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t. Current-generation 
onstraint programming languages are
onsidered by many, espe
ially in industry, to be too low-level, diÆ-
ult, and large. We argue that solver-independent, high-level relational
onstraint modelling leads to a simpler and smaller language, to more
on
ise, intuitive, and analysable models, as well as to more eÆ
ientand e�e
tive model formulation, maintenan
e, reformulation, and veri-�
ation. All this 
an be a
hieved without sa
ri�
ing the possibility ofeÆ
ient solving, so that even time-pressed or less 
ompetent modellers
an be well assisted. Towards this, we propose the esra relational 
on-straint modelling language, show
ase its elegan
e on some well-knownproblems, and outline a 
ompilation philosophy for su
h languages.1 Introdu
tionCurrent-generation 
onstraint programming languages are 
onsidered by many,espe
ially in industry, to be too low-level, diÆ
ult, and large. Consequently,their solvers are not in as widespread use as they ought to be, and 
onstraintprogramming is still fairly unknown in many appli
ation domains, su
h as mole
-ular biology. In order to unleash the proven powers of 
onstraint te
hnology andmake it available to a wider range of problem modellers, a solver-independent,higher-level, simpler, and smaller modelling notation is needed.In our opinion, even re
ent 
ommer
ial languages su
h as opl [31℄ do not gofar enough in that dire
tion. Many 
ommon modelling patterns have not been
aptured in spe
ial 
onstru
ts. They have to be painstakingly spelled out ea
htime, at a high risk for errors, often using low-level devi
es su
h as rei�
ation.In re
ent years, modelling languages based on some logi
 with sets and re-lations have gained popularity in formal methods, witness the b [1℄ and z [29℄spe
i�
ation languages, the alloy [16℄ obje
t modelling language, and the Ob-je
t Constraint Language (o
l) [35℄ of the Uni�ed Modelling Language (uml)[27℄. In semanti
 data modelling this had been long advo
ated; most notably viaentity-relationship-attribute (ERA) diagrams.? A previous version of this paper appears pages 63{77 in the informally published pro-
eedings of the Se
ond International Workshop Modelling and Reformulating CSPs,available at http : ==www� users:
s:york:a
:uk=~fris
h=Reformulation=03=.?? The authors' names are ordered a

ording to the Swedish alphabet.



Sets and set expressions started appearing as modelling devi
es in some 
on-straint languages. Set variables are often implemented by the set interval repre-sentation [13℄. In the absen
e of su
h an expli
it set 
on
ept, modellers usuallypainstakingly represent a set variable by its 
hara
teristi
 fun
tion, namely as asequen
e of 0/1 integer variables, as long as the size of the domain of the set.Relations have not re
eived mu
h attention yet in 
onstraint programminglanguages, ex
ept total fun
tions, via arrays. Indeed, a total fun
tion f 
an berepresented in many ways [15℄, say as a 1-dimensional array of variables overthe range of f , indexed by its domain, or as a 2-dimensional array of Booleanvariables, indexed by the domain and range of f , or as a 1-dimensional arrayof set variables over the domain of f , indexed by its range, or even with someredundan
y. Other than retrieving the (unique) image under a total fun
tion ofa domain element, there has been no support for relational expressions.Matrix modelling [8, 10, 31℄ has been advo
ated as one way of 
apturing 
om-mon modelling patterns. Alternatively, it has been argued [11, 15℄ that fun
tions,and hen
e relations, should be supported by an abstra
t datatype (ADT). It isthen the 
ompiler that must (help the modeller) 
hoose a suitable representa-tion, say in a 
ontemporary 
onstraint programming language, for ea
h instan
eof the ADT, using empiri
ally or theoreti
ally gained modelling insights.We here demonstrate, as originally 
onje
tured in [9℄, that a suitable �rst-order relational 
al
ulus is a good basis for a high-level, ADT-based, and solver-independent 
onstraint modelling language. It gives rise to very natural andeasy-to-maintain models of 
ombinatorial problems. Even in the (temporary)absen
e of a 
orresponding high-level sear
h language, this generality does notne
essarily 
ome at a loss in solving eÆ
ien
y, as abstra
t relational models aredevoid of representation details so that the results of analysis 
an be exploited.Our aims here are only to justify and present our new language, 
alled esra,to illustrate its elegan
e and the 
exibility of its models by some examples, andto argue that it 
an be 
ompiled into eÆ
ient models in lower-level (
onstraintprogramming) languages. The syntax, denotational semanti
s, and type systemof the proposed language are dis
ussed in full detail in an online appendix [12℄and a se
ond prototype of the advo
ated 
ompiler is under development.The rest of this paper is organised as follows. In Se
tion 2, we present ourrelational language for modelling 
ombinatorial problems and deploy it on threereal-life problems before dis
ussing its 
ompilation. This allows us to list, inSe
tion 3, the bene�ts of relational modelling. Finally, in Se
tion 4, we 
on
ludeas well as dis
uss related and future work.2 Relational Constraint Modelling with esraIn Se
tion 2.1, we justify the design de
isions behind our new esra 
onstraintmodelling language, targeted at 
onstraint programmers. Then, in Se
tion 2.2,we introdu
e its 
on
epts, syntax, type system, and semanti
s. Next, in Se
-tion 2.3, we deploy esra on three real-life problems. Finally, in Se
tion 2.4, wedis
uss the design of our prototype 
ompilers for esra.



