
Towards Inferring Labelling Heuristi
sfor CSP Appli
ation DomainsZeynep K�z�ltan, Pierre Flener, and Brahim Hni
hComputer S
ien
e Division, Department of Information S
ien
eUppsala University, Box 513, S { 751 20 Uppsala, SwedenfZeynep.Kiziltan, Pierre.Flener, Brahim.Hni
hg�dis.uu.seAbstra
t. Many real-life problems
an be represented as
onstraint sat-isfa
tion problems (CSPs) and then be solved using
onstraint solvers,in whi
h labelling heuristi
s are used to �ne-tune the performan
e of theunderlying sear
h algorithm. However, few guidelines have been proposedfor the appli
ation domains of these heuristi
s. If a mapping between ap-pli
ation domains and heuristi
s is known to the solver, then modellers
an | if they wish so | be relieved from �guring out whi
h heuristi
to indi
ate or implement. Instead of inferring the appli
ation domains of(known) heuristi
s, we advo
ate inferring (known or new) heuristi
s forappli
ation domains. Our approa
h is to �rst formalise a CSP appli
ationdomain as a family of models, so as to exhibit the generi

onstraint storefor all models in that family. Se
ond, family-spe
i�
 labelling heuristi
sare inferred by analysing the intera
tion of a given sear
h algorithm withthis generi

onstraint store. We illustrate our approa
h on a domain ofsubset problems.1 Introdu
tionMany real-life problems are
onstraint satisfa
tion problems (CSPs), where ap-propriate values for the variables of the problem have to be found within theirdomains, subje
t to some
onstraints. Examples are produ
tion planning subje
tto demand and resour
e availability, air traÆ

ontrol subje
t to safety proto-
ols, et
. Many of these problems
an be programmed as
onstraint models andthen be solved using
onstraint solvers, su
h as
lp(fd) [2℄ and opl [17℄.Constraint solvers are equipped with a sear
h algorithm, su
h as forward-
he
king, and labelling heuristi
s, one of whi
h is the default. To enhan
e theperforman
e of
onstraint models, a lot of resear
h has been made in re
ent yearsto develop new labelling heuristi
s, whi
h
on
ern the
hoi
e of the next variableto bran
h on during the sear
h and the
hoi
e of the value to be assigned to thatvariable. These heuristi
s signi�
antly redu
e the sear
h spa
e [15℄.However, little is said about the appli
ation domains of these heuristi
s, somodellers �nd it diÆ
ult to de
ide when to apply a parti
ular heuristi
, andwhen not. Indeed, there is no universally best heuristi
 for all instan
es of all
onstraint models (see, e.g., [16℄), unless NP=P. Thus, we are only told thata parti
ular heuristi
 was \best" for the parti
ular instan
es used to
arry out

some experiments with some parti
ular models. Therefore, the performan
e ofheuristi
s is not only model-dependent but also instan
e-dependent, i.e., for agiven
onstraint model, a heuristi

an perform well for some (distributions onthe) instan
es, but very poorly on others; this is taken into a

ount by somegenerators of model-spe
i�
 solvers [3, 9, 12℄.Instead of inferring the appli
ation domains of (known) heuristi
s, we ad-vo
ate inferring (known or new) heuristi
s for appli
ation domains. Obviously,the \smaller" an appli
ation domain, the \better" its inferrable heuristi
s. Ourtwo-step approa
h is to �rst formalise an appli
ation domain as a family ofCSP models, so as to exhibit the generi

onstraint store for all models in thatfamily. Se
ond, the intera
tion | for a given sear
h algorithm | between the
onstraints in this generi
 store and the domain propagation during sear
h isexamined, so as to infer suitable heuristi
s for any model in that family. Due tothe instan
e sensitivity of heuristi
s, the out
ome of this pro
ess usually is a setof heuristi
s, rather than a single one. In this paper, we illustrate this approa
hon a domain of subset problems.If a mapping between appli
ation domains and heuristi
s is known to thesolver, then modellers
an | if they wish so | be relieved from the pro
eduralaspe
t of modelling, namely �guring out whi
h heuristi
 to indi
ate or imple-ment. For
ing modellers to deal with this pro
edural aspe
t may not only adda
hallenging step but also has the disadvantage that they must
ommit | atmodelling time | to a single heuristi
 and thus expose their models to the in-stan
e sensitivity of heuristi
s. In
ompanion work [7, 11℄, we address the issueof sele
ting or swit
hing | at solving time | among the inferred family-spe
i�
heuristi
s resulting from our approa
h, a

ording to the instan
e to be solved.Our ultimate aim is thus a new generation of more intelligent solvers that allowCSP modellers to
on
entrate on the de
larative aspe
t of modelling, without
ompromising (mu
h) on eÆ
ien
y.This paper is organised as follows. In Se
tion 2, we introdu
e the notion offamily of CSP models as a formalisation of an appli
ation domain. We illus-trate this with a domain of subset problems and exhibit a generi
 �nite-domain
onstraint store of a family for this domain. Then, in Se
tion 3, we present ouranalysis of this generi

