
Solving Necklace Constraint Problems⋆

Pierre Flener and Justin Pearson

Department of Information Technology
Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

Email: Firstname.Lastname@it.uu.se

Abstract. Some constraint problems have a combinatorial structure where the
constraints allow the sequence of variables to be rotated (necklaces), if not also
the domain values to be permuted (unlabelled necklaces), without getting an es-
sentially different solution. We bring together the fields of combinatorial enu-
meration, where efficient algorithms have been designed for (specialcases of)
some of these combinatorial objects, and constraint programming, where the req-
uisite symmetry breaking has at best been done statically so far. We design the
first search procedure and identify the first symmetry-breaking constraints for the
general case of unlabelled necklaces. Further, we compare dynamicand static
symmetry breaking on real-life scheduling problems featuring (unlabelled) neck-
laces.
Keywords: constraint problem, combinatorial structure, necklace, static and dy-
namic symmetry breaking, rotation schedule

1 Introduction

In combinatorics, anecklaceof n beads overk colours is the lexicographically smallest
element in an equivalence class of the set ofk-ary n-tuples under rotations; the un-
derlying symmetry group is the cyclic groupCn acting on the indices. For example,
the binary triple001 is the representative necklace of{001, 010, 100}. Combinatorial
objects are enumerated under some chosen total order. For example, under the lexico-
graphic order, the binary3-bead necklaces are000, 001, 011, and111. If the values
(colours) of a tuple are interchangeable, then we speak ofunlabelled tuples(symmetric
groupSk acting on the values) andunlabelled necklaces(product groupCn × Sk). For
example, under the lexicographic order, the unlabelled binary 3-tuples are000, 001,
010, and011, while the unlabelled binary3-bead necklaces are000 (representing the
necklaces000 and111) and001 (representing the necklaces001 and011). Note that the
set of unlabelled necklaces is a subset of the intersection of the sets of necklaces and
unlabelled tuples. For example,011 is both a necklace and an unlabelled tuple, but not
an unlabelled necklace. The generating functions for counting (unlabelled) necklaces
are given in [13], and the sequences of their counts (fork ≤ 6) can be found in [29].

A constraint satisfaction problem(CSP) is a triplet 〈X,D,C〉, whereX is a se-
quence ofn variables,D is a set ofk possible values for these variables and is called
their domain, andC is the set of constraints specifying which assignments of values to
the variables are solutions. If the constraint setC allows the variable sequenceX to be

⋆ This paper revises (in Section 4.3) and extends an earlier version published as [9].

rotated, then a necklace is a combinatorial sub-structure of the CSP and we say that the
CSP hasrotation variable symmetry. If the constraint setC has a domainD containing
interchangeable elements, then we say that the CSP hasfull value symmetry. Exploiting
such symmetry is important in order to solve a CSP efficiently. For example, compare
the ternary object counts in Table 1 (a few pages down) with the values of3n.

CSPs with an (unlabelled) necklace as a combinatorial sub-structure are not un-
usual. For example, Gusfield [16, page 12] states that “circular DNA is common and
important. Bacterial and mitochondrial DNA is typically circular, both in its genomic
DNA and in additional small double-stranded circular DNA molecules calledplasmids,
and even some true eukaryotes (higher organisms whose cellscontain a nucleus) such
as yeast contain plasmid DNA in addition to their nuclear DNA. Consequently, tools for
handling circular strings may someday be of use in those organisms. Viral DNA is not
always circular, but even when it is linear some virus genomes exhibit circular proper-
ties”. One such problem is studied in [5]. Necklaces occur incoding theory [14], genet-
ics [14], and music [13], while unlabelled necklaces occur in switching theory [13]. We
study a real-life problem with (unlabelled) necklaces in scheduling, different from the
one in [15].

Note that, throughout this paper, we focus on unconditional(or global) symmetries,
that is we do not handle any symmetries that appear during search.

In this paper, we propose to bring together combinatorial enumeration and con-
straint programming (CP). Very efficient combinatorial enumeration algorithms exist
for some of the mentioned combinatorial objects, but not forunlabelled necklaces (ex-
cept over two colours [4]). These algorithms can be used as CPsearch procedures for
CSPs having those objects as combinatorial sub-structures, thereby breaking a lot of
symmetry dynamically. This has also been advocated in [30, 23, 11], say, where CP
search procedures are proposed for symmetry groups acting on the values; however, ex-
cept for [28, 10, 11] not much dynamic symmetry breaking seems to have been done for
groups acting on the variables, and hence not for product groups acting on the values
and variables. Conversely, CP principles can be used for devising enumeration algo-
rithms for the combinatorial objects where efficient algorithms have remained elusive
to date. The contributions of this paper can be summarised asfollows:

– Design of an enumeration algorithm, and hence a CP search procedure, for (par-
tially) unlabelledk-ary necklaces (Sections 2 and 4).

– Identification of symmetry-breaking constraints for (partially) unlabelledk-ary neck-
laces, including ways of generating filtering algorithms for the identified new global
constraints (Sections 3 and 4).

– Experiments on real-world problems validating the usefulness of the proposed dy-
namic and static symmetric-breaking methods for (partially unlabelled)k-ary neck-
laces (Section 4).

Finally, in Section 5, we conclude and discuss future research.

2 Dynamic Symmetry Breaking

Consider a CSP〈X,D,C〉 whereX is a sequence ofn ≥ 2 variables andD is a set of
k ≥ 1 domain values. For simplicity of notation, we assume thatD = {0, . . . , k − 1};

2

1: procedureuTuple(j, u : integer)
2: var i : integer

3: if j > n then
4: return true

5: else
6: try all i = 0 to min(u + 1, k − 1) do
7: X[j]← i;
8: uTuple(j + 1, max(i, u))
9: end

10: end if

Algorithm 1: Search procedure for unlabelled tuples [7]

this also has the advantage that the order is obvious whenever we requireD to be totally
ordered.

2.1 Unlabelled Tuples

If the domain values ofD are interchangeable, then we impose a total order onD,
and the enumeration algorithm of [7], say, can be used to generate all unlabelled tuples
(modulo the full value symmetry). We present it as Algorithm1 in the style of a search
procedure in constraint programming (CP), so that it can interact with any problem
constraints. The initial call isuTuple(1,−1). At any time,j is the index of the next
variable to be assigned (andj = n + 1 when none remains) whileu is the largest value
used so far (andu = −1 when none was used yet). The idea is to try for each variable
all the values used so far plus one unused value, since all unused values are still inter-
changeable at that point. Upon backtracking, thetry all construct non-deterministically
tries all the alternatives, in the given value order (line 6). Each alternative contains the
assignment of the chosen valuei to the chosen variableX[j] (line 7) and a recursive
call for the next variable (line 8). Note that we have fixed thevariable order to be from
left to right acrossX, and the tuples are thus generated in lexicographic order; this is an
unnecessary restriction, but the reason for this choice will become clear in a few lines.
This algorithm takes constant amortised time and space, andthe number of objects
generated is actually equal to the number of unlabelled tuples.

