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Abstract. Many real-life problems can be represented as constraint sat-
isfaction problems (CSPs) and then be solved using constraint solvers,
in which labelling heuristics are used to fine-tune the performance of the
underlying search algorithm. However, few guidelines have been proposed
for the application domains of these heuristics. If a mapping between ap-
plication domains and heuristics is known to the solver, then modellers
can — if they wish so — be relieved from figuring out which heuristic
to indicate or implement. Instead of inferring the application domains of
(known) heuristics, we advocate inferring (known or new) heuristics for
application domains. Our approach is to first formalise a CSP application
domain as a family of models, so as to exhibit the generic constraint store
for all models in that family. Second, family-specific labelling heuristics
are inferred by analysing the interaction of a given search algorithm with
this generic constraint store. We illustrate our approach on a domain of
subset problems.

1 Introduction

Many real-life problems are constraint satisfaction problems (CSPs), where ap-
propriate values for the variables of the problem have to be found within their
domains, subject to some constraints. Examples are production planning subject
to demand and resource availability, air traffic control subject to safety proto-
cols, etc. Many of these problems can be programmed as constraint models and
then be solved using constraint solvers, such as CLP(FD) [2] and opL [17].

Constraint solvers are equipped with a search algorithm, such as forward-
checking, and labelling heuristics, one of which is the default. To enhance the
performance of constraint models, a lot of research has been made in recent years
to develop new labelling heuristics, which concern the choice of the next variable
to branch on during the search and the choice of the value to be assigned to that
variable. These heuristics significantly reduce the search space [15].

However, little is said about the application domains of these heuristics, so
modellers find it difficult to decide when to apply a particular heuristic, and
when not. Indeed, there is no universally best heuristic for all instances of all
constraint models (see, e.g., [16]), unless NP=P. Thus, we are only told that
a particular heuristic was “best” for the particular instances used to carry out



some experiments with some particular models. Therefore, the performance of
heuristics is not only model-dependent but also instance-dependent, i.e., for a
given constraint model, a heuristic can perform well for some (distributions on
the) instances, but very poorly on others; this is taken into account by some
generators of model-specific solvers [3,9, 12].

Instead of inferring the application domains of (known) heuristics, we ad-
vocate inferring (known or new) heuristics for application domains. Obviously,
the “smaller” an application domain, the “better” its inferrable heuristics. Our
two-step approach is to first formalise an application domain as a family of
CSP models, so as to exhibit the generic constraint store for all models in that
family. Second, the interaction — for a given search algorithm — between the
constraints in this generic store and the domain propagation during search is
examined, so as to infer suitable heuristics for any model in that family. Due to
the instance sensitivity of heuristics, the outcome of this process usually is a set
of heuristics, rather than a single one. In this paper, we illustrate this approach
on a domain of subset problems.

If a mapping between application domains and heuristics is known to the
solver, then modellers can — if they wish so — be relieved from the procedural
aspect of modelling, namely figuring out which heuristic to indicate or imple-
ment. Forcing modellers to deal with this procedural aspect may not only add
a challenging step but also has the disadvantage that they must commit — at
modelling time — to a single heuristic and thus expose their models to the in-
stance sensitivity of heuristics. In companion work [7,11], we address the issue
of selecting or switching — at solving time — among the inferred family-specific
heuristics resulting from our approach, according to the instance to be solved.
Our ultimate aim is thus a new generation of more intelligent solvers that allow
CSP modellers to concentrate on the declarative aspect of modelling, without
compromising (much) on efficiency.

This paper is organised as follows. In Section 2, we introduce the notion of
family of CSP models as a formalisation of an application domain. We illus-
trate this with a domain of subset problems and exhibit a generic finite-domain
constraint store of a family for this domain. Then, in Section 3, we present our
analysis of this generic constraint store, infer two labelling heuristics, and show
our initial empirical results. Finally, in Section 4, we conclude, compare with
related work, and discuss directions for future research.