2.1 Design De
isionsThe key design de
isions for our new relational 
onstraint modelling language |
alled esra for Exe
utable Symbolism for Relational Algebra | were as follows.We want to 
apture 
ommon modelling idioms in a new abstra
t datatypefor relations, so as to design a high-level and simple language. The 
onstru
ts ofthe language are orthogonal, so as to keep the language small. Computational
ompleteness is not aimed at, as long as the language is useful for elegantlymodelling a large number of 
ombinatorial problems.We fo
us on �nite, dis
rete domains. Relations are built from su
h domainsand sets are viewed as unary relations. Theoreti
al diÆ
ulties are sidesteppedby supporting only bounded quanti�
ation, but not negation nor sets of sets.The language has an ASCII syntax, mimi
king mathemati
al and logi
alnotation as 
losely as possible, as well as a LATEX-based syntax, espe
ially usedfor pretty-printing models in that notation.2.2 Con
epts, Syntax, Type System, and Semanti
s of esraFor reasons of spa
e, we only give an informal semanti
s. The interested readeris invited to 
onsult [12℄ for a 
omplete des
ription of the language. Essentially,the semanti
s of the language is a 
onservative extension of existential se
ond-order logi
. Existential quanti�
ation of relations is used to assert that relationsare to be found that satisfy sets of �rst-order 
onstraints. This is in 
ontrastwith extensions of logi
 programming [6, 25℄ where se
ond-order relations 
anbe spe
i�ed re
ursively using Horn 
lauses, whi
h needs a mu
h more 
arefultreatment of the �xed-point semanti
s.Code ex
erpts are here provided out of the semanti
 
ontext of any parti
ularproblem statement, just to illustrate the syntax, but a suggested reading in plainEnglish is always provided. In Se
tion 2.3, we will a
tually start from plainEnglish problem statements and show how they 
an be modelled in esra. Codeex
erpts are always given in the pretty-printed form, but we indi
ate the ASCIInotation for every symbol where it ne
essarily di�ers.An esra model starts with a sequen
e of de
larations of named domains(or types) as well as named 
onstants and de
ision variables that are tied todomains. Then 
omes the obje
tive, whi
h is to �nd values for the de
ision vari-ables within their domains so that some 
onstraints are satis�ed and possiblysome 
ost expression takes an optimal value.The Type System. A primitive domain is a �nite, extensionally given set ofnew names or integers, 
omma-separated and en
losed as usual in 
urly bra
es.An integer domain 
an also be given intensionally as a �nite integer interval,by separating its lower and upper bounds with `: : :' (denoted in ASCII by `..'),without using 
urly bra
es. When these bounds 
oin
ide, the 
orresponding sin-gleton domain n : : : n or fng 
an be abbreviated to n. Context always determineswhether an integer n designates itself or the singleton domain fng. A domain
an also be given intensionally using set 
omprehension notation.



The only prede�ned primitive domains are the sets N (denoted in ASCII by`nat') and Z (denoted in ASCII by `int'), whi
h are `0 : : : sup' and `inf : : : sup'respe
tively, where the prede�ned 
onstant identi�ers `inf' and `sup' stand for thesmallest negative and largest positive representable integers respe
tively. User-de�ned primitive domains are de
lared after the `dom' keyword and initialisedat 
ompile-time, using the `=' symbol, or at run-time, via a data�le, otherwiseintera
tively.Example 1. The statement dom Varieties ;Blo
ksde
lares two domains 
alled Varieties and Blo
ks that are to be initialised at run-time. As in opl [31℄, this neatly separates the problem model from its instan
edata, so that the a
tual 
onstraint satisfa
tion problem is obtained at run-time.Similarly, the statementdom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gwhere g; s; w are integer-
onstant identi�ers (assumed previously de
lared, in away shown below), de
lares integer domains 
alled Players , Weeks , and Groupsthat are initialised at 
ompile-time.Finally, the de
larationdom Even = fi j i : 0 : : : 100 j i % 2 = 0ginitialises the domain Even of all even natural numbers up to 100.The usual binary in�x � 
onstru
tor (denoted in ASCII by `#') allows the
onstru
tion of Cartesian produ
ts.The only 
onstru
ted domains are relational domains. In order to simulta-neously 
apture frequently o

urring multipli
ity 
onstraints on relations, weo�er a parameterised binary in�x � domain 
onstru
tor. The relational domainA M1�M2 B, where A and B are (possibly Cartesian produ
ts of) primitive do-mains, designates a set of binary relations in A�B. The optional M1 and M2,
alled multipli
ities, must be integer sets and have the following semanti
s: forevery element a of A, the number of elements of B related to a must be in M1,while for every element b of B, the number of elements of A related to b mustbe in M2.1 An omitted multipli
ity stands for N.Example 2. The 
onstru
ted domainVarieties r�k Blo
ksdesignates the set of all relations in Varieties�Blo
ks where every variety o

ursin exa
tly r blo
ks and every blo
k 
ontains exa
tly k varieties. These are twoo

urren
es where an integer abbreviates the singleton domain 
ontaining it.1 Note that our syntax is the opposite of the uml one, say, where the multipli
ities arewritten in the other order, with the same semanti
s. That 
onvention 
an howevernot be usefully upgraded to Cartesian produ
ts of arity higher than 2.



