Introducing ESRA, a Relational Language
for Modelling Combinatorial Problems *

Pierre Flener, Justin Pearson, and Magnus Agren **

Department of Information Technology
Uppsala University, Box 337, S 751 05 Uppsala, Sweden

{pierref,justin,agren}@it.uu.se

Abstract. Current-generation constraint programming languages are
considered by many, especially in industry, to be too low-level, diffi-
cult, and large. We argue that solver-independent, high-level relational
constraint modelling leads to a simpler and smaller language, to more
concise, intuitive, and analysable models, as well as to more efficient
and effective model formulation, maintenance, reformulation, and veri-
fication. All this can be achieved without sacrificing the possibility of
efficient solving, so that even time-pressed or less competent modellers
can be well assisted. Towards this, we propose the ESRA relational con-
straint modelling language, showcase its elegance on some well-known
problems, and outline a compilation philosophy for such languages.

1 Introduction

Current-generation constraint programming languages are considered by many,
especially in industry, to be too low-level, difficult, and large. Consequently,
their solvers are not in as widespread use as they ought to be, and constraint
programming is still fairly unknown in many application domains, such as molec-
ular biology. In order to unleash the proven powers of constraint technology and
make it available to a wider range of problem modellers, a solver-independent,
higher-level, simpler, and smaller modelling notation is needed.

In our opinion, even recent commercial languages such as OPL [31] do not go
far enough in that direction. Many common modelling patterns have not been
captured in special constructs. They have to be painstakingly spelled out each
time, at a high risk for errors, often using low-level devices such as reification.

In recent years, modelling languages based on some logic with sets and re-
lations have gained popularity in formal methods, witness the B [1] and z [29]
specification languages, the ALLOY [16] object modelling language, and the Ob-
ject Constraint Language (OcL) [35] of the Unified Modelling Language (UML)
[27]. In semantic data modelling this had been long advocated; most notably via
entity-relationship-attribute (ERA) diagrams.

* A previous version of this paper appears pages 63 77 in the informally published pro-
ceedings of the Second International Workshop Modelling and Reformulating CSPs,
available at http : //www — users.cs.york.ac.uk/"frisch/Reformulation/03/.

** The authors’ names are ordered according to the Swedish alphabet.

Sets and set expressions started appearing as modelling devices in some con-
straint languages. Set variables are often implemented by the set interval repre-
sentation [13]. In the absence of such an explicit set concept, modellers usually
painstakingly represent a set variable by its characteristic function, namely as a
sequence of 0/1 integer variables, as long as the size of the domain of the set.

Relations have not received much attention yet in constraint programming
languages, except total functions, via arrays. Indeed, a total function f can be
represented in many ways [15], say as a 1-dimensional array of variables over
the range of f, indexed by its domain, or as a 2-dimensional array of Boolean
variables, indexed by the domain and range of f, or as a 1-dimensional array
of set variables over the domain of f, indexed by its range, or even with some
redundancy. Other than retrieving the (unique) image under a total function of
a domain element, there has been no support for relational expressions.

Matrix modelling [8, 10, 31] has been advocated as one way of capturing com-
mon modelling patterns. Alternatively, it has been argued [11,15] that functions,
and hence relations, should be supported by an abstract datatype (ADT). It is
then the compiler that must (help the modeller) choose a suitable representa-
tion, say in a contemporary constraint programming language, for each instance
of the ADT, using empirically or theoretically gained modelling insights.

We here demonstrate, as originally conjectured in [9], that a suitable first-
order relational calculus is a good basis for a high-level, ADT-based, and solver-
independent constraint modelling language. It gives rise to very natural and
easy-to-maintain models of combinatorial problems. Even in the (temporary)
absence of a corresponding high-level search language, this generality does not
necessarily come at a loss in solving efficiency, as abstract relational models are
devoid of representation details so that the results of analysis can be exploited.

Our aims here are only to justify and present our new language, called ESRA,
to illustrate its elegance and the flexibility of its models by some examples, and
to argue that it can be compiled into efficient models in lower-level (constraint
programming) languages. The syntax, denotational semantics, and type system
of the proposed language are discussed in full detail in an online appendix [12]
and a second prototype of the advocated compiler is under development.

The rest of this paper is organised as follows. In Section 2, we present our
relational language for modelling combinatorial problems and deploy it on three
real-life problems before discussing its compilation. This allows us to list, in
Section 3, the benefits of relational modelling. Finally, in Section 4, we conclude
as well as discuss related and future work.

2 Relational Constraint Modelling with ESRA

In Section 2.1, we justify the design decisions behind our new ESRA constraint
modelling language, targeted at constraint programmers. Then, in Section 2.2,
we introduce its concepts, syntax, type system, and semantics. Next, in Sec-
tion 2.3, we deploy ESRA on three real-life problems. Finally, in Section 2.4, we
discuss the design of our prototype compilers for ESRA.

2.1 Design Decisions

The key design decisions for our new relational constraint modelling language
called ESRA for Ezecutable Symbolism for Relational Algebra were as follows.

We want to capture common modelling idioms in a new abstract datatype
for relations, so as to design a high-level and simple language. The constructs of
the language are orthogonal, so as to keep the language small. Computational
completeness is not aimed at, as long as the language is useful for elegantly
modelling a large number of combinatorial problems.

We focus on finite, discrete domains. Relations are built from such domains
and sets are viewed as unary relations. Theoretical difficulties are sidestepped
by supporting only bounded quantification, but not negation nor sets of sets.

The language has an ASCII syntax, mimicking mathematical and logical
notation as closely as possible, as well as a IXTgX-based syntax, especially used
for pretty-printing models in that notation.

