Solving Necklace Constraint Problems

Pierre Flener and Justin Pearson

Department of Information Technology
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
Email: Firsthame.Lastname@it.uu.se

Abstract. Some constraint problems have a combinatorial structure where the
constraints allow the sequence of variables to be rotatedk{ace} if not also

the domain values to be permutadhfabelled necklacgswithout getting an es-
sentially different solution. We bring together the fields of combinatorial en
meration, where efficient algorithms have been designed for (speasals of)
some of these combinatorial objects, and constraint programmingeirereq-
uisite symmetry breaking has at best been done statically so far. Wendhsig
first search procedure and identify the first symmetry-breakingtcaints for the
general case of unlabelled necklaces. Further, we compare dyaaahistatic
symmetry breaking on real-life scheduling problems featuring (unlat)etieck-
laces.

Keywords: constraint problem, combinatorial structure, necklace, static and dy-
namic symmetry breaking, rotation schedule

1 Introduction

In combinatorics, aecklaceof n beads ovek: colours is the lexicographically smallest
element in an equivalence class of the sek-ry n-tuples under rotations; the un-
derlying symmetry group is the cyclic group, acting on the indices. For example,
the binary triple001 is the representative necklace {@f01, 010, 100}. Combinatorial
objects are enumerated under some chosen total order. &mpéx, under the lexico-
graphic order, the binarg-bead necklaces a0, 001, 011, and111. If the values
(colours) of a tuple are interchangeable, then we speaklabelled tuplegsymmetric
group.S;, acting on the values) andhlabelled necklace@@roduct groug”,, x Si). For
example, under the lexicographic order, the unlabelle@ryia-tuples are000, 001,
010, and011, while the unlabelled binarg-bead necklaces af®0 (representing the
necklace®00 and111) and001 (representing the necklace®l and011). Note that the
set of unlabelled necklaces is a subset of the intersecfitimecsets of necklaces and
unlabelled tuples. For exampl&l 1 is both a necklace and an unlabelled tuple, but not
an unlabelled necklace. The generating functions for déongriunlabelled) necklaces
are given in [13], and the sequences of their countsifer6) can be found in [29].

A constraint satisfaction probledCSB is a triplet (X, D, C), whereX is a se-
quence ofn variables,D is a set ofk possible values for these variables and is called
theirdomain andC' is the set of constraints specifying which assignments fegto
the variables are solutions. If the constraintGeillows the variable sequencééto be

* This paper revises (in Section 4.3) and extends an earlier versionhpedbbs [9].

rotated, then a necklace is a combinatorial sub-structiuiteedCSP and we say that the
CSP hasotation variable symmetryf the constraint set’ has a domairD containing
interchangeable elements, then we say that the CSRilhaalue symmetryExploiting
such symmetry is important in order to solve a CSP efficielity example, compare
the ternary object counts in Table 1 (a few pages down) wigh/dues of3™.

CSPs with an (unlabelled) necklace as a combinatorial sulstare are not un-
usual. For example, Gusfield [16, page 12] states that ‘leirddNA is common and
important. Bacterial and mitochondrial DNA is typicallyr@ilar, both in its genomic
DNA and in additional small double-stranded circular DNAlegules callegblasmids
and even some true eukaryotes (higher organisms whosecoaligin a nucleus) such
as yeast contain plasmid DNA in addition to their nuclear DISAnsequently, tools for
handling circular strings may someday be of use in thosenisges. Viral DNA is not
always circular, but even when it is linear some virus geroméibit circular proper-
ties”. One such problem is studied in [5]. Necklaces occwoding theory [14], genet-
ics [14], and music [13], while unlabelled necklaces ocawwitching theory [13]. We
study a real-life problem with (unlabelled) necklaces ihestuling, different from the
onein [15].

Note that, throughout this paper, we focus on unconditiémaglobal) symmetries,
that is we do not handle any symmetries that appear duringtsea

In this paper, we propose to bring together combinatorialnggration and con-
straint programming (CP). Very efficient combinatorial sraration algorithms exist
for some of the mentioned combinatorial objects, but noufdabelled necklaces (ex-
cept over two colours [4]). These algorithms can be used ase@Rch procedures for
CSPs having those objects as combinatorial sub-structtirereby breaking a lot of
symmetry dynamically. This has also been advocated in B0d,7, say, where CP
search procedures are proposed for symmetry groups actitihgevalues; however, ex-
cept for [28, 10, 11] not much dynamic symmetry breaking setenmave been done for
groups acting on the variables, and hence not for productpgracting on the values
and variables. Conversely, CP principles can be used fdsidgvenumeration algo-
rithms for the combinatorial objects where efficient altforis have remained elusive
to date. The contributions of this paper can be summarisédllags:

— Design of an enumeration algorithm, and hence a CP searcleguce, for (par-
tially) unlabelledk-ary necklaces (Sections 2 and 4).

— ldentification of symmetry-breaking constraints for (ehy) unlabelledk-ary neck-
laces, including ways of generating filtering algorithmstfe identified new global
constraints (Sections 3 and 4).

— Experiments on real-world problems validating the usefafof the proposed dy-
namic and static symmetric-breaking methods for (paytiatlabelled):-ary neck-
laces (Section 4).

Finally, in Section 5, we conclude and discuss future resear

2 Dynamic Symmetry Breaking

Consider a CSRX, D, C) whereX is a sequence of > 2 variables and is a set of
k > 1 domain values. For simplicity of notation, we assume fhat {0,...,k — 1};

procedure uTuple(j,u : integer)
var i : integer
if 7 > nthen
return true
else
tryall ¢ =0tomin(u+ 1,k —1)do
X[j] — i
uwTuple(j + 1, max (i, u))
end
s endif

COXNDU D WN L

Algorithm 1: Search procedure for unlabelled tuples [7]

this also has the advantage that the order is obvious wheweuvequireD to be totally
ordered.

2.1 Unlabelled Tuples

If the domain values o) are interchangeable, then we impose a total ordeDon
and the enumeration algorithm of [7], say, can be used torgemall unlabelled tuples
(modulo the full value symmetry). We present it as Algorittrim the style of a search
procedure in constraint programming (CP), so that it caeraut with any problem
constraints. The initial call isTuple(1, —1). At any time, j is the index of the next
variable to be assigned (agid= n + 1 when none remains) while s the largest value
used so far (and = —1 when none was used yet). The idea is to try for each variable
all the values used so far plus one unused value, since adlednalues are still inter-
changeable at that point. Upon backtracking,ttii@ll construct non-deterministically
tries all the alternatives, in the given value order (lineEgch alternative contains the
assignment of the chosen valuo the chosen variabl& [;] (line 7) and a recursive
call for the next variable (line 8). Note that we have fixedh&able order to be from
left to right acrossX, and the tuples are thus generated in lexicographic oraisristan
unnecessary restriction, but the reason for this choicebe@dome clear in a few lines.
This algorithm takes constant amortised time and space tfendiumber of objects
generated is actually equal to the number of unlabellectupl