2 CSP Model Families

Informally, an application domain is a set of “related” CSPs. For instance, in the
SUBSET domain, a given number of elements have to be selected from a given
finite set such that any two of them satisfy some constraint p. In this domain,
CSPs are related in the sense that the actual constraint p differs between them.
Sample CSPs in this domain are finding a clique of a given size within a given
graph (where p requires that any two vertices of the clique be connected by an
edge of the graph) and finding an independent subset of a given size among



the vertices of a given graph (where p says that any two vertices of the subet
must not be connected by an edge of the graph). Application domains of coarser
granularity are scheduling, configuration, resource allocation, and so on.

For a given constraint modelling language, a CSP model family is an open
CSP model in that language, ‘open’ in the sense that some of its (predicate or
type) symbols are neither primitive to the language nor defined in the model. An
actual CSP model is closed, in the sense that all its symbols must be primitive
or defined. From a model family, a model can thus be obtained by substituting
closed types and closed formulas for all its open symbols, and possibly by adding
parameters. Model families can be used to formalise application domains. There
are in general several ways of formalising a domain as a model family, in a given
language, namely depending on the chosen data modelling. An instance of a
CSP model M is obtained from M by replacing all its formal input parameters
by actual values and dropping the universal quantifications on these parameters.
An instance of a model is thus also a model, albeit without input parameters.

Example 2.1. Assume CSP models are written in a very expressive, purely declar-
ative, typed, set-oriented, first-order logic constraint modelling language, such
as our ESRA [6,4], which is designed to be higher-level than even orL [17]. (We
can automatically compile [5] ESRA programs into lower-level languages such as
OPL.) Since ESRA has set variables (unlike OPL), the following (sugared version
of an) ESRA model family is a candidate formalisation of the SUBSET domain:

VT, S : set(a) . Vk :int. (subset(Tt,k+,S) + S C T Asize(S, k) A

Viitj . (i€ SAt; € S At #tj — p(tit;))) (Subset)

where the superscript ™ designates the input parameters. In words, sets S and
T of elements of type « are in the subset/3 relation with integer k iff S is a set
of k elements from T, such that any two distinct elements ¢; and t; of S satisfy
constraint p. The only open symbols are type « and constraint p, as size, C, €,
and # are primitives of ESRA, with the usual meanings. From the Subset model
family, we can obtain the following (sugared) ESRA model:

VYV,C : set(int) . Yk :int . VE : set(int x int) .
(cliquer,((VT,ET),kT,C) <> C CV Asize(C, k) A (cliquey,)
Yvi,vj int. (v; € C Avj € C A # vj = (v4,05) € E))

It is a model for finding a clique C' of an undirected graph (given through its
integer vertex set V and edge set E), such that the clique has k vertices.

Example 2.2. At a lower level of expressiveness, say when set variables are not
available (such as in CLP(FD) [2] and OPL [17]), the usual representation of an
unknown subset S of a given finite set T (of n elements) is a mapping from
T into Boolean variables (in {0,1}), that is one conceptually maintains n cou-
ples (t;, B;) where the (initially non-ground) Boolean B; expresses whether the
(always ground) element ¢; of T is a member of S or not:!

Vti:a.tiET%(Bi(—)tiES) (1)

! In formulas, we use atom B; as an abbreviation for B; = 1.



This Boolean representation of set variables consumes more memory than the
set-interval representation of CONJUNTO [8] and 0z [13], but both have been
shown to create the same O(2™) search space [8].

Given this Boolean representation of the sought subset S, restricting its size
to k can be expressed as the following n-ary constraint:

zn:B,- =k 2)

Let us also look at the remaining part of SUBSET, which requires that any
two distinct elements of the subset S of 7" must satisfy a constraint p. Formally
(using the sugared ESRA syntax again, for the sake of symbolic reasoning):

SCT AVt tj:a. t; € SAt; € SNt #t; — plti,t;)
This implies
Vi tjca.t; €T At; € T AL € SNty €SNt #tj — pltit;)
which is equivalent to
Vi tjca.t; € TAt € T At #t5 A—p(ti,t;) = =t € SAL €5)
By (1), this can be rewritten as
Vi ti:a.t; € TAtp € T Aty #t; A-p(ts,t;) = =(B; A Bj) (3)