In the absen
e of su
h fa
ilities for relations and their multipli
ities, a re-lational domain would have to be modelled using arrays, say. This may be apremature 
ommitment to a 
on
rete data stru
ture, as the modeller may notknow yet, espe
ially prior to experimentation, whi
h parti
ular (array-based)representation of a relational de
ision variable will lead to the most eÆ
ientsolving. The problem 
onstraints, in
luding the multipli
ities, would have to beformulated in the 
onstraints part of the model, based on the 
hosen represen-tation. If the experiments revealed that another representation should be tried,then the modeller would have to �rst painstakingly reformulate the de
larationof the de
ision variable as well as all its 
onstraints. Our ADT view of relationsover
omes this 
aw: it is now the 
ompiler that must (help the modeller) 
hoosea suitable representation for ea
h instan
e of the ADT by using empiri
ally ortheoreti
ally gained insights. Also, multipli
ities need not be
ome 
ounting 
on-straints, but are su

in
tly and 
onveniently 
aptured in the de
laration.We view sets as unary relations: A M , where A is a domain andM an integerset, 
onstru
ts the domain of all subsets of A whose 
ardinality is in M . Themultipli
ity M is mandatory here; otherwise there would be ambiguity whethera value of the domain A is an element or an arbitrarily sized subset of A.For total and partial fun
tions, the left-hand multipli
ity M1 is 1 : : : 1 and0 : : : 1 respe
tively. In order to dispense with these left-hand multipli
ities fortotal and partial fun
tions, we o�er the usual �! and 6�! (denoted in ASCIIby `->' and `+>') domain 
onstru
tors respe
tively, as shorthands. They may stillhave right-hand multipli
ities though.For inje
tions, surje
tions, and bije
tions, the right-hand multipli
ity M2 is0 : : : 1, 1 : : : sup, and 1 : : : 1 respe
tively. Rather than elevating these parti
ular
ases of fun
tions to �rst-
lass 
on
epts with an invented spe
i�
 syntax in esra,we prefer keeping our language lean and 
lose to mathemati
al notation.Example 3. The 
onstru
ted domain(Players �Weeks) �!s�w Groupsdesignates the set of all total fun
tions from Players �Weeks into Groups su
hthat every group is related to exa
tly sw (player,week) pairs.We provide no support (yet) for bags and sequen
es, as relations provideenough 
hallenges for the time being. Note that a bag 
an be modelled as a totalfun
tion from its domain into N, giving the repetition 
ount of ea
h element.Similarly, a sequen
e of length n 
an be modelled as a total fun
tion from 1 : : : ninto its domain, telling whi
h element is at ea
h position. This does not meanthat the representation of bags and sequen
es is �xed (to the one of total fun
-tions), be
ause, as we shall see in Se
tion 2.4, the various relations (and thustotal fun
tions) of a model need not have the same representation.Modelling the Instan
e Data and De
ision Variables. All identi�er de
-larations are strongly typed and denote variables that are impli
itly universally



quanti�ed over the entire model, with the 
onstants expe
ted to be ground beforesear
h begins while the de
ision variables 
an still be unbound at that moment.Like the user-de�ned primitive domains, 
onstants help des
ribe the instan
edata of a problem. A 
onstant identi�er is de
lared after the `
st' keyword andis tied to its domain by `:', meaning set membership. Constants are initialisedat 
ompile-time, using the `=' symbol, or at run-time, via a data�le, otherwiseintera
tively. Again, run-time initialisation provides a neat separation of problemmodels and problem instan
es.Example 4. The statement 
st r; k; � : Nde
lares three natural number 
onstants that are to be initialised at run-time.As already seen in Examples 2 and 3, the availability of total fun
tions makesarrays unne
essary. The statement
st CrewSize : Guests �! N; SpareCap : Hosts �! Nde
lares two natural-number fun
tions, to be provided at run-time.A de
ision-variable identi�er is de
lared after the `var' keyword and is tiedto its domain by `:'.Example 5. The statementvar BIBD : Varieties r�k Blo
ksde
lares a relation 
alled BIBD of the domain of Example 2.Modelling the Cost Expression and the Constraints. Expressions and�rst-order logi
 formulas are 
onstru
ted in the usual way.For numeri
 expressions, the arguments are either integers or identi�ers of thedomain N or Z, in
luding the prede�ned 
onstants `inf' and `sup'. Usual unary(�, `abs' for absolute value, and `
ard' for the 
ardinality of a set expression),binary in�x (+, �, �, = for integer quotient, and % for integer remainder), andaggregate (P, denoted in ASCII by `sum') arithmeti
 operators are available. Asum is indexed by lo
al variables ranging over �nite sets, whi
h may be �lteredon-the-
y by a 
ondition given after the `j' symbol (read `su
h that').Sets obey the same rules as domains. So, for set expressions, the argumentsare either set identi�ers or (intensionally or extensionally) given sets, in
ludingthe prede�ned sets N and Z. Only the (unparameterised) binary in�x domain
onstru
tor � and its spe
ialisations �! and 6�! are available as operators.Finally fun
tion expressions are built by applying a fun
tion identi�er to anargument tuple. We have found no use yet for any other operators on fun
tions(but see the dis
ussion of future work in Se
tion 4).