2.2 Necklaces

If the variable sequenc¥ is circular, then the enumeration algorithm of [4], say, can
be used to generate all necklaces (modulo the rotationblarsymmetry). We present
it as a CP search procedure in Algorithm 2. The initial caki®] < 0; necklace(1, 1),
where X [0] is a dummy element. At any timg,is the index of the next variable to be
assigned (and = n + 1 when none remains) whilg is the period explained next.
The idea is either to try and keep replicating the values@aptieviousp positions, or

to try all larger values with a new period ¢f At any time, the prefixX|[1,...,j] is a
pre-necklacethat is a prefix of some necklace, which may however be lotigarn.
The variable order is necessarily from left to right acrégsdue to the role op, and

1: procedure necklace(j, p : integer)

2: var i : integer

3: if j > nthen

4: return nmod p =0

5: else

6: tryalli=X[j—p/tok—1do

7 X[j] < i

8: necklace(j + 1,if i« = X [j — p] then p else j)
90 end

10: end if

Algorithm 2: Search procedure for necklaces [4]

the necklaces are thus generated in lexicographic ordés.altporithm takes constant
amortised time and space, and the number of objects geddsapgoportional by a
constant factor (tending down {&/(k — 1))? asn — o) to the number of necklaces:
note that onlyn-tuples where the periog dividesn actually are necklaces (line 4).
In other words, not all symmetry is broken at every node ofsiarch tree, and some
backtracking is forced (by a constant-time tespdonly at leaf level; at present, loop-
less or memoryless necklace enumeration remains elusive.

2.3 Unlabelled Necklaces

If the variable sequenc¥ is circularandthe domain values ab are interchangeable,
then a constant-amortised-time enumeration algorithroih} exists for generating all
binary (¢ = 2) unlabelled necklaces (modulo the symmetries). We do retemt it
here, but instead construct a novel enumeration algorithmarfy amount of colours.
Noting that unlabelled necklaces are a subset of the neklg&gorithm 2) that are
unlabelled tuples (Algorithm 1), and observing that thetoarflows of those two al-
gorithms match line by line, the skeleton of an enumeratigoréghm for unlabelled
necklaces can be obtained simply by “intersecting” thosealgorithms, which yields
all but lines 7 and 10 of the CP search procedukecklace in Algorithm 3. The initial
callis X [0] « 0; uNecklace(1,1,—1), whereX|[0] is a dummy element.

We now gradually refine thgrobe(j, i, p) function (called in line 7), guarding the
non-deterministic assignment of valué¢o the current variableX[;] followed by the
continued enumeration.

Leaf Probing. If probe always returnsrue, thenuNecklace will enumerate a superset
of the unlabelled necklaces, as their symmetry group iptoductrather than just the
union of the symmetry groups for necklaces and unlabellptesu For example, the
binary necklacé11 will erroneously be returned, even though it can be tramséar
into the unlabelled necklad&1 (by first rotating the second position of the circular
sequencél11 into first position, givingl 10, and then minimally renaming its colours,
giving 110 = 001); however, the necklackl 1 will correctly not be returned, since it is
not an unlabelled tuple.

: procedure uNecklace(j, p, u : integer)
;var i : integer
if 7 > nthen

return n mod p =20
else

tryall i = X[j — p]tomin(u+ 1,k — 1) do

if probe(j,1,p) then
X[j] <4
uNecklace(j + 1,if i = X[j — p] then p else j, max(i, u))
end if

end
end if
: function probe(j,i,p : integer) : boolean
X [j] <4
2if j =n Anmod (if i« = X[j — p|] then p else j) = 0 then
return A" Xg,....n,1,...,q— 1] > X[1,...,n]
. elseifj < nthen
return A2 X[— g+ 1.,] Ziex X[1,...,q]
. else
return false
:end if

COXNDUDWN L

e
oUurwWN PR

= e
0 ~

N =
o ©o

N
=

Algorithm 3: Search procedure for unlabelled necklaces

Consider Table 1, giving the numbers of various combinatafjects of lengtm
over3 colours: column 8 counts the unlabelled tuples (sequen@42Q2 in [29]); col-
umn 7 counts the necklaces (fewer than the unlabelled tigles> 7; sequence A1867);
column 6 counts the objects whemobe always returngrue; column 5 counts the
necklaces that are unlabelled tuples, that is the numbebjetts whemprobe always
returnstrue and the period condition is met; and column 2 counts the etiedneck-
laces (sequence A2076), that is the number of objects wharimy is actually done.
The difference between columns 5 and 7 (or 8) is the gain mbthso far for free by
Algorithm 3 over Algorithm 2 (or Algorithm 1), and the diffence between columns 5
and 6 is the leaf pruning obtained (in constant time!) by tegqal condition, but the
difference between columns 5 and 2 is the amount of leaf pguthiat leaf probing has
to do.

The least thingprobe(j, 7, p) should thus do is to make sure only unlabelled neck-
laces are enumerated. This is at the latest done when tryiagsign the last variable
(whenj = n) of the CSP: at that moment, the entire circular sequexide known,
soprobe must returntrue if X cannot be transformed (by position rotation and colour
renaming) into an object that has already been tried in thienenation. Since objects
are enumerated in lexicographic order (as an inheritedifeaif the two underlying
algorithms), this can be done by checking whether the miliemaming of every (non-
identity) rotation ofX is lexicographically larger than or equal #6. Computing the
minimal renamingY” of an n-tuple Y takes®(n) time, and can be merged into the
O(n)-time lexicographic comparison; at most- 1 such renamings and comparisons
are done, hence this probing takeén?) time at worst. Note that a successful probe

sequence probing sequencesequence
A2076: internal + leaf leaf only A1867|A124302:
n|u-necklaces: mod p = 0| leavesn mod p = 0| leavesnecklaces u-tuples
1 1 1 1 1 1 3 1
2 2 2 2 2 2 6 2
3 3 4 5 4 5 11 5
4 6 8 10 10 13 24 14
5 9 15 22 24 36 51 41
6 26 34 48 66 97 13 122
7 53 80 121 172 268 31 365
8 146 196 293 474 732 83 1094
9 369 490 744 1289 2017 219 3281
10 1002 1267 1920 3560 5552 593 9842
11 2685 3357 5104 9820 15371 1610 29525
12 7434 8996 13635 27327 42624 4436 88574
13 20441 24403 3703Q 76108118731 122643 265721
14 57046 66886101354 213106331664 341802 797162
15 159451 184770279895 598246929883 9566353 2391485

Table 1. Numbers of objects of length over3 colours

incurs the highest cost. The algorithmic details are sttégward, so we just write a
specification into line 16. Lazy evaluation of the conjuantshould be made, returning
false as soon as one conjunct is false. Also, experiments havalesl/éhat failure is
detected earlier on average if the starting positions ofdkegtions recede from right to
left acrossX.