The sugared version of an OPL/CLP(FD) model family formalising the SUBSET
domain thus consists of constraints (2) and (3); we denote it by Subsetp. For
any two distinct elements ¢; and ¢; of the given set 7', with Boolean variables B;
and Bj, if p(t;,t;) does not hold, the following binary constraint arises:

~(Bi A Bj) (4)

It is crucial to note that the actual finite-domain constraints are thus not in
terms of p, hence p can be any formula. Therefore, the generic finite-domain
constraint store for any instance of any model of the Subsetp family is over a set
of (only) Boolean variables. It contains an instance-dependent number of binary
constraints of the form (4), as well as the (always unique) n-ary constraint (2).

As the set-interval representation of set variables does not allow the definition
of some (to us) desirable high-level primitives, such as universal quantification
over elements of non-ground sets, the set variables of ESRA (see Example 2.1) are
compiled [5, 6] using the Boolean representation of Example 2.2. In the remainder
of this paper, our approach to inferring labelling heuristics from an application
domain is illustrated on the SUBSET domain, and we (thus) focus on its Boolean
modelling in the Subsetp family.



3 Inferring Labelling Heuristics

It is known that the order in which the variables are considered for instantia-
tion, and the order in which the values are attempted for assignment to variables
during search have a substantial impact on the number of backtracks performed
and the time taken by a search algorithm to solve a CSP model. Deciding on
these orders is the objective of labelling heuristics. We now infer some labelling
heuristics for the SUBSET domain by examining the domain propagation per-
formed on the generic constraint store — for the Subsetp family — by a search
algorithm during labelling. For the sake of illustration, we here choose the for-
ward checking (FC) algorithm, which is used in many solvers. It works as follows:
Whenever a variable is labelled by a value v, the values of the future variables
that are inconsistent with v are removed from the domains of these variables.
In Section 3.1, we present our analysis of the obtained generic constraint
store. Next, in Section 3.2, we infer some FC labelling heuristics for Subsetp
models. Finally, in Section 3.3, we report on our initial experimental results.

3.1 Analysis of the Generic Constraint Store

We analyse the generic constraint store using the values n (the size of the given
set T, hence the number of Boolean variables involved) and & (the given size of
the sought subset S). In models of the Subsetp family, each Boolean variable B;
in {By,...,B,} is at any moment associated with the set V; of still unassigned
variables B; (where 1 < j < n) that constrain B; with a binary constraint of
the form (4). A binary constraint of this form requires that the variables B; and
Bj cannot simultaneously be assigned 1. Furthermore, the n-ary constraint (2)
restricts all the variables such that & of them must be assigned 1. Let ko (resp.
k1) be the current number of variables that have yet to be assigned 0 (resp. 1).
Initially (before the labelling), kg = n—k and k; = k. During labelling, the values
of ky and k; decrease because of the assignments and propagation. If either kg or
k1 reaches 0, the propagation caused by the n-ary constraint forces the other one
to also become 0. Therefore, at the end (after the labelling), ko = k1 = 0. Note
that the mathematical variables Vi ...V, ko, k1 are only explanatory devices,
but not actually stored and manipulated anywhere.

We now monitor the FC propagations triggered by the assignment of values
(from {0, 1}) to the Boolean variables. The ordering of the variables and values
is irrelevant in this analysis: suitable labelling heuristics will be inferred in Sec-
tion 3.2. When ko > 0 and k; > 0, we consider two cases, namely Case A, the
assignment of 0, and Case B, the assignment of 1 to the chosen variable, say B;.

Case A. If B; is assigned 0, the current number of variables that have yet to be
assigned 0 is decremented by 1, so kg becomes ko — 1. Two sub-cases arise now:

— If ko = 0 now, then all the k; yet unassigned variables are assigned 1 during
propagation due to (only) the n-ary constraint (2), leading to k; = 0 also.
Now exactly n — k variables have been assigned 0 and k variables have been
assigned 1. However, if there is a binary constraint of the form (4) between



any two of these k; variables, then this assignment fails, which leads to
backtracking. Otherwise, this assignment succeeds.