2.2 Necklaces

If the variable sequenceX is circular, then the enumeration algorithm of [4], say, can
be used to generate all necklaces (modulo the rotation variable symmetry). We present
it as a CP search procedure in Algorithm 2. The initial call isX[0]← 0;necklace(1, 1),
whereX[0] is a dummy element. At any time,j is the index of the next variable to be
assigned (andj = n + 1 when none remains) whilep is theperiod, explained next.
The idea is either to try and keep replicating the values at the previousp positions, or
to try all larger values with a new period ofj. At any time, the prefixX[1, . . . , j] is a
pre-necklace, that is a prefix of some necklace, which may however be longerthann.
The variable order is necessarily from left to right acrossX, due to the role ofp, and

3

1: procedurenecklace(j, p : integer)
2: var i : integer

3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[j − p] to k − 1 do
7: X[j]← i;
8: necklace(j + 1, if i = X[j − p] then p else j)
9: end

10: end if

Algorithm 2: Search procedure for necklaces [4]

the necklaces are thus generated in lexicographic order. This algorithm takes constant
amortised time and space, and the number of objects generated is proportional by a
constant factor (tending down to(k/(k − 1))2 asn→∞) to the number of necklaces:
note that onlyn-tuples where the periodp dividesn actually are necklaces (line 4).
In other words, not all symmetry is broken at every node of thesearch tree, and some
backtracking is forced (by a constant-time test onp) only at leaf level; at present, loop-
less or memoryless necklace enumeration remains elusive.

2.3 Unlabelled Necklaces

If the variable sequenceX is circularand the domain values ofD are interchangeable,
then a constant-amortised-time enumeration algorithm [4]only exists for generating all
binary (k = 2) unlabelled necklaces (modulo the symmetries). We do not present it
here, but instead construct a novel enumeration algorithm for any amount of colours.
Noting that unlabelled necklaces are a subset of the necklaces (Algorithm 2) that are
unlabelled tuples (Algorithm 1), and observing that the control flows of those two al-
gorithms match line by line, the skeleton of an enumeration algorithm for unlabelled
necklaces can be obtained simply by “intersecting” those two algorithms, which yields
all but lines 7 and 10 of the CP search procedureuNecklace in Algorithm 3. The initial
call isX[0]← 0; uNecklace(1, 1,−1), whereX[0] is a dummy element.

We now gradually refine theprobe(j, i, p) function (called in line 7), guarding the
non-deterministic assignment of valuei to the current variableX[j] followed by the
continued enumeration.

Leaf Probing. If probe always returnstrue, thenuNecklace will enumerate a superset
of the unlabelled necklaces, as their symmetry group is theproductrather than just the
union of the symmetry groups for necklaces and unlabelled tuples. For example, the
binary necklace011 will erroneously be returned, even though it can be transformed
into the unlabelled necklace001 (by first rotating the second position of the circular
sequence011 into first position, giving110, and then minimally renaming its colours,
giving 110 = 001); however, the necklace111 will correctly not be returned, since it is
not an unlabelled tuple.

4

1: procedureuNecklace(j, p, u : integer)
2: var i : integer

3: if j > n then
4: return n mod p = 0
5: else
6: try all i = X[j − p] to min(u + 1, k − 1) do
7: if probe(j, i, p) then
8: X[j]← i;
9: uNecklace(j + 1, if i = X[j − p] then p else j, max(i, u))

10: end if
11: end
12: end if
13: function probe(j, i, p : integer) : boolean

14: X[j]← i;
15: if j = n ∧ n mod (if i = X[j − p] then p else j) = 0 then
16: return

Vq=n

2
X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n]

17: else ifj < n then
18: return

Vj−1

q=2
X[j − q + 1, . . . , j] ≥lex X[1, . . . , q]

19: else
20: return false

21: end if

Algorithm 3: Search procedure for unlabelled necklaces

Consider Table 1, giving the numbers of various combinatorial objects of lengthn
over3 colours: column 8 counts the unlabelled tuples (sequence A124302 in [29]); col-
umn 7 counts the necklaces (fewer than the unlabelled tuplesfor n ≥ 7; sequence A1867);
column 6 counts the objects whenprobe always returnstrue; column 5 counts the
necklaces that are unlabelled tuples, that is the number of objects whenprobe always
returnstrue and the period condition is met; and column 2 counts the unlabelled neck-
laces (sequence A2076), that is the number of objects when probing is actually done.
The difference between columns 5 and 7 (or 8) is the gain obtained so far for free by
Algorithm 3 over Algorithm 2 (or Algorithm 1), and the difference between columns 5
and 6 is the leaf pruning obtained (in constant time!) by the period condition, but the
difference between columns 5 and 2 is the amount of leaf pruning that leaf probing has
to do.

The least thingprobe(j, i, p) should thus do is to make sure only unlabelled neck-
laces are enumerated. This is at the latest done when trying to assign the last variable
(whenj = n) of the CSP: at that moment, the entire circular sequenceX is known,
soprobe must returntrue if X cannot be transformed (by position rotation and colour
renaming) into an object that has already been tried in the enumeration. Since objects
are enumerated in lexicographic order (as an inherited feature of the two underlying
algorithms), this can be done by checking whether the minimal renaming of every (non-
identity) rotation ofX is lexicographically larger than or equal toX. Computing the
minimal renamingY of an n-tuple Y takesΘ(n) time, and can be merged into the
O(n)-time lexicographic comparison; at mostn − 1 such renamings and comparisons
are done, hence this probing takesO(n2) time at worst. Note that a successful probe

5

sequence probing sequencesequence
A2076: internal + leaf leaf only A1867: A124302:

n u-necklacesn mod p = 0 leavesn mod p = 0 leavesnecklaces u-tuples
1 1 1 1 1 1 3 1
2 2 2 2 2 2 6 2
3 3 4 5 4 5 11 5
4 6 8 10 10 13 24 14
5 9 15 22 24 36 51 41
6 26 34 48 66 97 130 122
7 53 80 121 172 268 315 365
8 146 196 293 474 732 834 1094
9 369 490 744 1289 2017 2195 3281

10 1002 1267 1920 3560 5552 5934 9842
11 2685 3357 5104 9820 15371 16107 29525
12 7434 8996 13635 27327 42624 44368 88574
13 20441 24403 37030 76108118731 122643 265721
14 57046 66886101354 213106331664 341802 797162
15 159451 184770279895 598246929883 956635 2391485

Table 1.Numbers of objects of lengthn over3 colours

incurs the highest cost. The algorithmic details are straightforward, so we just write a
specification into line 16. Lazy evaluation of the conjunction should be made, returning
false as soon as one conjunct is false. Also, experiments have revealed that failure is
detected earlier on average if the starting positions of therotations recede from right to
left acrossX.