An improvement of this leaf probing comes from observing Wieppens when the
lowest value, namelyX [j — p], is tried for X [j] whenj = n: the recursive call (line 9)
then isulNecklace(n + 1, p, w) and everything hinges on whetheinod p = 0 or not.
But the latter check can already be ddiedoreprobing (inO(n?) time, recall) whether
X|[j —p] actually is a suitable value fox [n]. For any other tried value> X [j — p] for
X |[n], the recursive call (line 9) isNecklace(n + 1,n, max(i,u)) and we then know
thatn mod n = 0. Hence the test in line 15, as well as lines 19 and 20.

Internal Probing. The leaf probing discussed so far assumes that line 18 iageg!
by return true. This is unsatisfactory, as no pruning (other than via jihend u
parameters) takes place at the internal nodes of the seeeglsd that many more leaves
are generated than necessary (recall the difference betodemns 5 and 2 in Table 1).
In the spirit of constraint programming, we ought to perfarmare pruning when <

n. The idea is the same as for leaves (where n) except that only a strict prefix
X|[1,...,7] of the circular sequenc& is known, so that we can only check whether
the minimal renaming of every suffix oX[1,.. ., j] is lexicographically larger than
or equal toX[l,..., j]. For example, when searching for a ternéspead unlabelled
necklace, assume we have already constructed the preane6kD andprobe(4, 2, 4)

is now called to check whether at positign= 4 < 6 = n the variableX[4] can be

assigned the (so far unused) value 2 = v + 1 = k — 1 under perioh = 4, so the
following comparisons must be made:

2= 0>1ex 0 (4)
02= 01>, 01 (3)
102 = 012 > 010 (2)
0102 = 0102 >}ex 0102 (1)

The first and last comparisons will always succeed and canriigtenl. Exactly; — 2
such renamings and comparisons of tuples of leayth— 1) are thus to be done, hence
this internal probing also take&3(n?) time at worst, sincg = O(n). The algorithmic
details are straightforward, so we just write a specificatitto line 18. Again, lazy
evaluation of the conjunction should be made. Also, expenith have revealed that
failure is detected earlier on average if the starting pmsitof the suffixes recede from
right to left acrossX|1,...,], as in the top-down order of the sample comparisons
above.

To assess the impact of internal probing, consider agaife Talcolumn 4 counts
the objects when internal probing is on but leaf probing fs(ofuch lower than in
column 5); column 3 counts the objects when internal proksram, leaf probing is off,
and the period condition is met; and column 2 counts the etild necklaces, that is
the number of objects when internal probing and leaf prolairegon. The difference
between columns 3 and 2 is the amount of pruning that leafipgobow has to do,
and the difference between columns 4 and 3 is the leaf pruwtitajned by the period
condition. Note that the constant-time period test on theds prunes much more than
the subsequent quadratic-time leaf probing has to do.

Incremental Internal Probing. Empirically, the internal probing just proposed is on
average much more efficient than {&n?) worst time suggests, due to the nature of
unlabelled necklaces. We now optimise this internal prghio an algorithm taking
O(n) time at worst, leading to an enumeration that is systemnltitsster by acon-
stantfactor (namelyl 7% faster in our implementation). The idea is to trade time for
space and make the comparisons incremental. Continuingreuious example, hav-
ing so far constructed the pre-neckla®?2 of a ternary6-bead unlabelled necklace,
probe(5,1,5) is eventually called at the next iteration to check whethepasition

j =5 < 6 = nthe variableX[5] can be assigned the value- 1 under perioth = 5,

so the following comparisons must be made:

1= 020 (3
21 = 01 >1ex 01 (41)
021 = 012 >0 010 (3')
1021 = 0120 >0 0102 (2)
01021 = 01021 >0 01021 (1)

Note that the last four comparisons correspond to the ones giarlier, that the consid-
ered suffixes ofX[1, ..., j] got longer at theend by the new (boldfaced) value= 1,
and that the minimal renamings of the (non-boldfaced) pesfremained theame In

other words, only thecalar comparisons of the (boldfacetyst values matter, since
the lexicographic>., comparisons of the (non-boldfaced) prefixes have already be
made until the previous iteration. If the lexicographic garison until the previous it-
eration is=.x, as in formulag1), (3), and(4), then the scalar comparison operator is
> at the current iteration; if the lexicographic comparisanilithe previous iteration

IS >1ex, @s in formula(2), thenno scalar comparison need be made at the current it-
eration. We incrementally maintain a globalk n matrix m, wherem(i, j| gives the
minimal renaming of value if the renaming starts at positign We also incrementally
maintain locally to every search-tree noderatuplec of Booleans, where[j] = true

if the lexicographic comparison from positigruntil the previous iteration is-,, that

is if the comparison frony is to continue at the current iteration. For example, since
the scalar comparison in formu(8’) gives2 > 0, we setc[3] < false for the next
iteration. Using these incremental data structures, tteerial probing in line 18 can be
replaced by the following specification

q=j—1
return /\ (if c[q] then m[i,q] > X[j + 1 — ¢] else true)
2

which can be implemented as in Algorithm 4. At mgst2 scalar comparisons are to be
done, hence this incremental internal probing takés) time at worst, sincg = O(n)
and the incremental maintenancerfi,1...j] (in lines 1 to 13) and[1...j] (in
lines 14 to 23) take®(n) time at worst. Lazy evaluation of the conjunction should be
made. Also, experiments have revealed that failure is terlezarlier on average if the
starting positions of the suffixes recede from right to leftossX |1, ..., j], as in the
top-down order of the sample comparisons above.

Discussion. An analysis of the amortised time complexity of Algorithms3keyond
the scope of this paper. Its correctness follows from linecdpturing the essence of
unlabelled necklaces and the correctness of Algorithmsi2an

Theorem 1. Algorithm 3 correctly enumerates unlabelled necklaces.

Proof. First assume thatrobe always returngrue. We prove that Algorithm 3 then
returns the intersection of the sets of necklaces and uigabeples. C) Algorithm 3
returns a subset of the set of unlabelled tuples, becausd ldoes not systematically
returntrue (unlike line 4 of Algorithm 1) and because the lowest valudéotried

in line 6 is at least (instead of exactly, as in line 6 of Alglom 1) the lowest available
value. Similarly, Algorithm 3 returns a subset of the setedkiaces, because the largest
value to be tried in line 6 is at most (instead of exactly, diie 6 of Algorithm 2) the
largest available value. Hence Algorithm 3 returns a sub#te intersection of the
sets of necklaces and unlabelled tuples) Conversely, assume a tuple is returned by
both Algorithm 1 and Algorithm 2. This means that for eg€fy] there was a valugin
common in thery all statement in line 6 of Algorithm 1 and Algorithm 2, and that th
tuple satisfies the test in line 4 of Algorithm 2. Hence thdewpill also be returned by
Algorithm 3, because it passes the test in its line 4 and thresalues for eacX[j]

will be tried in thetry all statement at its line 6.

