
J Heuristics manuscript No.
(will be inserted by the editor)

Underestimating the Cost of a Soft Constraint is Dangerous:
Revisiting the Edit-Distance Based Soft Regular Constraint

Jun He · Pierre Flener · Justin Pearson

Received: 2012 Feburary / Accepted: 2013 May

Abstract Many real-life problems are over-constrained, so that no solution satisfying
all their constraints exists. Soft constraints, with costsdenoting how much the con-
straints are violated, are used to solve these problems. We use the edit-distance based
SOFTREGULAR constraint as an example to show that a propagation algorithm that
sometimes underestimates the cost may guide the search to incorrect (non-optimal)
solutions to an over-constrained problem. To compute correctly the cost for the edit-
distance basedSOFTREGULAR constraint, we present a quadratic-time propagation al-
gorithm based on dynamic programming and a proof of its correctness. We also give
an improved propagation algorithm using an idea of computing the edit distance
between two strings, which may also be applied to other constraints with propagators
based on dynamic programming.The asymptotic time complexity of our improved
propagator is always at least as good as the one of our quadratic-time propagator, but
significantly better when the edit distance is small.Our propagators achieve domain
consistency on the problem variables and bounds consistency on the cost variable.
Our method can also be adapted for the violation measure of the edit-distance based
REGULAR constraint for constraint-basedlocal search.
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Figure 1 A DFA for a simple work scheduling constraint with three states and five transitions over an
alphabet of three letters

1 Introduction

In constraint programming (CP), soft constraints provide anatural way to solve over-
constrained problems, by allowing constraints to be partially satisfied. A soft con-
straint is allowed to be violated and is obtained by adding tothe original constraint
a cost variable, which represents how much that constraint is violated. When soft
constraints are used, an optimal solution that violates thesoft constraints as little as
possible, while satisfying the other constraints, is to be found by the CP solver.

TheREGULAR constraint (Pesant 2004; a generalisation of which is also known as
the AUTOMATON constraint, see Beldiceanu et al. 2004) is defined asREGULAR(X,M),
whereX = 〈x1, . . . ,xn〉 is a sequence ofn decision variables; andM is a deterministic
finite automaton (DFA). A DFAM is defined asM = 〈Q,Σ ,δ ,q0,F〉, whereQ is a
finite set of states,Σ is the alphabet,δ : Q×Σ →Q is the transition function,q0 ∈Q
is the start state, andF ⊆Q is the set of accepting states.

For example, Figure 1 gives a DFAM that describes a simple work scheduling
constraint for one employee. There are values for two work shifts, namely day (d) and
evening (e), as well as a value for enjoying a one-day vacation (v). Shift sequences are
subject to the following four constraints: one must start with a work shift, and must
end with some vacation; one must enjoy some vacation before achange of work shift;
one cannot enjoy a vacation of more than one day; and one must enjoy a vacation
after working an evening. The start state O is marked by a transition entering from
nowhere, while state O is also the unique accepting state andis marked by a double
circle. Missing transitions, say from state D upon reading value e, are assumed to
go to an implicit failure state, with a self-loop transitionfor every symbol of the
alphabet (so that no accepting state is reachable from it). The set of words accepted
by M defines the set of acceptable shift sequences for one employee, e.g., the set of
acceptable shift sequences of length 5 is{ddddv, ddvdv, ddvev, dvddv, evddv}.

The SOFTREGULAR constraint is the softened version of theREGULAR constraint,
and is defined asSOFTREGULAR(X,M,z), wherez is the cost variable. There are two
versions of theSOFTREGULAR constraint (van Hoeve et al. 2004, 2006), namely the
Hamming-distance based and edit-distance basedSOFTREGULAR constraints, based on
two different cost measures. The edit distance (also known as Levenshtein distance)
between two words is the minimum number of non-copying edit operations (namely
substitution, insertion, and deletion of a letter) needed to transform one word into
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the other. Compared with the Hamming-distance based cost measure (where only
substitution is allowed) for theSOFTREGULAR constraint, the edit-distance based cost
measure, which is the minimum edit distance between any possible assignment ofX
under the current domains and the words of length|X| of the regular language ofM
(see Definition 10 on page 365 of van Hoeve et al. 2006), is argued to be more suitable
for scheduling problems in (van Hoeve et al. 2004, 2006). Forexample, evddv is
a word accepted by the DFA of Figure 1, but not devdd. The Hamming distance
between the two words is 4, but their edit distance is only 2 since we can delete
the ‘d’ at the beginning of the second word and insert a ‘v’ at its end. In this paper,
we are only concerned with the edit-distance basedSOFTREGULAR constraint, hence
whenever theSOFTREGULAR constraint is mentioned in the rest of the paper, we mean
the edit-distance basedSOFTREGULAR constraint.

The authors of (van Hoeve et al. 2004, 2006) represent soft constraints with
weighted flow networks, and then introduce a generic propagator based on comput-
ing flows, with the precondition that everyintegersource-to-sink flownecessarily
represents a solution to the constraint and that the value ofa minimum-weight flow
is exactlythe cost measure of the constraint (see Algorithm 1 on page 354 of van Ho-
eve et al. 2006). Note that whenever a flow is mentioned in thispaper, we mean a
minimum-weight maximumintegerflow from the source to the sink; and we use
propagator to mean a propagation algorithm in the rest of this paper.

Consider aSOFTREGULAR(X,M,z) constraint, whereX is a sequence of|X|= n de-
cision variables andM = 〈Q,Σ ,δ ,q0,F〉 is a DFA. The authors of (van Hoeve et al.
2004, 2006) introduce a flow network representation of theSOFTREGULAR(X,M,z)
constraint and a propagator that implements the generic propagator based on topolo-
gical sort with table lookups (on pages 368 and 369 of van Hoeve et al. 2006). For
each decision variablexi in X and each valuev in the domain ofxi , the propagator
computes a flow (of value 1) that passes an arc related with theassignmentxi := v, and
takingO((n+ |Q|) · |δ |) time with O(n · (|δ |+ |Q|)+ |Q|2) = O(n · |δ |+ |Q|2) space
(namelyO(n· |δ |) space to store the flow network,n· |Q| space to compute minimum-
weight flows,|Q|2 space to store the shortest distance between any two states in Q,
and|δ |= |Q| · |Σ | ≥ |Q|). Note that we use binding to mean an assignment of a value
to just one decision variable in the rest of this paper, hence an assignment ofX is a
set of |X| = n bindings. However the constructed input flow network (on page 368
of van Hoeve et al. 2006) for the propagator is not suitable for the reason that the flows
represent words in thewholeregular language underlying the constraint instead of the
n-letter regular language (heren-letter regular language denotes the sub-language of
words of lengthn of the regular language), as we show in Section 4, and a propag-
ator with such an unsuitable flow network may thusunderestimatethe cost measure.
Hence the propagator cannot be used as in Corollary 6 (on page368 van Hoeve et al.
2006), because its precondition is violated.

Furthermore, as we show in Section 4 for theSOFTREGULAR constraint, using a
propagator that sometimes underestimates the cost measurehas an unwanted con-
sequence, as the propagator may guide the search to incorrect (non-optimal) solutions
to an over-constrained problem. Hence we argue that it is crucial for a propagator for
a soft constraint to compute the exact cost measure.

The rest of the paper is organised as follows:
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– Section 2 gives some background on CP.
– Section 3 gives a brief review of the weighted flow network representation of the

SOFTREGULAR constraint.
– Section 4 shows (by example) the danger of underestimating the cost measure for

a soft constraint, namely missed propagations leading to incorrect (non-optimal)
solutions being found. Another example is given in AppendixA, based on a re-
viewer error rather than an error in a publication.

– Section 5 presents our quadratic-time propagator for theSOFTREGULAR constraint
based on dynamic programming instead of flow theory, as well as a proof of its
correctness, and then gives an improved propagator,the asymptotic time com-
plexity of which is always at least as good as the one of our quadratic-time
propagator, but significantly better when the edit distanceis small.Our propagat-
ors achieve domain consistency on the decision variablesX and bounds consist-
ency on the cost variablez.