An improvement of this leaf probing comes from observing what happens when the
lowest value, namelyX[j − p], is tried forX[j] whenj = n: the recursive call (line 9)
then isuNecklace(n + 1, p, u) and everything hinges on whethern mod p = 0 or not.
But the latter check can already be donebeforeprobing (inO(n2) time, recall) whether
X[j−p] actually is a suitable value forX[n]. For any other tried valuei > X[j−p] for
X[n], the recursive call (line 9) isuNecklace(n + 1, n,max(i, u)) and we then know
thatn mod n = 0. Hence the test in line 15, as well as lines 19 and 20.

Internal Probing. The leaf probing discussed so far assumes that line 18 is replaced
by return true. This is unsatisfactory, as no pruning (other than via thep and u
parameters) takes place at the internal nodes of the search tree, so that many more leaves
are generated than necessary (recall the difference between columns 5 and 2 in Table 1).
In the spirit of constraint programming, we ought to performmore pruning whenj <
n. The idea is the same as for leaves (wherej = n) except that only a strict prefix
X[1, . . . , j] of the circular sequenceX is known, so that we can only check whether
the minimal renaming of every suffix ofX[1, . . . , j] is lexicographically larger than
or equal toX[1, . . . , j]. For example, when searching for a ternary6-bead unlabelled
necklace, assume we have already constructed the pre-necklace010 andprobe(4, 2, 4)
is now called to check whether at positionj = 4 < 6 = n the variableX[4] can be

6

assigned the (so far unused) valuei = 2 = u + 1 = k − 1 under periodp = 4, so the
following comparisons must be made:

2 = 0 ≥lex 0 (4)
02 = 01 ≥lex 01 (3)

102 = 012 ≥lex 010 (2)
0102 = 0102 ≥lex 0102 (1)

The first and last comparisons will always succeed and can be omitted. Exactlyj − 2
such renamings and comparisons of tuples of lengthO(j−1) are thus to be done, hence
this internal probing also takesO(n2) time at worst, sincej = O(n). The algorithmic
details are straightforward, so we just write a specification into line 18. Again, lazy
evaluation of the conjunction should be made. Also, experiments have revealed that
failure is detected earlier on average if the starting positions of the suffixes recede from
right to left acrossX[1, . . . , j], as in the top-down order of the sample comparisons
above.

To assess the impact of internal probing, consider again Table 1: column 4 counts
the objects when internal probing is on but leaf probing is off (much lower than in
column 5); column 3 counts the objects when internal probingis on, leaf probing is off,
and the period condition is met; and column 2 counts the unlabelled necklaces, that is
the number of objects when internal probing and leaf probingare on. The difference
between columns 3 and 2 is the amount of pruning that leaf probing now has to do,
and the difference between columns 4 and 3 is the leaf pruningobtained by the period
condition. Note that the constant-time period test on the leaves prunes much more than
the subsequent quadratic-time leaf probing has to do.

Incremental Internal Probing. Empirically, the internal probing just proposed is on
average much more efficient than itsO(n2) worst time suggests, due to the nature of
unlabelled necklaces. We now optimise this internal probing into an algorithm taking
O(n) time at worst, leading to an enumeration that is systematically faster by acon-
stant factor (namely17% faster in our implementation). The idea is to trade time for
space and make the comparisons incremental. Continuing ourprevious example, hav-
ing so far constructed the pre-necklace0102 of a ternary6-bead unlabelled necklace,
probe(5, 1, 5) is eventually called at the next iteration to check whether at position
j = 5 < 6 = n the variableX[5] can be assigned the valuei = 1 under periodp = 5,
so the following comparisons must be made:

1 = 0 ≥lex 0 (5′)
21 = 01 ≥lex 01 (4′)

021 = 012 ≥lex 010 (3′)
1021 = 0120 ≥lex 0102 (2′)

01021 = 01021 ≥lex 01021 (1′)

Note that the last four comparisons correspond to the ones given earlier, that the consid-
ered suffixes ofX[1, . . . , j] got longer at theendby the new (boldfaced) valuei = 1,
and that the minimal renamings of the (non-boldfaced) prefixes remained thesame. In

7

other words, only thescalar comparisons of the (boldfaced)last values matter, since
the lexicographic≥lex comparisons of the (non-boldfaced) prefixes have already been
made until the previous iteration. If the lexicographic comparison until the previous it-
eration is=lex, as in formulas(1), (3), and(4), then the scalar comparison operator is
≥ at the current iteration; if the lexicographic comparison until the previous iteration
is >lex, as in formula(2), thenno scalar comparison need be made at the current it-
eration. We incrementally maintain a globalk × n matrix m, wherem[i, j] gives the
minimal renaming of valuei if the renaming starts at positionj. We also incrementally
maintain locally to every search-tree node ann-tuplec of Booleans, wherec[j] = true

if the lexicographic comparison from positionj until the previous iteration is=lex, that
is if the comparison fromj is to continue at the current iteration. For example, since
the scalar comparison in formula(3′) gives2 > 0, we setc[3] ← false for the next
iteration. Using these incremental data structures, the internal probing in line 18 can be
replaced by the following specification

return

q=j−1∧

2

(if c[q] then m[i, q] ≥ X[j + 1− q] else true)

which can be implemented as in Algorithm 4. At mostj−2 scalar comparisons are to be
done, hence this incremental internal probing takesO(n) time at worst, sincej = O(n)
and the incremental maintenance ofm[i, 1 . . . j] (in lines 1 to 13) andc[1 . . . j] (in
lines 14 to 23) takesO(n) time at worst. Lazy evaluation of the conjunction should be
made. Also, experiments have revealed that failure is detected earlier on average if the
starting positions of the suffixes recede from right to left acrossX[1, . . . , j], as in the
top-down order of the sample comparisons above.

Discussion. An analysis of the amortised time complexity of Algorithm 3 is beyond
the scope of this paper. Its correctness follows from line 16capturing the essence of
unlabelled necklaces and the correctness of Algorithms 1 and 2:

Theorem 1. Algorithm 3 correctly enumerates unlabelled necklaces.

Proof. First assume thatprobe always returnstrue. We prove that Algorithm 3 then
returns the intersection of the sets of necklaces and unlabelled tuples. (⊆) Algorithm 3
returns a subset of the set of unlabelled tuples, because line 4 does not systematically
return true (unlike line 4 of Algorithm 1) and because the lowest value tobe tried
in line 6 is at least (instead of exactly, as in line 6 of Algorithm 1) the lowest available
value. Similarly, Algorithm 3 returns a subset of the set of necklaces, because the largest
value to be tried in line 6 is at most (instead of exactly, as inline 6 of Algorithm 2) the
largest available value. Hence Algorithm 3 returns a subsetof the intersection of the
sets of necklaces and unlabelled tuples. (⊇) Conversely, assume a tuple is returned by
both Algorithm 1 and Algorithm 2. This means that for eachX[j] there was a valuei in
common in thetry all statement in line 6 of Algorithm 1 and Algorithm 2, and that the
tuple satisfies the test in line 4 of Algorithm 2. Hence the tuple will also be returned by
Algorithm 3, because it passes the test in its line 4 and the same values for eachX[j]
will be tried in thetry all statement at its line 6.