mli, j] < 0;

al0...k — 1] « false;

s—0;,q—J5—-1,

: while ¢ > 1 A X[q] # 7 do {scan backwards iX until previous occurrence af if any}
{Invariant: V¢ € D :a[f] =4 € X[g+1...5—1]}

{Invariant: s is the number of values distinct froiin X[¢+1...5 — 1]}

if a[X[q]] then
mli,q] — s
else
10: s« s+1; mli,q] — s; a[X[q]] < true
11: endif;

12; qg«—q—1

13: end while; {Assertion: m[i, 1. .. j] is correctly initialised
14: ¢[j] < true;

15: probe + true;

16: for ¢ = j — 1 downto 2 do

17: if m[i,q] > X[j + 1 — ¢] then

18: clq] < false

19: elseifc[q] Amli,q) < X[j +1—¢] then
20: probe < false;

21: break

22: endif

23: end,

24: return probe

Algorithm 4: Incremental internal probing for searching unlabelledkieaes

Now assume there is only leaf probing (i.e., only line 18 & phobe function is
replaced byreturn true). By Theorem 2 in Section 3.3 below, line 16 guarantees that
only unlabelled necklaces are enumerated among the tdyaeare both necklaces and
unlabelled necklaces.

Finally, assume there is also probing at internal nodes.ifiteenal probing will
then only returrtrue on branches of the search tree that lead to an unlabelledaceck
that has not been seen before. ad

To assess the runtime impact of internal probing, considblel2: columns 4 and 5
give the enumeration times (in seconds) if there is only peabing and also internal
probing, respectively. (All experiments in this paper wpeformed under SICStus
Prolog v4.0.3 on a 2.53 GHz Pentium 4 machine with 512 MB nugrhiinux 2.6.24-
19)

Note that we can also wrap theobe(j, i, p) test around lines 7 and 8 of Algo-
rithm 1 only, or of Algorithm 2 only, instead of their “integstion” (Algorithm 3), and
still correctly enumerate unlabelled necklaces, sincepghibing currently exploits nei-
ther the semantics of its parametenor the fact that it is given a pre-necklace that is
an unlabelled tuple. However, the number of unlabelledesiplways exceeds the num-
ber of necklaces when gets sufficiently large (namely > 7 for objects over three
colours: recall Table 1), so that, in general, it is prefégab start from the intersection
of necklaces and unlabelled tuples, since a lot of prunitiges obtained for free.

necklaces unlabelled necklaces
Algorithm 2|Constraints (3Algorithm 3|Algorithm 3|Constraints (1) and (4)
n time time| time (leaf) time (all) time] fails
1 0.00 0.00 0.00 0.00 0.0 0
2 0.00 0.00 0.00 0.00 0.0 0
3 0.00 0.00 0.00 0.00 0.0 0
4 0.00 0.00 0.00 0.00 0.0 2
5 0.00 0.00 0.00 0.00 0.0 6
6 0.00 0.01 0.00 0.00 0.0 9
7 0.01 0.01 0.00 0.00 0.0 29
8 0.02 0.02 0.02 0.02 0.1 69
9 0.05 0.04 0.06 0.05 04 181
10 0.13 0.11 0.18 014 1.1 469
11 0.31 0.25 0.58 0.46 3.7 1240
12 0.90 0.83 1.75 142 115 3298
13 2.40 2.34 5.64 453 34.8 8919
14 6.87 6.24 16.67 13.61107.8 24329
15 18.60 17.23 52.42 42.36328.4 66869

Table 2. Enumeration times (in seconds) of objects of lengtbver 3 colours via dynamic &
static (constraint-based) symmetry breaking

3 Static Symmetry Breaking

Consider a CSPX, D, C) whereX is a sequence of > 2 variables and is a set of
k > 1 domain values. For simplicity of notation, we assume fhat {0,...,k — 1};
this also has the advantage that the order is obvious whewevequireD to be totally
ordered.

3.1 Unlabelled Tuples

To break full value symmetry, it suffices to order the posisi@f the first occurrences,
if any, of each value. LettingirstPos(i, X) denote the first position, if any, of value
0 < ¢ < kin X under the current assignment, amnd- 1 + i otherwise, the following
k — 1 constraints break full value symmetry [18]:

firstPos(0, X) < firstPos(1,X) < --- < firstPos(k — 1, X)

where eactfirstPos(i, X) < firstPos(j, X) is encoded in [18] by the global constraint
intValuePrecede(i, j, X)), for which domain consistency can be achieved. A more ef-
ficient filtering algorithm can be designed for the entire juantion of these global
constraints, giving the following global constraint [18(Ralled precedence in [32]):

intValuePrecede Chain(D, X) (1)

meaning that the order of any two values in the value sequéniserespected in the
decision variable sequengg Unlike the original constraint, in the context of this pape

10

X[z'] <U[] {U[i+1] = max(U[i], X[i] + 1)}

Fig. 1. DFA checker forint Value Precede Chain(D, X), where decision variablg[i] € DU{k}
is the smallest unused value after lookingXipl . . . ¢ — 1]

we have that the value sequence to be respected entire totally ordered domai,
so that we need not disregard any values ndbjrgeneralising the following observa-
tions to a value sequence strictly includediris straightforward.

A ground checker for this global constraint can be specifiedha deterministic
finite automaton (DFA) of Figure 1, so that we get a filteringoaithm using the
automaton global constraint [1]. The idea is to create a sequdioaf n + 1 addi-
tional decision variables i U {k}, so thatU[i] is the smallest unused value after
looking upX|[1...7 — 1], with U[1] = 0. As long asX[i] < U[i], for ¢ running from
1 to n, we stay in the start state which is also an accepting state. Xf[;] > U]
for somei, then we move to an (undrawn) failure state and stay therarigrrela-
tionship betweenX[i] and U[:] until ¢ = n. The constraint in curly braceg.(. })
defineslU across the transitions. (Note that the present version@8gis Prolog does
not support counter arrays fautomaton, so thatU cannot be defined explicitly in the
transitions as depicted here, but only in conjunction wign X [;] < U[:] constraints.)
Since the constraint hypergraph corresponding to this BFAot Berge-acyclic (be-
cause eaclX [i] < U[i] constraint shares more than one variable with the correspon
ing U[i + 1] = max(U[i], X[i] + 1) constraint), we are not guaranteed that domain
consistency is achieved, but we can enforce domain consisten the conjunction of
these two constraints, using either théle constraint (yielding a DFA that directly
corresponds to the encoding in [32]) or the problem-spebifié checker with| D| + 1
states in the February 2008 on-line edition of @lebal Constraint Cataloguf?].