Example 6. The numeri
 expressionXg:Guests j S
hedule(g;p)=hCrewSize(g)denotes the sum of the 
rew sizes of all the guest boats that are s
heduled tovisit host h at period p, assuming this expression is within the s
ope of the lo
alvariables h and p. The nested fun
tion expression CrewSize(g) stands for thesize of the 
rew of guest g, whi
h is a natural number a

ording to Example 4.Atoms are built from numeri
 expressions with the usual 
omparison predi-
ates, su
h as the binary in�x =, 6=, and � (denoted in ASCII by `=', `!=', and`=<' respe
tively). Atoms also in
lude the prede�ned `true' and `false', as well asreferen
es to the elements of a relation. We have found no use yet for any otherpredi
ates. Note that `2' is unne
essary as x 2 S is equivalent to S(x).Example 7. The atom BIBD(v1; i) stands for the truth value of variety v1 beingrelated to blo
k i in the BIBD relation of Example 5.Formulas are built from atoms. The usual binary in�x 
onne
tives (^, _, ),(, and,, denoted in ASCII by `/\', `\/', `=>', `<=', and `<=>' respe
tively) andquanti�ers (8 and 9, denoted in ASCII by `forall' and `exists' respe
tively) areavailable. A quanti�ed formula is indexed by lo
al variables ranging over �nitesets, whi
h may be �ltered on-the-
y by a 
ondition given after the `j' symbol(read `su
h that'). As we provide a ri
h (enough) set of predi
ates, we are onlyinterested in models that 
an be formulated positively, and thus dispense withthe negation 
onne
tive. The usual typing and pre
eden
e rules for operatorsand 
onne
tives apply. All binary operators asso
iate to the left.Example 8. The formula8(p : Periods ; h : Hosts)0� Xg:Guests j S
hedule(g;p)=hCrewSize(g)1A � SpareCap(h)
onstrains the spare 
apa
ity of any host boat h not to be ex
eeded at any periodp by the sum of the 
rew sizes of all the guest boats that are s
heduled to visithost h at period p.A generalisation of the 9 quanti�er turns out to be very useful. We de�ne
ount(Multipli
ity)(x : Set j Condition)to hold if and only if the 
ardinality of the set 
omprehension fx : Set j Conditiongis in the integer set Multipli
ity . So9(x : Set j Condition)is a
tually synta
ti
 sugar for
ount(1 : : : sup)(x : Set j Condition)



Example 9. The formula8(v1 < v2 : Varieties) 
ount(�)(j : Blo
ks j BIBD(v1; j) ^ BIBD(v2; j))says that ea
h ordered pair of varieties v1 and v2 o

urs together in exa
tly �blo
ks, via the BIBD relation. Regarding the ex
erpt `v1 < v2 : Varieties ', notethat multiple lo
al variables 
an be quanti�ed at the same time, and that a�ltering 
ondition on them may then be pushed a
ross the `j' symbol.Example 10. Assuming that the fun
tion S
hedule is of the domain of Example 3and thus returns a group, the formula8(p1 < p2 : Players) 
ount(0 : : : 1)(v :Weeks j S
hedule(p1; v) = S
hedule(p2; v))says that there is at most one week where any ordered pair of players p1 and p2is s
heduled to play in the same group.A 
ost expression is a numeri
 expression that has to be optimised. The 
on-straints on the de
ision variables of a model are a 
onjun
tion of formulas, using^ as the 
onne
tive. The obje
tive of a model is either to solve its 
onstraints:solve Constraintsor to minimise the value of its 
ost expression subje
t to its 
onstraints:minimise CostExpression su
h that Constraintsor similarly for maximising. A model 
onsists of a sequen
e of domain, 
onstant,and de
ision-variable de
larations followed by an obje
tive, without separators.Example 11. Putting together 
ode fragments from Examples 1, 4, 5, and 9, weobtain the model of Figure 2 two pages ahead, dis
ussed in Se
tion 2.3.The grammar of esra is des
ribed in Figure 1. For brevity and ease of read-ing, we have omitted most synta
ti
-sugar options as well as the rules for iden-ti�ers, names, and numbers. The notation hntis� stands for a sequen
e of zeroor more o

urren
es of the non-terminal hnti, separated by symbol s. Similarly,hntis+ stands for one or more o

urren
es of hnti, separated by s. The typingrules ensure that the equality predi
ates = and 6= are only applied to expres-sions of the same type, that the other 
omparison predi
ates, su
h as �, are onlyapplied to numeri
 expressions, and so on.2.3 ExamplesWe now show
ase the elegan
e and 
exibility of our language on three real-life problems, namely Balan
ed In
omplete Blo
k Designs, the So
ial Golfersproblem, and the Progressive Party problem.



hModeli ::= hDe
li+ hObje
tiveihDe
li ::= hDomDe
li j hCstDe
li j hVarDe
lihDomDe
li ::= dom hIdi [ = hSeti ℄hCstDe
li ::= 
st hIdi [ = hTuplei j hSeti ℄ : hSetExprihVarDe
li ::= var hIdi : hSetExprihObje
tivei ::= solve hFormulaij ( minimise j maximise ) hNumExpri su
h that hFormulaihExpri ::= hIdi j hNamei j hTuplei j hNumExpri j hSetExpri j hFun
Appli j ( hExpri )hNumExpri ::= hIdi j hInti j hNati j inf j sup j hFun
Applij hNumExpri ( + j - j * j / j % ) hNumExprij ( - j abs ) hNumExprij 
ard hSetExprij sum ( hQuantExpri ) ( hNumExpri )hSetExpri ::= hSeti j hSetExpri [hSeti℄j hSetExpri ( [[hSeti℄#[hSeti℄℄ j # ) hSetExprij hSetExpri ( [->[hSeti℄℄ j -> j [+>[hSeti℄℄ j +> ) hSetExprihSeti ::= hIdi j int j natj { hTuplei,� } j { hComprExpri }j hNumExpri..hNumExpri j hNumExprihComprExpri ::= hExpri | ( hIdTuplei&+ in hSetExpri )/\+ [ | hFormulai ℄hFun
Appli ::= hIdi hTupleihTuplei ::= (hExpri,+) j hExprihFormulai ::= true j false j hRelApplij hFormulai ( /\ j \/ j => j <= j <=> ) hFormulaij hNumExpri ( < j =< j = j >= j > j != ) hNumExprij forall ( hQuantExpri ) ( hFormulai )j 
ount ( hSeti ) ( hQuantExpri )hRelAppli ::= hIdi hTupleihQuantExpri ::= ( ( hRelQvarsi j hIdTuplei&+ ) in hSetExpri ),+ [ | hFormulai ℄hRelQvarsi ::= hExpri ( < j =< j = j >= j > j != ) hExprihIdTuplei ::= hIdi j ( hIdi,+ )Fig. 1. The grammar of esra