2.2 Concepts, Syntax, Type System, and Semantics of ESRA

For reasons of space, we only give an informal semantics. The interested reader
is invited to consult [12] for a complete description of the language. Essentially,
the semantics of the language is a conservative extension of existential second-
order logic. Existential quantification of relations is used to assert that relations
are to be found that satisfy sets of first-order constraints. This is in contrast
with extensions of logic programming [6,25] where second-order relations can
be specified recursively using Horn clauses, which needs a much more careful
treatment of the fixed-point semantics.

Code excerpts are here provided out of the semantic context of any particular
problem statement, just to illustrate the syntax, but a suggested reading in plain
English is always provided. In Section 2.3, we will actually start from plain
English problem statements and show how they can be modelled in ESRA. Code
excerpts are always given in the pretty-printed form, but we indicate the ASCII
notation for every symbol where it necessarily differs.

An ESRA model starts with a sequence of declarations of named domains
(or types) as well as named constants and decision variables that are tied to
domains. Then comes the objective, which is to find values for the decision vari-
ables within their domains so that some constraints are satisfied and possibly
some cost expression takes an optimal value.

The Type System. A primitive domain is a finite, extensionally given set of
new names or integers, comma-separated and enclosed as usual in curly braces.
An integer domain can also be given intensionally as a finite integer interval,
by separating its lower and upper bounds with ‘...” (denoted in ASCII by ‘. ."),
without using curly braces. When these bounds coincide, the corresponding sin-
gleton domain n...n or {n} can be abbreviated to n. Context always determines
whether an integer n designates itself or the singleton domain {n}. A domain
can also be given intensionally using set comprehension notation.

The only predefined primitive domains are the sets N (denoted in ASCII by
‘nat’) and Z (denoted in ASCII by ‘int’), which are ‘0...sup’ and ‘inf...sup’
respectively, where the predefined constant identifiers ‘inf” and ‘sup’ stand for the
smallest negative and largest positive representable integers respectively. User-
defined primitive domains are declared after the ‘dom’ keyword and initialised
at compile-time, using the ‘=" symbol, or at run-time, via a datafile, otherwise
interactively.

FExample 1. The statement
dom Varieties, Blocks

declares two domains called Varieties and Blocks that are to be initialised at run-

time. As in OPL [31], this neatly separates the problem model from its instance

data, so that the actual constraint satisfaction problem is obtained at run-time.
Similarly, the statement

dom Players =1...g%s, Weeks =1...w, Groups =1...g

where ¢, s, w are integer-constant identifiers (assumed previously declared, in a
way shown below), declares integer domains called Players, Weeks, and Groups
that are initialised at compile-time.

Finally, the declaration

dom Even ={i|i:0...100|i % 2 =0}
initialises the domain Fven of all even natural numbers up to 100.

The usual binary infix x constructor (denoted in ASCII by ‘#’) allows the
construction of Cartesian products.

The only constructed domains are relational domains. In order to simulta-
neously capture frequently occurring multiplicity constraints on relations, we
offer a parameterised binary infix x domain constructor. The relational domain
A My M B where A and B are (possibly Cartesian products of) primitive do-
mains, designates a set of binary relations in A x B. The optional M; and M,
called multiplicities, must be integer sets and have the following semantics: for
every element a of A, the number of elements of B related to a must be in M,
while for every element b of B, the number of elements of A related to b must
be in M5.! An omitted multiplicity stands for N.

FExample 2. The constructed domain

Varieties "x* Blocks

designates the set of all relations in Varieties x Blocks where every variety occurs
in exactly r blocks and every block contains exactly k varieties. These are two
occurrences where an integer abbreviates the singleton domain containing it.

! Note that our syntax is the opposite of the UML one, say, where the multiplicities are
written in the other order, with the same semantics. That convention can however
not be usefully upgraded to Cartesian products of arity higher than 2.

In the absence of such facilities for relations and their multiplicities, a re-
lational domain would have to be modelled using arrays, say. This may be a
premature commitment to a concrete data structure, as the modeller may not
know yet, especially prior to experimentation, which particular (array-based)
representation of a relational decision variable will lead to the most efficient
solving. The problem constraints, including the multiplicities, would have to be
formulated in the constraints part of the model, based on the chosen represen-
tation. If the experiments revealed that another representation should be tried,
then the modeller would have to first painstakingly reformulate the declaration
of the decision variable as well as all its constraints. Qur ADT view of relations
overcomes this flaw: it is now the compiler that must (help the modeller) choose
a suitable representation for each instance of the ADT by using empirically or
theoretically gained insights. Also, multiplicities need not become counting con-
straints, but are succinctly and conveniently captured in the declaration.

We view sets as unary relations: A M, where A is a domain and M an integer
set, constructs the domain of all subsets of A whose cardinality is in M. The
multiplicity M is mandatory here; otherwise there would be ambiguity whether
a value of the domain A is an element or an arbitrarily sized subset of A.

For total and partial functions, the left-hand multiplicity M; is 1...1 and
0...1 respectively. In order to dispense with these left-hand multiplicities for
total and partial functions, we offer the usual — and /= (denoted in ASCII
by ‘>’ and ‘+>’) domain constructors respectively, as shorthands. They may still
have right-hand multiplicities though.

For injections, surjections, and bijections, the right-hand multiplicity M, is
0...1, 1...sup, and 1...1 respectively. Rather than elevating these particular
cases of functions to first-class concepts with an invented specific syntax in ESRA,
we prefer keeping our language lean and close to mathematical notation.

FExample 3. The constructed domain
(Players x Weeks) —*"" Groups

designates the set of all total functions from Players x Weeks into Groups such
that every group is related to exactly sw (player,week) pairs.