3.2 Necklaces

To break rotation variable symmetry, we apply the so-caléedleaderscheme [6],
which says that any variant of a wanted solution under allsgymametries of the con-
sidered symmetry group must be lexicographically largantbr equal to (a flattening
into a linear sequence of) that solution. For necklaces, ittéans that all the (non-
identity) rotations of the sequencéé must be lexicographically larger than or equal to
X itself [32]:

/\X[q,...m,l,...,q—l]ZleXX[l,...,n] 2
Thesen — 1 constraints over sequencesasfactlyn elements have been logically min-

imised in [15] to the followingn — 1 constraints over sequences aif mostn — 1
elements:

/\ X[g,-.,(2¢ = 3) mod n + 1] Z1ex X[1,...,q— 1] (3)
q=2

11

Reading from right to left, this constrains the figst 1 elements ofX to be lexicograph-
ically smaller than or equal to the cyclically next- 1 elements ofX, for2 < ¢ < n.
The DFA for the>)., constraintin [3, 1, 2] is historically the first automatoarft which
a (domain consistent) propagator was derived.

Note however that up ta decision variables are shared here between the two argu-
ments of each>., constraint, so that the constraint hypergraph corresponidi this
DFA is not Berge acyclic here: even though it is known how teiee domain consis-
tency in the presence of such variable aliasing [3], thi®tsmplemented in the built-in
lex_chain constraint of the current version of SICStus Prolog.

Generalising this tpartial rotational variable interchangeability, whekeis parti-
tioned into subsets with rotational interchangeabilgystraightforward.

Future work includes designing a more efficient filteringosidhm for the entire
conjunction (3) of global lexicographic constraints, giyia new global constraint,
which we propose to calkzAllRot(X).

3.3 Unlabelled Necklaces

The conjunction of the constraints (1) and (3) accepts aklaees that are unlabelled
tuples (just like Algorithm 3 without probing), and theredcaccepts a superset of the
unlabelled necklaces [32]. For example, the binary neekldd is also an unlabelled
tuple, but not an unlabelled necklace, because it can beftrianed (by rotation and
minimal renaming) into the unlabelled necklaiH .

In fact, the rotation variable symmetry and full value synmypean be broken by
the conjunction of constraint (1) with the probing testame |16 of Algorithm 3 seen as
constraints, ensuring that the minimal renaming of eveon{identity) rotation of the
sequenceX is lexicographically larger than or equal ¥0itself:

/\X[q,..‘,n,l,...,qfl]Zlch[l,...,n] 4)
q=2

Note that (4) by itself does not suffice, as it accepts theatgrnecklac#02, which is
not unlabelled: we can only drop (1) if we relax the lower bdwm ¢ in (4) from 2
to 1. However, ory = 1, we have that (4) is logically equivalent to (1), becauseg4)
then violated if and only ifX[i] < X|[i] at some positior, which means tha¥ [i] >
max(X|[1...i—1])+1 and hence that (1) is also violated,ss not an unlabelled tuple
because the value df [i] occurs inX before the valueX[i| — 1. Domain consistency
of (4) ong = 1 is cheaper to achieve on the simpler formulation (1), arsltihs been
confirmed by experiments. The difference of (4) with (2) aBilies in the minimal
renaming of the left-hand side. The logic minimisation of if&o (3) does not apply
to (4), for the same reason, but such a logic minimisationkhioe attempted.

We now establish the correctness and completeness of ttoelimed symmetry-
breaking constraints, using (4) fere {1, ...,n} for simplicity of argument. Since the
proof is independent of the symmetry group on the decisioiabkes (the cyclic group
here), we state the result in generalised form:

12

Theorem 2. Given a CSR X, D, C)with full symmetry on the valud3 and a symme-
try group G acting on the indices of the variables X, the constraints:

N\ X[x(1),....7(n)] Ziex X[1,....7] (5)
el

break all variable and value symmetry.

Proof. The proof s in two stages: first, we show that given an assegmi[1, ..., n| =
[d1,...,d,] there exists a symmetric assignmeémtd. 1)), ...,o(d~(,))] that satis-
fies (5) for somer in G and some bijection on valuesin D — D; second, we show
that if two symmetric assignments satisfy (5) then they greak

First, givenX[1,...,n] = [di, ..., d,], consider all permutationd 1), . . ., dx(n)],
for all 7 € G, and then further consider the minimal renamifigs, . . ., dx(n)] Of
these permutations: the lexicographically smallest etgnmethis list satisfies (5). Sec-
ond, since the lexicographic order is a total order thereusigue lexicographically
smallest element, hence if two assignments that are synwaltrequivalent both sat-
isfy (5) then they must be equal. O

The lex-leader scheme for breaking variable symmetry [& adapted in [20] to a
particular case of value symmetry. This was later genelis arbitrary value symme-
try groups in [21, 31]. Further, in [31], genLexLeader constraint was proposed that
breaks arbitrary symmetries acting on both variables ahgegaimultaneously. Apply-
ing this in our case would requité&’| - | D|! such constraints to guarantee full symmetry
breaking, whereas in (5) on|y7| constraints need to be posted.

A ground checker for the requiretl > B global constraint, callegegLexzMin(A, B),
can be specified as the DFA of Figure 2, so that we get a filtexiggrithm using the
automaton global constraint [1]. The idea is to augment the classidah Bor >, [3,

1, 2] with a sequenc¥ of n + 1 additional decision variables iR U {k}, so thatl/]

is the smallest unused value after lookingXifl . . .7 — 1], with U[1] = 0, as well as
with a minimal-renaming bijectiod/ on D (encoded by amilDifferent constraint).
As long asM|[A[i]] = BJi], for i running from1 to n, we stay in the start state
which is also an accepting state.Mf[A[i]] > BJi] for somei, then we move to state
t, which is an accepting state, and stay there for any rekstiprbetween/[A[i]] and
Bl[i] until i = n. If M[A[]] < B[i] for somez, then we move to an (undrawn) failure
state and stay there for any relationship betw@éii[:i]] and B[i] until i = n. The
constraint in curly braces{¢}) definesU and M across all these transitions. Since
the constraint hypergraph corresponding to this DFA is netgB-acyclic (because
eachM[A[i]] < UlJi] constraint shares more than one variable with the correspon
ing Ui + 1] = max(U[i], X[i] + 1) constraint, and because the entlteis shared for
everyi), we are not guaranteed that domain consistency is achieved

Note also that alh decision variables are shared here between the two argesment
of eachgeqLexMin constraint, so that the constraint hypergraph correspgndi this
DFA is also not Berge acyclic for this variable aliasing k@as

In fact, Algorithm 4 for internal probing while searchingrfonlabelled necklaces
is a starting point for a custom filtering algorithm for theyLexMin constraint.