– Section 6 theoretically compares our propagators with two other propagators that
we propose, one based on the propagator of (van Hoeve et al. 2004, 2006), the
other based on the propagator for theWEIGHTEDGRAMMAR constraint (Katsirelos
et al. 2008, 2011).

– Section 7 demonstrates the efficiency of our propagators with some experiments.
– Section 8 shows how to adapt our method for the violation measure of an edit-

distance basedREGULAR constraint for constraint-basedlocal search (CBLS).
– Section 9 summarises this work.

2 Background

We first give some background material on constraint programming (CP, e.g., see Apt
2003), which is a declarative paradigm to model and solve combinatorial problems.

2.1 Constraints and Decision Variables

In CP, a problem is modelled by a set of constraints. LetX = 〈x1, . . . ,xn〉 be a se-
quence ofn decision variables, where the domain of a decision variablexi (for all xi ∈
X) is a finite set of values that can be assigned toxi and is denoted by dom(xi). A con-
straintC onX is usually specified by an intensionally defined subset of theCartesian
product of the domains of all decision variables inX: C⊆ dom(x1)×·· ·×dom(xn).
An assignmentX := 〈v1, . . . ,vn〉 ∈C is called asolutiontoC, and is called asolution
to a problemif and only if it is a solution to all constraints of the problem.

2.2 Search and Propagation

In CP, a problem is solved by exploring a search tree, where all possible variable-
value combinations in the domains are intelligently enumerated until a solution to the
problem is found or it is proved that none exists. At each nodeof the search tree,
constraint propagation is performed separately for all constraints in the problem to
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remove some (but not necessarily all) inconsistent values,which cannot be part of a
solution to the constraint, from the domains, and is repeated until no more pruning is
possible (a fix point). Hence, each constraint is associatedwith a propagator for this
purpose.

2.3 Consistency

To solve a problem efficiently in CP, one objective is to construct a small search tree,
hence the propagator should remove as many inconsistent values from the domains as
possible; the other objective is to design low-complexity propagators, as propagators
are called many times during search. However the two objectives are conflicting, as a
propagator that can remove more values from the domains is usually of higher com-
plexity. This motivates the introduction of levels of consistency. We give definitions
of the two levels of consistency that are used in this paper.

Definition 1 (Domain Consistency)Given a sequenceX = 〈x1, . . . ,xn〉 of n decision
variables and a constraintC on X, we say that the dom(xi) aredomain consistentif
for each 1≤ i ≤ n and each valuevi ∈ dom(xi), there exist valuesd j ∈ dom(x j) for
all j 6= i such that〈d1, . . . ,di−1,vi ,di+1, . . . ,dn〉 ∈C.

Definition 2 (Bounds Consistency)Given a sequenceX = 〈x1, . . . ,xn〉 of n decision
variables and a constraintC onX, we say that the dom(xi) arebounds consistentif for
each 1≤ i ≤ n and each valuevi ∈ {min dom(xi), max dom(xi)}, there exist values
d j ∈ [min dom(x j), max dom(x j)] for all j 6= i such that〈d1, . . . ,di−1,vi ,di+1, . . . ,dn〉
∈C.

Note that domain consistency is a stronger level of consistency than bounds con-
sistency, as domain consistency checks every value in everydomain while the latter
only checks the lower and upper bound values.

3 A Flow Network Representation of theSOFTREGULAR Constraint

Given aSOFTREGULAR(X,M,z) constraint, whereX = 〈x1, . . . ,xn〉 is a sequence of
|X| = n decision variables, andM = 〈Q,Σ ,δ ,q0,F〉 is a DFA, the constraint is rep-
resented with a weighted flow network (van Hoeve et al. 2004, 2006). In the flow
network (an example is given in Figure 2), there is a source S and a sink T. Between
S and T, there aren+1 vertical layers of nodes, where each layer has a node for each
state inQ. A node labelled with stateqk ∈ Q in layer j is namedq j

k. Let nodeq0
0

(recall thatq0 is the start state) in layer 0 be called thestart node; let each nodeqn
k

(for qk ∈ F) in layern be called anaccepting node.
There are four arc sets in the flow network, depending on the current domains of

the decision variables: the copy arc setAcopy (which is calledA in van Hoeve et al.
2004, 2006), the substitution arc setAsub, the insertion arc setAins, and the deletion
arc setAdel. Every arc inAsub∪Ains∪Adel has a weight of 1, while every arc inAcopy

has a weight of 0. All arcs have capacity 1. For each arc set, wegive the original
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Figure 2 The revised flow network representation of the SOFTREGULAR(X,M,z) constraint for a se-
quenceX = 〈x1, . . . ,x5〉 of 5 decision variables, with current domains dom(x1) = dom(x3) = {e},
dom(x2) = {v}, dom(x4) = {d, v}, and dom(x5) = {d}; whereM = 〈Q,Σ ,δ ,q0,F〉 is the DFA depicted
in Figure 1; andz is the cost variable. Node S is the source, and node T is the sink. There are|X|+1= 6
vertical layers of nodes between S and T, where each layer hasa node for each state inQ. A node labelled
with stateqk ∈ Q in layer j is namedq j

k, e.g., D2 denotes the node labelled with state D in layer 2. There
are four kinds of arcs in the flow network: copy arcs (solid arcs), substitution arcs (purple dashed arcs),
deletion arcs (red dotted arcs), and insertion arcs (green dash-dotted arcs). All arcs have capacity 1; each
solid arc has a weight of 0; each non-solid arc has a weight of 1. Note that the letters for the arcs arenot
part of the flow network, but show how the network was constructed.

definition of (van Hoeve et al. 2004, 2006) and revise it in a way that will be useful
in the rest of the paper (but not for our propagator):

– An arc for symbolσ ∈ Σ at positioni is in thecopy arcsetAcopy if it is used when
measuring the edit distance to a word where letteri is a copy ofσ (i.e., i = σ ).
Formally,Acopy is made up of three disjoint arc subsets containing the following
arcs respectively: the arc from the source S to the start nodeq0

0; every arc from
nodeqi−1

k to nodeqi
ℓ satisfyingδ (qk, t) = qℓ with some valuet ∈ dom(xi); and

every arc from any accepting node to the sink T.

Acopy=
{

(S,q0
0)
}

∪
⋃n

i=1

{

(qi−1
k ,qi

ℓ) | ∃t ∈ dom(xi) : δ (qk, t) = qℓ
}

∪
{

(qn
k,T) | qk ∈ F

}

Hence, eachintegerflow thatonlypasses arcs inAcopy represents a solution to the
hard REGULAR(X,M) constraint.

– An arc for symbolσ ∈ Σ at positioni is in the substitution arcset Asub if it
is used when measuring the edit distance to a word where letter i is substituted
by σ . Formally,Asub contains every arc not inAcopy that goes from nodeqi−1

k to
nodeqi

ℓ satisfyingδ (qk, t) = qℓ with some valuet ∈ Σ :

Asub=
n
⋃

i=1

{

(qi−1
k ,qi

ℓ) | ∃t ∈ Σ : δ (qk, t) = qℓ
}

\Acopy

This definition is different from the one in (van Hoeve et al. 2006) (but the same
as in van Hoeve et al. 2004), where the 0-weight arcs inAcopy are not excluded



Underestimating the Cost of a Soft Constraint is Dangerous: 7

from Asubeven though they are superfluous. Indeed, if a flow passes a substitution
arcα that is a duplicate of an arcα ′ in Acopy, then we can get another flow of the
same maximum value but with a smaller weight by just replacing α with α ′.
Therefore substitution arcs that are duplicate of arcs inAcopy cannot belong to
any minimum-weight maximum flow, and we can safely remove them fromAsub.

– An arc for symbolσ ∈ Σ at positioni is in theinsertion arcsetAins if it is used
when measuring the edit distance to a word whereσ is inserted after positioni.
Formally,Ains contains every intra-layer arc from nodeqi

k to nodeqi
ℓ satisfying

δ (qk, t) = qℓ with some valuet ∈ Σ :

Ains =
n
⋃

i=0

{

(qi
k,q

i
ℓ) | ∃t ∈ Σ : δ (qk, t) = qℓ

}

This definition is different from the one in (van Hoeve et al. 2006) (but the same
as in van Hoeve et al. 2004), where the self-loops are excluded from Ains. A
counterexample is given in Path 1 of Section 5.1, where a self-loop insertion arc
must be used.