dom Varieties ;Blo
ks
st r; k; � : Nvar BIBD : Varieties r�k Blo
kssolve8(v1 < v2 : Varieties) 
ount(�)(j : Blo
ks j BIBD(v1; j) ^ BIBD(v2; j))Fig. 2. A pretty-printed esra model for BIBDsdom Varieties, Blo
ks
st r, k, lambda : natvar BIBD : Varieties [r#k℄ Blo
kssolveforall (v1 < v2 : Varieties)
ount (lambda) (j : Blo
ks | BIBD(v1,j) /\ BIBD(v2,j))Fig. 3. An esra model for BIBDsBalan
ed In
omplete Blo
k Designs. Let V be any set of v elements, 
alledvarieties. A balan
ed in
omplete blo
k design (BIBD) is a bag of b subsets ofV , 
alled blo
ks, ea
h of size k (
onstraint C1), su
h that ea
h pair of distin
tvarieties o

urs together in exa
tly � blo
ks (C2), with 2 � k < v. An implied
onstraint is that ea
h variety o

urs in the same number of blo
ks (C3), namelyr = �(v � 1)=(k � 1). A BIBD is parameterised by a 5-tuple hv; b; r; k; �i ofparameters. Originally intended for the design of statisti
al experiments, BIBDsalso have appli
ations in 
ryptography and other domains. See Problem 28 athttp://www.
splib.org for more information.The instan
e data 
an be de
lared as the two domainsVarieties and Blo
ks , ofimpli
it sizes v and b respe
tively, as well as the three natural-number 
onstantsr, k, and �, as in Examples 1 and 4. A unique relational de
ision variable,BIBD , 
an then be de
lared as in Example 5, thereby immediately taking 
areof the 
onstraints C1 and C3. The remaining 
onstraint C2 
an be modelled asin Example 9. Figure 2 shows the resulting pretty-printed esra model, whileFigure 3 shows it in ASCII notation.For 
omparison, an opl [31℄ model is shown in Figure 4, where `= ...' meansthat the value is to be found in a 
orresponding data�le. The de
ision variableBIBD is a 2-dimensional array of integers 0 or 1, indexed by the varieties andblo
ks, su
h that BIBD[i,j℄ = 1 i� variety i is 
ontained in blo
k j. Further-more, the 
onstraints C1 and C3, whi
h we 
ould 
apture by multipli
ities in theesra model, need here to be stated in more length. Finally, the 
onstraint C2is stated using a higher-order 
onstraint:2 for ea
h ordered pair of varieties v1and v2, the number of times they appear in the same blo
k, that is the numberof blo
ks j where BIBD(v1,j) = 1 = BIBD(v2,j) holds, must equal lambda.In an opl model, one needs to de
ide what 
on
rete datatypes to use forrepresenting the abstra
t de
ision variables of the original problem statement.2 A higher-order 
onstraint refers to the truth value of another 
onstraint. In opl, thelatter is nested in parentheses, truth is represented by 1, and falsity by 0.



enum Varieties = ..., Blo
ks = ...;int r = ...; int k = ...; int lambda = ...;range Boolean 0..1;var Boolean BIBD[Varieties,Blo
ks℄;solve {forall(j in Blo
ks) sum(i in Varieties) BIBD[i,j℄ = k;forall(i in Varieties) sum(j in Blo
ks) BIBD[i,j℄ = r;forall(ordered v1,v2 in Varieties)sum(j in Blo
ks) (BIBD[v1,j℄ = 1 = BIBD[v2,j℄) = lambda;... symmetry-breaking 
ode ...}; Fig. 4. An opl model for BIBDsIn this 
ase, we 
hose a 2-dimensional 0/1 array BIBD, indexed by Varietiesand Blo
ks. We 
ould just as well have 
hosen a di�erent representation, say (ifopl had set variables) a 1-dimensional array BIBD, indexed by Blo
ks, of subsetsof Varieties. Su
h a 
hoi
e a�e
ts the formulation of every 
onstraint and the
ost expression, but is premature as even expert intuition is weak in predi
tingwhi
h representation 
hoi
e leads to the best solving eÆ
ien
y. Consequently, themodeller has to frequently reformulate the 
onstraints and the 
ost expressionwhile experimenting with di�erent representations. No su
h 
hoi
es have to bemade in an esra model, making esra a more 
onvenient modelling language.As a 
onsequen
e to su
h representation 
hoi
es, one often introdu
es an as-tronomi
al amount of symmetries into an opl model that are not present in theoriginal problem statement [10℄. For example, given a solution, any two rowsor 
olumns in the array BIBD 
an be swapped, giving a di�erent, but symmet-ri
ally equivalent, solution. Su
h symmetries need to be addressed in order toa
hieve eÆ
ient solving. Hen
e, symmetry-breaking 
ode [10, 32℄ would have tobe inserted, as indi
ated in Figure 4. Sin
e su
h 
hoi
es are postponed to the
ompilation phase in esra (see Se
tion 2.4), any symmetries 
ons
iously intro-du
ed 
an be handled (automati
ally) in that pro
ess.The So
ial Golfers Problem. In a golf 
lub, there are n players, ea
h ofwhom plays golf on
e a week (
onstraint C1) and always in g groups of size s(C2), hen
e n = gs. The obje
tive is to determine whether there is a s
hedule ofw weeks of play for these golfers, su
h that there is at most one week where anytwo distin
t players are s
heduled to play in the same group (C3). An implied
onstraint is that every group o