onstraint store, infer two labelling heuristi
s, and showour initial empiri
al results. Finally, in Se
tion 4, we
on
lude,
ompare withrelated work, and dis
uss dire
tions for future resear
h.2 CSP Model FamiliesInformally, an appli
ation domain is a set of \related" CSPs. For instan
e, in theSUBSET domain, a given number of elements have to be sele
ted from a given�nite set su
h that any two of them satisfy some
onstraint p. In this domain,CSPs are related in the sense that the a
tual
onstraint p di�ers between them.Sample CSPs in this domain are �nding a
lique of a given size within a givengraph (where p requires that any two verti
es of the
lique be
onne
ted by anedge of the graph) and �nding an independent subset of a given size among

the verti
es of a given graph (where p says that any two verti
es of the subetmust not be
onne
ted by an edge of the graph). Appli
ation domains of
oarsergranularity are s
heduling,
on�guration, resour
e allo
ation, and so on.For a given
onstraint modelling language, a CSP model family is an openCSP model in that language, `open' in the sense that some of its (predi
ate ortype) symbols are neither primitive to the language nor de�ned in the model. Ana
tual CSP model is
losed, in the sense that all its symbols must be primitiveor de�ned. From a model family, a model
an thus be obtained by substituting
losed types and
losed formulas for all its open symbols, and possibly by addingparameters. Model families
an be used to formalise appli
ation domains. Thereare in general several ways of formalising a domain as a model family, in a givenlanguage, namely depending on the
hosen data modelling. An instan
e of aCSP model M is obtained from M by repla
ing all its formal input parametersby a
tual values and dropping the universal quanti�
ations on these parameters.An instan
e of a model is thus also a model, albeit without input parameters.Example 2.1. Assume CSPmodels are written in a very expressive, purely de
lar-ative, typed, set-oriented, �rst-order logi

onstraint modelling language, su
has our esra [6, 4℄, whi
h is designed to be higher-level than even opl [17℄. (We
an automati
ally
ompile [5℄ esra programs into lower-level languages su
h asopl.) Sin
e esra has set variables (unlike opl), the following (sugared versionof an) esra model family is a
andidate formalisation of the SUBSET domain:8T; S : set(�) : 8k : int : (subset(T+; k+; S)$ S � T ^ size(S; k) ^8ti; tj : � : (ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj))) (Subset)where the supers
ript + designates the input parameters. In words, sets S andT of elements of type � are in the subset=3 relation with integer k i� S is a setof k elements from T , su
h that any two distin
t elements ti and tj of S satisfy
onstraint p. The only open symbols are type � and
onstraint p, as size, �, 2,and 6= are primitives of esra, with the usual meanings. From the Subset modelfamily, we
an obtain the following (sugared) esra model:8V;C : set(int) : 8k : int : 8E : set(int� int) :(
liquek(hV +; E+i; k+; C)$ C � V ^ size(C; k) ^8vi; vj : int : (vi 2 C ^ vj 2 C ^ vi 6= vj ! hvi; vji 2 E)) (
liquek)It is a model for �nding a
lique C of an undire
ted graph (given through itsinteger vertex set V and edge set E), su
h that the
lique has k verti
es.Example 2.2. At a lower level of expressiveness, say when set variables are notavailable (su
h as in
lp(fd) [2℄ and opl [17℄), the usual representation of anunknown subset S of a given �nite set T (of n elements) is a mapping fromT into Boolean variables (in f0; 1g), that is one
on
eptually maintains n
ou-ples hti; Bii where the (initially non-ground) Boolean Bi expresses whether the(always ground) element ti of T is a member of S or not:18ti : � : ti 2 T ! (Bi $ ti 2 S) (1)1 In formulas, we use atom Bi as an abbreviation for Bi = 1.

This Boolean representation of set variables
onsumes more memory than theset-interval representation of
onjunto [8℄ and oz [13℄, but both have beenshown to
reate the same O(2n) sear
h spa
e [8℄.Given this Boolean representation of the sought subset S, restri
ting its sizeto k
an be expressed as the following n-ary
onstraint:nXi=1 Bi = k (2)Let us also look at the remaining part of SUBSET , whi
h requires that anytwo distin
t elements of the subset S of T must satisfy a
onstraint p. Formally(using the sugared esra syntax again, for the sake of symboli
 reasoning):S � T ^ 8ti; tj : � : ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj)This implies8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 2 S ^ tj 2 S ^ ti 6= tj ! p(ti; tj)whi
h is equivalent to8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 6= tj ^ :p(ti; tj)! :(ti 2 S ^ tj 2 S)By (1), this
an be rewritten as8ti; tj : � : ti 2 T ^ tj 2 T ^ ti 6= tj ^ :p(ti; tj)! :(Bi ^ Bj) (3)The sugared version of an opl/
lp(fd) model family formalising the SUBSETdomain thus
onsists of
onstraints (2) and (3); we denote it by SubsetB. Forany two distin
t elements ti and tj of the given set T , with Boolean variables Biand Bj , if p(ti; tj) does not hold, the following binary
onstraint arises::(Bi ^ Bj) (4)It is
ru
ial to note that the a
tual �nite-domain
onstraints are thus not interms of p, hen
e p
an be any formula. Therefore, the generi
 �nite-domain
onstraint store for any instan
e of any model of the SubsetB family is over a setof (only) Boolean variables. It
ontains an instan
e-dependent number of binary
onstraints of the form (4), as well as the (always unique) n-ary
onstraint (2).As the set-interval representation of set variables does not allow the de�nitionof some (to us) desirable high-level primitives, su
h as universal quanti�
ationover elements of non-ground sets, the set variables of esra (see Example 2.1) are
ompiled [5, 6℄ using the Boolean representation of Example 2.2. In the remainderof this paper, our approa
h to inferring labelling heuristi
s from an appli
ationdomain is illustrated on the SUBSET domain, and we (thus) fo
us on its Booleanmodelling in the SubsetB family.

