedule(g1; p) = S
hedule(g2; p))Fig. 6. A pretty-printed esra model for the Progressive Party problemWe already have an esra-to-opl
ompiler [36, 15℄, written in Java, for arestri
tion of esra to fun
tions, now
alled Fun
tional-esra. That proje
t gaveus mu
h of the expertise needed for developing the
urrent
ompiler.The solver-independent esra language is so high-level that it is very small
ompared to su
h target languages, espe
ially in the number of ne
essary prim-itive
onstraints. The full panoply of features of su
h target languages
an,and must, be deployed during
ompilation. In parti
ular, the implementationof de
ision-variable indi
es into matri
es is well-understood.In order to bootstrap our new
ompiler qui
kly, we de
ided to representinitially every relational de
ision variable by a matrix of 0/1 variables, indexed byits parti
ipating sets. This �rst version of the new
ompiler is thus deterministi
.The plan is then to add alternatives to this unique representation rule, de-pending on the multipli
ities and other
onstraints on the relation, a
hieving anon-deterministi

ompiler, su
h as our existing Fun
tional-esra-to-opl
om-piler [36, 15℄. The modeller is then invited to experiment with her (real-life)instan
e data and the resulting
ompiled programs, so as to determine whi
hone is the `best'. If the
ompiler is provided with those instan
e data, then it
an be extended to automate su
h experiments and generate rankings.Eventually, more intelligen
e will be built into the
ompiler via heuristi
s(su
h as those of [15℄) for the
ompiler to rank the resulting
ompiled programsby de
reasing likelihood of eÆ
ien
y, without any re
ourse to experiments. In-deed, depending on the multipli
ities and other
onstraints on a relation,
ertainrepresentations thereof
an be shown to be better than others, under
ertain as-sumptions on the targeted solver, and this either theoreti
ally (see for instan
e[33℄ for bije
tions and [15℄ for inje
tions) or empiri
ally (see for instan
e [28℄ forbije
tions). We envisage a hybrid intera
tive/heuristi

ompiler.Our ultimate aim is of
ourse to design an a
tual solver for relational
on-straints, without going through
ompilation.3 Bene�ts of Relational ModellingIn our experien
e, and as demonstrated in Se
tion 2.3, a relational
onstraintmodelling language leads to more
on
ise and intuitive models, as well as to moreeÆ
ient and e�e
tive model formulation and veri�
ation. Due to esra being

smaller than
onventional
onstraint programming languages, we believe it iseasier to learn and master, making it a good
andidate for a tea
hing medium.All this
ould entail a better dissemination of
onstraint te
hnology.Relational languages seem a good trade-o� between generality and spe
i�
ity,enabling eÆ
ient solving despite more generality. Relations are a single, pow-erful
on
ept for elegantly modelling many aspe
ts of
ombinatorial problems.Also, there are not too many di�erent, and even standard, ways of representingrelations and relational expressions. Known and future modelling insights, su
has those in [15, 28, 33℄,
an be built into the
ompilers, so that even time-pressedor less
ompetent modellers
an bene�t from them. Modelling is unen
umberedby early if not uninformed
ommitments to representation
hoi
es. Low-levelmodelling devi
es su
h as rei�
ation and higher-order
onstraints
an be en-
apsulated as implementation devi
es. The number of de
ision variables beingredu
ed, there is even hope that dire
tly solving the
onstraints at the high re-lational level
an be faster than solving their
ompiled lower-level
ounterparts.All this illustrates that more generality need not mean poorer performan
e.Relational models are more amenable to maintenan
e when the
ombina-torial problem
hanges, be
ause most of the tedium is taken
are of by the
ompiler. Model maintenan
e at the relational level redu
es to adapting to thenew problem, with all representation (and solving) issues left to the
ompiler.Very little work is involved here when a multipli
ity
hange entails a preferablerepresentation
hange for a relation. Maintenan
e
an even be ne
essary whenthe statisti
al distribution of the problem instan
es that are to be solved
hanges[22℄. If information on the new distribution is given to the envisaged
ompiler,a simple re
ompilation will take
are of the maintenan
e.Relational models are at a more suitable level for possibly automated modelreformulation, su
h as via the inferen
e and sele
tion of suitable implied
on-straints, with again the
ompiler assisting in the more mundane aspe
ts. In theBIBD and So
ial Golfers examples, we have observed that multipli
ities providea ni
e framework for dis
overing and stating some implied
onstraints. Indeed,the language makes the modeller think about making these multipli
ities expli
it,even if they were not in the original problem formulation.Relational models are more amenable to
onstraint analysis. Dete
ted prop-erties as well as properties
ons
iously introdu
ed during
ompilation into lower-level programs, su
h as symmetry or bije
tiveness,
an then be taken into a