13

M[A[:]] = Bli] {¢} MI[A[i]] <,=,> B[i] {¢}

@ M[A[)] > Bli] {¢} @

wherep = M[A[i]] < U[i] & allDifferent(M) & Ui + 1] = max(U[i], M[A[:]] + 1)

Fig. 2. DFA checker forA >.x B, denoted bygeqLexMin(A, B), where decision variable
Uli] € D U {k} is the smallest unused value after looking &p1...7 — 1], and decision
variableM[A[i]] € D representsi[i], so that) is a bijection onD

Future work includes designing a more efficient filteringoaithm for the entire
conjunction (4) ofgeqLexMin global constraints, giving a new global constraint, which
we propose to callexAlIMinRot(X).

3.4 Discussion

To assess the runtimes (in seconds) of dynamic and statimeyimybreaking, consider
Table 2 again. Unmentioned numbers of backtracks are zero.

For necklaces, columns 2 and 3 reveal an insignificant adgenof the lexico-
graphic constraints (3), under less than domain consigtewer the constant-amortised-
time Algorithm 2.

For unlabelled necklaces, the last three columns revealga hdvantage of Al-
gorithm 3 over constraints (1) and (4). Interestingly, thetimes are about the same
whether we use domain-consistent propagators for (1) or not

However, these runtimes were obtained in the absence ofrabjem-specific con-
straints, and static symmetry breaking usually perforntebéhan dynamic symmetry
breaking in the presence of problem-specific constrainesaddress this issue in the
next section.

4 Experiments

We now experimentally compare the proposed dynamic anid stahmetry-breaking
methods on real-life scheduling problems containing atafeiled) necklace as a com-
binatorial sub-structure.

4.1 Example: Rotating Schedules

Many industries and services need to function around thekclBotating schedules,
such as the one in Figure 3(a) (a real-life example taken fiot}) are a popular way of
guaranteeing a maximum of equity to the involved work tedmsur example, there

14

Mon Tue Wed Thu Fri Sat Sun \Mon Tue Wed Thu Fri Sat Sun

1l a2 o = d d d d 1l d d d d x x e

2l x e e e x x 2l e e x x d d d

3l d d d x x e e 3l x =z e e e e =x

4 e e = T n n n 4 r n n n n n n

5 n n n n x x =z 55n = = x = x =x
(a) Classical rotating schedule (b) Lex-minimal rotation thereof

Fig. 3. A five-week rotating schedule with uniform workload, and its lexicograghianinimal
rotation

are day {), evening ¢), and night ¢) shifts of work, as well as days oft}. Each team
works maximum one shift per day. The scheduling horizon kasany weeks as there
are teams. In the first week, teans assigned to the schedule in rewFor any next
week, each team moves down to the next row, while the teameolagih row moves up
to the first row. Note how this gives almost full equity to tearns, except, for instance,
that teaml does not enjoy the six consecutive days off that the othenddaave, but
rather three consecutive days off at the beginning of wiesshd another three at the end
of week5. We here assume that the daily workload is uniform. In oungXa, each
day has exactly one team on-duty for each work shift, and dnémo teams entirely
off-duty; assuming the work shifts averagie, each employee will work- 3-8 = 168h
over the five-week-cycle, &3.6h per week. Daily workload can be enforced by global
cardinality (gec) constraints [22] on the columns. Further, any number o&eontive
workdays must be between two and seven, and any change inshiftican only oc-
cur after two to seven days off. This can be enforcedshytch constraints [19] on
the table flattened row-wise into a sequence. (A filteringadlgm for thestretch con-
straint, which is not a built-in of SICStus Prolog, was auatically obtained from a
DFA model of a constraint checker using the (built-in)tomaton global constraint
[1].) We assume that soft constraints and cost functionsh s full weekends off as
numerous and well-spaced as possible, are enforced by irsateetion among sched-
ules satisfying the hard constraints. In our example, taezdwo full weekends off, in
the optimally spaced rowzand5.

4.2 Necklaces

Under the given assumption (uniform workload) and constsaycc andstretch), any
rotating schedule has the symmetries of necklaces, whenemeitflattened row-wise
into a sequence. For example, the schedule in Figure 3¢ iexicographically small-
est element of the equivalence class to which the schedligure 3(a) belongs, as-
suming the values are ordered alphabetically(e < n < z): the former is obtained
from the latter by a cyclic left-shift by three positions. tddhat the cyclice stretch
in rows 5 and1 is now entirely on rows, and that the two optimally spaced ‘week-
end’ days are now Wednesday and Thursday. In other wordeg# dot matter from
what weekday one names the columns, as one can obtain #itersehedules by ro-
tating the circular sequence: 7 = 35 schedules, including the one of Figure 3(a), are
summarised by the necklace in Figure 3(b).

15

uniqug Algorithm 2 | Constraints (3] no symmetry breaking
instance solutiojs time fails{ time failjsolutions time fails
1d, 1le,1n, 1z 14 0.10 2483 0.04 10 114 0.17 391
1d, 1le,1n,2x 2274 6.66 228823 3.52 9140 17142 18.68 43448
2d, le, 1n,2x 4115 47.71 959970 25.01 69704 51014 143.80 419746
2d, 2e, 1n, 2z 495(0194.24 292284A36.56 40866P 64556 697.68 2314796
2d, 2e, 2n, 2z 3444587.19 752656/49.86 1587888 38484 2315.36 8150876

Table 3. Performance comparison oval solutions on necklace schedules

In addition to the classical instances in Figure 3, here thghial, 1¢, 1n, 22, we ran
experiments over other instances, namely those ¢verl0 weeks where the weekly
workload is reasonablg$h to 42h) and there are fewer tha®0000 unigue solutions.
For example, instanc&d, 2¢, 1n, 22 has the uniform daily workload ¢f teams on the
day shift,2 teams on the evening shift,team on the night shift, ariteams off-duty;
assuming the work shifts averagle, each employee will work - 5 - 8 = 280h over the
seven-week-cycle, oiOh per week.

Table 3 gives the runtimes (in seconds) and numbers of lzaxkdr(fails) overmll
solutions. On average, when breaking these symmetridésadhgtthe default variable
ordering (trying the leftmost variable) is better than fiigt (trying the leftmost vari-
able with the smallest domain) and most-constrained @ritie leftmost variable with
the smallest domain that has the most constraints suspgndédthe default bottom-
up value ordering, hence the runtimes for static symmetegling are given for the de-
fault orderings. Static symmetry-breaking for necklagethe presence of the problem-
specific constraints, is now a lot faster than dynamic symyvateaking.

The reason why we have compared the performanceadveolutions is as follows.
The performance to thiérst solution is approximately the same on all these instances
(about0.01 seconds), whether the symmetries are broken dynamic#dlycally, or
not at all. Hence, for this problem, symmetry breaking is jostified if one is only
interested in the first solution, even if symmetric non-tohs are also eliminated in
the search for it. However, in general, the time ratialicsolutions between symmetry
breaking and no symmetry breaking is usually a good indiaaftthat time ratio to the
first optimalsolution, as branch-and-bound essentially iterates oneeasingly better
solutions in order to pick the best.