— If kg > 0 still, then, for all v € V;, the domain of v remains the same, because
the assignment of 0 to any variable in a binary constraint of the form (4)
always succeeds without propagation.

By the instantiation of a variable by 0, there is thus a possibility of backtracking
only if kg reaches 0, because the assignment may fail.

Case B. If B; is assigned 1, the current number of variables that have yet to be
assigned 1 is decremented by 1, so k; becomes k; — 1. Two sub-cases arise now:

— If k; = 0 now, then all the ky yet unassigned variables are assigned 0 during
propagation due to (only) the n-ary constraint (2), leading to ky = 0 also.
Now exactly k variables have been assigned 1 and n — k variables have been
assigned 0, without violating any constraints. Indeed, as seen in Case A, the
assignment of 0 to a variable fails only if kg becomes 0 and there is a binary
constraint between any two of the k; variables. However, there are here
no unassigned variables left, as k&; = 0 already. Therefore, this assignment
always succeeds.

— If &y > O still, then, for all v € V;, the variable v is assigned 0 during
propagation because of the binary constraints of the form (4). Thus, ko
becomes ko — |V;|. The new value of ky now gives rise to the following sub-
sub-case analysis:

o If ky < 0 now, then one of these assignments must fail and immediate
backtracking occurs.

e If kg = 0 now, then all the k; yet unassigned variables are assigned 1
during propagation, leading to k; = 0 also. As seen in Case A, if there is
a binary constraint of the form (4) between any two of these k; variables,
then this assignment fails, which leads to backtracking. Otherwise, this
assignment succeeds.

o If ky > 0 now, then this assignment succeeds.

By the instantiation of a variable by 1, there is thus a possibility of backtracking
only if kg reaches O first. Should kg become negative, the assignment fails, and
thus an immediate backtracking occurs. On the other hand, the assignment
always succeeds if k; reaches 0 first.

It is very important to notice that Case B may include Case A. On the
other hand, Case A never includes the general situation of Case B. Therefore,
the analysis became of finite size and complete, as there is no case where it is
impossible to exactly foretell all propagations!

3.2 Inference of Heuristics

In models of the Subsetp family, the assignment — under FC search — of 0 to
a Boolean variable triggers propagation only when ky reaches 0, and this inde-
pendently of the order of the variables being instantiated by 0 so far. Therefore,
if the set of variables that will be assigned 0 is not chosen carefully (e.g., when



there are no binary constraints between them, in which case there probably
are binary constraints between the other variables), backtracking is unavoidable
once ko reaches 0. The only way to avoid backtracking is to choose the right
set of n — k variables that are assigned 0. However, finding such a subset of the
Boolean variables is itself a subset problem.

The assignment of 1 to a variable is noteworthy because every assignment
caused by propagation upon k; = 0 succeeds, so that no backtracking can hap-
pen. Also, the order of the variables being assigned 1 is quite important because
it can significantly affect the decrease in ky. Indeed, as seen in Case B, if k; > 0
still, then ko becomes ko — |V;|. The variable B; being assigned 1 is associated
with a set V; (the set of the still unassigned variables that constrain B;) that
thus directly affects the decrement in ko. If the variables being assigned 1 are
ordered in a way that they do not cause much decrease in kg, then backtracking
when kg < 0 and any possible backtracking when ky = 0 are delayed. Backtrack-
free assignment is thus guaranteed by allowing k; to reach 0 first. However,
backtrack-free assignment is not guaranteed if it is ko that reaches 0 first.

We can thus infer the following two labelling heuristics from the previous
considerations:

— If there is at least one solution, we should instantiate some variables by
1, and try to keep each |V;| as small as possible if we want k; to reach 0
first (which leads to backtrack-free assignment). Thus, during FC search, if
we choose a variable that is participating in the smallest number of binary
constraints, then we force k1 to become 0 before (or at the same time) as ko
does, because, by this way, we achieve a small decrease in k. This heuristic
can be seen as an instance of the succeed-first principle.