8

1: m[i, j]← 0;
2: a[0 . . . k − 1]← false;
3: s← 0; q ← j − 1;
4: while q ≥ 1 ∧X[q] 6= i do {scan backwards inX until previous occurrence ofi, if any}
5: {Invariant: ∀ℓ ∈ D : a[ℓ] ≡ ℓ ∈ X[q + 1 . . . j − 1]}
6: {Invariant: s is the number of values distinct fromi in X[q + 1 . . . j − 1]}
7: if a[X[q]] then
8: m[i, q]← s

9: else
10: s← s + 1; m[i, q]← s; a[X[q]]← true

11: end if;
12: q ← q − 1
13: end while; {Assertion: m[i, 1 . . . j] is correctly initialised}
14: c[j]← true;
15: probe ← true;
16: for q = j − 1 downto 2 do
17: if m[i, q] > X[j + 1− q] then
18: c[q]← false

19: else ifc[q] ∧m[i, q] < X[j + 1− q] then
20: probe ← false;
21: break
22: end if
23: end;
24: return probe

Algorithm 4: Incremental internal probing for searching unlabelled necklaces

Now assume there is only leaf probing (i.e., only line 18 of the probe function is
replaced byreturn true). By Theorem 2 in Section 3.3 below, line 16 guarantees that
only unlabelled necklaces are enumerated among the tuples that are both necklaces and
unlabelled necklaces.

Finally, assume there is also probing at internal nodes. Theinternal probing will
then only returntrue on branches of the search tree that lead to an unlabelled necklace
that has not been seen before. ⊓⊔

To assess the runtime impact of internal probing, consider Table 2: columns 4 and 5
give the enumeration times (in seconds) if there is only leafprobing and also internal
probing, respectively. (All experiments in this paper wereperformed under SICStus
Prolog v4.0.3 on a 2.53 GHz Pentium 4 machine with 512 MB running Linux 2.6.24-
19.)

Note that we can also wrap theprobe(j, i, p) test around lines 7 and 8 of Algo-
rithm 1 only, or of Algorithm 2 only, instead of their “intersection” (Algorithm 3), and
still correctly enumerate unlabelled necklaces, since this probing currently exploits nei-
ther the semantics of its parameterp nor the fact that it is given a pre-necklace that is
an unlabelled tuple. However, the number of unlabelled tuples always exceeds the num-
ber of necklaces whenn gets sufficiently large (namelyn ≥ 7 for objects over three
colours: recall Table 1), so that, in general, it is preferable to start from the intersection
of necklaces and unlabelled tuples, since a lot of pruning isthen obtained for free.

9

necklaces unlabelled necklaces
Algorithm 2 Constraints (3)Algorithm 3 Algorithm 3 Constraints (1) and (4)

n time time time (leaf) time (all) time fails
1 0.00 0.00 0.00 0.00 0.00 0
2 0.00 0.00 0.00 0.00 0.00 0
3 0.00 0.00 0.00 0.00 0.01 0
4 0.00 0.00 0.00 0.00 0.01 2
5 0.00 0.00 0.00 0.00 0.01 6
6 0.00 0.01 0.00 0.00 0.02 9
7 0.01 0.01 0.00 0.00 0.05 29
8 0.02 0.02 0.02 0.02 0.14 69
9 0.05 0.04 0.06 0.05 0.40 181

10 0.13 0.11 0.18 0.14 1.14 469
11 0.31 0.25 0.58 0.46 3.78 1240
12 0.90 0.83 1.75 1.42 11.51 3298
13 2.40 2.34 5.64 4.53 34.85 8919
14 6.87 6.24 16.67 13.61107.80 24329
15 18.60 17.23 52.42 42.36328.40 66869

Table 2. Enumeration times (in seconds) of objects of lengthn over 3 colours via dynamic &
static (constraint-based) symmetry breaking

3 Static Symmetry Breaking

Consider a CSP〈X,D,C〉 whereX is a sequence ofn ≥ 2 variables andD is a set of
k ≥ 1 domain values. For simplicity of notation, we assume thatD = {0, . . . , k − 1};
this also has the advantage that the order is obvious whenever we requireD to be totally
ordered.

3.1 Unlabelled Tuples

To break full value symmetry, it suffices to order the positions of the first occurrences,
if any, of each value. LettingfirstPos(i,X) denote the first position, if any, of value
0 ≤ i < k in X under the current assignment, andn + 1 + i otherwise, the following
k − 1 constraints break full value symmetry [18]:

firstPos(0,X) < firstPos(1,X) < · · · < firstPos(k − 1,X)

where eachfirstPos(i,X) < firstPos(j,X) is encoded in [18] by the global constraint
intValuePrecede(i, j,X), for which domain consistency can be achieved. A more ef-
ficient filtering algorithm can be designed for the entire conjunction of these global
constraints, giving the following global constraint [18, 2] (calledprecedence in [32]):

intValuePrecedeChain(D,X) (1)

meaning that the order of any two values in the value sequenceD is respected in the
decision variable sequenceX. Unlike the original constraint, in the context of this paper

10

s X[i] ≤ U [i] {U [i + 1] = max(U [i], X[i] + 1)}

Fig. 1.DFA checker forintValuePrecedeChain(D, X), where decision variableU [i] ∈ D∪{k}
is the smallest unused value after looking upX[1 . . . i− 1]

we have that the value sequence to be respected is theentiretotally ordered domainD,
so that we need not disregard any values not inD; generalising the following observa-
tions to a value sequence strictly included inD is straightforward.

A ground checker for this global constraint can be specified as the deterministic
finite automaton (DFA) of Figure 1, so that we get a filtering algorithm using the
automaton global constraint [1]. The idea is to create a sequenceU of n + 1 addi-
tional decision variables inD ∪ {k}, so thatU [i] is the smallest unused value after
looking upX[1 . . . i − 1], with U [1] = 0. As long asX[i] ≤ U [i], for i running from
1 to n, we stay in the start states, which is also an accepting state. IfX[i] > U [i]
for somei, then we move to an (undrawn) failure state and stay there forany rela-
tionship betweenX[i] andU [i] until i = n. The constraint in curly braces ({. . . })
definesU across the transitions. (Note that the present version of SICStus Prolog does
not support counter arrays forautomaton, so thatU cannot be defined explicitly in the
transitions as depicted here, but only in conjunction with theX[i] ≤ U [i] constraints.)
Since the constraint hypergraph corresponding to this DFA is not Berge-acyclic (be-
cause eachX[i] ≤ U [i] constraint shares more than one variable with the correspond-
ing U [i + 1] = max(U [i],X[i] + 1) constraint), we are not guaranteed that domain
consistency is achieved, but we can enforce domain consistency on the conjunction of
these two constraints, using either thetable constraint (yielding a DFA that directly
corresponds to the encoding in [32]) or the problem-specificDFA checker with|D|+ 1
states in the February 2008 on-line edition of theGlobal Constraint Catalogue[2].