We provide no support (yet) for bags and sequences, as relations provide
enough challenges for the time being. Note that a bag can be modelled as a total
function from its domain into N, giving the repetition count of each element.
Similarly, a sequence of length n can be modelled as a total function from 1...n
into its domain, telling which element is at each position. This does not mean
that the representation of bags and sequences is fixed (to the one of total func-
tions), because, as we shall see in Section 2.4, the various relations (and thus
total functions) of a model need not have the same representation.

Modelling the Instance Data and Decision Variables. All identifier dec-
larations are strongly typed and denote variables that are implicitly universally

quantified over the entire model, with the constants expected to be ground before
search begins while the decision variables can still be unbound at that moment.

Like the user-defined primitive domains, constants help describe the instance
data of a problem. A constant identifier is declared after the ‘cst’ keyword and

%)

is tied to its domain by ‘:’, meaning set membership. Constants are initialised
at compile-time, using the ‘=’ symbol, or at run-time, via a datafile, otherwise
interactively. Again, run-time initialisation provides a neat separation of problem

models and problem instances.

FExample /. The statement
cst r,k, A N

declares three natural number constants that are to be initialised at run-time.
As already seen in Examples 2 and 3, the availability of total functions makes
arrays unnecessary. The statement

cst CrewSize : Guests — N, SpareCap : Hosts — N
declares two natural-number functions, to be provided at run-time.

A decision-variable identifier is declared after the ‘var’ keyword and is tied
to its domain by ‘.

Ezample 5. The statement
var BIBD : Varieties "x* Blocks

declares a relation called BIBD of the domain of Example 2.

Modelling the Cost Expression and the Constraints. Ezpressions and
first-order logic formulas are constructed in the usual way.

For numeric expressions, the arguments are either integers or identifiers of the
domain N or Z, including the predefined constants ‘inf’” and ‘sup’. Usual unary
(—, ‘abs’ for absolute value, and ‘card’ for the cardinality of a set expression),
binary infix (4, —, %, / for integer quotient, and % for integer remainder), and
aggregate (3, denoted in ASCII by ‘sum’) arithmetic operators are available. A
sum is indexed by local variables ranging over finite sets, which may be filtered
on-the-fly by a condition given after the ‘|’ symbol (read ‘such that’).

Sets obey the same rules as domains. So, for set expressions, the arguments
are either set identifiers or (intensionally or extensionally) given sets, including
the predefined sets N and Z. Only the (unparameterised) binary infix domain
constructor X and its specialisations — and /— are available as operators.

Finally function expressions are built by applying a function identifier to an
argument tuple. We have found no use yet for any other operators on functions
(but see the discussion of future work in Section 4).

Ezample 6. The numeric expression

Z CrewSize(g)

9:Guests | Schedule(g,p)=h

denotes the sum of the crew sizes of all the guest boats that are scheduled to
visit host h at period p, assuming this expression is within the scope of the local
variables h and p. The nested function expression CrewSize(g) stands for the
size of the crew of guest g, which is a natural number according to Example 4.

Atoms are built from numeric expressions with the usual comparison predi-
cates, such as the binary infix =, #, and < (denoted in ASCII by ‘=’, ‘!=" and
‘=<’ respectively). Atoms also include the predefined ‘true’ and ‘false’, as well as
references to the elements of a relation. We have found no use yet for any other
predicates. Note that ‘€’ is unnecessary as z € S is equivalent to S(z).

Exzample 7. The atom BIBD(vy,1) stands for the truth value of variety vy being
related to block ¢ in the BIBD relation of Example 5.

Formulas are built from atoms. The usual binary infix connectives (A, V, =,
<, and <, denoted in ASCII by ‘/\’, ‘\/’, ‘=>’, ‘<=", and ‘<=>" respectively) and
quantifiers (V and 3, denoted in ASCII by ‘forall’ and ‘exists’ respectively) are
available. A quantified formula is indexed by local variables ranging over finite
sets, which may be filtered on-the-fly by a condition given after the ‘|’ symbol
(read ‘such that’). As we provide a rich (enough) set of predicates, we are only
interested in models that can be formulated positively, and thus dispense with
the negation connective. The usual typing and precedence rules for operators
and connectives apply. All binary operators associate to the left.

Ezample 8. The formula

Y(p: Periods, h : Hosts) Z CrewSize(g) | < SpareCap(h)
9:Guests | Schedule(g,p)=h

constrains the spare capacity of any host boat h not to be exceeded at any period
p by the sum of the crew sizes of all the guest boats that are scheduled to visit
host h at period p.

A generalisation of the 3 quantifier turns out to be very useful. We define
count(Multiplicity)(x : Set | Condition,)

to hold if and only if the cardinality of the set comprehension {z : Set | Condition}
is in the integer set Multiplicity. So

A(x : Set | Condition)
is actually syntactic sugar for

count(1...sup)(z : Set | Condition)

Ezample 9. The formula
V(v1 < wy : Varieties) count(\)(j : Blocks | BIBD(vy,j) A BIBD(vs, 7))

says that each ordered pair of varieties v; and vy occurs together in exactly A
blocks, via the BIBD relation. Regarding the excerpt ‘vy < vy : Varieties’, note
that multiple local variables can be quantified at the same time, and that a
filtering condition on them may then be pushed across the ‘|” symbol.

Ezample 10. Assuming that the function Schedule is of the domain of Example 3
and thus returns a group, the formula

V(p1 < p2 : Players) count(0...1)(v : Weeks | Schedule(py,v) = Schedule(ps,v))

says that there is at most one week where any ordered pair of players p; and ps
is scheduled to play in the same group.