— If there is no solution, then it is impossible to reach the state k; = 0.
Search effort can then be saved by forcing the search to reach a state with
definite backtracking (when ko < 0) or possible backtracking (when ko = 0)
as soon as possible. Thus, during FC search, if we choose a variable that is
participating in the largest number of binary constraints, then we force kg to
be negative or to become 0 before k; does, because, by this way, we achieve
a big decrease in ko. The value ordering is thus irrelevant. This heuristic can
be seen as an instance of the fail-first principle.

As it is initially unknown whether there is a solution or not, it is very difficult
to choose which of these two heuristics to use in order to guide the search pro-
cess. This paper is only concerned with the inference of heuristics; the issue of
deciding when to use which one, or when to switch between them, is addressed
in companion work [7,11].

Following these considerations, we implemented the following static labelling
heuristics, namely in s1csTus cLP(FD) (which has an FC solver):

— H}, which chooses the variable that is constraining the smallest number of
variables, and assigns the value 1 first.

— H (resp. H}'), which chooses the variable that is constraining the largest
number of variables, and assigns the value O (resp. 1) first.



Being static, these labelling heuristics choose a variable that is initially con-
straining the smallest/largest number of variables. Note that this implementa-
tion of the heuristics is our choice, but that the heuristics could be implemented
in another way, say by re-ordering the variables at solving-time. Investigation
of the superiority or the inferiority of such dynamic variable orderings, which
choose a variable that is constraining the smallest/largest number of the future
(yet unassigned) variables, to the static ones is left as future work.

3.3 Experiments with the Heuristics

Experimental Setting. We measured the cost (in CPU time and in number of
backtracks) of our heuristics on a very large number of instances of the models
of the Subsetp family. These experiments confirmed the anticipated strengths
and weaknesses of the heuristics, which are exploited in our companion work on
deciding when to use which heuristic, or when to switch between them [7,11].

For binary CSPs, a class? of instances is usually characterised by a tuple
(n,m,p1,p2), where n is the number of variables, m is the (assumed constant)
domain size for all variables, p; is the (assumed constant) constraint density, and
p2 is the (assumed constant) tightness of the individual constraints. Experiments
are then conducted by iterating over an interval of instance classes and generating
a suitably sized sample of random instances for each class. For each sample, the
median or average solving cost is computed.

However, our generic constraint store features a non-binary constraint, so we
cannot literally apply this characterisation of instance classes. In any case, the
latter has been criticised [1] because it is unrealistic to have a constant tightness
po for all constraints, so that many possible instances can never be generated.
For these two reasons, we developed the following characterisation of instance
classes, which is specific to the considered family. It is not subject to any of the
criticisms in [1], because it exploits the structure of the generic constraint store.

The generic finite-domain constraint store for the Subsetp family is parame-
terised by the number n of Boolean variables involved (i.e., the size of the given
set T') and the given size k of the sought subset S, and contains an instance-
dependent number b of binary constraints of the form (4). The number n of
variables and the density p; of the constraints are kept from the previous char-
acterisation, with p; being n(n%‘l)m here. The domain size m is dropped, as it
always is 2, because we need only consider the Boolean domain {0, 1}. Since the
considered binary constraints are of the form —=(B; A B;), their tightness always
is 3/4 and thus does not become a parameter. The tightness of the n-ary con-
straint however is (}) /2", and thus varies with n and k. As we already use n, the
size k becomes the final parameter in our characterisation of instance classes,
which is thus summarised by the triple (n,p;, k).