urs exa
tly sw times a
ross the s
hedule (C4).See Problem 10 at http://www.
splib.org for more information.The instan
e data 
an be de
lared as the three natural-number 
onstantsg, s, and w, via `
st g; s; w : N', as well as the three domains Players , Weeks ,and Blo
ks , as in Example 1. A unique de
ision variable, S
hedule , 
an then bede
lared using the fun
tional domain in Example 3, thereby immediately taking
are of the 
onstraints C1 (be
ause of the totality of the fun
tion) and C4. The




st g; s; w : Ndom Players = 1 : : : g � s; Weeks = 1 : : : w; Groups = 1 : : : gvar S
hedule : (Players �Weeks) �!s�w Groupssolve8(p1 < p2 : Players) 
ount(0 : : : 1)(v :Weeks j S
hedule(p1; v) = S
hedule(p2; v))^ 8(h : Groups ; v : Weeks) 
ount(s)(p : Players j S
hedule(p; v) = h)Fig. 5. A pretty-printed esra model for the So
ial Golfers problem
onstraint C3 
an be modelled as in Example 10. The 
onstraint C2 
an be statedusing the 
ount quanti�er, as seen in the pretty-printed esra model of Figure 5.Note the di�erent style of modelling sets of unnamed obje
ts, via the separa-tion of models from the instan
e data, 
ompared to Figure 2. There we introdu
etwo sets without initialising them at the model level, while here we introdu
ethree uninitialised 
onstants that are then used to arbitrarily initialise threedomains of desired 
ardinalities. Both models 
an be reformulated in the otherstyle. The bene�t of su
h sets of unnamed obje
ts is that their elements are indis-tinguishable, so that lower-level representations of relational de
ision variableswhose domains involve su
h sets are known to introdu
e symmetries.The Progressive Party Problem. The problem is to timetable a party ata ya
ht 
lub. Certain boats are designated as hosts, while the 
rews of theremaining boats are designated as guests. The 
rew of a host boat remainson board throughout the party to a
t as hosts, while the 
rew of a guest boattogether visits host boats over a number of periods. The spare 
apa
ity of anyhost boat is not to be ex
eeded at any period by the sum of the 
rew sizes ofall the guest boats that are s
heduled to visit it then (
onstraint C1). Any guest
rew 
an visit any host boat in at most one period (C2). Any two distin
t guest
rews 
an visit the same host boat in at most one period (C3). See Problem 13at http://www.
splib.org for more information.The instan
e data 
an be de
lared as the three domains Guests, Hosts, andPeriods , via `dom Guests;Hosts;Periods ', as well as the two fun
tional 
onstantsSpareCap and CrewSize , as in Example 4. A unique fun
tional de
ision variable,S
hedule , 
an then be de
lared via `var S
hedule : (Guests�Periods) �! Hosts '.The 
onstraint C1 
an now be modelled as in Example 8. The 
onstraints C2and C3 
an be stated using the 
ount quanti�er, as seen in the pretty-printedesra model of Figure 6.2.4 Compiling Relational ModelsA 
ompiler for esra is 
urrently under development. It is being written in o
aml(http://www.o
aml.org) and 
ompiles esra models into SICStus Prolog [5℄�nite-domain 
onstraint programs. Our 
hoi
e of target language is motivatedby its ex
ellent 
olle
tion of global 
onstraints and by our 
ollaboration with itsdevelopers on designing new global 
onstraints.



dom Guests ; Hosts ; Periods
st SpareCap : Hosts �! N; CrewSize : Guests �! Nvar S
hedule : (Guests � Periods) �! Hostssolve8(p : Periods ; h : Hosts) Pg:Guests j S
hedule(g;p)=hCrewSize(g)! � SpareCap(h)^ 8(g : Guests ; h : Hosts) 
ount(0 : : : 1)(p : Periods j S
hedule(g; p) = h)^ 8(g1 < g2 : Guests) 
ount(0 : : : 1)(p : Periods j S
hedule(g1; p) = S
hedule(g2; p))Fig. 6. A pretty-printed esra model for the Progressive Party problemWe already have an esra-to-opl 
ompiler [36, 15℄, written in Java, for arestri
tion of esra to fun
tions, now 
alled Fun
tional-esra. That proje
t gaveus mu
h of the expertise needed for developing the 
urrent 
ompiler.The solver-independent esra language is so high-level that it is very small
ompared to su
h target languages, espe
ially in the number of ne
essary prim-itive 
onstraints. The full panoply of features of su
h target languages 
an,and must, be deployed during 
ompilation. In parti
ular, the implementationof de
ision-variable indi
es into matri
es is well-understood.In order to bootstrap our new 
ompiler qui
kly, we de
ided to representinitially every relational de
ision variable by a matrix of 0/1 variables, indexed byits parti
ipating sets. This �rst version of the new 
ompiler is thus deterministi
.The plan is then to add alternatives to this unique representation rule, de-pending on the multipli
ities and other 
onstraints on the relation, a
hieving anon-deterministi
 