To illustrate this claim, Table 4 gives the runtimes and naralof backtracks to
the first optimalsolution of a sample cost function, namely the maximum nunalbe
full weekends off (considering a weekend to be the sixth @versth days of the week,
to avoid having a more complex cost function when breakinmgragtries). Indeed, the
performance ratios are quite similar to those observed bieTa, namely a speed-up
by a factor of2 to 5 when breaking symmetries, dynamically or statically. Nibizt
dynamic symmetry breaking is fastest on the last and lamgstince.

16

maximum | Algorithm 2 JConstraints (3no symmetry breaking

instance weekends off time fails time failg time fails
1d,le,1n, 1z 1 0.06 438 0.02 61 0.08 241
1d, le, 1n, 2z 2 1.40 17002 1.06 4407 3.79 17183
2d, le, 1n, 2x 2 10.95 140810 8.10 29013 35.36 150980
2d, 2e, 1n, 2x 2 48.35 624706 43.97 152178.79.75 768309
2d, 2e, 2n, 2x 2 139.58 183375847.88 50584(665.96 2470481

Table 4.Performance comparison to tfiest optimalsolution (with the maximum number of full
weekends off) on necklace schedules

4.3 Partially Unlabelled Necklaces

Under the uniform workload assumptiocsgmerotating schedules even have many of
the symmetries otinlabellednecklaces. In our instances fdr 5, and8 weeks, the
constraints do not distinguish between the;, n work shifts, so that those values are
interchangeable.

To break suclhpartial value symmetry dynamically, recalling thatis the largest
value heref — 1 in general), it here suffices to replace line 6 of Algorithmy3 b

tryalli € {X[j—p|,...,min(u+ 1,k —2)} U{k— 1}

and to make the minimal renamingsin lines 16 and 18 respect the subsB{sC D
of interchangeable values; in our caBe= {d,e,n} U {z}. We denote the resulting
search procedure by Algorithm.3

To break this partial value symmetry statically, @ Value Precede Chain(Dy, X)
constraint for each subsél, hinders propagation: a counterexample for partially un-
labelled tuples (without the rotation variable symmetiy)given in [32, Section 5].
However, in our case, we conjecture that tihieessuffice, asD is partitioned into only
two blocks, one of which is a singleton, hence:

intValuePrecedeChain({d,e,n}, X) (6)

Together with an adaptation, denoted)(4f the constraints (4) wherg respects the
Dy, we have a static symmetry-breaking method for such plrtialabelled necklace
schedules.

Table 5 gives the runtimes (in seconds) and numbers of lzakgr(fails) overll
solutions. Static symmetry breaking, in the presence gbtbblem-specific constraints,
is still a lot slower than dynamic symmetry breaking, andheslewer than no symmetry
breaking (the rightmost three columns are copied from Talite the reader’s conve-
nience). Dynamic symmetry breaking for partially unlabdlhecklaces (Algorithm’'g
while faster than no symmetry breaking, is however slowethenlast two, larger in-
stances than dynamic symmetry breaking for necklaces (ammpith Algorithm 2 in
Table 3).

Table 6 gives the runtimes and numbers of backtracks thrdt@ptimalsolution of
a sample cost function, namely the maximum number of fullkeeds off. Again, and

17

unique Algorithm 3 |Constraints (6) and (J no symmetry breaking
instance solutiorjs time fall time failgsolutions time fails
1d,1e,1n, 1z % 0.09 35(% 3.13 4} 114 0.17 391

1d,1e,1n, 2z 402 12.19 35969 194.94 2064 17142 18.68 43448
2d, 2e, 2n, 2z 274644.47 13808729246.82 313587 38484 2315.36 8150876

Table 5. Performance comparison ovall solutions on partially unlabelled necklace schedules

maximum (¥ Algorithm 3’4Constraints (6) and (jno symmetry breaking

instance weekends off time fail time fails time fails
1d, le,1n, 1z 1 0.04 12 1.30 24 0.08 241
1d,1e,1n, 2z 2 0.76 3301 29.28 1078 3.79 17183
2d, 2e, 2n, 2x 2 147.66 35013%012.51 9193/565.96 2470481

Table 6.Performance comparison to tfiest optimalsolution (with the maximum number of full
weekends off) on partially unlabelled necklace schedules

ignoring the poor performance of static symmetry breakihg,performance ratios are
quite similar to those observed in Table 5, namely a spedupfactor of2 to 5 when
breaking symmetries dynamically rather than not at all (ilgatmost two columns
are copied from Table 4 for the reader’'s convenience). Dyn@aymmetry breaking
for partially unlabelled necklaces (Algorithm)3s however slower on the last, largest
instance than dynamic symmetry breaking for necklaces jpeoenwith Algorithm 2 in
Table 4).

5 Conclusions

By bringing together the fields of combinatorial enumemat@md constraint program-
ming, we have extended existing results for dynamically stadically breaking the
rotation variable symmetry of necklaces into new symmétsaking methods dealing
also with the additional full value symmetry of unlabellegcklaces. On an example,
we have also shown how to specialise these methods whenltreesyanmetry of un-
labelled necklaces is only partial. In the absence of prokdpecific constraints, the
dynamic symmetry-breaking methods outperform the statespnarrowly for neck-
laces but largely for unlabelled necklaces. On a real-tifeesluling problem we have
shown that, in the presence of problem-specific constraimsstatic method becomes
faster for necklaces, but not for partially unlabelled nacks.

Most related work was discussed on-the-fly. Furthermore,siould be aware of
existing enumeration algorithms for special cases, sutheasonstant-amortised-time
algorithms for unlabelled binary necklaces [4], or for necks with fixed content [27]
or forbidden substrings [25]. For instance, under the gagsumption (uniform work-
load) and constraints, rotating schedules are neckladésfiweéd content, so the algo-
rithm of [27] should be tried instead of Algorithm 2.

Note the difference between olar:AllRot (X) global constraint and théiperm (M)
global constraint [12] on am x n matrix M of variables, which enforces that the first

18

row of M is lexicographically smaller than or equal to all permwtas of all other rows

of M. The allperm(M) constraint was introduced to aid in the incomplete symme-
try breaking of thelez? (M) global constraint [8], which imposes lexicographic orders
on the rows and columns of a matri{ of variables where all rows and all columns
are assumed interchangeable. Sincef the n! permutations of any rowt/; of M

are rotations, it would be interesting to compare, in thipéetask, the performance
of allperm(M) with the performance of the conjunctidewAllRot(My, M1) A ... A
lexAllRot(My, M,,—1), assuming a suitable binary variantiefAllRot.

Future work includes the quest for a constant-amortise@-tenumeration algo-
rithm for unlabelledk-ary necklaces. The fact that all necklaces can be enunderate
faster than all unlabelled necklaces (see Table 2 and caMjadnles 3 and 5) indicates
that such an algorithm might exist.

Also, the simultaneous consideration reflectionsymmetries and rotation sym-
metries gives rise to the dihedral symmetry group on thecesland to combinatorial
objects known as (unlabelledyacelets Logically minimised symmetry-breaking con-
straints for this group have been identified [15], but effitienumeration algorithms
only exist so far for distinguishable values [26].