For the purpose of this paper, we generated random instances in a coarse
way, by not considering all possible values of n up to a given limit. The number
n of variables ranged over the interval 10..120, by increments of 10. We varied

2 A class (of instances) is not to be confused with a family (of CSP models).



the density p; over the interval 0.1..1, by increments of 0.1. The values of &
ranged over the interval 1..n, by increments of 1. Considering the sizes of these
intervals, the number of our experiments was huge and their execution was very
time-consuming. Given more time, instances generated in a more fine-grained
way could be used instead and help to make our (future) results more precise.
Our objective here only is to show the heuristics in action, but not to provide
the most detailed statistics for our companion work on deciding when to use
which heuristic, or when to switch between them [7,11].

Rather than only comparing the inferred heuristics to each other, we also
compared them to some others. For time reasons, we restricted ourselves to the
following two additional heuristics:

— HY?, which chooses the variable that is constraining the smallest number of
variables, and assigns the value O first.

— Default, the default labelling heuristic of sicsTus CcLP(FD), which labels
the leftmost variable in the provided sequence of variables, and the domain
of the chosen variable is explored in ascending order (i.e., 0 first in our case).

The heuristic H? is a natural complement to the inferred heuristics, and was also
implemented in SICSTUS CLP(FD). In the absence of a labelling heuristic provided
by the modeller, each solver uses its default heuristic. Since our experiments were
conducted in SICSTUS CLP(FD), its default heuristic had to be used here. (The
experiments thus have to be repeated for each FC solver, because their default
heuristics change.)

If a combination of the inferred heuristics beats — on the average over numer-
ous instances of the family — the default heuristic of the solver, then this com-
bination can become a family-specific and even highly instance-sensitive default
heuristic of the solver. The determination of such a combination is addressed in
our companion work [7,11]. If this idea is repeated for other families, then the
modellers can — if they wish so — be relieved from the procedural aspect of
modelling and even be protected from the instance sensitivity of their heuristics.

Our experiments were made over random instances (of models) of the con-
sidered family for the following reason. Towards using real-life instances, we
would have had to first pick some models within the considered family, but we
would then have been unable to justify why these models were picked rather
than some others. The purpose of our experiments [10] was to generate statistics
that guide us in our companion work [7,11], where we aim at a family-specific
default heuristic for a solver, which must be able to handle random instances
over that entire family. We do not aim at a heuristic for a specific model, which
would have to be able to handle (only) real-life instances of (only) that model.

Experiments. Having thus chosen the intervals and increments for the param-
eters in our characterisation of an instance class, we randomly generated many
different instances and then used the 5 heuristics in order to solve them or prove
that they have no solutions. Some of the instances were obviously too difficult
to solve or disprove within a reasonable amount of time. Consequently, to save
time in our experiments, we used a time-out (of 3,600,000ms) on the CPU time;
upon time-out, the current number of backtracks was recorded.
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Fig. 1. CPU-time (in ms) in terms of k for the 5 heuristics on n = 100

In order to analyse the effects of each heuristic on different instances, we drew
various charts, for example by keeping n and p; constant and plotting the median
costs of the samples for each k. Figure 1 shows an example of the behaviours
of the 5 heuristics in terms of CPU-time on the instances where n = 100, with
p1 = 0.1 and p; = 0.5, respectively. Figure 2 shows their behaviours in terms of
the number of backtracks on the same instances.

These figures do not show that the generated instances exhibit three very
interesting regions in terms of k, no matter what n and p; are: up to some
value v of k, all instances have a solution; then, until some other value w of k,
some instances have a solution and some do not; beyond w, all instances have
no solution. A visible interesting observation is that, without a time-out, the
solving-times for instances increase with &k until some point, whereupon they
decrease. With the heuristics we used, we recorded time-outs in all three of
the mentioned regions. After taking the median cost of the generated sample of
random instances for each class (n,pi, k), we observed three different zones in
terms of k: up to some value j in 0..n, the instance with the median cost has a
solution; from some other value [ in j +1 .. n 4+ 1, the instance with the median
cost, has no solution; in-between, the instance with the median cost timed out.
It is in general unknown where j and [ are compared to v and w. The values of
7, 1, v, w depend on n and p;.