A cost expression is a numeric expression that has to be optimised. The con-
straints on the decision variables of a model are a conjunction of formulas, using
A as the connective. The objective of a model is either to solve its constraints:

solve Constraints
or to minimise the value of its cost expression subject to its constraints:
minimise CostEzpression such that Constraints

or similarly for maximising. A model consists of a sequence of domain, constant,
and decision-variable declarations followed by an objective, without separators.

Ezample 11. Putting together code fragments from Examples 1, 4, 5, and 9, we
obtain the model of Figure 2 two pages ahead, discussed in Section 2.3.

The grammar of ESRA is described in Figure 1. For brevity and ease of read-
ing, we have omitted most syntactic-sugar options as well as the rules for iden-
tifiers, names, and numbers. The notation (nt)s* stands for a sequence of zero
or more occurrences of the non-terminal (nt), separated by symbol s. Similarly,

(nt)s+ stands for one or more occurrences of (nt), separated by s. The typing
rules ensure that the equality predicates = and # are only applied to expres-
sions of the same type, that the other comparison predicates, such as <, are only
applied to numeric expressions, and so on.

2.3 Examples

We now showcase the elegance and flexibility of our language on three real-
life problems, namely Balanced Incomplete Block Designs, the Social Golfers
problem, and the Progressive Party problem.

(Model) ::= (Decl)™ (Objective)

(Decl) ::= (DomDecl) | (CstDecl) | (VarDecl)
(DomDecl) ::= dom (Id) [= (Set)]

(CstDecly == cst (Id) [= (Tuple) | (Set)] : (SetExpr)
(VarDecl) ::= var (Id) : (SetEzpr)

(Objective) ::= solve (Formula)
| (minimise | maximise) (NumEzpr) such that (Formula)

(Bzpr) = (Id) | (Name) | (Tuple) | (NumEzpr) | (SetEzpr) | (FuncAppl) | ((Ezpr))
(NumEzpr) := (Id) | (Int) | (Nat) | inf | sup | (FuncAppl)
| (NumEzpr) (+|-1|*|/|%) (NumEzpr)

| (-|abs) (NumEzpr)
| card (SetEzpr)
| sum ((QuantEzpr)) ((NumEzpr))

(SetEzpr) = (Set) | (SetEzpr) [(Set)]
| (SetEzpr) ([[(Set)|#[(Set)]] | #) (SetEzpr)
| (SetBzpr) ([->[(Set)]] | => | [+>[(Set)]] | +>) (SetEzpr)

(Set) ::= (Id) | int | nat

(Tuple)*” ¥ | { (ComprEzpr) }
NumEzpr) . .(NumEzpr) | (NumEzpr)

=
| {
|«
(ComprEzpr) ::= (Ezpr) | ((Idfl”uple)gfr in (SetEzpr))/\+ [| (Formula)]
(FuncAppl) ::= (Id) {Tuple)
(Tuple) ::= ((EIpT‘)’+) | (Ezpr)
(Formula) ::= true | false | (RelAppl)

| (Formula) (/\ | \/ | =>]<=]<=>) (Formula)

| (NumBupr) (<] =<| = |>=|> | 1=) (NumBspr)

| forall ((QuantEzpr)) ((Formula))

| count ((Set)) ((QuantEzpr))
(RelAppl) = (Id) (Tuple)
(QuantEzpr) ::= (((RelQuars) | (Idfl”uple)&Jr) in (SetEzpr))’Jr [| (Formula) |
(RelQuars) == (Bzpr) (< |=<|=]>=|>]| =) (Ezpr)

(IdTuple) = (Id) | ((Id)*")

Fig. 1. The grammar of ESRA

dom Varieties, Blocks

cst r,k, A0 N
var BIBD : Varieties "x* Blocks
solve

V(v1 < w2 : Varieties) count(A)(j : Blocks | BIBD(v1,5) A BIBD(v2,7))
Fig. 2. A pretty-printed ESRA model for BIBDs

dom Varieties, Blocks
cst r, k, lambda : nat
var BIBD : Varieties [r#k] Blocks
solve
forall (vl < v2 : Varieties)
count (lambda) (j : Blocks | BIBD(v1,j) /\ BIBD(v2,j))

Fig. 3. An ESRA model for BIBDs

Balanced Incomplete Block Designs. Let V' be any set of v elements, called
varieties. A balanced incomplete block design (BIBD) is a bag of b subsets of
V', called blocks, each of size k (constraint C7), such that each pair of distinct
varieties occurs together in exactly A blocks (Cs), with 2 < k < v. An implied
constraint is that each variety occurs in the same number of blocks (C3), namely
r = AMv —1)/(k —1). A BIBD is parameterised by a 5-tuple (v,b,r, k, A} of
parameters. Originally intended for the design of statistical experiments, BIBDs
also have applications in cryptography and other domains. See Problem 28 at
http://www.csplib.org for more information.

The instance data can be declared as the two domains Varieties and Blocks, of
implicit sizes v and b respectively, as well as the three natural-number constants
r, k, and A, as in Examples 1 and 4. A unique relational decision variable,
BIBD, can then be declared as in Example 5, thereby immediately taking care
of the constraints C; and C5. The remaining constraint Cs can be modelled as
in Example 9. Figure 2 shows the resulting pretty-printed ESRA model, while
Figure 3 shows it in ASCII notation.

For comparison, an OPL [31] model is shown in Figure 4, where ‘= ...’ means
that the value is to be found in a corresponding datafile. The decision variable
BIBD is a 2-dimensional array of integers 0 or 1, indexed by the varieties and
blocks, such that BIBD[i,j] = 1 iff variety i is contained in block j. Further-
more, the constraints Cy and C5, which we could capture by multiplicities in the
ESRA model, need here to be stated in more length. Finally, the constraint Cy
is stated using a higher-order constraint:? for each ordered pair of varieties v1
and v2, the number of times they appear in the same block, that is the number
of blocks j where BIBD(v1,j) = 1 = BIBD(v2,j) holds, must equal lambda.