ountduring
ompilation [10℄, espe
ially using tra
tability results [32℄.There would be further bene�ts to an abstra
t modelling language if it wereadopted as a standard front-end language for solvers. Models and instan
e datawould then be solver-independent and
ould be shared between solvers, whatevertheir te
hnology. Indeed, the targeted solvers need not even use
onstraint te
h-nology, but
ould just as well use answer-set programming, linear programming,lo
al sear
h, or propositional satis�ability te
hnology, or any hybrid thereof.This would fa
ilitate fair and homogeneous
omparisons, say via new standardben
hmarks, as well as foster
ompetition in �ne-tuning the
ompilers.

4 Con
lusionWe have argued that solver-independent, abstra
t
onstraint modelling leads toa simpler and smaller language; to more
on
ise, intuitive, and analysable mod-els; as well as to more eÆ
ient and e�e
tive model formulation, maintenan
e,reformulation, and veri�
ation. All this
an be a
hieved without sa
ri�
ing thepossibility of eÆ
ient solving, so that even time-pressed or less
ompetent mod-ellers
an be well assisted. Towards this, we have proposed the esra relationalmodelling language, show
ased its elegan
e on some well-known problems, andoutlined a
ompilation philosophy for su
h languages. To
on
lude, let us lookat related work (Se
tion 4.1) and future work(Se
tion 4.2).4.1 Related WorkWe have here generalised and re-engineered our own work [11, 36, 15℄ on a pre-de
essor of esra, now
alled Fun
tional-esra, that only supports fun
tionalde
ision variables, by pursuing the aim of relational modelling outlined in [9℄.Elsewhere, su
h ideas have re
ently inspired a related proje
t [3℄, in
orporatingpartition de
ision variables. Constraints for bag de
ision variables [2, 7, 34℄ andsequen
e de
ision variables [2, 26℄ have also been proposed.This resear
h owes a lot to previous work on relational modelling in formalmethods and on ERA-style semanti
 data modelling, espe
ially to the alloyobje
t modelling language [16℄, whi
h itself gained mu
h from the z spe
i�
ationnotation [29℄ (and learned from uml/o
l how not to do it). Contrary to ERAmodelling, we do not distinguish between attributes and relations.In
onstraint programming, the
ommer
ial opl [31℄ stands out as a medium-level modelling language and a
tually gave the impetus to design esra: see theBIBD example in Se
tion 2.3 and
onsult [9℄ for a further
omparison of elegantesra models with more awkward (published) opl
ounterparts that do notprovide all the bene�ts of Se
tion 3. Other higher-level
onstraint modellinglanguages than esra have been proposed, su
h as ali
e [18℄, CLP (Fun(D))[14℄,
lps [2℄,
onjunto [13℄, ea
l [30℄, flogg [7℄, n
l [37℄, and the language of[24℄. Our esra shares with them the quest for a pra
ti
al de
larative modellinglanguage based on a strongly-typed fuller �rst-order logi
 than Horn
lauses, withsequen
e, set, bag, fun
tional, or even relational de
ision variables, while oftendispensing with re
ursion, negation, and unbounded quanti�
ation. However,esra goes way beyond them, by advo
ating an ADT view (of relations), so thatrepresentations need not be �xed in advan
e, by providing an elegant notationfor multipli
ity
onstraints, and by promising intelligent
ompilation.In the �eld of knowledge representation, answer-set programming (ASP) hasre
ently been advo
ated [21℄ as a pra
ti
al
onstraint solving paradigm, espe-
ially for dynami
 domains su
h as planning. A set of (disjun
tive) fun
tion-free
lauses, where
lassi
al negation and negation as failure are allowed, is inter-preted as a
onstraint, stating when an atom is in a solution,
alled an answer setor a stable model. This non-monotoni
 approa
h di�ers from
onstraint (logi
)programming, where statements are used to add atomi