ompiler, su
h as our existing Fun
tional-esra-to-opl 
om-piler [36, 15℄. The modeller is then invited to experiment with her (real-life)instan
e data and the resulting 
ompiled programs, so as to determine whi
hone is the `best'. If the 
ompiler is provided with those instan
e data, then it
an be extended to automate su
h experiments and generate rankings.Eventually, more intelligen
e will be built into the 
ompiler via heuristi
s(su
h as those of [15℄) for the 
ompiler to rank the resulting 
ompiled programsby de
reasing likelihood of eÆ
ien
y, without any re
ourse to experiments. In-deed, depending on the multipli
ities and other 
onstraints on a relation, 
ertainrepresentations thereof 
an be shown to be better than others, under 
ertain as-sumptions on the targeted solver, and this either theoreti
ally (see for instan
e[33℄ for bije
tions and [15℄ for inje
tions) or empiri
ally (see for instan
e [28℄ forbije
tions). We envisage a hybrid intera
tive/heuristi
 
ompiler.Our ultimate aim is of 
ourse to design an a
tual solver for relational 
on-straints, without going through 
ompilation.3 Bene�ts of Relational ModellingIn our experien
e, and as demonstrated in Se
tion 2.3, a relational 
onstraintmodelling language leads to more 
on
ise and intuitive models, as well as to moreeÆ
ient and e�e
tive model formulation and veri�
ation. Due to esra being



smaller than 
onventional 
onstraint programming languages, we believe it iseasier to learn and master, making it a good 
andidate for a tea
hing medium.All this 
ould entail a better dissemination of 
onstraint te
hnology.Relational languages seem a good trade-o� between generality and spe
i�
ity,enabling eÆ
ient solving despite more generality. Relations are a single, pow-erful 
on
ept for elegantly modelling many aspe
ts of 
ombinatorial problems.Also, there are not too many di�erent, and even standard, ways of representingrelations and relational expressions. Known and future modelling insights, su
has those in [15, 28, 33℄, 
an be built into the 
ompilers, so that even time-pressedor less 
ompetent modellers 
an bene�t from them. Modelling is unen
umberedby early if not uninformed 
ommitments to representation 
hoi
es. Low-levelmodelling devi
es su
h as rei�
ation and higher-order 
onstraints 
an be en-
apsulated as implementation devi
es. The number of de
ision variables beingredu
ed, there is even hope that dire
tly solving the 
onstraints at the high re-lational level 
an be faster than solving their 
ompiled lower-level 
ounterparts.All this illustrates that more generality need not mean poorer performan
e.Relational models are more amenable to maintenan
e when the 
ombina-torial problem 
hanges, be
ause most of the tedium is taken 
are of by the
ompiler. Model maintenan
e at the relational level redu
es to adapting to thenew problem, with all representation (and solving) issues left to the 
ompiler.Very little work is involved here when a multipli
ity 
hange entails a preferablerepresentation 
hange for a relation. Maintenan
e 
an even be ne
essary whenthe statisti
al distribution of the problem instan
es that are to be solved 
hanges[22℄. If information on the new distribution is given to the envisaged 
ompiler,a simple re
ompilation will take 
are of the maintenan
e.Relational models are at a more suitable level for possibly automated modelreformulation, su
h as via the inferen
e and sele
tion of suitable implied 
on-straints, with again the 
ompiler assisting in the more mundane aspe
ts. In theBIBD and So
ial Golfers examples, we have observed that multipli
ities providea ni
e framework for dis
overing and stating some implied 
onstraints. Indeed,the language makes the modeller think about making these multipli
ities expli
it,even if they were not in the original problem formulation.Relational models are more amenable to 
onstraint analysis. Dete
ted prop-erties as well as properties 
ons
iously introdu
ed during 
ompilation into lower-level programs, su
h as symmetry or bije
tiveness, 
an then be taken into a

ountduring 
ompilation [10℄, espe
ially using tra
tability results [32℄.There would be further bene�ts to an abstra
t modelling language if it wereadopted as a standard front-end language for solvers. Models and instan
e datawould then be solver-independent and 
ould be shared between solvers, whatevertheir te
hnology. Indeed, the targeted solvers need not even use 
onstraint te
h-nology, but 
ould just as well use answer-set programming, linear programming,lo
al sear
h, or propositional satis�ability te
hnology, or any hybrid thereof.This would fa
ilitate fair and homogeneous 
omparisons, say via new standardben
hmarks, as well as foster 
ompetition in �ne-tuning the 
ompilers.