3.2 Necklaces

To break rotation variable symmetry, we apply the so-calledlex-leaderscheme [6],
which says that any variant of a wanted solution under all thesymmetries of the con-
sidered symmetry group must be lexicographically larger than or equal to (a flattening
into a linear sequence of) that solution. For necklaces, this means that all the (non-
identity) rotations of the sequenceX must be lexicographically larger than or equal to
X itself [32]:

n∧

q=2

X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n] (2)

Thesen− 1 constraints over sequences ofexactlyn elements have been logically min-
imised in [15] to the followingn − 1 constraints over sequences ofat mostn − 1
elements:

n∧

q=2

X[q, . . . , (2q − 3) mod n + 1] ≥lex X[1, . . . , q − 1] (3)

11

Reading from right to left, this constrains the firstq−1 elements ofX to be lexicograph-
ically smaller than or equal to the cyclically nextq − 1 elements ofX, for 2 ≤ q ≤ n.
The DFA for the≥lex constraint in [3, 1, 2] is historically the first automaton from which
a (domain consistent) propagator was derived.

Note however that up ton decision variables are shared here between the two argu-
ments of each≥lex constraint, so that the constraint hypergraph corresponding to this
DFA is not Berge acyclic here: even though it is known how to achieve domain consis-
tency in the presence of such variable aliasing [3], this is not implemented in the built-in
lex chain constraint of the current version of SICStus Prolog.

Generalising this topartial rotational variable interchangeability, whereX is parti-
tioned into subsets with rotational interchangeability, is straightforward.

Future work includes designing a more efficient filtering algorithm for the entire
conjunction (3) of global lexicographic constraints, giving a new global constraint,
which we propose to calllexAllRot(X).

3.3 Unlabelled Necklaces

The conjunction of the constraints (1) and (3) accepts all necklaces that are unlabelled
tuples (just like Algorithm 3 without probing), and therefore accepts a superset of the
unlabelled necklaces [32]. For example, the binary necklace 011 is also an unlabelled
tuple, but not an unlabelled necklace, because it can be transformed (by rotation and
minimal renaming) into the unlabelled necklace001.

In fact, the rotation variable symmetry and full value symmetry can be broken by
the conjunction of constraint (1) with the probing tests in line 16 of Algorithm 3 seen as
constraints, ensuring that the minimal renaming of every (non-identity) rotation of the
sequenceX is lexicographically larger than or equal toX itself:

n∧

q=2

X[q, . . . , n, 1, . . . , q − 1] ≥lex X[1, . . . , n] (4)

Note that (4) by itself does not suffice, as it accepts the ternary necklace002, which is
not unlabelled: we can only drop (1) if we relax the lower bound on q in (4) from 2
to 1. However, onq = 1, we have that (4) is logically equivalent to (1), because (4)is
then violated if and only ifX[i] < X[i] at some positioni, which means thatX[i] >
max(X[1 . . . i−1])+1 and hence that (1) is also violated, asX is not an unlabelled tuple
because the value ofX[i] occurs inX before the valueX[i] − 1. Domain consistency
of (4) onq = 1 is cheaper to achieve on the simpler formulation (1), and this has been
confirmed by experiments. The difference of (4) with (2) and (3) lies in the minimal
renaming of the left-hand side. The logic minimisation of (2) into (3) does not apply
to (4), for the same reason, but such a logic minimisation should be attempted.

We now establish the correctness and completeness of the introduced symmetry-
breaking constraints, using (4) forq ∈ {1, . . . , n} for simplicity of argument. Since the
proof is independent of the symmetry group on the decision variables (the cyclic group
here), we state the result in generalised form:

12

Theorem 2. Given a CSP〈X,D,C〉with full symmetry on the valuesD and a symme-
try groupG acting on the indices of then variablesX, the constraints:

∧

π∈G

X[π(1), . . . , π(n)] ≥lex X[1, . . . , n] (5)

break all variable and value symmetry.

Proof. The proof is in two stages: first, we show that given an assignmentX[1, . . . , n] =
[d1, . . . , dn] there exists a symmetric assignment[σ(dπ(1)), . . . , σ(dπ(n))] that satis-
fies (5) for someπ in G and some bijection on valuesσ in D → D; second, we show
that if two symmetric assignments satisfy (5) then they are equal.

First, givenX[1, . . . , n] = [d1, . . . , dn], consider all permutations[dπ(1), . . . , dπ(n)],
for all π ∈ G, and then further consider the minimal renamings[dπ(1), . . . , dπ(n)] of
these permutations: the lexicographically smallest element in this list satisfies (5). Sec-
ond, since the lexicographic order is a total order there is aunique lexicographically
smallest element, hence if two assignments that are symmetrically equivalent both sat-
isfy (5) then they must be equal. ⊓⊔

The lex-leader scheme for breaking variable symmetry [6] was adapted in [20] to a
particular case of value symmetry. This was later generalised to arbitrary value symme-
try groups in [21, 31]. Further, in [31], agenLexLeader constraint was proposed that
breaks arbitrary symmetries acting on both variables and values simultaneously. Apply-
ing this in our case would require|G| · |D|! such constraints to guarantee full symmetry
breaking, whereas in (5) only|G| constraints need to be posted.

A ground checker for the requiredA ≥lex B global constraint, calledgeqLexMin(A,B),
can be specified as the DFA of Figure 2, so that we get a filteringalgorithm using the
automaton global constraint [1]. The idea is to augment the classical DFA for ≥lex [3,
1, 2] with a sequenceU of n + 1 additional decision variables inD ∪ {k}, so thatU [i]
is the smallest unused value after looking upX[1 . . . i − 1], with U [1] = 0, as well as
with a minimal-renaming bijectionM on D (encoded by anallDifferent constraint).
As long asM [A[i]] = B[i], for i running from1 to n, we stay in the start states,
which is also an accepting state. IfM [A[i]] > B[i] for somei, then we move to state
t, which is an accepting state, and stay there for any relationship betweenM [A[i]] and
B[i] until i = n. If M [A[i]] < B[i] for somei, then we move to an (undrawn) failure
state and stay there for any relationship betweenM [A[i]] andB[i] until i = n. The
constraint in curly braces ({φ}) definesU andM across all these transitions. Since
the constraint hypergraph corresponding to this DFA is not Berge-acyclic (because
eachM [A[i]] ≤ U [i] constraint shares more than one variable with the correspond-
ing U [i + 1] = max(U [i],X[i] + 1) constraint, and because the entireM is shared for
everyi), we are not guaranteed that domain consistency is achieved.

Note also that alln decision variables are shared here between the two arguments
of eachgeqLexMin constraint, so that the constraint hypergraph corresponding to this
DFA is also not Berge acyclic for this variable aliasing reason.

In fact, Algorithm 4 for internal probing while searching for unlabelled necklaces
is a starting point for a custom filtering algorithm for thegeqLexMin constraint.