3 Inferring Labelling Heuristi
sIt is known that the order in whi
h the variables are
onsidered for instantia-tion, and the order in whi
h the values are attempted for assignment to variablesduring sear
h have a substantial impa
t on the number of ba
ktra
ks performedand the time taken by a sear
h algorithm to solve a CSP model. De
iding onthese orders is the obje
tive of labelling heuristi
s. We now infer some labellingheuristi
s for the SUBSET domain by examining the domain propagation per-formed on the generi

onstraint store | for the SubsetB family | by a sear
halgorithm during labelling. For the sake of illustration, we here
hoose the for-ward
he
king (FC) algorithm, whi
h is used in many solvers. It works as follows:Whenever a variable is labelled by a value v, the values of the future variablesthat are in
onsistent with v are removed from the domains of these variables.In Se
tion 3.1, we present our analysis of the obtained generi

onstraintstore. Next, in Se
tion 3.2, we infer some FC labelling heuristi
s for SubsetBmodels. Finally, in Se
tion 3.3, we report on our initial experimental results.3.1 Analysis of the Generi
 Constraint StoreWe analyse the generi

onstraint store using the values n (the size of the givenset T , hen
e the number of Boolean variables involved) and k (the given size ofthe sought subset S). In models of the SubsetB family, ea
h Boolean variable Biin fB1; : : : ; Bng is at any moment asso
iated with the set Vi of still unassignedvariables Bj (where 1 � j � n) that
onstrain Bi with a binary
onstraint ofthe form (4). A binary
onstraint of this form requires that the variables Bi andBj
annot simultaneously be assigned 1. Furthermore, the n-ary
onstraint (2)restri
ts all the variables su
h that k of them must be assigned 1. Let k0 (resp.k1) be the
urrent number of variables that have yet to be assigned 0 (resp. 1).Initially (before the labelling), k0 = n�k and k1 = k. During labelling, the valuesof k0 and k1 de
rease be
ause of the assignments and propagation. If either k0 ork1 rea
hes 0, the propagation
aused by the n-ary
onstraint for
es the other oneto also be
ome 0. Therefore, at the end (after the labelling), k0 = k1 = 0. Notethat the mathemati
al variables V1 : : : Vn, k0, k1 are only explanatory devi
es,but not a
tually stored and manipulated anywhere.We now monitor the FC propagations triggered by the assignment of values(from f0; 1g) to the Boolean variables. The ordering of the variables and valuesis irrelevant in this analysis: suitable labelling heuristi
s will be inferred in Se
-tion 3.2. When k0 > 0 and k1 > 0, we
onsider two
ases, namely Case A, theassignment of 0, and Case B, the assignment of 1 to the
hosen variable, say Bi.Case A. If Bi is assigned 0, the
urrent number of variables that have yet to beassigned 0 is de
remented by 1, so k0 be
omes k0 � 1. Two sub-
ases arise now:{ If k0 = 0 now, then all the k1 yet unassigned variables are assigned 1 duringpropagation due to (only) the n-ary
onstraint (2), leading to k1 = 0 also.Now exa
tly n� k variables have been assigned 0 and k variables have beenassigned 1. However, if there is a binary
onstraint of the form (4) between

any two of these k1 variables, then this assignment fails, whi
h leads toba
ktra
king. Otherwise, this assignment su

eeds.{ If k0 > 0 still, then, for all v 2 Vi, the domain of v remains the same, be
ausethe assignment of 0 to any variable in a binary
onstraint of the form (4)always su

eeds without propagation.By the instantiation of a variable by 0, there is thus a possibility of ba
ktra
kingonly if k0 rea
hes 0, be
ause the assignment may fail.Case B. If Bi is assigned 1, the
urrent number of variables that have yet to beassigned 1 is de
remented by 1, so k1 be
omes k1 � 1. Two sub-
ases arise now:{ If k1 = 0 now, then all the k0 yet unassigned variables are assigned 0 duringpropagation due to (only) the n-ary
onstraint (2), leading to k0 = 0 also.Now exa
tly k variables have been assigned 1 and n� k variables have beenassigned 0, without violating any
onstraints. Indeed, as seen in Case A, theassignment of 0 to a variable fails only if k0 be
omes 0 and there is a binary
onstraint between any two of the k1 variables. However, there are hereno unassigned variables left, as k1 = 0 already. Therefore, this assignmentalways su

eeds.{ If k1 > 0 still, then, for all v 2 Vi, the variable v is assigned 0 duringpropagation be
ause of the binary
onstraints of the form (4). Thus, k0be
omes k0 � jVij. The new value of k0 now gives rise to the following sub-sub-
ase analysis:� If k0 < 0 now, then one of these assignments must fail and immediateba
ktra
king o