– An arc for symbolσ ∈ Σ at positioni is in thedeletion arcsetAdel if it is used
when measuring the edit distance to a word whereσ is deleted from positioni.
Formally,Adel containseveryarc from nodeqi−1

k to nodeqi
k (for qk ∈Q):

Adel =
n
⋃

i=1

{

(qi−1
k ,qi

k) | qk ∈Q
}

This definition is different from the one in (van Hoeve et al. 2004, 2006), where
the arcs inAcopy are excluded fromAdel. A counterexample is given in Path 2 of
Section 5.1, where a deletion arc that has a duplicate copy arc must be used.

Note that the flow network is domain-specific, as the arc setsAcopy andAsub change
incrementally upon propagation, and that arcs only move from Acopy to Asub, but never
otherwise.

For example, Figure 2 gives the flow network representation of the SOFTREGULAR

(X,M,z) constraint for a sequenceX = 〈x1, . . . ,x5〉 of 5 decision variables, with
current domains dom(x1) = dom(x3) = {e}, dom(x2) = {v}, dom(x4) = {d,v}, and
dom(x5) = {d}, whereM is the DFA depicted in Figure 1.

4 An Example of an Incorrectly Computed Solution

The authors of (van Hoeve et al. 2004, 2006) represent soft constraints with weighted
flow networks, and then introduce a generic propagator basedon computing flows
(see Algorithm 1 on page 354 of van Hoeve et al. 2006), with theprecondition that
everyintegerflow necessarilyrepresents a solution to the constraint and that the value
of a minimum-weight flow isexactly the cost measure of the constraint. Given a
SOFTREGULAR constraint with the unrevised flow network representation of Section 3,
a propagator that implements the generic propagator based on topological sort with
table lookups is introduced. However, the input flow networkfor the propagator is
not suitable, as the flows may pass different numbers of insertion arcs and deletion
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arcs. The propagator with the unsuitable flow network computes the minimum edit
distance between any possible assignment ofX under the current domains and the
whole regular language instead of then-letter regular language, and may thus un-
derestimate the cost measure. Now, we use theSOFTREGULAR(X,M,z) constraint as
an example to show that using a propagator that sometimes underestimates the cost
measure has an unwanted consequence, as the propagator may guide the search to
incorrect (non-optimal) solutions to an over-constrainedproblem.

Consider the following over-constrained problemP:

– There is a sequence of 5 decision variablesX = 〈x1, . . . ,x5〉, with the initial do-
mains dom(x1)= dom(x3)= {e}, dom(x2)= {v}, dom(x4)= {d, v}, and dom(x5)
= {d}.

– There is only one constraint, namely aSOFTREGULAR(X,M,z) constraint, where
M is the DFA depicted in Figure 1, andz is the cost variable with the initial
domain dom(z) = {0, . . . ,2}.

– The problem is over-constrained, hence the objective is to find a solution that
minimisesz.

There are two possible assignments forX, namelyX := 〈e, v, e, v, d〉 andX := 〈e, v, e,
d, d〉. The minimum edit distance between evevd and the 5-letter regular language
accepted byM (namely{ddddv, ddvdv, ddvev, dvddv, evddv}) is 3 (the edit distance
to evddv); the minimal edit distance between evedd and the 5-letter regular language
is 2 (the edit distance to evddv). Hence the optimal solutionto P is X := 〈e, v, e, d, d〉,
with z= 2.

However when using the propagator of (van Hoeve et al. 2004, 2006) with the
unsuitable flow network that may underestimate the edit-distance based cost measure,
the non-optimal solution (X := 〈e, v, e, v, d〉) is found. Figure 3 shows the difference
of using (denoted by dashed lines) the propagator of (van Hoeve et al. 2004, 2006)
with the unsuitable flow network and using (denoted by solid lines) the propagator
computing the exact cost measure that will be given in Section 5 to solveP, where
w denotes the edit distance between two given words. The propagator of (van Hoeve
et al. 2004, 2006) with the unsuitable flow network first finds aflow for each binding.
For the bindingx4 := v, a flow of weight 1 is found, namely

S→O0 copy ‘e’
−−−−→ E1 copy ‘v’

−−−−→O2 copy ‘e’
−−−−→ E3 copy ‘v’

−−−−→O4 delete ‘d’
−−−−−→O5→ T.

This flow passes one deletion arc and no insertion arcs, and measures the edit distance
from evevd to the 4-letter word evev accepted byM. Recall that evevd is actually at
edit distance 3 (not 1) from the 5-letter language accepted by M. For the binding
x4 := d, a flow of weight 2 is found, namely

S→O0 copy ‘e’
−−−−→ E1 copy ‘v’

−−−−→O2 substitute ‘d’
−−−−−−−→ D3 copy ‘d’

−−−−→ D4 substitute ‘v’
−−−−−−−→O5→ T.

This flow passes two substitution arcs, and measures the editdistance from evedd
to the 5-letter word evddv accepted byM. As both of the flows have a weight not
larger than max dom(z), which is 2, no value of dom(x4) is removed; furthermore,
min dom(z) is updated to the minimum weight of the two flows, which is 1. Next,
assume without loss of generality that the CP solver enumerates dom(x4). For the
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Figure 3 Comparison between two ways of solving the over-constrainedproblemP: one uses the propag-
ator of (van Hoeve et al. 2004, 2006) with the unsuitable flow network, and is denoted by dashed lines; the
other uses the propagator computing the exact cost measure that will be given in Section 5, and is denoted
by solid lines. The symbolw denotes the edit distance between two given words

bindingx4 := v, the same flow of weight 1 is found by the propagator, and a solution,
namelyX := 〈e, v, e, v, d〉 with z= 1, is found. Thereafter the betterness constraint
z< 1 is added by the solver. For the bindingx4 := d, no flow of weight less than 1 is
found, hence the value d is removed from dom(x4); since the domain ofx4 is wiped
out, there is no solution in this branch and the proof of optimality is completed.
Hence the CP solver finds an incorrect optimal solution minimising z, which isX :=
〈e, v, e, v, d〉, with an incorrectly computedz= 1.

5 A Correct Propagator for the SOFTREGULAR Constraint

The propagator for theSOFTREGULAR(X,M,z) constraint with the unsuitable flow net-
work of (van Hoeve et al. 2004, 2006) may guide the search to incorrect (non-optimal)
solutions. Hence one way to fix this problem ischanging the input flow networkso
that every flownecessarilyrepresents an|X|-letter word of the regular language (as
shown in Section 6.1). However, we prefer tochange the propagatorso that it com-
putes the cost measure with the unchanged (but revised) flow network of flows rep-
resenting thewhole regular language, as the space complexity is lower and as our
experimental results in Section 7 show that the new propagator works better in prac-
tice. Hence we now present, prove, analyse, and improve a newpropagator for the
SOFTREGULAR constraint. Our propagators achieve domain consistency onthe decision
variablesX and bounds consistency on the cost variablez.
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Figure 4 Subfigure (a) is a DFA (not the same as in Figure 1). Subfigure (b)is the revised digraph repres-
entation of the SOFTREGULAR(X,M,z) constraint for a sequenceX = 〈x1, . . . ,x5〉 of 5 decision variables,
with current domains dom(x1) = {d}, dom(x2) = {h}, dom(x3) = dom(x5) = {e}, and dom(x4) = {v};
whereM = 〈Q,Σ ,δ ,q0,F〉 is the DFA depicted in subfigure (a); andz is the cost variable

5.1 Description of the Propagator

Given aSOFTREGULAR(X,M,z) constraint with|X| = n decision variables and a DFA
M = 〈Q,Σ ,δ ,q0,F〉, letG be the revised flow network (seen as a digraph now) in Sec-
tion 3 with four arc sets:Acopy, Asub, Ains, andAdel. We introduce a propagator (see
Algorithm 1) for theSOFTREGULAR constraint based on dynamic programming, which
is a popular way of designing propagators (e.g., see Quimperand Walsh 2006; Ka-
dioǧlu and Sellmann 2010). Similarly to (van Hoeve et al. 2004, 2006), our propag-
ator computes for each binding a minimum-weight path from the source S to the
sink T in the digraphG, but it ensures that every computed minimum-weight path
passes the same number of insertion and deletion arcs, henceit computes the cost
measure, which is the minimum edit distance between any possible assignment ofX
under the current domains and then-letter regular language.