13

s f
M [A[i]] > B[i] {φ}

M [A[i]] = B[i] {φ} M [A[i]] <, =, > B[i] {φ}

whereφ ≡M [A[i]] ≤ U [i] & allDifferent(M) & U [i + 1] = max(U [i], M [A[i]] + 1)

Fig. 2. DFA checker forA ≥lex B, denoted bygeqLexMin(A, B), where decision variable
U [i] ∈ D ∪ {k} is the smallest unused value after looking upX[1 . . . i − 1], and decision
variableM [A[i]] ∈ D representsA[i], so thatM is a bijection onD

Future work includes designing a more efficient filtering algorithm for the entire
conjunction (4) ofgeqLexMin global constraints, giving a new global constraint, which
we propose to calllexAllMinRot(X).

3.4 Discussion

To assess the runtimes (in seconds) of dynamic and static symmetry breaking, consider
Table 2 again. Unmentioned numbers of backtracks are zero.

For necklaces, columns 2 and 3 reveal an insignificant advantage of the lexico-
graphic constraints (3), under less than domain consistency, over the constant-amortised-
time Algorithm 2.

For unlabelled necklaces, the last three columns reveal a huge advantage of Al-
gorithm 3 over constraints (1) and (4). Interestingly, the runtimes are about the same
whether we use domain-consistent propagators for (1) or not.

However, these runtimes were obtained in the absence of any problem-specific con-
straints, and static symmetry breaking usually performs better than dynamic symmetry
breaking in the presence of problem-specific constraints. We address this issue in the
next section.

4 Experiments

We now experimentally compare the proposed dynamic and static symmetry-breaking
methods on real-life scheduling problems containing an (unlabelled) necklace as a com-
binatorial sub-structure.

4.1 Example: Rotating Schedules

Many industries and services need to function around the clock. Rotating schedules,
such as the one in Figure 3(a) (a real-life example taken from[17]) are a popular way of
guaranteeing a maximum of equity to the involved work teams.In our example, there

14

Mon Tue Wed Thu Fri Sat Sun
1 x x x d d d d

2 x x e e e x x

3 d d d x x e e

4 e e x x n n n

5 n n n n x x x

(a) Classical rotating schedule

Mon Tue Wed Thu Fri Sat Sun
1 d d d d x x e

2 e e x x d d d

3 x x e e e e x

4 x n n n n n n

5 n x x x x x x

(b) Lex-minimal rotation thereof

Fig. 3. A five-week rotating schedule with uniform workload, and its lexicographically minimal
rotation

are day (d), evening (e), and night (n) shifts of work, as well as days off (x). Each team
works maximum one shift per day. The scheduling horizon has as many weeks as there
are teams. In the first week, teami is assigned to the schedule in rowi. For any next
week, each team moves down to the next row, while the team on the last row moves up
to the first row. Note how this gives almost full equity to the teams, except, for instance,
that team1 does not enjoy the six consecutive days off that the other teams have, but
rather three consecutive days off at the beginning of week1 and another three at the end
of week5. We here assume that the daily workload is uniform. In our example, each
day has exactly one team on-duty for each work shift, and hence two teams entirely
off-duty; assuming the work shifts average8h, each employee will work7 ·3 ·8 = 168h
over the five-week-cycle, or33.6h per week. Daily workload can be enforced by global
cardinality (gcc) constraints [22] on the columns. Further, any number of consecutive
workdays must be between two and seven, and any change in workshift can only oc-
cur after two to seven days off. This can be enforced bystretch constraints [19] on
the table flattened row-wise into a sequence. (A filtering algorithm for thestretch con-
straint, which is not a built-in of SICStus Prolog, was automatically obtained from a
DFA model of a constraint checker using the (built-in)automaton global constraint
[1].) We assume that soft constraints and cost functions, such as full weekends off as
numerous and well-spaced as possible, are enforced by manual selection among sched-
ules satisfying the hard constraints. In our example, thereare two full weekends off, in
the optimally spaced rows2 and5.

4.2 Necklaces

Under the given assumption (uniform workload) and constraints (gcc andstretch), any
rotating schedule has the symmetries of necklaces, when we view it flattened row-wise
into a sequence. For example, the schedule in Figure 3(b) is the lexicographically small-
est element of the equivalence class to which the schedule inFigure 3(a) belongs, as-
suming the values are ordered alphabetically (d < e < n < x): the former is obtained
from the latter by a cyclic left-shift by three positions. Note that the cyclicx stretch
in rows 5 and1 is now entirely on row5, and that the two optimally spaced ‘week-
end’ days are now Wednesday and Thursday. In other words, it does not matter from
what weekday one names the columns, as one can obtain alternative schedules by ro-
tating the circular sequence:5 · 7 = 35 schedules, including the one of Figure 3(a), are
summarised by the necklace in Figure 3(b).

15

unique Algorithm 2 Constraints (3) no symmetry breaking
instance solutions time fails time fails solutions time fails

1d, 1e, 1n, 1x 14 0.10 2488 0.04 106 114 0.17 391
1d, 1e, 1n, 2x 2274 6.66 228823 3.52 9140 17142 18.68 43448
2d, 1e, 1n, 2x 4115 47.71 959970 25.01 69704 51014 143.80 419746
2d, 2e, 1n, 2x 4950194.24 2922846136.56 408669 64556 697.68 2314796
2d, 2e, 2n, 2x 3444587.19 7526564549.86 1587888 38484 2315.36 8150876

Table 3.Performance comparison overall solutions on necklace schedules

In addition to the classical instances in Figure 3, here denoted1d, 1e, 1n, 2x, we ran
experiments over other instances, namely those over4 to 10 weeks where the weekly
workload is reasonable (33h to42h) and there are fewer than100000 unique solutions.
For example, instance2d, 2e, 1n, 2x has the uniform daily workload of2 teams on the
day shift,2 teams on the evening shift,1 team on the night shift, and2 teams off-duty;
assuming the work shifts average8h, each employee will work7 · 5 · 8 = 280h over the
seven-week-cycle, or40h per week.

Table 3 gives the runtimes (in seconds) and numbers of backtracks (fails) overall
solutions. On average, when breaking these symmetries statically, the default variable
ordering (trying the leftmost variable) is better than first-fail (trying the leftmost vari-
able with the smallest domain) and most-constrained (trying the leftmost variable with
the smallest domain that has the most constraints suspended), with the default bottom-
up value ordering, hence the runtimes for static symmetry-breaking are given for the de-
fault orderings. Static symmetry-breaking for necklaces,in the presence of the problem-
specific constraints, is now a lot faster than dynamic symmetry-breaking.

The reason why we have compared the performance overall solutions is as follows.
The performance to thefirst solution is approximately the same on all these instances
(about0.01 seconds), whether the symmetries are broken dynamically, statically, or
not at all. Hence, for this problem, symmetry breaking is notjustified if one is only
interested in the first solution, even if symmetric non-solutions are also eliminated in
the search for it. However, in general, the time ratio toall solutions between symmetry
breaking and no symmetry breaking is usually a good indicator of that time ratio to the
first optimalsolution, as branch-and-bound essentially iterates over increasingly better
solutions in order to pick the best.