4 Con
lusionWe have argued that solver-independent, abstra
t 
onstraint modelling leads toa simpler and smaller language; to more 
on
ise, intuitive, and analysable mod-els; as well as to more eÆ
ient and e�e
tive model formulation, maintenan
e,reformulation, and veri�
ation. All this 
an be a
hieved without sa
ri�
ing thepossibility of eÆ
ient solving, so that even time-pressed or less 
ompetent mod-ellers 
an be well assisted. Towards this, we have proposed the esra relationalmodelling language, show
ased its elegan
e on some well-known problems, andoutlined a 
ompilation philosophy for su
h languages. To 
on
lude, let us lookat related work (Se
tion 4.1) and future work(Se
tion 4.2).4.1 Related WorkWe have here generalised and re-engineered our own work [11, 36, 15℄ on a pre-de
essor of esra, now 
alled Fun
tional-esra, that only supports fun
tionalde
ision variables, by pursuing the aim of relational modelling outlined in [9℄.Elsewhere, su
h ideas have re
ently inspired a related proje
t [3℄, in
orporatingpartition de
ision variables. Constraints for bag de
ision variables [2, 7, 34℄ andsequen
e de
ision variables [2, 26℄ have also been proposed.This resear
h owes a lot to previous work on relational modelling in formalmethods and on ERA-style semanti
 data modelling, espe
ially to the alloyobje
t modelling language [16℄, whi
h itself gained mu
h from the z spe
i�
ationnotation [29℄ (and learned from uml/o
l how not to do it). Contrary to ERAmodelling, we do not distinguish between attributes and relations.In 
onstraint programming, the 
ommer
ial opl [31℄ stands out as a medium-level modelling language and a
tually gave the impetus to design esra: see theBIBD example in Se
tion 2.3 and 
onsult [9℄ for a further 
omparison of elegantesra models with more awkward (published) opl 
ounterparts that do notprovide all the bene�ts of Se
tion 3. Other higher-level 
onstraint modellinglanguages than esra have been proposed, su
h as ali
e [18℄, CLP (Fun(D))[14℄, 
lps [2℄, 
onjunto [13℄, ea
l [30℄, flogg [7℄, n
l [37℄, and the language of[24℄. Our esra shares with them the quest for a pra
ti
al de
larative modellinglanguage based on a strongly-typed fuller �rst-order logi
 than Horn 
lauses, withsequen
e, set, bag, fun
tional, or even relational de
ision variables, while oftendispensing with re
ursion, negation, and unbounded quanti�
ation. However,esra goes way beyond them, by advo
ating an ADT view (of relations), so thatrepresentations need not be �xed in advan
e, by providing an elegant notationfor multipli
ity 
onstraints, and by promising intelligent 
ompilation.In the �eld of knowledge representation, answer-set programming (ASP) hasre
ently been advo
ated [21℄ as a pra
ti
al 
onstraint solving paradigm, espe-
ially for dynami
 domains su
h as planning. A set of (disjun
tive) fun
tion-free
lauses, where 
lassi
al negation and negation as failure are allowed, is inter-preted as a 
onstraint, stating when an atom is in a solution, 
alled an answer setor a stable model. This non-monotoni
 approa
h di�ers from 
onstraint (logi
)programming, where statements are used to add atomi
 
onstraints on de
ision



dom Cities
st Distan
e : (Cities � Cities) �! Nvar Next : Cities �!1 Citiesminimise P
:CitiesDistan
e(
;Next(
))su
h that 8(
1&
2 : Cities) Next�(
1) = 
2Fig. 7. A pretty-printed esra model for the Travelling Salesperson problemvariables to a 
onstraint store, whereupon propagation and sear
h are used to
onstru
t solutions. Implementation methods for 
omputing the answer sets ofground programs have advan
ed signi�
antly over re
ent years, possibly usingpropositional satis�ability (SAT) solvers. Also, e�e
tive grounding pro
edureshave been devised for some 
lasses of su
h programs with (s
hemati
) variables.Sample ASP systems are dlv [19℄ and smodels [23℄. Closely related are Con-straintLingo [8℄ and np-spe
 [4℄. The languages of these systems in
lude usefulfeatures, su
h as 
ardinality and weight 
onstraints, aggregate fun
tions, andsoft 
onstraints. They have stri
tly more expressive power than propositionallogi
 and traditional 
onstraint (logi
) programming/modelling languages, in-
luding esra. Again, our obje
tive only is a language that is useful for elegantlymodelling a large number of 
ombinatorial problems. The 
ardinality 
onstraintof smodels is a restri
tion of the esra `
ount' quanti�er to interval multipli
i-ties, as opposed to set multipli
ities. Speed 
omparisons with SAT solvers wereen
ouraging, but no 
omparison has been done yet with 
onstraint solvers.4.2 Future WorkMost of our future work has already been listed in Se
tions 2.4 and 3 aboutthe 
ompiler design and long-term bene�ts of relational modelling, su
h as thegeneration of implied 
onstraints and the breaking of symmetries.We have argued that our esra language is very small. This is mostly be
ausewe have not yet identi�ed the need for any other operators or predi
ates. Anex
eption to this is the need for transitive 
losure relation 
onstru
tors. Weaim at modelling the well-known Travelling Salesperson (TSP) problem as inFigure 7, where the transitive 
losure of the bije
tion Next on Cities is denotedby Next�. This general me
hanism avoids the introdu
tion of an ad ho
 `
ir
uit'
onstraint as in ali
e [18℄.As we do not aim at a 
omplete 
onstraint modelling language, we 
an bevery 
onservative in what missing features shall be added to esra when theyare identi�ed. Also, for manpower reasons, we do not yet propose other ADTs,say for bags or sequen
es, although this was originally part of our original vision(see Se
tion 3.3 of [11℄).Our request for expli
it model-level distin
tion between 
onstants and de
i-sion variables may be eventually lifted, as the default is run-time initialisation:we 
ould treat as 
onstants any universally quanti�ed variable that was a
tually



initialised and treat all the others as de
ision variables. This requires a 
onvin
-ing example, though, as well as just-in-time 
ompilation.In [20℄, a type system is derived for binary relations that 
an be used as aninput to spe
ialised �ltering algorithms. This kind of analysis 
an be integratedinto the relational solver we have in mind.Also, a graphi
al language 
ould be developed for the data modelling, in
lud-ing the multipli
ity 
onstraints on relations, so that only the 
ost expression andthe 
onstraints would need to be textually expressed.Finally, a sear
h language, su
h as salsa [17℄ or the one of opl [31℄, but atthe level of relational modelling, should be adjoined to the 
onstraint modellinglanguage proposed here, so that more expert modellers 
an express their ownsear
h heuristi
s.A
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