Note that the revised digraph is necessary for computing a minimum-weight path
that passes the same number of insertion and deletion arcs. For example, Figure 4(b)
is the revised digraph representation of theSOFTREGULAR(X,M,z) constraint for a
sequenceX = 〈x1, . . . ,x5〉 of 5 decision variables, with current domains dom(x1) =
{d}, dom(x2) = {h}, dom(x3) = dom(x5) = {e}, and dom(x4) = {v}; whereM =
〈Q,Σ ,δ ,q0,F〉 is the DFA depicted in Figure 4(a); andz is the cost variable. We can
find the following two minimum-weight paths that pass the same number of insertion

and deletion arcs: in the first path, a self-loop insertion arc (namely D2 insert ‘h’
−−−−−→ D2)

must be used; in the second path, a deletion arc (namely D1 delete ‘h’
−−−−−→ D2) that has a

duplicate copy arc (namely D1
copy ‘h’
−−−−→ D2) must be used.
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Figure 5 The matrixh for computing the edit distancew= 2 between the words evddv and evedd

Path 1: S→O0 copy ‘d’
−−−−→ D1 copy ‘h’

−−−−→ D2 insert ‘h’
−−−−−→ D2 copy ‘e’

−−−−→ E3 copy ‘v’
−−−−→O4 delete ‘e’

−−−−−→
O5→ T

Path 2: S→ O0 copy ‘d’
−−−−→ D1 delete ‘h’

−−−−−→ D2 copy ‘e’
−−−−→ E3 copy ‘v’

−−−−→ O4 copy ‘e’
−−−−→ E5 insert ‘v’

−−−−−→
O5→ T

5.1.1 Computing the Cost Measure

In order to compute the edit distancew between the wordsa1 and a2 of length n
(wherea1[i] is thei th letter of the worda1 anda1[i . . . j] is the subword ofa1 starting
from thei th letter to thej th letter), Wagner and Fischer (1974) introduced a dynamic
programming algorithm takingO(n2) time by computing an(n+1)×(n+1) matrixh
row by row as follows:

h[i, j] =































i if j = 0

j if i = 0

min







h[i−1, j−1]+ if a1[i] = a2[ j] then 0 else1,

h[i, j−1]+1,

h[i−1, j]+1






otherwise

whereh[i, j] denotes the edit distance between the subwordsa1[1. . . i] anda2[1. . . j],
so thatw = h[n,n] (the value of the cell in the lower-right corner) is the edit dis-
tance between the wordsa1 anda2. For example, Figure 5 gives the matrixh when
computing the edit distancew= 2 between the words evddv and evedd.

Similarly, Algorithm 1 computes a matrixc[0..n,0..n,Q] using a dynamic pro-
gramming algorithm (lines 4 to 15). The matrixc has one more dimension thanh,
and any cellh[i, j] is represented by|Q| cells inc (namely{c[i, j,qℓ] | qℓ ∈Q}), with
c[i, j,qℓ] denoting the minimum edit distance between any possible assignment of
〈x1, . . . ,xi〉 under the current domains and any word ofj symbols accepted byM
from stateq0 upon passingj transitions to stateqℓ. Here only thec[i, j,qℓ] values
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Algorithm 1 A propagator computing the cost measureu for the
SOFTREGULAR(X,M,z) constraint, with |X| = n decision variables, a DFA
M = 〈Q,Σ ,δ ,q0,F〉, and the cost variablez
1: global variable: G stores the digraph representing the SOFTREGULAR(X,M,z) constraint
2: global variable: setreach[i in 0..n] stores the set of states inQ reachable from S in layeri of G

3: function propagator(SOFTREGULAR(X,M,z),G)
4: int c[i in 0..n, j in 0..n,qℓ in Q]← n
5: c[i in 0..n,0,q0]← i; c[0, j in 1..n,qℓ in reach[ j]]← j
6: for all i← 1 to n do
7: for all j ← 1 to n do
8: for all arc(q j−1

k ,q j
ℓ) ∈ Acopy such thatqk ∈ reach[ j−1] do

9: c[i, j,qℓ]←min(c[i−1, j−1,qk],c[i, j,qℓ])

10: for all arc(q j−1
k ,q j

ℓ) ∈ Asub such thatqk ∈ reach[ j−1] do
11: c[i, j,qℓ]←min(c[i−1, j−1,qk]+1,c[i, j,qℓ])

12: for all arc(q j−1
k ,q j−1

ℓ ) ∈ Ains such thatqk ∈ reach[ j−1] do
13: c[i, j,qℓ]←min(c[i, j−1,qk]+1,c[i, j,qℓ])

14: for all arc(q j−1
ℓ ,q j

ℓ) ∈ Adel such thatqℓ ∈ reach[ j] do
15: c[i, j,qℓ]←min(c[i−1, j,qℓ]+1,c[i, j,qℓ])
16: int u←min{c[n,n,qℓ] | qℓ ∈ F ∩ reach[n]}
17: if u> min dom(z) then
18: min dom(z)← u
19: if u> max dom(z) then
20: return fail
21: else ifu+1≤max dom(z) then
22: return succeed
23: bool r[i in 0..n, j in 0..n,qℓ in Q]← false
24: for all stateqℓ ∈ F ∩ reach[n] do
25: if c[n,n,qℓ] = u then
26: r[n,n,qℓ]← true
27: sets[i in 1..n]← /0
28: for all i← n to 1 do
29: for all j ← n to 1 do
30: for all arc(q j−1

k ,q j
ℓ) ∈ Acopy such thatqk ∈ reach[ j−1] do

31: if r[i, j,qℓ] and c[i, j,qℓ] = c[i−1, j−1,qk] then
32: r[i−1, j−1,qk]← true; s[i]← s[i]∪{the value labelled on the arc}
33: for all arc(q j−1

k ,q j
ℓ) ∈ Asub such thatqk ∈ reach[ j−1] do

34: if r[i, j,qℓ] and c[i, j,qℓ] = c[i−1, j−1,qk]+1 then
35: r[i−1, j−1,qk]← true; s[i]← dom(xi)

36: for all arc(q j−1
k ,q j−1

ℓ ) ∈ Ains such thatqk ∈ reach[ j−1] do
37: if r[i, j,qℓ] and c[i, j,qℓ] = c[i, j−1,qk]+1 then
38: r[i, j−1,qk]← true
39: for all arc(q j−1

ℓ ,q j
ℓ) ∈ Adel such thatqℓ ∈ reach[ j] do

40: if r[i, j,qℓ] and c[i, j,qℓ] = c[i−1, j,qℓ]+1 then
41: r[i−1, j,qℓ]← true; s[i]← dom(xi)
42: for all i← 1 to n do
43: dom(xi)← s[i]
44: return succeed

with qℓ ∈ reach[ j] are interesting, as there is no word ofj symbols accepted byM
from q0 passingj transitions toqℓ for anyqℓ /∈ reach[ j], hencec is a sparse matrix
unlike h. The global variablereach[0..n] is a vector of sets of states, withreach[i]
denoting the set of states ofM labelled on the nodes in layeri of G that can be
reached from the start stateq0 throughi transitions ofM. For example, in Figure 2,
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Algorithm 2 Computing the vectorreach for the SOFTREGULAR(X,M,z) constraint,
with |X|= n decision variables, a DFAM = 〈Q,Σ ,δ ,q0,F〉, and the cost variablez
1: global variable: G stores the digraph representing the SOFTREGULAR(X,M,z) constraint
2: global variable: setreach[i in 0..n] stores the set of states inQ reachable from S in layeri of G

3: procedurecompreach(M)
4: reach[0]←{q0}
5: for all i← 1 to n do
6: reach[i]← /0
7: for all stateqk ∈ reach[i−1] do
8: for all transitionδ (qk,v) = qℓ do
9: reach[i]← reach[i]∪{qℓ}

reach[0] = {O}, reach[1] = {D, E}, andreach[2] = · · ·= reach[5] = {O, D, E}. The
vectorreachonly needs to be computed once before the first call of the propagator,
by exploring at mostn times all transitions ofM (as shown in Algorithm 2), and it
never changes during propagation and search. First, the matrix c is created and initial-
ised (line 4), and then each cell ofc is computed similarly toh (lines 5 to 15). Note
that, for any word in then-letter regular language, the DFAM recognises the word
as a sequence ofn+1 states inQ, hence the minimum edit distanceu between any
possible assignment ofX under the current domains and then-letter regular language
accepted byM, is assigned the minimum among thec[n,n,qℓ] with qℓ ∈ reach[n]∩F
(line 16).