urs.� If k0 = 0 now, then all the k1 yet unassigned variables are assigned 1during propagation, leading to k1 = 0 also. As seen in Case A, if there isa binary
onstraint of the form (4) between any two of these k1 variables,then this assignment fails, whi
h leads to ba
ktra
king. Otherwise, thisassignment su

eeds.� If k0 > 0 now, then this assignment su

eeds.By the instantiation of a variable by 1, there is thus a possibility of ba
ktra
kingonly if k0 rea
hes 0 �rst. Should k0 be
ome negative, the assignment fails, andthus an immediate ba
ktra
king o

urs. On the other hand, the assignmentalways su

eeds if k1 rea
hes 0 �rst.It is very important to noti
e that Case B may in
lude Case A. On theother hand, Case A never in
ludes the general situation of Case B. Therefore,the analysis be
ame of �nite size and
omplete, as there is no
ase where it isimpossible to exa
tly foretell all propagations!3.2 Inferen
e of Heuristi
sIn models of the SubsetB family, the assignment | under FC sear
h | of 0 toa Boolean variable triggers propagation only when k0 rea
hes 0, and this inde-pendently of the order of the variables being instantiated by 0 so far. Therefore,if the set of variables that will be assigned 0 is not
hosen
arefully (e.g., when

there are no binary
onstraints between them, in whi
h
ase there probablyare binary
onstraints between the other variables), ba
ktra
king is unavoidableon
e k0 rea
hes 0. The only way to avoid ba
ktra
king is to
hoose the rightset of n� k variables that are assigned 0. However, �nding su
h a subset of theBoolean variables is itself a subset problem.The assignment of 1 to a variable is noteworthy be
ause every assignment
aused by propagation upon k1 = 0 su

eeds, so that no ba
ktra
king
an hap-pen. Also, the order of the variables being assigned 1 is quite important be
auseit
an signi�
antly a�e
t the de
rease in k0. Indeed, as seen in Case B, if k1 > 0still, then k0 be
omes k0 � jVij. The variable Bi being assigned 1 is asso
iatedwith a set Vi (the set of the still unassigned variables that
onstrain Bi) thatthus dire
tly a�e
ts the de
rement in k0. If the variables being assigned 1 areordered in a way that they do not
ause mu
h de
rease in k0, then ba
ktra
kingwhen k0 < 0 and any possible ba
ktra
king when k0 = 0 are delayed. Ba
ktra
k-free assignment is thus guaranteed by allowing k1 to rea
h 0 �rst. However,ba
ktra
k-free assignment is not guaranteed if it is k0 that rea
hes 0 �rst.We
an thus infer the following two labelling heuristi
s from the previous
onsiderations:{ If there is at least one solution, we should instantiate some variables by1, and try to keep ea
h jVij as small as possible if we want k1 to rea
h 0�rst (whi
h leads to ba
ktra
k-free assignment). Thus, during FC sear
h, ifwe
hoose a variable that is parti
ipating in the smallest number of binary
onstraints, then we for
e k1 to be
ome 0 before (or at the same time) as k0does, be
ause, by this way, we a
hieve a small de
rease in k0. This heuristi

an be seen as an instan
e of the su

eed-�rst prin
iple.{ If there is no solution, then it is impossible to rea
h the state k1 = 0.Sear
h e�ort
an then be saved by for
ing the sear
h to rea
h a state withde�nite ba
ktra
king (when k0 < 0) or possible ba
ktra
king (when k0 = 0)as soon as possible. Thus, during FC sear
h, if we
hoose a variable that isparti
ipating in the largest number of binary
onstraints, then we for
e k0 tobe negative or to be
ome 0 before k1 does, be
ause, by this way, we a
hievea big de
rease in k0. The value ordering is thus irrelevant. This heuristi

anbe seen as an instan
e of the fail-�rst prin
iple.As it is initially unknown whether there is a solution or not, it is very diÆ
ultto
hoose whi
h of these two heuristi
s to use in order to guide the sear
h pro-
ess. This paper is only
on
erned with the inferen
e of heuristi
s; the issue ofde
iding when to use whi
h one, or when to swit
h between them, is addressedin
ompanion work [7, 11℄.Following these
onsiderations, we implemented the following stati
 labellingheuristi
s, namely in si
stus
lp(fd) (whi
h has an FC solver):{ H1s , whi
h
hooses the variable that is
onstraining the smallest number ofvariables, and assigns the value 1 �rst.{ H0l (resp. H1l), whi
h
hooses the variable that is
onstraining the largestnumber of variables, and assigns the value 0 (resp. 1) �rst.