To illustrate this claim, Table 4 gives the runtimes and numbers of backtracks to
the first optimalsolution of a sample cost function, namely the maximum number of
full weekends off (considering a weekend to be the sixth and seventh days of the week,
to avoid having a more complex cost function when breaking symmetries). Indeed, the
performance ratios are quite similar to those observed in Table 3, namely a speed-up
by a factor of2 to 5 when breaking symmetries, dynamically or statically. Notethat
dynamic symmetry breaking is fastest on the last and largestinstance.

16

maximum Algorithm 2 Constraints (3)no symmetry breaking
instance weekends off time fails time fails time fails

1d, 1e, 1n, 1x 1 0.06 438 0.02 61 0.08 241
1d, 1e, 1n, 2x 2 1.40 17002 1.06 4407 3.79 17183
2d, 1e, 1n, 2x 2 10.95 140810 8.10 29013 35.36 150980
2d, 2e, 1n, 2x 2 48.35 624706 43.97 152175179.75 768309
2d, 2e, 2n, 2x 2 139.58 1833758147.88 505841565.96 2470481

Table 4.Performance comparison to thefirst optimalsolution (with the maximum number of full
weekends off) on necklace schedules

4.3 Partially Unlabelled Necklaces

Under the uniform workload assumption,somerotating schedules even have many of
the symmetries ofunlabellednecklaces. In our instances for4, 5, and8 weeks, the
constraints do not distinguish between thed, e, n work shifts, so that those values are
interchangeable.

To break suchpartial value symmetry dynamically, recalling thatx is the largest
value here (k − 1 in general), it here suffices to replace line 6 of Algorithm 3 by

try all i ∈ {X[j − p], . . . ,min(u + 1, k − 2)} ∪ {k − 1}

and to make the minimal renamingsY in lines 16 and 18 respect the subsetsDℓ ⊆ D
of interchangeable values; in our caseD = {d, e, n} ∪ {x}. We denote the resulting
search procedure by Algorithm 3′.

To break this partial value symmetry statically, anintValuePrecedeChain(Dℓ,X)
constraint for each subsetDℓ hinders propagation: a counterexample for partially un-
labelled tuples (without the rotation variable symmetry) is given in [32, Section 5].
However, in our case, we conjecture that thisdoessuffice, asD is partitioned into only
two blocks, one of which is a singleton, hence:

intValuePrecedeChain({d, e, n},X) (6)

Together with an adaptation, denoted (4′), of the constraints (4) whereY respects the
Dℓ, we have a static symmetry-breaking method for such partially unlabelled necklace
schedules.

Table 5 gives the runtimes (in seconds) and numbers of backtracks (fails) overall
solutions. Static symmetry breaking, in the presence of theproblem-specific constraints,
is still a lot slower than dynamic symmetry breaking, and even slower than no symmetry
breaking (the rightmost three columns are copied from Table3 for the reader’s conve-
nience). Dynamic symmetry breaking for partially unlabelled necklaces (Algorithm 3′),
while faster than no symmetry breaking, is however slower onthe last two, larger in-
stances than dynamic symmetry breaking for necklaces (compare with Algorithm 2 in
Table 3).

Table 6 gives the runtimes and numbers of backtracks to thefirst optimalsolution of
a sample cost function, namely the maximum number of full weekends off. Again, and

17

unique Algorithm 3′ Constraints (6) and (4′) no symmetry breaking
instance solutions time fails time fails solutions time fails

1d, 1e, 1n, 1x 1 0.09 350 3.13 48 114 0.17 391
1d, 1e, 1n, 2x 402 12.19 35969 194.94 2964 17142 18.68 43448
2d, 2e, 2n, 2x 274 644.47 138087629246.82 313587 38484 2315.36 8150876

Table 5.Performance comparison overall solutions on partially unlabelled necklace schedules

maximum Algorithm 3′ Constraints (6) and (4′) no symmetry breaking
instance weekends off time fails time fails time fails

1d, 1e, 1n, 1x 1 0.04 122 1.30 24 0.08 241
1d, 1e, 1n, 2x 2 0.76 3301 29.28 1078 3.79 17183
2d, 2e, 2n, 2x 2 147.66 3501395012.51 91937565.96 2470481

Table 6.Performance comparison to thefirst optimalsolution (with the maximum number of full
weekends off) on partially unlabelled necklace schedules

ignoring the poor performance of static symmetry breaking,the performance ratios are
quite similar to those observed in Table 5, namely a speed-upby a factor of2 to 5 when
breaking symmetries dynamically rather than not at all (therightmost two columns
are copied from Table 4 for the reader’s convenience). Dynamic symmetry breaking
for partially unlabelled necklaces (Algorithm 3′) is however slower on the last, largest
instance than dynamic symmetry breaking for necklaces (compare with Algorithm 2 in
Table 4).

5 Conclusions

By bringing together the fields of combinatorial enumeration and constraint program-
ming, we have extended existing results for dynamically andstatically breaking the
rotation variable symmetry of necklaces into new symmetry-breaking methods dealing
also with the additional full value symmetry of unlabelled necklaces. On an example,
we have also shown how to specialise these methods when the value symmetry of un-
labelled necklaces is only partial. In the absence of problem-specific constraints, the
dynamic symmetry-breaking methods outperform the static ones, narrowly for neck-
laces but largely for unlabelled necklaces. On a real-life scheduling problem we have
shown that, in the presence of problem-specific constraints, the static method becomes
faster for necklaces, but not for partially unlabelled necklaces.

Most related work was discussed on-the-fly. Furthermore, one should be aware of
existing enumeration algorithms for special cases, such asthe constant-amortised-time
algorithms for unlabelled binary necklaces [4], or for necklaces with fixed content [27]
or forbidden substrings [25]. For instance, under the givenassumption (uniform work-
load) and constraints, rotating schedules are necklaces with fixed content, so the algo-
rithm of [27] should be tried instead of Algorithm 2.

Note the difference between ourlexAllRot(X) global constraint and theallperm(M)
global constraint [12] on anm× n matrixM of variables, which enforces that the first

18

row of M is lexicographically smaller than or equal to all permutations of all other rows
of M . The allperm(M) constraint was introduced to aid in the incomplete symme-
try breaking of thelex 2(M) global constraint [8], which imposes lexicographic orders
on the rows and columns of a matrixM of variables where all rows and all columns
are assumed interchangeable. Sincen of the n! permutations of any rowMi of M
are rotations, it would be interesting to compare, in this helper task, the performance
of allperm(M) with the performance of the conjunctionlexAllRot(M0,M1) ∧ . . . ∧
lexAllRot(M0,Mm−1), assuming a suitable binary variant oflexAllRot .

Future work includes the quest for a constant-amortised-time enumeration algo-
rithm for unlabelledk-ary necklaces. The fact that all necklaces can be enumerated
faster than all unlabelled necklaces (see Table 2 and compare Tables 3 and 5) indicates
that such an algorithm might exist.