5.1.2 Removing Inconsistent Values

Considering a bindingxi := t for a decision variablexi (with 1≤ i ≤ n) and a value
t ∈ dom(xi), we say that a path from the source S to the sink T isminimum-weight-
related with the bindingif the following conditions are satisfied:

– The path passes the same number of insertion and deletion arcs, and thus repres-
ents a word in then-letter regular language accepted byM.

– The path passes an arc representing the binding.
– The path has a weight that is the minimum edit distance between any assignment

to X (with xi := t) and then-letter regular language accepted byM.

Lemma 1 The SOFTREGULAR(X,M,z) constraint is domain consistent on X (and is
bounds consistent on z) if and only if

1. For every binding, a minimum-weight-related path has a weight not larger than
max dom(z).

2. The minimum weight of all such paths is not larger than min dom(z).

Proof: The result follows from the theorem on domain consistency for soft con-
straints (Theorem 2 on page 354 of van Hoeve et al. 2006). ⊓⊔

Note that for a soft constraint, the objective is to minimiseits cost, hence only the
lower bound on the cost is considered.

Revisit the example in Figure 2, where the minimum edit distance between any
possible assignment ofX under the current domains and the 5-letter regular language
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accepted byM is 2. We find that every minimum-weight-related path for every bind-
ing has a weight of either 2 or 2+1= 3. For example, the minimum-weight-related
path forx4 := d, namely

S→O0 copy ‘e’
−−−−→ E1 copy ‘v’

−−−−→O2 substitute ‘d’
−−−−−−−→ D3 copy ‘d’

−−−−→ D4 substitute ‘v’
−−−−−−−→O5→ T,

has a weight of 2; and the minimum-weight-related path forx4 := v, namely

S→O0 copy ‘e’
−−−−→ E1 copy ‘v’

−−−−→O2 substitute ‘d’
−−−−−−−→ D3 substitute ‘d’

−−−−−−−→ D4 substitute ‘v’
−−−−−−−→O5→ T,

has a weight of 3. We have the following lemma:

Lemma 2 Given the minimum edit distance u between any possible assignment of X
under the current domains and the n-letter regular languageaccepted by M, every
minimum-weight-related path for every binding has a weightof either u or u+1.

Proof: There exist a word〈k1, . . . ,kn〉 in then-letter regular language accepted byM
and an assignmentX := 〈a1, . . . ,an〉 (with ai ∈ dom(xi)), such that the edit distance
between〈k1, . . . ,kn〉 and〈a1, . . . ,an〉 is exactlyu. Give any bindingxi := t (with t ∈
dom(xi)), if t = ai then the edit distance between〈k1, . . . ,kn〉 and〈a1, . . . ,ai−1, t,ai+1,
. . . ,an〉 is exactlyu; otherwise the edit distance is at mostu+ 1 by substitutingt
with ai first. ⊓⊔

Similarly to the propagator for theSOFTGCC constraint (Zanarini et al. 2006), us-
ing Lemmas 1 and 2, Algorithm 1 removes inconsistent values (if necessary) from
the domains for achieving domain consistency onX (and bounds consistency onz)
for the SOFTREGULAR(X,M,z) constraint (lines 17 to 43), after computing the cost
measureu. If u > min dom(z), then min dom(z) is updated tou (lines 17 and 18)
so that the second condition in Lemma 1 is satisfied. Ifu > max dom(z), then by
Lemma 2 we have that for every binding, every minimum-weight-related path has a
weight (eitheru or u+1) larger than max dom(z), hence all values ofX are incon-
sistent (lines 19 and 20); else ifu+1≤max dom(z), then by Lemma 2 we have that
for every binding, all minimum-weight-related paths have aweight not larger than
max dom(z), and all values ofX are domain consistent (lines 21 and 22); otherwise
u= max dom(z), a vectors of n sets is computed by tracing paths of weightu back-
wards (lines 23 to 41) such thats[i] (for 1≤ i ≤ n) stores all values in dom(xi) that
have minimum-weight-related paths of weightu, and all values not ins[i] are removed
from dom(xi) (lines 42 and 43; by Lemma 2, they all have minimum-weight-related
paths of weightu+1, which is larger than max dom(z) = u). The matrixr is used to
trace paths of weightu backwards, withr[i, j,q] = true (or false) denoting whether
c[i, j,q] is (or not) a support to obtain the minimum weightu.

5.2 Correctness of the Propagator

Lemma 3 Each element c[i, j,qℓ] with qℓ ∈ reach[ j] is the minimum edit distance
between any possible assignment of〈x1, . . . ,xi〉 under the current domains and any
word of j symbols accepted by M from q0 passing j transitions to qℓ.
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Proof: (1) c[i,0,q0] is the minimum edit distance between any possible assignment of
〈x1, . . . ,xi〉 and the empty path, thus isi by i deletions;c[0, j,qℓ] with qℓ ∈ reach[ j] is
the minimum edit distance between the empty sequence and anyword of j symbols,
thus is j by j insertions (line 5).

(2) For any(0,0)≤lex (i0, j0)<lex (i, j)≤lex (n,n), and any statep0 ∈ reach[ j0],
the induction hypothesis is thatc[i0, j0, p0] is the minimum edit distance between any
possible assignment of〈x1, . . . ,xi0〉 and any word ofj0 symbols fromq0 to p0. For
anyqℓ ∈ reach[ j], we prove thatc[i, j,qℓ] is the minimum edit distance between any
possible assignment of〈x1, . . . ,xi〉 and any word ofj symbols fromq0 to qℓ. The
following four cases must hold:

1. If there is a copy arc(q j−1
k ,q j

ℓ)∈Acopysuch thatqk∈ reach[ j−1], thenc[i, j,qℓ] =
c[i−1, j−1,qk], as this arc has a weight of zero (no edit operation). Therefore we
havec[i, j,qℓ] = min{c[i−1, j −1,qk] | (q

j−1
k ,q j

ℓ) ∈ Acopy ∧ qk ∈ reach[ j −1]}
(lines 8 and 9). The conditionqk ∈ reach[ j − 1] is crucial: if qk /∈ reach[ j − 1],
then we cannot computec[i, j,qℓ] from c[i−1, j −1,qk], as there is no word of
j − 1 symbols accepted byM from q0 passingj − 1 transitions toqk; note that
qk ∈ reach[ j−1] also impliesqℓ ∈ reach[ j], so thatc[i−1, j−1,qk] andc[i, j,qℓ]
are well-defined.

2. If there is a substitution arc(q j−1
k ,q j

ℓ) ∈ Asub such thatqk ∈ reach[ j − 1], then
c[i, j,qℓ] = c[i−1, j−1,qk]+1, as this arc has a weight of one (one substitution).
Therefore we havec[i, j,qℓ] =min{c[i−1, j−1,qk]+1 | (q j−1

k ,q j
ℓ)∈Asub∧ qk ∈

reach[ j−1]} (lines 10 and 11). The conditionqk∈ reach[ j−1] is crucial similarly
to case 1.

3. If there is an insertion arc(qk
j−1,q j−1

ℓ ) in Ains such thatqk ∈ reach[ j −1], then
c[i, j,qℓ] = c[i, j − 1,qk] + 1, as this arc has a weight of one (one insertion).
Therefore we havec[i, j,qℓ] = min{c[i, j−1,qk]+1 | (q j−1

k ,q j−1
ℓ ) ∈ Ains ∧ qk ∈

reach[ j−1]} (lines 12 and 13). The conditionqk∈ reach[ j−1] is crucial similarly
to case 1.