Being stati
, these labelling heuristi
s
hoose a variable that is initially
on-straining the smallest/largest number of variables. Note that this implementa-tion of the heuristi
s is our
hoi
e, but that the heuristi
s
ould be implementedin another way, say by re-ordering the variables at solving-time. Investigationof the superiority or the inferiority of su
h dynami
 variable orderings, whi
h
hoose a variable that is
onstraining the smallest/largest number of the future(yet unassigned) variables, to the stati
 ones is left as future work.3.3 Experiments with the Heuristi
sExperimental Setting.We measured the
ost (in CPU time and in number ofba
ktra
ks) of our heuristi
s on a very large number of instan
es of the modelsof the SubsetB family. These experiments
on�rmed the anti
ipated strengthsand weaknesses of the heuristi
s, whi
h are exploited in our
ompanion work onde
iding when to use whi
h heuristi
, or when to swit
h between them [7, 11℄.For binary CSPs, a
lass2 of instan
es is usually
hara
terised by a tuplehn;m; p1; p2i, where n is the number of variables, m is the (assumed
onstant)domain size for all variables, p1 is the (assumed
onstant)
onstraint density, andp2 is the (assumed
onstant) tightness of the individual
onstraints. Experimentsare then
ondu
ted by iterating over an interval of instan
e
lasses and generatinga suitably sized sample of random instan
es for ea
h
lass. For ea
h sample, themedian or average solving
ost is
omputed.However, our generi

onstraint store features a non-binary
onstraint, so we
annot literally apply this
hara
terisation of instan
e
lasses. In any
ase, thelatter has been
riti
ised [1℄ be
ause it is unrealisti
 to have a
onstant tightnessp2 for all
onstraints, so that many possible instan
es
an never be generated.For these two reasons, we developed the following
hara
terisation of instan
e
lasses, whi
h is spe
i�
 to the
onsidered family. It is not subje
t to any of the
riti
isms in [1℄, be
ause it exploits the stru
ture of the generi

onstraint store.The generi
 �nite-domain
onstraint store for the SubsetB family is parame-terised by the number n of Boolean variables involved (i.e., the size of the givenset T) and the given size k of the sought subset S, and
ontains an instan
e-dependent number b of binary
onstraints of the form (4). The number n ofvariables and the density p1 of the
onstraints are kept from the previous
har-a
terisation, with p1 being bn(n�1)=2 here. The domain size m is dropped, as italways is 2, be
ause we need only
onsider the Boolean domain f0; 1g. Sin
e the
onsidered binary
onstraints are of the form :(Bi ^Bj), their tightness alwaysis 3=4 and thus does not be
ome a parameter. The tightness of the n-ary
on-straint however is �nk�=2n, and thus varies with n and k. As we already use n, thesize k be
omes the �nal parameter in our
hara
terisation of instan
e
lasses,whi
h is thus summarised by the triple hn; p1; ki.For the purpose of this paper, we generated random instan
es in a
oarseway, by not
onsidering all possible values of n up to a given limit. The numbern of variables ranged over the interval 10::120, by in
rements of 10. We varied2 A
lass (of instan
es) is not to be
onfused with a family (of CSP models).

the density p1 over the interval 0:1::1, by in
rements of 0:1. The values of kranged over the interval 1::n, by in
rements of 1. Considering the sizes of theseintervals, the number of our experiments was huge and their exe
ution was verytime-
onsuming. Given more time, instan
es generated in a more �ne-grainedway
ould be used instead and help to make our (future) results more pre
ise.Our obje
tive here only is to show the heuristi
s in a
tion, but not to providethe most detailed statisti
s for our
ompanion work on de
iding when to usewhi
h heuristi
, or when to swit
h between them [7, 11℄.Rather than only
omparing the inferred heuristi
s to ea
h other, we also
ompared them to some others. For time reasons, we restri
ted ourselves to thefollowing two additional heuristi
s:{ H0s , whi
h
hooses the variable that is
onstraining the smallest number ofvariables, and assigns the value 0 �rst.{ Default, the default labelling heuristi
 of si
stus
lp(fd), whi
h labelsthe leftmost variable in the provided sequen
e of variables, and the domainof the
hosen variable is explored in as
ending order (i.e., 0 �rst in our
ase).The heuristi
 H0s is a natural
omplement to the inferred heuristi
s, and was alsoimplemented in si
stus
lp(fd). In the absen
e of a labelling heuristi
 providedby the modeller, ea
h solver uses its default heuristi
. Sin
e our experiments were
ondu
ted in si
stus
lp(fd), its default heuristi
 had to be used here. (Theexperiments thus have to be repeated for ea
h FC solver, be
ause their defaultheuristi
s
hange.)If a
ombination of the inferred heuristi
s beats | on the average over numer-ous instan
es of the family | the default heuristi
 of the solver, then this
om-bination
an be
ome a family-spe
i�
 and even highly instan
e-sensitive defaultheuristi
 of the solver. The determination of su
h a
ombination is addressed inour
ompanion work [7, 11℄. If this idea is repeated for other families, then themodellers
an | if they wish so | be relieved from the pro
edural aspe
t ofmodelling and even be prote
ted from the instan
e sensitivity of their heuristi
s.Our experiments were made over random instan
es (of models) of the
on-sidered family for the following reason. Towards using real-life instan
es, wewould have had to �rst pi
k some models within the
onsidered family, but wewould then have been unable to justify why these models were pi
ked ratherthan some others. The purpose of our experiments [10℄ was to generate statisti
sthat guide us in our
ompanion work [7, 11℄, where we aim at a family-spe
i�
default heuristi
 for a solver, whi
h must be able to handle random instan
esover that entire family. We do not aim at a heuristi
 for a spe
i�
 model, whi
hwould have to be able to handle (only) real-life instan
es of (only) that model.Experiments. Having thus
hosen the intervals and in
rements for the param-eters in our
hara
terisation of an instan
e
lass, we randomly generated manydi�erent instan
es and then used the 5 heuristi
s in order to solve them or provethat they have no solutions. Some of the instan
es were obviously too diÆ
ultto solve or disprove within a reasonable amount of time. Consequently, to savetime in our experiments, we used a time-out (of 3,600,000ms) on the CPU time;upon time-out, the
urrent number of ba
ktra
ks was re
orded.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e