In an OPL model, one needs to decide what concrete datatypes to use for
representing the abstract decision variables of the original problem statement.

2 A higher-order constraint refers to the truth value of another constraint. In opr, the
latter is nested in parentheses, truth is represented by 1, and falsity by 0.

enum Varieties = ..., Blocks = ...;
int r = ...; int k = ...; int lambda = ...;
range Boolean 0..1;
var Boolean BIBD[Varieties,Blocks];
solve {
forall(j in Blocks) sum(i in Varieties) BIBD[i,j] = k;

forall(i in Varieties) sum(j in Blocks) BIBD[i,j]l = r;
forall(ordered v1,v2 in Varieties)
sum(j in Blocks) (BIBD[v1,j] = 1 = BIBD[v2,j]) = lambda;

. symmetry-breaking code ...

Fig. 4. An opL model for BIBDs

In this case, we chose a 2-dimensional 0/1 array BIBD, indexed by Varieties
and Blocks. We could just as well have chosen a different representation, say (if
OPL had set variables) a 1-dimensional array BIBD, indexed by Blocks, of subsets
of Varieties. Such a choice affects the formulation of every constraint and the
cost, expression, but is premature as even expert intuition is weak in predicting
which representation choice leads to the best solving efficiency. Consequently, the
modeller has to frequently reformulate the constraints and the cost expression
while experimenting with different representations. No such choices have to be
made in an ESRA model, making ESRA a more convenient modelling language.

As a consequence to such representation choices, one often introduces an as-
tronomical amount of symmetries into an OPL model that are not present in the
original problem statement [10]. For example, given a solution, any two rows
or columns in the array BIBD can be swapped, giving a different, but symmet-
rically equivalent, solution. Such symmetries need to be addressed in order to
achieve efficient solving. Hence, symmetry-breaking code [10, 32] would have to
be inserted, as indicated in Figure 4. Since such choices are postponed to the
compilation phase in ESRA (see Section 2.4), any symmetries consciously intro-
duced can be handled (automatically) in that process.

The Social Golfers Problem. In a golf club, there are n players, each of
whom plays golf once a week (constraint Cy) and always in g groups of size s
(Cy), hence n = gs. The objective is to determine whether there is a schedule of
w weeks of play for these golfers, such that there is at most one week where any
two distinct players are scheduled to play in the same group (C3). An implied
constraint is that every group occurs exactly sw times across the schedule (Cy).
See Problem 10 at http://www.csplib.org for more information.

The instance data can be declared as the three natural-number constants
g, s, and w, via ‘cst g,s,w : N, as well as the three domains Players, Weeks,
and Blocks, as in Example 1. A unique decision variable, Schedule, can then be
declared using the functional domain in Example 3, thereby immediately taking
care of the constraints C; (because of the totality of the function) and Cy4. The

cst g,s,w: N

dom Players =1...gxs, Weeks =1...w, Groups =1...g

var Schedule : (Players x Weeks) —°*" Groups

solve
V(p1 < p2 : Players) count(0...1)(v : Weeks | Schedule(p:,v) = Schedule(pz,v))
A V(h : Groups,v : Weeks) count(s)(p : Players | Schedule(p,v) = h)

Fig. 5. A pretty-printed ESRA model for the Social Golfers problem

constraint C'3 can be modelled as in Example 10. The constraint Cs can be stated
using the count quantifier, as seen in the pretty-printed ESRA model of Figure 5.

Note the different style of modelling sets of unnamed objects, via the separa-
tion of models from the instance data, compared to Figure 2. There we introduce
two sets without initialising them at the model level, while here we introduce
three uninitialised constants that are then used to arbitrarily initialise three
domains of desired cardinalities. Both models can be reformulated in the other
style. The benefit of such sets of unnamed objects is that their elements are indis-
tinguishable, so that lower-level representations of relational decision variables
whose domains involve such sets are known to introduce symmetries.

The Progressive Party Problem. The problem is to timetable a party at
a yacht club. Certain boats are designated as hosts, while the crews of the
remaining boats are designated as guests. The crew of a host boat remains
on board throughout the party to act as hosts, while the crew of a guest boat
together visits host boats over a number of periods. The spare capacity of any
host boat is not to be exceeded at any period by the sum of the crew sizes of
all the guest boats that are scheduled to visit it then (constraint Cy). Any guest
crew can visit any host boat in at most one period (C3). Any two distinct guest
crews can visit the same host boat in at most one period (C5). See Problem 13
at http://www.csplib.org for more information.

The instance data can be declared as the three domains Guests, Hosts, and
Periods, via ‘dom Guests, Hosts, Periods’, as well as the two functional constants
SpareCap and CrewSize, as in Example 4. A unique functional decision variable,
Schedule, can then be declared via ‘var Schedule : (Guests x Periods) — Hosts’.
The constraint C'; can now be modelled as in Example 8. The constraints Cs
and C3 can be stated using the count quantifier, as seen in the pretty-printed
ESRA model of Figure 6.

2.4 Compiling Relational Models

A compiler for ESRA is currently under development. It is being written in 0CAML
(http://www.ocaml.org) and compiles ESRA models into SICStus Prolog [5]
finite-domain constraint programs. Our choice of target language is motivated
by its excellent collection of global constraints and by our collaboration with its
developers on designing new global constraints.

dom Guests, Hosts, Periods

cst SpareCap : Hosts — N, CrewSize : Guests — N
var Schedule : (Guests x Periods) — Hosts

solve

g:Guests | Schedule(g,p)=h
A V(g : Guests,h : Hosts) count(0...1)(p: Periods | Schedule(g,p) = h)
A V(g1 < g2 : Guests) count(0...1)(p : Periods | Schedule(gi,p) = Schedule(g2,p))

Fig. 6. A pretty-printed ESRA model for the Progressive Party problem

Y(p: Periods, h: Hosts) (> CrewSize(g) | < SpareCap(h)

We already have an ESRA-to-OPL compiler [36,15], written in Java, for a
restriction of ESRA to functions, now called Functional-ESRA. That project gave
us much of the expertise needed for developing the current compiler.