4. There is always a deletion arc(q j−1
ℓ ,q j

ℓ) in Adel for every qℓ ∈ Q, soc[i, j,qℓ] =
c[i−1, j,qℓ]+1, as such an arc has a weight of one (one deletion). Thereforewe
havec[i, j,qℓ] = min{c[i−1, j,qℓ]+1 | qℓ ∈ reach[ j]} (lines 14 and 15). The con-
dition qℓ ∈ reach[ j] is crucial so thatc[i−1, j,qℓ] andc[i, j,qℓ] are well-defined.

Hencec[i, j,qℓ] with qℓ ∈ reach[ j] is the minimum among the four cases, which is the
same as computed by the method. By complete induction, we finish the proof. ⊓⊔

Lemma 4 The value of u computed by Algorithm 1 is the minimum edit distance
between any possible assignment of〈x1, . . . ,xn〉 under the current domains and the
n-letter regular language accepted by M.

Proof: From Lemma 3, we know thatc[n,n,qℓ] is the minimum edit distance between
any possible assignment of〈x1, . . . ,xn〉 and any word ofn symbols accepted byM
from q0 passingn transitions toqℓ. So if qℓ ∈ reach[n]∩ F , then the sequence of
n values labelled on then transitions of such a path is a word of lengthn accepted
by M. Henceu is the minimum edit distance between any possible assignment of
〈x1, . . . ,xn〉 and then-letter regular language accepted byM (line 16). ⊓⊔
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Lemma 5 Algorithm 1 computes all bindings that have minimum-weight-related paths
of weight u.

Proof: Consider the following four cases, whereu is the minimum edit distance
between any possible assignment of〈x1, . . . ,xn〉 under the current domains and the
n-letter regular language accepted byM:

1. Assume a path of weightu passes a copy arc (line 31), and the arc is labelled
with t. The path is a minimum-weight path related with the bindingxi := t, hence
the valuet is added tos[i] (line 32).

2. Assume a path of weightu passes a substitution arc (line 34). We know there is
an assignmenta, namelyX := 〈V1, . . . ,Vn〉, such that the edit distance between
a and the word represented by the path isu. For any valuet ∈ dom(xi), we can
get an assignmenta′, namely〈V1, . . . ,Vi−1, t,Vi+1, . . . ,Vn〉, and the edit distance
betweena′ and the word represented by the path is alsou (as the arc denotes a
substitution operation onVi : replacingVi by t cannot increase the edit distance,
and the edit distance cannot be larger thanu; asu is the minimum weight, the edit
distance cannot be less thanu also). Hence for any valuet ∈ dom(xi), the path
is a minimum-weight path related withxi := t, ands[i] is assigned dom(xi) (any
value in dom(xi) is domain consistent) (line 35).

3. Assume a path of weightu passes an insertion arc (line 37). As an insertion arc
is not an edit operation related with the binding toxi , no value is added tos[i] (no
related path is found; line 38).

4. Assume a path of weightu passes a deletion arc (line 40). Similarly to case 2, for
any valuet ∈ dom(xi), the path is a minimum-weight path related withxi := t,
ands[i] is assigned dom(xi) (any value in dom(xi) is domain consistent) (line 41).

Hence Algorithm 1 correctly computes all bindings that haveminimum weight re-
lated paths of weightu. ⊓⊔

Theorem 1 Algorithm 1 computes the cost measure and achieves domain consist-
ency on X and bounds consistency on z for theSOFTREGULAR(X,M,z) constraint.

Proof: The result follows from Lemmas 1, 2, 4, and 5. ⊓⊔

5.3 Complexity of the Propagator

To establish the time complexity of Algorithm 1, note that the vectorreach only
needs to be computed once, by exploring at mostn times all transitions ofM (as
shown in Algorithm 2) inO(n· |δ |) time, where|δ | denotes the number of transitions
of M. The initialisation of the matrixc takesO(n+n· |Q|) = O(n· |Q|) time. For any
1≤ i, j ≤ n, the set of all elementsc[i, j,qℓ] with qℓ ∈ reach[ j] can be computed (upon
using distributive laws) by exploringonceeach arc inAcopy∪Asub∪Ains∪Adel (which
can haveO(|δ |+ |Q|) arcs:Acopy hasO(|δ |) arcs,Asub hasO(|δ |) arcs,Ains has
O(|δ |) arcs, andAdel hasΘ(|Q|) arcs), inO(|δ |+ |Q|) time total. Hence computing
the matrixc takesO(n2 · (|δ |+ |Q|)) time in total, and the same holds for tracing
all minimum-weight paths backwards. Computingu takesO(|Q|) time by querying
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O(|Q|) elements ofc. As |δ |= |Q| · |Σ | ≥ |Q|, the overall complexity of the algorithm

is O(n · |δ |+n · |Q|+n2 · (|δ |+ |Q|)+ |Q|) = O(n2 · |δ |) time, which is n2

n+|Q| times
more expensive than the propagator of (van Hoeve et al. 2004,2006), which however
may guide the search to incorrect (non-optimal) solutions with an unsuitable flow
network.

In (van Hoeve et al. 2006) (on page 369), it is assumed that|Q| ≤ n. However
in the worst case, we have|Q| = |Σ |n+1, asM is at most a complete tree of depthn,
where each state has|Σ | transitions.

Considering space complexity, Algorithm 1 takesO(n · |Q|+ n · (|Q|+ |δ |)) =
O(n · |δ |) space to store the nodes and arcs in the digraphG (as there areO(n · |Q|)
nodes andO(n · (|Q|+ |δ |)) arcs inG, and|δ | = |Q| · |Σ | ≥ |Q|); it takesO(n2 · |Q|)
space for the matricesc andr, andO(n· |Q|) space for the vectorreach; in addition, it
takesO(n · |Σ |) space for the vectors. Hence Algorithm 1 takesO(n · |δ |+n2 · |Q|+
n· |Q|+n· |Σ |) = O(n· |δ |+n2 · |Q|) space in total, as|δ |= |Q| · |Σ | ≥ |Σ |.

5.4 Revisiting the Example of Section 4

Given the same over-constrained problem as in Section 4, a CPsolver using the
propagator of Algorithm 1 will find the correct optimal solution to the problem.
The propagator first computes the minimum edit distanceu between all possible as-
signments (namelyX := 〈e, v, e, v, d〉 andX := 〈e, v, e, d, d〉) and the 5-letter reg-
ular language (namely{ddddv, ddvdv, ddvev, dvddv, evddv}), which is 2 here. As
u > min dom(z), we have that dom(z) is updated to{2}. As u = max dom(z), the
propagator traces all related minimum weight paths of weight u backwards, and finds
two flows, namely

S→O0 copy ‘e’
−−−−→ E1 copy ‘v’

−−−−→O2 substitute ‘d’
−−−−−−−→ D3 copy ‘d’

−−−−→ D4 substitute ‘v’
−−−−−−−→O5→ T

(assigns dom(x5) = {d} to s[5], inserts{d} into s[4], assigns dom(x3) = {e} to s[3],
inserts{v} into s[2], and inserts{e} into s[1]) and

S→O0 copy ‘e’
−−−−→E1 copy ‘v’

−−−−→O2 delete ‘e’
−−−−−→O3 copy ‘d’

−−−−→D4 copy ‘d’
−−−−→D5 insertion ‘v’

−−−−−−→O5→T

(inserts{d} into s[5], inserts{d} into s[4], assigns dom(x3) = {e} to s[3], inserts
{v} into s[2], and inserts{e} into s[1]). Hences[1] = {e}, s[2] = {v}, s[3] = {e},
s[4] = {d}, ands[5] = {d}. As v /∈ s[4], the value v is removed from dom(x4). The
domains of each decision variable and the cost variablezcontain only one value, and
the correct optimal solution (also the unique solution), namely X := 〈e, v, e, d, d〉
with z= 2, is found.