k

Default
Hs1
Hl0
Hs0
Hl1

(a) p1 = 0:1 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e

k

Default
Hs1
Hl0
Hs0
Hl1

(b) p1 = 0:5Fig. 1. CPU-time (in ms) in terms of k for the 5 heuristi
s on n = 100In order to analyse the e�e
ts of ea
h heuristi
 on di�erent instan
es, we drewvarious
harts, for example by keeping n and p1
onstant and plotting the median
osts of the samples for ea
h k. Figure 1 shows an example of the behavioursof the 5 heuristi
s in terms of CPU-time on the instan
es where n = 100, withp1 = 0:1 and p1 = 0:5, respe
tively. Figure 2 shows their behaviours in terms ofthe number of ba
ktra
ks on the same instan
es.These �gures do not show that the generated instan
es exhibit three veryinteresting regions in terms of k, no matter what n and p1 are: up to somevalue v of k, all instan
es have a solution; then, until some other value w of k,some instan
es have a solution and some do not; beyond w, all instan
es haveno solution. A visible interesting observation is that, without a time-out, thesolving-times for instan
es in
rease with k until some point, whereupon theyde
rease. With the heuristi
s we used, we re
orded time-outs in all three ofthe mentioned regions. After taking the median
ost of the generated sample ofrandom instan
es for ea
h
lass hn; p1; ki, we observed three di�erent zones interms of k: up to some value j in 0::n, the instan
e with the median
ost has asolution; from some other value l in j +1 :: n+1, the instan
e with the median
ost has no solution; in-between, the instan
e with the median
ost timed out.It is in general unknown where j and l are
ompared to v and w. The values ofj, l, v, w depend on n and p1.

The position of k relative j and l yields the following analysis of the be-haviours of the heuristi
s in terms of the CPU-time they take (see Figure 1):{ Over 1::j, the heuristi
 H1s always �nds a solution, in mostly
onstant CPU-time. Default performs the best until k rea
hes some d in 0::j, where d issmall. However, over d+ 1 :: j, the heuristi
 H1s outperforms Default. Theheuristi
s H0l and H1l perform as well as H1s until k rea
hes some i in 1::j.However, over i+1 :: j, the heuristi
 H1s outperforms H0l and H1l . Heuristi
H0s usually has the worst performan
e. In
on
lusion, over 1::j, the heuristi
H1s is the best over d + 1 :: j, with 1::d being always a very small interval.The range of k where H1s performs the best varies in size with respe
t to p1,given n:
ompare Figures 1(a) and 1(b).{ Over j +1 :: l� 1, we
annot
ompare the heuristi
s be
ause they all timedout. This
an be observed in Figure 1(a) for k in 34::37.{ Over l::n, the heuristi
 H1s always proves that there is no solution, in de-
reasing CPU-time. Heuristi
 H0s usually has the worst performan
e. In thisrange, the heuristi
 H1s is always outperformed by H0l and H1l , and performsas badly as H0s . The heuristi
s H0l and H1l perform the best until k rea
hessome i in l::n, whereupon Default outperforms all the others. The range ofk where H0l and H1l , or Default perform the best varies in size with respe
tto p1, given n:
ompare Figures 1(a) and 1(b).The heuristi
 H1s mostly performs the best when there is an observed solution.This
an easily be explained by the fa
t that it was designed to try and �nd asolution, while assuming there is one. The heuristi
s H0l and H1l mostly performthe best when there is no observed solution. This is be
ause they were designedto prove that there is no solution, while assuming there is none. The reason whyDefault sometimes outperforms the other 4 heuristi
s is that it has no solving-time overhead. Somewhere in j + 1 :: l � 1, a phase transition from the solubleregion to the non-soluble region o

urs, and all the heuristi
s failed to eÆ
ientlyhandle these instan
es and thus timed out.The position of k relative j and l yields an analysis of the behaviours of theheuristi
s in terms of the number of ba
ktra
ks they make (see Figure 2):{ Over 1::j, the heuristi
 H1s always �nds a solution, mostly in 0 ba
ktra
ks.Default always performs worse than H1s . The heuristi
s H0l and H1l initiallyperform as well as H1s , but start ba
ktra
king earlier. Heuristi
 H0s usuallyhas the worst performan
e. In
on
lusion, over 1::j, the heuristi
H1s is alwaysthe best . The range of k where H1s performs 0 ba
ktra
ks varies in size withrespe
t to p1, given n:
ompare Figures 2(a) and 2(b).{ Over j +1 :: l� 1, we
annot
ompare the heuristi
s be
ause they all timedout. This
an be observed in Figure 2(a) for k in 34::37.{ Over l::n, the heuristi
 H1s always proves that there is no solution, in de
reas-ing numbers of ba
ktra
ks. Heuristi
 H0s usually has the worst performan
e.In this range, the heuristi
 H1s is always outperformed by H0l and H1l , andperforms as badly as H0s . The heuristi
s H0l and H1l perform the best untilk rea
hes some i in l::n, whereupon all the 5 heuristi
s perform the same