Furthermore, rotation symmetries onlti-dimensional matrices of variables should
be considered.

Finally, since the generator functions for (unlabelled)kiaces are known [13], we
can add a test to our search procedures that decides in sotista whether to continue
enumerating or not, thereby accelerating any proofs ohwgity, for instance.

Acknowledgements.

We were supported by grant IG2001-67 of the Swedish Foumdtr International
Cooperation in Research and Higher Education (STINT), andrant 70644501 of
the Swedish Research Council (VR). We thank N. BeldiceaniCaflsson, J. Sawada,
V. Vajnovszki, and T. Walsh for discussions, as well as thevigilers of theOn-Line
Encyclopedia of Integer Sequend8] and theCombinatorial Object Serve4] for
invaluable research tools.

References

1. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithnasnf constraint
checkers. In M. Wallace, editdProceedings of CP’04volume 3258 oL NCS pages 107—
122. Springer-Verlag, 2004.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constcatiaiog. Technical Re-
port T2005:08, Swedish Institute of Computer Science, November. 2D§Bamic on-line
version atttp://www.emn.fr/x-info/sdemasse/gccat/ .

3. M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordeongtcaint. Technical
Report T2002:17, Swedish Institute of Computer Science, October. 2002

4. K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Miers. Egsithms to generate neck-
laces, unlabeled necklaces, and irreducible polynomials@G¥&2). Journal of Algorithms
37(2):267-282, 2000. Short versionfmoceedings of SODA'00

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. W.Y. C. ChenandJ. D. Louck. Necklaces, MSS sequences, BiAdsBquencesAdvances
in Applied Mathematicsl8(1):18—-32, January 1997.

. J. M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetrgdking predicates for search
problems. In L. C. Aiello, J. Doyle, and S. C. Shapiro, edit®rsceedings of KR'9fages
148-159. Morgan Kaufmann, 1996.

. M. C. Er. A fast algorithm for generating set partitioi$ie Computer JournaB1(3):283—
284, 1988.

. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearsamg T. Walsh. Breaking
row and column symmetries in matrix models. In P. Van Hentenryck, eéitoceedings of
CP’02, volume 2470 oLNCS pages 462-476. Springer-Verlag, 2002.

. P. Flener and J. Pearson. Solving necklace constraint problemdl. Ghallab, editor,

Proceedings of ECAI'0O8ages 520-524. IOS Press, 2008.

P. Flener, J. Pearson, M. Sellmann, and P. Van Hentenryck. &tatidynamic structural

symmetry breaking. In F. Benhamou, editeroceedings of CP’08s/olume 4204 oLNCS

pages 695-699. Springer-Verlag, 2006.

P. Flener, J. Pearson, M. Sellmann, P. Van Hentenryck, arii[ghen. Dynamic structural

symmetry breaking for constraint satisfaction probler@snstraints forthcoming. Super-

sedes Technical Report 2007-032 of Department of Informatichri@ogy, Uppsala Uni-

versity, Sweden, dittp://www.it.uu.se/research/reports/2007-032/ .

A. M. Frisch, C. Jefferson, and I. Miguel. Constraints for biegkmore row and column

symmetries. In F. Rossi, editdProceedings of CP’03volume 2833 oLNCS pages 318—

332. Springer-Verlag, 2003.

E. N. Gilbert and J. Riordan. Symmetry types of periodic seqeentieois Journal of

Mathematics5:657—-665, 1961.

S. W. Golomb, B. Gordon, and L. R. Welch. Comma-free codganadian Journal of

Mathematics10(5):202—-209, 1958.

A. Grayland, I. Miguel, and C. Roney-Dougal. Minimal orderingstoaints for some fam-

ilies of variable symmetries. In B. Benhamou, editeroceedings of SymCon’02007.

Available athttp://www.cmi.univ-mrs.fr/ ~ benhamou/symcon07/

D. Gusfield. Algorithms on Strings, Trees, and Sequenc€ambridge University Press,

1997.

G. Laporte. The art and science of designing rotating schedldemal of the Operational

Research Societ$0(10):1011-1017, October 1999.

Y. Law and J. Lee. Global constraints for integer and set valuzgesnce. In M. Wallace,

editor,Proceedings of CP’04/0lume 3258 of NCS pages 362—-376. Springer-Verlag, 2004.

G. Pesant. A filtering algorithm for the stretch constraint. In T. Walditoe Proceedings

of CP’01, volume 2239 oL NCS pages 183-195. Springer-Verlag, 2001.

K. E. Petrie and B. M. Smith. Symmetry breaking in graceful grapfechnical Report

APES-56-2003, APES Research Group, January 2003. Availaife Hittp://www.

dcs.st-and.ac.uk/ ~ apes/apesreports.html

J.-F. Puget. An efficient way of breaking value symmetriesPrbteedings of AAAI'06

AAAI Press, 2006.

J.-C. Rgin. Generalized arc-consistency for global cardinality constraif®rdoeedings of

AAAI'96, pages 209-215. AAAI Press, 1996.

C. M. Roney-Dougal, I. P. Gent, T. Kelsey, and S. Linton. Trdetapmmetry breaking

using restricted search trees. In R. L. damhras and L. Saitta, editof8roceedings of

ECAI'04, pages 211-215. IOS Press, 2004.

F. Ruskey. The combinatorial object serverhfip://theory.cs.uvic.ca/root.

html , 2008.

F. Ruskey and J. Sawada. Generating necklaces and strings mhithdn substrings. In

Proceedings of COCOON’Q@olume 1858 o NCS pages 330-339. Springer-Verlag, 2000.

20

26

27.

28.

29.

30.

31.

32.

J. Sawada. Generating bracelets in constant amortized 8mM@&/ Journal on Computing
31(1):259-268, 2001.

J. Sawada. A fast algorithm to generate necklaces with fixed coiitesretical Computer
Science301(1-3):477-489, 2003.

M. Sellmann and P. Van Hentenryck. Structural symmetry breakingProceedings of
IJCAI'05, pages 298-303. IJCAI, 2005.

N. J. A. Sloane. The on-line encyclopedia of integer sequenceshttgs//www.
research.att.com/ ~ njas/sequences/ , 2008.

P. Van Hentenryck, P. Flener, J. Pearson, ané\@nen. Tractable symmetry breaking for
CSPs with interchangeable values. Rroceedings of IJCAI'03pages 277—282. Morgan
Kaufmann, 2003.

T. Walsh. General symmetry breaking constraints. In F. Benhaeubtor,Proceedings of
CP’06, volume 4204 oL.NCS pages 650-664. Springer-Verlag, 2006.

T. Walsh. Symmetry breaking using value precedence. In G.lrevditor,Proceedings of
ECAI'06, pages 168-172. IOS Press, 2006.

21