5.5 An Improved Propagator

Ukkonen (1985) observed that the dynamic programming algorithm of (Wagner and
Fischer 1974), which computes the edit distance between twowords, is often not ef-
ficient in practice, as it often evaluates unnecessary values of the matrixh. Revisit
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the example in Figure 5, which gives the matrixh for computing the edit distancew
between the words evddv and evedd of lengthn = 5. Each cell on the diagonalki

(or fi) has a value larger than or equal toi, as it is computed by operating at least
i insertions (or deletions). If a cell on the diagonalki (or fi) is a support to obtain the
edit distancew, i.e., if there exists a path from this cell to the cell in the lower-right
corner to compute the edit distancew, then this path passes at least anotheri dele-
tions (or insertions), and hencew= h[n,n]≥ 2· i. Therefore only the sequence∆w of

diagonals (namely∆w =
[

k⌊w
2 ⌋
, . . . ,k1,0, f1 . . . , f⌊w

2 ⌋

]

, see Figure 7) is necessary for

computing the edit distancew. Recall that each cellh[i, j] (with i, j ≥ 1) is computed
from three adjacent cells (namelyh[i−1, j −1], h[i, j −1], andh[i−1, j]). If h[i, j]
is on the first or last diagonal of∆w, thenh[i, j−1] or h[i−1, j] may be an unneces-
sary cell (we call a cell outside∆w an unnecessary cell), and its value is not computed.
Whenever an unnecessary cell is queried, we just assume the value of this cell to be∞
(as this cell is not a support to obtain the edit distancew). For example, in Figure 7,
h[2,1] = min{h[1,0]+1,h[2,0]+1,h[1,1]+1} = min{1+1,∞+1,0+1} = 1, as
h[2,0] is an unnecessary cell.

Based on the observation above, an improved dynamic programming algorithm
taking O(w · n) time is introduced in (Ukkonen 1985). Initially, the improved al-
gorithm assumes the edit distance isw′ = 1 and computes the edit distance using

the sequence∆w′ of diagonals (namely∆w′ =

[

k⌊w′
2

⌋, . . . ,k1,0, f1, . . . , f⌊w′
2

⌋

]

, which

is [0] here). If the computed edit distancew is larger thanw′, then the algorithm
doubles the value ofw′ and recomputesw with the enlarged sequence∆w′ of diagon-
als. This process repeats untilw is not larger thanw′. The improved algorithm runs
for ⌈log2w⌉+1 iterations and computes 1+2i−1 (or 1) diagonals in iterationi with
i > 1 (or i = 1), where each diagonal has at mostn cells. Hence the overall time
complexity of the improved algorithm is

(

1+
⌈log2 w⌉+1

∑
i=2

(1+2i−1)

)

·n= (2·w+ ⌈log2w⌉−1) ·n= O(w ·n)

and the worst-case time complexity isO(n2), sincew≤ n.
For example, the improved dynamic programming algorithm computes the edit

distancew between the words evedd and evddv as follows. Initially it assumesw′ = 1
and the matrixh is computed as in Figure 6. Asw= h[5,5] = 2> 1=w′, it doublesw′.
Now we havew′= 2 and the matrixh is computed as in Figure 7. Asw= h[5,5] = 2≤
w′, the algorithm terminates and returns the edit distancew = 2 between the words
evedd and evddv after computing 6+(5+6+5) = 22 cells of the matrixh (instead
of computing all 36 cells ofh as in Figure 5 when using the algorithm of Wagner and
Fischer 1974).

Similarly to the algorithm of (Ukkonen 1985), the propagator of Algorithm 3
computes the cost measure and achieves domain consistency on X (and bounds con-
sistency onz) for the SOFTREGULAR(X,M,z) constraint inO(min(u,max dom(z)) ·
n · |δ |) time with O(n · |δ |+ n2 · |Q|) space, whereu is the minimum edit distance
between any possible assignment of〈x1, . . . ,xn〉 under the current domains and then-
letter regular language accepted byM. Although the space complexity of Algorithm 3
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Algorithm 3 An improved propagator computing the cost measureu for the
SOFTREGULAR(X,M,z) constraint, with |X| = n decision variables, a DFAM =
〈Q,Σ ,δ ,q0,F〉, and the cost variablez
1: lines 1 to 2 of Algorithm 1

2: function propagator improved(SOFTREGULAR(X,M,z),G)
3: lines 4 to 5 of Algorithm 1
4: int u
5: int u′← 1
6: repeat
7: for all i← 1 to n do
8: for all j ←max(1, i− u′

2 ) to min(n, i + u′
2 ) do

9: lines 8 to 15 of Algorithm 1
10: u←min{c[n,n,qℓ] | qℓ ∈ F ∩ reach[n]}
11: u′← 2·u′

12: until (u≤ u′
2 ) or (u> max dom(z))

13: lines 16 to 27 of Algorithm 1
14: for all i← n to 1 do
15: for all j ←min(n, i + u′

2 ) to max(1, i− u′
2 ) do

16: lines 30 to 41 of Algorithm 1
17: lines 42 to 44 of Algorithm 1

is the same as the one of Algorithm 1, the asymptotic time complexity of Algorithm 3
is always at least as good as the one of Algorithm 1 (asu≤ n), but significantly better
whenu is small. Indeed, our experimental results in Section 7 showthat Algorithm 3
works much better than Algorithm 1 in practice.

6 Other Propagators

Given aSOFTREGULAR(X,M,z) constraint with|X|= n decision variables and the DFA
M = 〈Q,Σ ,δ ,q0,F〉, we introduce and analyse two other correct propagators to com-
pute the cost measure and achieve domain consistency onX (and bounds consistency
onz) for theSOFTREGULAR(X,M,z) constraint.
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We can also use the propagator for theMULTI COSTREGULAR constraint (Menana and
Demassey 2009) with two cost variablesz andz1, wherez1 with dom(z1) = {0} de-
notes the number of insertion arcs minus the number of deletion arcs in each flow of
the flow network constructed fromM with the revisions we indicated in Section 3, to
compute the cost measure and achieve domain consistency onX (and bounds consist-
ency onz). However there is no published time and space complexity ofthe propag-
ator for theMULTI COSTREGULAR constraint, hence we cannot compare asymptotically.

6.1 Making Every Flow Represent a Word of Lengthn

Given a flow network with every flownecessarilypassing the same number of de-
letion and insertion arcs, the propagator of (van Hoeve et al. 2004, 2006) for the
SOFTREGULAR(X,M,z) constraint correctly computes the edit-distance based cost meas-
ure, as the precondition of the generic propagator of (van Hoeve et al. 2004, 2006)
is now satisfied. We can construct such a flow network as follows: first compute the
minimised intersection ofM with the DFA acceptingΣn, which will give a DFAM′

that only accepts words of lengthn accepted byM; and then construct a flow network
from M′ according to Section 3 (with or without the revisions we indicated).

The time complexity of the propagator is established in two parts. The first part of
the propagator computes the smallest distance fromq′k to q′ℓ, for every pair of states
q′k andq′ℓ of M′. This can be done inΘ(|Q′| · |δ ′|) time through breadth-first search
from every state ofM′, where|Q′| = O(n · |Q|) is the number of states inM′, and
|δ ′|= O(n· |δ |) is the number of transitions inM′.

The second part of the propagator computes shortest paths from the source S to
the sink T of the flow network through topological sort with table lookups, taking
O(n · |δ ′|) time. However we cannot match thisO(n · |δ ′|) time complexity for our
implementation, which takesO(|Q′|2) time to deal with the insertion arcs on one
layer by querying the smallest distance fromq′k to q′ℓ, for all pairs of statesq′k and
q′ℓ of M′. Hence our implementation of the propagator takesO(n · (|Q′|2+ |δ ′|)) =
O(n3 · |Q|2+n2 · |δ |) time to compute shortest paths from the source S to the sink T,
with O(n· |Q′|2) time for insertion arcs andO(n· |δ ′|) time for the other arcs.

Therefore, the overall time complexity isO(|Q′| · |δ ′|+n· (|Q′|2+ |δ ′|)) = O(n2 ·

|Q| · |δ |+n3 · |Q|2), which is more expensive than the worst caseO(n2 · |δ |) of Al-
gorithm 3.