The position of k relative j and [ yields the following analysis of the be-
haviours of the heuristics in terms of the CPU-time they take (see Figure 1):

— Over 1..5, the heuristic H! always finds a solution, in mostly constant CPU-
time. Default performs the best until & reaches some d in 0..7, where d is
small. However, over d + 1 .. j, the heuristic H} outperforms De fault. The
heuristics HY and H}' perform as well as H! until k reaches some i in 1..j.
However, over i + 1 .. j, the heuristic H! outperforms Hl0 and Hll. Heuristic
H? usually has the worst performance. In conclusion, over 1..j, the heuristic
H! is the best over d + 1 .. j, with 1..d being always a very small interval.
The range of k where H! performs the best varies in size with respect to pi,
given n: compare Figures 1(a) and 1(b).

— Over j+1..1—1, we cannot compare the heuristics because they all timed
out. This can be observed in Figure 1(a) for k in 34..37.

— Over [..n, the heuristic H! always proves that there is no solution, in de-
creasing CPU-time. Heuristic H? usually has the worst performance. In this
range, the heuristic H} is always outperformed by Hp and H}', and performs
as badly as H?. The heuristics H? and H} perform the best until k reaches
some ¢ in [..n, whereupon Default outperforms all the others. The range of
k where H} and H}, or Default perform the best varies in size with respect
to p1, given n: compare Figures 1(a) and 1(b).

The heuristic H} mostly performs the best when there is an observed solution.
This can easily be explained by the fact that it was designed to try and find a
solution, while assuming there is one. The heuristics H lo and H ll mostly perform
the best when there is no observed solution. This is because they were designed
to prove that there is no solution, while assuming there is none. The reason why
Default sometimes outperforms the other 4 heuristics is that it has no solving-
time overhead. Somewhere in j + 1 .. [ — 1, a phase transition from the soluble
region to the non-soluble region occurs, and all the heuristics failed to efficiently
handle these instances and thus timed out.

The position of k relative 7 and [ yields an analysis of the behaviours of the
heuristics in terms of the number of backtracks they make (see Figure 2):

— Over 1..j, the heuristic H} always finds a solution, mostly in 0 backtracks.
Default always performs worse than H}. The heuristics HP and H}' initially
perform as well as HZ, but start backtracking earlier. Heuristic H? usually
has the worst performance. In conclusion, over 1..j, the heuristic H} is always
the best. The range of k where H! performs 0 backtracks varies in size with
respect to pi, given n: compare Figures 2(a) and 2(b).

— Over j+1..1—1, we cannot compare the heuristics because they all timed
out. This can be observed in Figure 2(a) for k in 34..37.

— Over [..n, the heuristic H! always proves that there is no solution, in decreas-
ing numbers of backtracks. Heuristic H? usually has the worst performance.
In this range, the heuristic H! is always outperformed by H and H}, and
performs as badly as HY. The heuristics H and H} perform the best until
k reaches some ¢ in [..n, whereupon all the 5 heuristics perform the same
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number of backtracks. The range of k where H? and H} (resp. all the 5
heuristics) perform the best (resp. the same) varies in size with respect to
p1, given n: compare Figures 2(a) and 2(b).

The heuristic H} always performs the best in number of backtracks (and mostly
with 0 backtracks) when there is an observed solution, because it was designed
to try and find a solution, while assuming there is one. The heuristics H} and
H} mostly perform the best in number of backtracks when there is no observed
solution. This is because they were designed to prove that there is no solution,
while assuming there is none. Somewhere in j+1 .. [ — 1, a phase transition from
the soluble region to the non-soluble region occurs, and all the heuristics failed
to efficiently handle these instances and thus timed out.

4 Conclusion

Labelling heuristics may lead to a substantial reduction of the search space when
solving CSP models. However, little is known about the application domains of
the known heuristics. This work follows the call of Tsang et al. for mapping com-
binations of algorithms and heuristics to application domains [16]. Rather than
inferring the applications domains of (known) algorithm /heuristic combinations,



we here advocate inferring (known or new) algorithm /heuristic combinations for
application domains.