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

B
ac

kt
ra

ck
s

k

Default
Hs1
Hl0
Hs0
Hl1

(a) p1 = 0:1 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

B
ac

kt
ra

ck
s

k

Default
Hs1
Hl0
Hs0
Hl1

(b) p1 = 0:5Fig. 2. Number of ba
ktra
ks in terms of k for the 5 heuristi
s on n = 100number of ba
ktra
ks. The range of k where H0l and H1l (resp. all the 5heuristi
s) perform the best (resp. the same) varies in size with respe
t top1, given n:
ompare Figures 2(a) and 2(b).The heuristi
 H1s always performs the best in number of ba
ktra
ks (and mostlywith 0 ba
ktra
ks) when there is an observed solution, be
ause it was designedto try and �nd a solution, while assuming there is one. The heuristi
s H0l andH1l mostly perform the best in number of ba
ktra
ks when there is no observedsolution. This is be
ause they were designed to prove that there is no solution,while assuming there is none. Somewhere in j+1 :: l�1, a phase transition fromthe soluble region to the non-soluble region o

urs, and all the heuristi
s failedto eÆ
iently handle these instan
es and thus timed out.4 Con
lusionLabelling heuristi
s may lead to a substantial redu
tion of the sear
h spa
e whensolving CSP models. However, little is known about the appli
ation domains ofthe known heuristi
s. This work follows the
all of Tsang et al. for mapping
om-binations of algorithms and heuristi
s to appli
ation domains [16℄. Rather thaninferring the appli
ations domains of (known) algorithm/heuristi

ombinations,

we here advo
ate inferring (known or new) algorithm/heuristi

ombinations forappli
ation domains.Our approa
h is to �rst formalise a CSP appli
ation domain as a modelfamily, so as to exhibit the generi
 �nite-domain
onstraint store for all modelsin that family. By analysing the intera
tion of an algorithm with this generi

onstraint store, one
an then infer labelling heuristi
s for that family. Usually,one would at least look for a heuristi
 that ex
els at �nding the �rst solution,one that ex
els at disproving the existen
e of solutions, and one that dete
ts andhandles the phase transition. We here illustrated this approa
h on a domain ofsubset problems, as well as on the e�e
t of labelling heuristi
s for a �xed sear
halgorithm, namely forward
he
king. We inferred two heuristi
s for this domain,one for ea
h of the �rst two kinds.We generate random instan
es by iterating over an interval of hn; p1; ki in-stan
e
lasses and generating a suitably sized sample of random instan
es forea
h
lass. For ea
h sample, if the instan
es are
omparable (e.g., all the instan
eshave a solution), the median
ost is
omputed; otherwise (e.g., some instan
eshave a solution but some do not), we
annot judge whi
h heuristi
 is the \best"for this sample. We then devise a lookup table, where either the \best" heuris-ti
 for a given instan
e
lass hn; p1; ki is designated [7℄, or a swit
hing betweenheuristi
s is designated be
ause none of the heuristi
s is
onsidered to be betterthan another one for this
lass of instan
es [11℄. This swit
hing
an be done bydeploying one of the heuristi
s �rst, and monitoring the progress so as to swit
hto the next one in
ase of thrashing. This lookup table is then used by a meta-heuristi
. If this meta-heuristi
 beats | on the average over numerous instan
esof the family | the default heuristi
 of the solver, then this meta-heuristi

anbe
ome a family-spe
i�
 and even highly instan
e-sensitive default heuristi
 ofthe solver. If this is repeated for many appli
ation domains, then modellers
an| if they wish so | be relieved from indi
ating or implementing a heuristi
at modelling-time, whi
h often is a too early
ommitment anyway, due to theinstan
e-sensitivity of heuristi
s.In terms of related work, Figure 3 shows the
lassi
al approa
h to designingheuristi
s in full lines, whereas the
ontribution of our approa
h is emphasised indashed lines and itali
ised text. A
urved arrow from a full line to a dashed lineindi
ates our repla
ement of the full line with the dashed line. We thus repla
ethe design of a single heuristi
 for a CSP model in the presen
e of a solver (i.e.,sear
h algorithm) with the inferen
e of a set of heuristi
s for a model-familyby analysis of the propagation performed by that solver on the family-spe
i�
generi

onstraint store during labelling. Also, in our approa
h, random instan
esare generated only for the
onsidered family (whi
h does not ne
essarily
ontainbinary CSPs), rather than for arbitrary (binary) CSPs.Closely related to our work is �rst Minton's multi-ta
 system [12℄, whi
hautomati
ally synthesises an instan
e-distribution-spe
i�
 solver, given a high-level model of some CSP and a set of training instan
es. While multi-ta
 usesa synthesis-time brute-for
e approa
h to generate
andidate problem-spe
i�
heuristi
s from a set of heuristi
s des
ribed by a grammar, we propose inferring