onstraints on de
ision

dom Cities
st Distan
e : (Cities � Cities) �! Nvar Next : Cities �!1 Citiesminimise P
:CitiesDistan
e(
;Next(
))su
h that 8(
1&
2 : Cities) Next�(
1) =
2Fig. 7. A pretty-printed esra model for the Travelling Salesperson problemvariables to a
onstraint store, whereupon propagation and sear
h are used to
onstru
t solutions. Implementation methods for
omputing the answer sets ofground programs have advan
ed signi�
antly over re
ent years, possibly usingpropositional satis�ability (SAT) solvers. Also, e�e
tive grounding pro
edureshave been devised for some
lasses of su
h programs with (s
hemati
) variables.Sample ASP systems are dlv [19℄ and smodels [23℄. Closely related are Con-straintLingo [8℄ and np-spe
 [4℄. The languages of these systems in
lude usefulfeatures, su
h as
ardinality and weight
onstraints, aggregate fun
tions, andsoft
onstraints. They have stri
tly more expressive power than propositionallogi
 and traditional
onstraint (logi
) programming/modelling languages, in-
luding esra. Again, our obje
tive only is a language that is useful for elegantlymodelling a large number of
ombinatorial problems. The
ardinality
onstraintof smodels is a restri
tion of the esra `
ount' quanti�er to interval multipli
i-ties, as opposed to set multipli
ities. Speed
omparisons with SAT solvers wereen
ouraging, but no
omparison has been done yet with
onstraint solvers.4.2 Future WorkMost of our future work has already been listed in Se
tions 2.4 and 3 aboutthe
ompiler design and long-term bene�ts of relational modelling, su
h as thegeneration of implied
onstraints and the breaking of symmetries.We have argued that our esra language is very small. This is mostly be
ausewe have not yet identi�ed the need for any other operators or predi
ates. Anex
eption to this is the need for transitive
losure relation
onstru
tors. Weaim at modelling the well-known Travelling Salesperson (TSP) problem as inFigure 7, where the transitive
losure of the bije
tion Next on Cities is denotedby Next�. This general me
hanism avoids the introdu
tion of an ad ho
 `
ir
uit'
onstraint as in ali
e [18℄.As we do not aim at a
omplete
onstraint modelling language, we
an bevery
onservative in what missing features shall be added to esra when theyare identi�ed. Also, for manpower reasons, we do not yet propose other ADTs,say for bags or sequen
es, although this was originally part of our original vision(see Se
tion 3.3 of [11℄).Our request for expli
it model-level distin
tion between
onstants and de
i-sion variables may be eventually lifted, as the default is run-time initialisation:we
ould treat as
onstants any universally quanti�ed variable that was a
tually

initialised and treat all the others as de
ision variables. This requires a
onvin
-ing example, though, as well as just-in-time
ompilation.In [20℄, a type system is derived for binary relations that
an be used as aninput to spe
ialised �ltering algorithms. This kind of analysis
an be integratedinto the relational solver we have in mind.Also, a graphi
al language
ould be developed for the data modelling, in
lud-ing the multipli
ity
onstraints on relations, so that only the
ost expression andthe
onstraints would need to be textually expressed.Finally, a sear
h language, su
h as salsa [17℄ or the one of opl [31℄, but atthe level of relational modelling, should be adjoined to the
onstraint modellinglanguage proposed here, so that more expert modellers
an express their ownsear
h heuristi
s.A
knowledgements. This work is partially supported by grant 221-99-369of VR, the Swedish Resear
h Coun
il, and by institutional grant IG2001-67of STINT, the Swedish Foundation for International Cooperation in Resear
hand Higher Edu
ation. We thank Ni
olas Beldi
eanu, Mats Carlsson, Esra Er-dem, Brahim Hni
h, Daniel Ja
kson, Zeynep K�z�ltan, Fran�
ois Laburthe, GerritRenker, Christian S
hulte, Mark Walla
e, and Simon Wrang for stimulating dis-
ussions, as well as the
onstru
tive reviewers of previous versions of this paper.Referen
es1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge UniversityPress, 1996.2. F. Ambert, B. Legeard, and E. Legros. Programmation en logique ave