Our approach is to first formalise a CSP application domain as a model
family, so as to exhibit the generic finite-domain constraint store for all models
in that family. By analysing the interaction of an algorithm with this generic
constraint store, one can then infer labelling heuristics for that family. Usually,
one would at least look for a heuristic that excels at finding the first solution,
one that excels at disproving the existence of solutions, and one that detects and
handles the phase transition. We here illustrated this approach on a domain of
subset problems, as well as on the effect of labelling heuristics for a fixed search
algorithm, namely forward checking. We inferred two heuristics for this domain,
one for each of the first two kinds.

We generate random instances by iterating over an interval of (n,p, k) in-
stance classes and generating a suitably sized sample of random instances for
each class. For each sample, if the instances are comparable (e.g., all the instances
have a solution), the median cost is computed; otherwise (e.g., some instances
have a solution but some do not), we cannot judge which heuristic is the “best”
for this sample. We then devise a lookup table, where either the “best” heuris-
tic for a given instance class (n,p1, k) is designated [7], or a switching between
heuristics is designated because none of the heuristics is considered to be better
than another one for this class of instances [11]. This switching can be done by
deploying one of the heuristics first, and monitoring the progress so as to switch
to the next one in case of thrashing. This lookup table is then used by a meta-
heuristic. If this meta-heuristic beats — on the average over numerous instances
of the family — the default heuristic of the solver, then this meta-heuristic can
become a family-specific and even highly instance-sensitive default heuristic of
the solver. If this is repeated for many application domains, then modellers can
— if they wish so — be relieved from indicating or implementing a heuristic
at modelling-time, which often is a too early commitment anyway, due to the
instance-sensitivity of heuristics.

In terms of related work, Figure 3 shows the classical approach to designing
heuristics in full lines, whereas the contribution of our approach is emphasised in
dashed lines and italicised text. A curved arrow from a full line to a dashed line
indicates our replacement of the full line with the dashed line. We thus replace
the design of a single heuristic for a CSP model in the presence of a solver (i.e.,
search algorithm) with the inference of a set of heuristics for a model-family
by analysis of the propagation performed by that solver on the family-specific
generic constraint store during labelling. Also, in our approach, random instances
are generated only for the considered family (which does not necessarily contain
binary CSPs), rather than for arbitrary (binary) CSPs.

Closely related to our work is first Minton’s MULTI-TAC system [12], which
automatically synthesises an instance-distribution-specific solver, given a high-
level model of some CSP and a set of training instances. While MULTI-TAC uses
a synthesis-time brute-force approach to generate candidate problem-specific
heuristics from a set of heuristics described by a grammar, we propose inferring
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candidate family-specific heuristics manually by analytically reasoning about
the generic constraint store of the family. Second, Sadeh and Fox propose a
probabalistic framework for the job shop scheduling domain so as to capture the
search space. Based on this framework, a domain specific heuristic is derived
[14]. The derived heuristic significantly reduces the search space of the instances
used in the experiments. However, the instance sensitivity of heuristics is not
tackled, and only one heuristic is derived for the domain.

Our future work includes investigating the superiority or the inferiority of
dynamic variable orderings, which choose a variable that is constraining the
smallest /largest number of the future (yet unassigned) variables, to the here
investigated static variable orderings, which choose a variable that is initially
constraining the smallest/largest number of variables.

We are also planning to investigate other application domains, such as m-
subset problems (where a maximum of m subsets of a given set have to be found,
subject to some constraints), relation problems (where a relation between two
given sets has to be found, subject to some constraints) [4], permutation problems
(where a sequence representing a permutation of a given set has to be found,
subject to some constraints) [6], and sequencing problems (where sequences of
bounded size over the elements of a given set have to be found, subject to some
constraints) [6], or any combinations thereof.

All results will be built into the compiler of our ESRA constraint modelling
language [6,4], which is more expressive than even OPL [17]. This will help us



to fulfill our design objective of also making ESRA more declarative than OPL,
without compromising (much) on efficiency.
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