Testing

Bounds and Increments

Instances

Instance Generator
Random

Solver

Analysis

Solving Costs

CSP Model (Family

Generic Constraint Store

for Class Parameters

) Dependent

Heuristic Design

Heuristic /
Heuristics

Fig. 3. Contributions to the
lassi
al approa
h to designing heuristi
s
andidate family-spe
i�
 heuristi
s manually by analyti
ally reasoning aboutthe generi

onstraint store of the family. Se
ond, Sadeh and Fox propose aprobabalisti
 framework for the job shop s
heduling domain so as to
apture thesear
h spa
e. Based on this framework, a domain spe
i�
 heuristi
 is derived[14℄. The derived heuristi
 signi�
antly redu
es the sear
h spa
e of the instan
esused in the experiments. However, the instan
e sensitivity of heuristi
s is notta
kled, and only one heuristi
 is derived for the domain.Our future work in
ludes investigating the superiority or the inferiority ofdynami
 variable orderings, whi
h
hoose a variable that is
onstraining thesmallest/largest number of the future (yet unassigned) variables, to the hereinvestigated stati
 variable orderings, whi
h
hoose a variable that is initially
onstraining the smallest/largest number of variables.We are also planning to investigate other appli
ation domains, su
h as m-subset problems (where a maximum of m subsets of a given set have to be found,subje
t to some
onstraints), relation problems (where a relation between twogiven sets has to be found, subje
t to some
onstraints) [4℄, permutation problems(where a sequen
e representing a permutation of a given set has to be found,subje
t to some
onstraints) [6℄, and sequen
ing problems (where sequen
es ofbounded size over the elements of a given set have to be found, subje
t to some
onstraints) [6℄, or any
ombinations thereof.All results will be built into the
ompiler of our esra
onstraint modellinglanguage [6, 4℄, whi
h is more expressive than even opl [17℄. This will help us

to ful�ll our design obje
tive of also making esra more de
larative than opl,without
ompromising (mu
h) on eÆ
ien
y.A
knowledgementsWe would like to thank Prof. Edward Tsang (University of Essex, UK) and our
olleague Justin Pearson for their invaluable
omments. This resear
h is partlyfunded under grant number 221-99-369 of VR (the Swedish Resear
h Coun
il).Referen
es1. D. A
hlioptas, L.M. Kirousis, E. Kranakis, D. Krizan
, M.S.O. Molloy, and Y.C.Stamatiou. Random
onstraint satisfa
tion: A more a

urate pi
ture. In: G. Smolka(ed), Pro
. of CP'97, pp. 107{120. LNCS 1330. Springer, 1997.2. P. Codognet and D. Diaz. Compiling
onstraints in
lp(fd). J. of Logi
 Program-ming 27(3):185{226, 1996.3. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system forintera
tive reformulation of design optimization strategies. Resear
h in EngineeringDesign 10(1):30{61, 1998.4. P. Flener. Towards relational modelling of
ombinatorial optimisation problems.In: Ch. Bessi�ere (ed), Pro
. of the IJCAI'01 Workshop on Modelling and SolvingProblems with Constraints, 2001.5. P. Flener and B. Hni
h. The syntax and semanti
s of esra. Evolving internal reportof the astra Team, at http://www.dis.uu.se/�pierref/astra/.6. P. Flener, B. Hni
h, and Z. K�z�ltan. Compiling high-level type
onstru
tors in
onstraint programming. In: I.V. Ramakrishnan (ed), Pro
. of PADL'01, pp. 229{244. LNCS 1990. Springer, 2001.7. P. Flener, B. Hni
h, and Z. K�z�ltan. A meta-heuristi
 for subset problems. In: I.V.Ramakrishnan (ed), Pro
. of PADL'01, pp. 274{287. LNCS 1990. Springer, 2001.8. C. Gervet. Interval propagation to reason about sets: De�nition and implementa-tion of a pra
ti
al language. Constraints 1(3):191{244, 1997.9. J.M. Grat
h and S.A. Chien. Adaptive problem-solving for large s
ale s
hedulingproblems: A
ase study. J. of Arti�
ial Intelligen
e Resear
h 4:365{396, 1996.10. J.N. Hooker. Testing heuristi
s: We have it all wrong. J. of Heuristi
s 1:33{42,1996.11. Z. K�z�ltan and P. Flener. An adaptive meta-heuristi
 for subset problems. Sub-mitted for review. Available via http://www.dis.uu.se/�pierref/astra/.12. S. Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: A
asestudy. Constraints 1(1{2):7{43, 1996.13. T. M�uller. Solving set partitioning problems with
onstraint programming. Pro
.of PAPPACT'98, pp. 313{332. The Pra
ti
al Appli
ation Company, 1998.14. N.M. Sadeh and M.S. Fox. Variable and value ordering heuristi
s for the job shops
heduling
onstraint satisfa
tion problem. Ari�
ial Intelligen
e 86(1):1{41, 1996.15. E.P.K. Tsang. Foundations of Constraint Satisfa
tion. A
ademi
 Press, 1993.16. E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the perfor-man
e of a range of algorithm and heuristi

ombinations. Pro
. of AISB'95, pp.203{216, 1995. IOS Press.17. P. Van Hentenry
k.The opl Optimization Programming Language. The MIT Press,1999.