ontraintessur ensembles et multi-ensembles h�er�editairement �nis. Te
hniques et S
ien
esInformatiques, 15(3):297{328, 1996.3. A. Bakewell, A. M. Fris
h, and I. Miguel. Towards automati
 modelling of
on-straint satisfa
tion problems: A system based on
ompositional re�nement. InPro
eedings of the 2nd International Workshop on Modelling and Reformulat-ing CSPs, pages 3{17, 2003. Available at http://www-users.
s.york.a
.uk/~fris
h/Reformulation/03/.4. M. Cadoli, L. Palopoli, A. S
haerf, and D. Vasile. NPSPEC: An exe
utable spe
i-�
ation language for solving all problems in NP. In G. Gupta, editor, Pro
eedingsof PADL'99, volume 1551 of LNCS, pages 16{30. Springer-Verlag, 1999.5. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended �nite domain
onstraintsolver. In H. Glaser, P. Hartel, and H. Ku
hen, editors, Pro
eedings of PLILP'97,number 1292 in LNCS, pages 191{206. Springer-Verlag, 1997.6. M. Dene
ker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stablesemanti
s for logi
 programs with aggregates. In Pro
eedings of ICLP'01, volume2237 of LNCS, pages 212{226. Springer-Verlag, 2001.7. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and
onstraint logi
 program-ming. ACM Transa
tions on Programming Languages and Systems, 22(5):861{931,2000.

8. R. Finkel, V. Marek, and M. Trusz
zy�nski. Tabular
onstraint-satisfa
tion prob-lems and answer-set programming. In Pro
eedings of the AAAI Spring Symposiumon Answer-Set Programming, 2001. Available at http://www.
s.nmsu.edu/~tson/ASP2001/.9. P. Flener. Towards relational modelling of
ombinatorial optimisation problems.In C. Bessi�ere, editor, Pro
eedings of the IJCAI'01 Workshop on Modelling andSolving Problems with Constraints, pages 31{38, 2001. Available at http://www.lirmm.fr/~bessiere/ws_ij
ai01/.10. P. Flener, A. M. Fris
h, B. Hni
h, Z. K�z�ltan, I. Miguel, and T. Walsh. Matrixmodelling: Exploiting
ommon patterns in
onstraint programming. In Pro
. ofthe 1st Int'l Workshop on Reformulating CSPs, pages 27{41, 2002. Available athttp://www-users.
s.york.a
.uk/~fris
h/Reformulation/02/.11. P. Flener, B. Hni
h, and Z. K�z�ltan. Compiling high-level type
onstru
tors in
onstraint programming. In I. Ramakrishnan, editor, Pro
eedings of PADL'01,volume 1990 of LNCS, pages 229{244. Springer-Verlag, 2001.12. P. Flener, J. Pearson, and M. �Agren. The Syntax, Semanti
s, and Type System ofesra. Te
hni
al report, ASTRA group, April 2003. Available at http://www.it.uu.se/resear
h/group/astra/.13. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a pra
ti
al language. Constraints, 1(3):191{244, 1997.14. T. J. Hi
key. Fun
tional
onstraints in CLP languages. In F. Benhamou andA. Colmerauer, editors, Constraint Logi
 Programming: Sele
ted Resear
h, pages355{381. The MIT Press, 1993.15. B. Hni
h. Fun
tion Variables for Constraint Programming. PhD thesis, Depart-ment of Information S
ien
e, Uppsala University, Sweden, 2003. Available athttp://publi
ations.uu.se/theses/.16. D. Ja
kson, I. Shlyakhter, and M. Sridharan. A mi
romodularity me
hanism.Software Engineering Notes, 26(5):62{73, 2001. Pro
eedings of FSE/ESEC'01.17. F. Laburthe and Y. Caseau. salsa: A language for sear
h algorithms. Constraints,7:255{288, 2002.18. J.-L. Lauri�ere. A language and a program for stating and solving
ombinatorialproblems. Arti�
ial Intelligen
e, 10(1):29{127, 1978.19. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. S
ar
ello. TheDLV system for knowledge representation and reasoning. In ACM Transa
tionson Computational Logi
, forth
oming. Available at http://arxiv.org/ps/
s.AI/0211004.20. D. Lesaint. Inferring
onstraint types in
onstraint programming. In P. Van Hen-tenry
k, editor, Pro
eedings of CP'02, volume 2470 of LNCS, pages 492{507.Springer-Verlag, 2002.21. V. Lifs
hitz. Answer set programming and plan generation. Arti�
ial Intelligen
e,138:39{54, 2002.22. S. Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: A
asestudy. Constraints, 1(1{2):7{43, 1996.23. I. Niemel�a. Logi
 programs with stable model semanti
s as a
onstraint program-ming paradigm. Annals of Mathemati
s and AI, 25(3{4):241{273, 1999.24. N. Pelov and M. Bruynooghe. Extending
onstraint logi
 programming with openfun
tions. In Pro
eedings of PPDP'00, pages 235{244. ACM Press, 2000.25. N. Pelov, M. Dene
ker, and M. Bruynooghe. Partial stable models for logi
 pro-grams with aggregates. In Pro
eedings of LPNMR'04, volume 2923 of LNCS, pages207{219. Springer-Verlag, 2004.