The solver-independent ESRA language is so high-level that it is very small
compared to such target languages, especially in the number of necessary prim-
itive constraints. The full panoply of features of such target languages can,
and must, be deployed during compilation. In particular, the implementation
of decision-variable indices into matrices is well-understood.

In order to bootstrap our new compiler quickly, we decided to represent
initially every relational decision variable by a matrix of 0/1 variables, indexed by
its participating sets. This first version of the new compiler is thus deterministic.

The plan is then to add alternatives to this unique representation rule, de-
pending on the multiplicities and other constraints on the relation, achieving a
non-deterministic compiler, such as our existing Functional-ESRA-to-OPL com-
piler [36,15]. The modeller is then invited to experiment with her (real-life)
instance data and the resulting compiled programs, so as to determine which
one is the ‘best’. If the compiler is provided with those instance data, then it
can be extended to automate such experiments and generate rankings.

Eventually, more intelligence will be built into the compiler via heuristics
(such as those of [15]) for the compiler to rank the resulting compiled programs
by decreasing likelihood of efficiency, without any recourse to experiments. In-
deed, depending on the multiplicities and other constraints on a relation, certain
representations thereof can be shown to be better than others, under certain as-
sumptions on the targeted solver, and this either theoretically (see for instance
[33] for bijections and [15] for injections) or empirically (see for instance [28] for
bijections). We envisage a hybrid interactive/heuristic compiler.

Our ultimate aim is of course to design an actual solver for relational con-
straints, without going through compilation.

3 Benefits of Relational Modelling

In our experience, and as demonstrated in Section 2.3, a relational constraint
modelling language leads to more concise and intuitive models, as well as to more
efficient and effective model formulation and verification. Due to ESRA being

smaller than conventional constraint programming languages, we believe it is
easier to learn and master, making it a good candidate for a teaching medium.
All this could entail a better dissemination of constraint technology.

Relational languages seem a good trade-off between generality and specificity,
enabling efficient solving despite more generality. Relations are a single, pow-
erful concept for elegantly modelling many aspects of combinatorial problems.
Also, there are not too many different, and even standard, ways of representing
relations and relational expressions. Known and future modelling insights, such
as those in [15, 28, 33], can be built into the compilers, so that even time-pressed
or less competent modellers can benefit from them. Modelling is unencumbered
by early if not uninformed commitments to representation choices. Low-level
modelling devices such as reification and higher-order constraints can be en-
capsulated as implementation devices. The number of decision variables being
reduced, there is even hope that directly solving the constraints at the high re-
lational level can be faster than solving their compiled lower-level counterparts.
All this illustrates that more generality need not mean poorer performance.

Relational models are more amenable to maintenance when the combina-
torial problem changes, because most of the tedium is taken care of by the
compiler. Model maintenance at the relational level reduces to adapting to the
new problem, with all representation (and solving) issues left to the compiler.
Very little work is involved here when a multiplicity change entails a preferable
representation change for a relation. Maintenance can even be necessary when
the statistical distribution of the problem instances that are to be solved changes
[22]. If information on the new distribution is given to the envisaged compiler,
a simple recompilation will take care of the maintenance.

Relational models are at a more suitable level for possibly automated model
reformulation, such as via the inference and selection of suitable implied con-
straints, with again the compiler assisting in the more mundane aspects. In the
BIBD and Social Golfers examples, we have observed that multiplicities provide
a nice framework for discovering and stating some implied constraints. Indeed,
the language makes the modeller think about making these multiplicities explicit,
even if they were not in the original problem formulation.

Relational models are more amenable to constraint analysis. Detected prop-
erties as well as properties consciously introduced during compilation into lower-
level programs, such as symmetry or bijectiveness, can then be taken into account
during compilation [10], especially using tractability results [32].

There would be further benefits to an abstract modelling language if it were
adopted as a standard front-end language for solvers. Models and instance data
would then be solver-independent and could be shared between solvers, whatever
their technology. Indeed, the targeted solvers need not even use constraint tech-
nology, but could just as well use answer-set programming, linear programming,
local search, or propositional satisfiability technology, or any hybrid thereof.
This would facilitate fair and homogeneous comparisons, say via new standard
benchmarks, as well as foster competition in fine-tuning the compilers.

4 Conclusion

We have argued that solver-independent, abstract constraint modelling leads to
a simpler and smaller language; to more concise, intuitive, and analysable mod-
els; as well as to more efficient and effective model formulation, maintenance,
reformulation, and verification. All this can be achieved without sacrificing the
possibility of efficient solving, so that even time-pressed or less competent mod-
ellers can be well assisted. Towards this, we have proposed the ESRA relational
modelling language, showcased its elegance on some well-known problems, and
outlined a compilation philosophy for such languages. To conclude, let us look
at related work (Section 4.1) and future work(Section 4.2).

4.1 Related Work

We have here generalised and re-engineered our own work [11,36,15] on a pre-
decessor of ESRA, now called Functional-ESRA, that only supports functional
decision variables, by pursuing the aim of relational modelling outlined in [9].
Elsewhere, such ideas have recently inspired a related project [3], incorporating
partition decision variables. Constraints for bag decision variables [2,7,34] and
sequence decision variables [2,26] have also been proposed.