Also, the simultaneous consideration ofreflectionsymmetries and rotation sym-
metries gives rise to the dihedral symmetry group on the indices and to combinatorial
objects known as (unlabelled)bracelets. Logically minimised symmetry-breaking con-
straints for this group have been identified [15], but efficient enumeration algorithms
only exist so far for distinguishable values [26].

Furthermore, rotation symmetries onmulti-dimensional matrices of variables should
be considered.

Finally, since the generator functions for (unlabelled) necklaces are known [13], we
can add a test to our search procedures that decides in constant time whether to continue
enumerating or not, thereby accelerating any proofs of optimality, for instance.

Acknowledgements.

We were supported by grant IG2001-67 of the Swedish Foundation for International
Cooperation in Research and Higher Education (STINT), and by grant 70644501 of
the Swedish Research Council (VR). We thank N. Beldiceanu, M. Carlsson, J. Sawada,
V. Vajnovszki, and T. Walsh for discussions, as well as the providers of theOn-Line
Encyclopedia of Integer Sequences[29] and theCombinatorial Object Server[24] for
invaluable research tools.

References

1. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from constraint
checkers. In M. Wallace, editor,Proceedings of CP’04, volume 3258 ofLNCS, pages 107–
122. Springer-Verlag, 2004.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraintcatalog. Technical Re-
port T2005:08, Swedish Institute of Computer Science, November 2005. Dynamic on-line
version athttp://www.emn.fr/x-info/sdemasse/gccat/ .

3. M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordering constraint. Technical
Report T2002:17, Swedish Institute of Computer Science, October 2002.

4. K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Miers. Fast algorithms to generate neck-
laces, unlabeled necklaces, and irreducible polynomials overGF (2). Journal of Algorithms,
37(2):267–282, 2000. Short version inProceedings of SODA’00.

19

5. W. Y. C. Chen and J. D. Louck. Necklaces, MSS sequences, and DNA sequences.Advances
in Applied Mathematics, 18(1):18–32, January 1997.

6. J. M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors,Proceedings of KR’96, pages
148–159. Morgan Kaufmann, 1996.

7. M. C. Er. A fast algorithm for generating set partitions.The Computer Journal, 31(3):283–
284, 1988.

8. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson,and T. Walsh. Breaking
row and column symmetries in matrix models. In P. Van Hentenryck, editor, Proceedings of
CP’02, volume 2470 ofLNCS, pages 462–476. Springer-Verlag, 2002.

9. P. Flener and J. Pearson. Solving necklace constraint problems. In M. Ghallab, editor,
Proceedings of ECAI’08, pages 520–524. IOS Press, 2008.

10. P. Flener, J. Pearson, M. Sellmann, and P. Van Hentenryck. Staticand dynamic structural
symmetry breaking. In F. Benhamou, editor,Proceedings of CP’06, volume 4204 ofLNCS,
pages 695–699. Springer-Verlag, 2006.

11. P. Flener, J. Pearson, M. Sellmann, P. Van Hentenryck, and M.Ågren. Dynamic structural
symmetry breaking for constraint satisfaction problems.Constraints, forthcoming. Super-
sedes Technical Report 2007-032 of Department of Information Technology, Uppsala Uni-
versity, Sweden, athttp://www.it.uu.se/research/reports/2007-032/ .

12. A. M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and column
symmetries. In F. Rossi, editor,Proceedings of CP’03, volume 2833 ofLNCS, pages 318–
332. Springer-Verlag, 2003.

13. E. N. Gilbert and J. Riordan. Symmetry types of periodic sequences. Illinois Journal of
Mathematics, 5:657–665, 1961.

14. S. W. Golomb, B. Gordon, and L. R. Welch. Comma-free codes.Canadian Journal of
Mathematics, 10(5):202–209, 1958.

15. A. Grayland, I. Miguel, and C. Roney-Dougal. Minimal ordering constraints for some fam-
ilies of variable symmetries. In B. Benhamou, editor,Proceedings of SymCon’07, 2007.
Available athttp://www.cmi.univ-mrs.fr/ ˜ benhamou/symcon07/ .

16. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

17. G. Laporte. The art and science of designing rotating schedules.Journal of the Operational
Research Society, 50(10):1011–1017, October 1999.

18. Y. Law and J. Lee. Global constraints for integer and set value precedence. In M. Wallace,
editor,Proceedings of CP’04, volume 3258 ofLNCS, pages 362–376. Springer-Verlag, 2004.

19. G. Pesant. A filtering algorithm for the stretch constraint. In T. Walsh, editor, Proceedings
of CP’01, volume 2239 ofLNCS, pages 183–195. Springer-Verlag, 2001.

20. K. E. Petrie and B. M. Smith. Symmetry breaking in graceful graphs. Technical Report
APES-56-2003, APES Research Group, January 2003. Available from http://www.
dcs.st-and.ac.uk/ ˜ apes/apesreports.html .

21. J.-F. Puget. An efficient way of breaking value symmetries. InProceedings of AAAI’06.
AAAI Press, 2006.

22. J.-C. Ŕegin. Generalized arc-consistency for global cardinality constraint. InProceedings of
AAAI’96, pages 209–215. AAAI Press, 1996.

23. C. M. Roney-Dougal, I. P. Gent, T. Kelsey, and S. Linton. Tractable symmetry breaking
using restricted search trees. In R. L. de Mántaras and L. Saitta, editors,Proceedings of
ECAI’04, pages 211–215. IOS Press, 2004.

24. F. Ruskey. The combinatorial object server. Athttp://theory.cs.uvic.ca/root.
html , 2008.

25. F. Ruskey and J. Sawada. Generating necklaces and strings with forbidden substrings. In
Proceedings of COCOON’00, volume 1858 ofLNCS, pages 330–339. Springer-Verlag, 2000.

20

26. J. Sawada. Generating bracelets in constant amortized time.SIAM Journal on Computing,
31(1):259–268, 2001.

27. J. Sawada. A fast algorithm to generate necklaces with fixed content.Theoretical Computer
Science, 301(1–3):477–489, 2003.

28. M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In Proceedings of
IJCAI’05, pages 298–303. IJCAI, 2005.

29. N. J. A. Sloane. The on-line encyclopedia of integer sequences. At http://www.
research.att.com/ ˜ njas/sequences/ , 2008.

30. P. Van Hentenryck, P. Flener, J. Pearson, and M.Ågren. Tractable symmetry breaking for
CSPs with interchangeable values. InProceedings of IJCAI’03, pages 277–282. Morgan
Kaufmann, 2003.

31. T. Walsh. General symmetry breaking constraints. In F. Benhamou, editor,Proceedings of
CP’06, volume 4204 ofLNCS, pages 650–664. Springer-Verlag, 2006.

32. T. Walsh. Symmetry breaking using value precedence. In G. Brewka, editor,Proceedings of
ECAI’06, pages 168–172. IOS Press, 2006.

21