26. G. Pesant. A regular language membership
onstraint for sequen
es of variables.In Pro
eedings of the 2nd International Workshop on Modelling and Reformulat-ing CSPs, pages 110{119, 2003. Available at http://www-users.
s.york.a
.uk/~fris
h/Reformulation/03/.27. J. Rumbaugh, I. Ja
obson, and G. Boo
h. The Uni�ed Modeling Language Refer-en
e Manual. Addison-Wesley, 1999.28. B. M. Smith. Modelling a permutation problem. Te
hni
al Report 18, S
hool ofComputing, University of Leeds, UK, 2000. Also in Pro
eedings of the ECAI'00Workshop on Modelling and Solving Problems with Constraints.29. J. M. Spivey. The Z Notation: A Referen
e Manual. Prenti
e Hall, se
ond edition,1992.30. E. Tsang, P. Mills, R. Williams, J. Ford, and J. Borrett. A
omputer-aided
on-straint programming system. In J. Little, editor, Pro
eedings of PACLP'99, pages81{93. The Pra
ti
al Appli
ation Company, 1999.31. P. Van Hentenry
k. The OPL Optimization Programming Language. The MITPress, 1999.32. P. Van Hentenry
k, P. Flener, J. Pearson, and M. �Agren. Tra
table symmetrybreaking for CSPs with inter
hangeable values. In Pro
eedings of IJCAI'03, pages277{282. Morgan Kaufmann, 2003.33. T. Walsh. Permutation problems and
hannelling
onstraints. In R. Nieuwenhuisand A. Voronkov, editors, Pro
. of LPAR'01, number 2250 in LNCS, pages 377{391. Springer-Verlag, 2001.34. T. Walsh. Consisten
y and propagation with multiset
onstraints: A formal view-point. In F. Rossi, editor, Pro
eedings of CP'03, number 2833 in LNCS, pages724{738. Springer-Verlag, 2003.35. J. Warmer and A. Kleppe. The Obje
t Constraint Language: Pre
ise Modeling withUML. Addison-Wesley, 1999.36. S. Wrang. Implementation of the ESRA Constraint Modelling Language. Mas-ter's thesis, Master's Thesis in Computing S
ien
e 223, Department of InformationTe
hnology, Uppsala University, Sweden, 2002. Available at ftp://ftp.
sd.uu.se/pub/papers/masters-theses/.37. J. Zhou. Introdu
tion to the
onstraint language NCL. Journal of Logi
 Program-ming, 45(1{3):71{103, 2000.