This research owes a lot to previous work on relational modelling in formal
methods and on ERA-style semantic data modelling, especially to the ALLOY
object modelling language [16], which itself gained much from the z specification
notation [29] (and learned from UML/OCL how not to do it). Contrary to ERA
modelling, we do not distinguish between attributes and relations.

In constraint programming, the commercial OPL [31] stands out as a medium-
level modelling language and actually gave the impetus to design ESRA: see the
BIBD example in Section 2.3 and consult [9] for a further comparison of elegant
ESRA models with more awkward (published) OPL counterparts that do not
provide all the benefits of Section 3. Other higher-level constraint modelling
languages than ESRA have been proposed, such as ALICE [18], CLP(Fun(D))
[14], cLPs [2], cONJUNTO [13], EACL [30], {log} [7], NCL [37], and the language of
[24]. Our ESRA shares with them the quest for a practical declarative modelling
language based on a strongly-typed fuller first-order logic than Horn clauses, with
sequence, set, bag, functional, or even relational decision variables, while often
dispensing with recursion, negation, and unbounded quantification. However,
ESRA goes way beyond them, by advocating an ADT view (of relations), so that
representations need not be fixed in advance, by providing an elegant notation
for multiplicity constraints, and by promising intelligent compilation.

In the field of knowledge representation, answer-set programming (ASP) has
recently been advocated [21] as a practical constraint solving paradigm, espe-
cially for dynamic domains such as planning. A set of (disjunctive) function-free
clauses, where classical negation and negation as failure are allowed, is inter-
preted as a constraint, stating when an atom is in a solution, called an answer set
or a stable model. This non-monotonic approach differs from constraint (logic)
programming, where statements are used to add atomic constraints on decision

dom Cities
cst Distance : (Cities x Cities) — N
var Next : Cities —' Cities

minimise Y, Distance(c, Next(c))
c: Cities

such that V(ci1&cs : Cities) Next™(c1) = ca

Fig. 7. A pretty-printed ESRA model for the Travelling Salesperson problem

variables to a constraint store, whereupon propagation and search are used to
construct solutions. Implementation methods for computing the answer sets of
ground programs have advanced significantly over recent years, possibly using
propositional satisfiability (SAT) solvers. Also, effective grounding procedures
have been devised for some classes of such programs with (schematic) variables.
Sample ASP systems are DLV [19] and SMODELS [23]. Closely related are Con-
straintLingo [8] and NP-SPEC [4]. The languages of these systems include useful
features, such as cardinality and weight constraints, aggregate functions, and
soft, constraints. They have strictly more expressive power than propositional
logic and traditional constraint (logic) programming/modelling languages, in-
cluding ESRA. Again, our objective only is a language that is useful for elegantly
modelling a large number of combinatorial problems. The cardinality constraint
of SMODELS is a restriction of the ESRA ‘count’ quantifier to interval multiplici-
ties, as opposed to set multiplicities. Speed comparisons with SAT solvers were
encouraging, but no comparison has been done yet with constraint solvers.

4.2 Future Work

Most of our future work has already been listed in Sections 2.4 and 3 about
the compiler design and long-term benefits of relational modelling, such as the
generation of implied constraints and the breaking of symmetries.

We have argued that our ESRA language is very small. This is mostly because
we have not yet identified the need for any other operators or predicates. An
exception to this is the need for transitive closure relation constructors. We
aim at modelling the well-known Travelling Salesperson (TSP) problem as in
Figure 7, where the transitive closure of the bijection Next on Cities is denoted
by Next*. This general mechanism avoids the introduction of an ad hoc ‘circuit’
constraint as in ALICE [18].

As we do not aim at a complete constraint modelling language, we can be
very conservative in what missing features shall be added to ESRA when they
are identified. Also, for manpower reasons, we do not yet propose other ADTs,
say for bags or sequences, although this was originally part of our original vision
(see Section 3.3 of [11]).

Our request for explicit model-level distinction between constants and deci-
sion variables may be eventually lifted, as the default is run-time initialisation:
we could treat as constants any universally quantified variable that was actually

initialised and treat all the others as decision variables. This requires a convinc-
ing example, though, as well as just-in-time compilation.

In [20], a type system is derived for binary relations that can be used as an
input to specialised filtering algorithms. This kind of analysis can be integrated
into the relational solver we have in mind.

Also, a graphical language could be developed for the data modelling, includ-
ing the multiplicity constraints on relations, so that only the cost expression and
the constraints would need to be textually expressed.

Finally, a search language, such as SALSA [17] or the one of OPL [31], but at
the level of relational modelling, should be adjoined to the constraint modelling
language proposed here, so that more expert modellers can express their own
search heuristics.

Acknowledgements. This work is partially supported by grant 221-99-369
of VR, the Swedish Research Council, and by institutional grant 1G2001-67
of STINT, the Swedish Foundation for International Cooperation in Research
and Higher Education. We thank Nicolas Beldiceanu, Mats Carlsson, Esra Er-
dem, Brahim Hnich, Daniel Jackson, Zeynep Kiziltan, Francois Laburthe, Gerrit
Renker, Christian Schulte, Mark Wallace, and Simon Wrang for stimulating dis-
cussions, as well as the constructive reviewers of previous versions of this paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. F. Ambert, B. Legeard, and E. Legros. Programmation en logique avec contraintes
sur ensembles et multi-ensembles héréditairement finis. Techniques et Sciences
Informatiques, 15(3):297-328, 1996.

3. A. Bakewell, A. M. Frisch, and I. Miguel. Towards automatic modelling of con-
straint satisfaction problems: A system based on compositional refinement. In
Proceedings of the 2nd International Workshop on Modelling and Reformulat-
ing CSPs, pages 3-17, 2003. Available at http://www-users.cs.york.ac.uk/
“frisch/Reformulation/03/.

4. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NPSPEC: An executable speci-
fication language for solving all problems in NP. In G. Gupta, editor, Proceedings
of PADL’99, volume 1551 of LNCS, pages 16-30. Springer-Verlag, 1999.

5. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proceedings of PLILP’97,
number 1292 in LNCS, pages 191-206. Springer-Verlag, 1997.

6. M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable
semantics for logic programs with aggregates. In Proceedings of ICLP’01, volume
2237 of LNCS, pages 212 226. Springer-Verlag, 2001.

7. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-
ming. ACM Transactions on Programming Languages and Systems, 22(5):861-931,
2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Finkel, V. Marek, and M. Truszczynski. Tabular constraint-satisfaction prob-
lems and answer-set programming. In Proceedings of the AAAI Spring Symposium,
on Answer-Set Programming, 2001. Available at http://www.cs.nmsu.edu/ tson/
ASP2001/.

P. Flener. Towards relational modelling of combinatorial optimisation problems.
In C. Bessiere, editor, Proceedings of the IJCAI’01 Workshop on Modelling and
Solving Problems with Constraints, pages 31 38, 2001. Available at http://wuw.
lirmm.fr/~bessiere/ws_ijcaiO1/.

P. Flener, A. M. Frisch, B. Hnich, Z. Kizaltan, I. Miguel, and T. Walsh. Matrix
modelling: Exploiting common patterns in constraint programming. In Proc. of
the 1st Int’l Workshop on Reformulating CSPs, pages 27 41, 2002. Available at
http://wwu-users.cs.york.ac.uk/ frisch/Reformulation/02/.

P. Flener, B. Hnich, and Z. Kiziltan. Compiling high-level type constructors in
constraint programming. In I. Ramakrishnan, editor, Proceedings of PADL’01,
volume 1990 of LNCS, pages 229-244. Springer-Verlag, 2001.

P. Flener, J. Pearson, and M. Agren. The Syntax, Semantics, and Type System of
esra. Technical report, ASTRA group, April 2003. Available at http://www.it.
uu.se/research/group/astra/.

C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints, 1(3):191 244, 1997.

T. J. Hickey. Functional constraints in CLP languages. In F. Benhamou and
A. Colmerauer, editors, Constraint Logic Programming: Selected Research, pages
355 381. The MIT Press, 1993.

B. Hnich. Function Variables for Constraint Programming. PhD thesis, Depart-
ment of Information Science, Uppsala University, Sweden, 2003. Available at
http://publications.uu.se/theses/.

D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism.
Software Engineering Notes, 26(5):62-73, 2001. Proceedings of FSE/ESEC’01.

F. Laburthe and Y. Caseau. sALSA: A language for search algorithms. Constraints,
7:255—288, 2002.

J.-L. Lauriére. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10(1):29 127, 1978.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV system for knowledge representation and reasoning. In ACM Transactions
on Computational Logic, forthcoming. Available at http://arxiv.org/ps/cs.AI/
0211004.

D. Lesaint. Inferring constraint types in constraint programming. In P. Van Hen-
tenryck, editor, Proceedings of CP’02, volume 2470 of LNCS, pages 492 507.
Springer-Verlag, 2002.

V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138:39 54, 2002.

S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1-2):7-43, 1996.

I. Niemela. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Al 25(3 4):241 273, 1999.

N. Pelov and M. Bruynooghe. Extending constraint logic programming with open
functions. In Proceedings of PPDP’00, pages 235 244. ACM Press, 2000.

N. Pelov, M. Denecker, and M. Bruynooghe. Partial stable models for logic pro-
grams with aggregates. In Proceedings of LPNMR 04, volume 2923 of LNCS, pages
207 219. Springer-Verlag, 2004.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

G. Pesant. A regular language membership constraint for sequences of variables.
In Proceedings of the 2nd International Workshop on Modelling and Reformulat-
ing CSPs, pages 110-119, 2003. Available at http://www-users.cs.york.ac.uk/
“frisch/Reformulation/03/.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1999.

B. M. Smith. Modelling a permutation problem. Technical Report 18, School of
Computing, University of Leeds, UK, 2000. Also in Proceedings of the ECAI’00
Workshop on Modelling and Solving Problems with Constraints.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition,
1992.

E. Tsang, P. Mills, R. Williams, J. Ford, and J. Borrett. A computer-aided con-
straint programming system. In J. Little, editor, Proceedings of PACLP’99, pages
81 93. The Practical Application Company, 1999.

P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

P. Van Hentenryck, P. Flener, J. Pearson, and M. Agren. Tractable symmetry
breaking for CSPs with interchangeable values. In Proceedings of IJCAI’03, pages
277 282. Morgan Kaufmann, 2003.

T. Walsh. Permutation problems and channelling constraints. In R. Nieuwenhuis
and A. Voronkov, editors, Proc. of LPAR’01, number 2250 in LNCS, pages 377—
391. Springer-Verlag, 2001.

T. Walsh. Consistency and propagation with multiset constraints: A formal view-
point. In F. Rossi, editor, Proceedings of CP’03, number 2833 in LNCS, pages
724 738. Springer-Verlag, 2003.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.

S. Wrang. Implementation of the ESRA Constraint Modelling Language. Mas-
ter’s thesis, Master’s Thesis in Computing Science 223, Department of Information
Technology, Uppsala University, Sweden, 2002. Available at ftp://ftp.csd.uu.
se/pub/papers/masters-theses/.

J. Zhou. Introduction to the constraint language NCL. Journal of Logic Program-
ming, 45(1-3):71-103, 2000.