Considering that the DFAM′ is necessarily acyclic, we can improve our imple-
mentation of the propagator by skipping the first part and changing the second part to
use topological sortwithouttable lookups. Hence our improvement of this propagator
takesO(n· |δ ′|)=O(n2 · |δ |) time, which is the same as the worst case of Algorithm 3.
However our experimental results in Section 7 show that Algorithm 3 works better in
practice.

The propagator takesO(n · (|δ ′|+ |Q′|)) space to store the flow network con-
structed fromM′, where|Q′| = O(n · |Q|) is the number of states inM′, with O(n ·
|δ ′|) space for arcs andO(n · |Q′|) for nodes. Hence the overall space complexity is
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O(n2 · (|δ |+ |Q|)), which is more expensive than theO(n · |δ |+ n2 · |Q|) space of
Algorithm 3.

6.2 Using theWEIGHTEDGRAMMAR Constraint

Katsirelos et al. (2008, 2011) present a method of encoding the edit-distance based
SOFTGRAMMAR constraint into theWEIGHTEDGRAMMAR constraint, and give a propagator
for the WEIGHTEDGRAMMAR constraint based on the Cocke-Younger-Kasami (CYK)
parser. Given an edit-distance basedSOFTREGULAR(X,M,z) constraint (withM = 〈Q,
Σ ,δ ,q0,F〉 and|X| = n), we can use the propagator for theWEIGHTEDGRAMMAR con-
straint to compute the edit-distance based cost measure andachieve domain con-
sistency onX (and bounds consistency onz) for the SOFTREGULAR constraint as fol-
lows: first, we construct a DFAM′ (with M′ = 〈Q′,Σ ,δ ′,q′0,F ′〉) that only accepts
words of lengthn accepted byM in the same way as in Section 6.1; second, we en-
code every transition ofδ ′ into a zero-weight production of a grammar; third, we
add unit-weight productions into the grammar to simulate substitution, insertion, and
deletion operations (as in Katsirelos et al. 2008, 2011), and the resulting weighted
grammar has a size ofO(|δ ′|); finally, we use the CYK-based propagator on the
obtainedWEIGHTEDGRAMMAR constraint. As the obtained weighted grammar is neces-
sarily linear, the CYK-based propagator usesO(n2 · |δ ′|) =O(n3 · |δ |) time and space,
as|δ ′|= O(n· |δ |) (Katsirelos et al. 2009), which isn times more expensive (in both
time and space) than the worst caseO(n2 · |δ |) of Algorithm 3. Our experimental
results in Section 7 confirm that Algorithm 3 works much better in practice.

Note that it isnecessaryto use the DFAM′ (and notM) to generate the input
grammar. If we use the DFAM, then the obtained grammar accepts words of the
wholeregular language instead of then-letter regular language ofM, and the CYK-
based propagator with such an unsuitable grammar may thus underestimate the cost
measure. A counterexample is given in Appendix A.

7 Experimental Evaluation

We now investigate experimentally the efficiency of Algorithm 3 by comparing it
to Algorithm 1 and the two propagators in Sections 6.1 and 6.2. We implemented
all these propagators for the CP back-end of COMET (Van Hentenryck and Michel
2005). We did two experiments, where each model contains twoSOFTREGULAR con-
straints sharing the variablesX but each constraint has its own cost variable, and the
objective is to find a solution that minimises the sum of the two cost variables. All
experiments use the same search heuristic, which uses the first-fail principle first on
the two cost variables and then on the decision variablesX. We need not try other
branching heuristics, as that isorthogonalto our purpose of giving a fair comparison
of the four propagators. All experiments were run under COMET (version 2.1.1) and
Suse Linux 11.3 on a 3.07 GHz Intel Core i7 with a 3GB RAM.

The first experiment uses the two small DFAs in Figure 8: one with 3 states and
4 transitions, and the other with 6 states and 7 transitions.The initial domains for
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Figure 8 Two DFAs used in the first experiment

n obj Algorithm 3 Algorithm 1 Section 6.1 Section 6.2 #branch #propag #fail
12 6 0.6 1.7 2.2 16.5 538 3,489 1,522
16 8 31.0 90.4 115.9 1,190.6 16,289 105,097 46,462
20 10 1,401.6 4,390.5 5,416.3 74,644.0 517,364 3,342,003 1,477,278

Table 1 Results for the experiment with two small DFAs, where each row indicates|X|= n, the computed
objective value, the runtime (in seconds) of the four propagators, the number of branchings, the number of
propagations, and the number of failures

all variables ofX are the same, namely{d, e, v}, and the initial domains for the
two cost variables are the same, namely{0, . . . , |X|}. In Table 1, each row indicates
|X|= n, the computed objective value (the minimum sum of the two cost variables),
the runtime (in seconds) of the four propagators, the numberof branchings, the num-
ber of propagations, and the number of failures. Note that for each of the four columns
obj, #branch, #propag, and #fail, all four propagators necessarily have the same val-
ues. From Table 1, we observe that: Algorithm 3 has the best runtime among the four
propagators, and is even about 3 times faster than the second-best propagator (Al-
gorithm 1); the propagator in Section 6.2 has the worst runtime, as it is the only one
with anO(n3) time complexity, while the other three have anO(n2) time complexity;
Algorithm 1 and the propagator in Section 6.1 have close runtimes, but Algorithm 1
is about 1.5 times faster. In this experiment, the computed objective value increases
linearly withn, but the runtime of all propagators increases super-linearly with n.

The second experiment uses the two large DFAs from case 15 andcase 16 of
(Beldiceanu et al. 2013), which are used to model a nurse scheduling problem. In
case 15, the DFA has 1,115 states and 2,272 transitions; in case 16, the DFA has
1,309 states and 3,698 transitions. The initial domains forall variables ofX are the
same, namely{1,2,3,4}, and the initial domains for the two cost variables are the
same, namely{0, . . . , |X|}. Table 2 gives the results for the second experiment. We
observe that: the minimum sum of the two cost variables is always 0 in this exper-
iment, hence it is a test where the computed minimum edit distanceu during each
propagation takes small values; Algorithm 3 is the best among the four propagators,
and is already 13 times faster than the second-best propagator (Algorithm 1) when
n = 28; the runtime of Algorithm 3 only increases a little whenn increases, as its
complexity is bounded by an expression onu; and the comparisons of the other three
propagators are the same as for Table 1.
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n obj Algorithm 3 Algorithm 1 Section 6.1 Section 6.2 #branch #propag #fail
12 0 1.7 1.8 2.4 7.8 14 13 0
16 0 2.5 4.2 5.1 91.9 18 33 2
20 0 2.0 7.6 10.9 406.9 22 41 2
24 0 2.5 19.2 26.3 1,334.3 26 61 4
28 0 2.9 39.4 54.2 3,180.3 30 81 6

Table 2 Results for the experiment with two large DFAs, where each rowindicates|X|= n, the computed
objective value, the runtime (in seconds) of the four propagators, the number of branchings, the number of
propagations, and the number of failures

8 Constraint-Based Local Search

Constraint-based local search (CBLS, e.g., Van Hentenryckand Michel 2005) is the
local search approach to CP. In CBLS, constraints are used todescribe and control
local search. Given an initial assignment of values to all the variables, CBLS tries to
find a better assignment that decreases the amount of constraint violation, by explor-
ing a neighbourhood of the current assignment, that is a set of assignments that do not
differ much from the current one. An assignment with zero (orminimum) violation
is to be found. Meta-heuristics are used to escape local minima.

In (Pralong 2007; He et al. 2011), two Hamming-distance based violation meas-
ures of theREGULAR constraint for CBLS have been introduced. However there is no
work on an edit-distance basedREGULAR constraint for CBLS, as far as we know. In-
terestingly, our method can also be used for the edit-distance basedREGULAR(X,M)
constraint for CBLS. Given the current assignmenta to the n decision variables
X = 〈x1, . . . ,xn〉, the flow networkG can be constructed by setting the domain of
each decision variablexi to a singleton, namely dom(xi) = {a(xi)}, wherea(xi) is the
value assigned toxi undera. Given aSOFTREGULAR(X,M,z) constraint, in Algorithm 1
the variableu is computed as the minimum edit distance between the currentdomains
of X and then-letter regular language accepted by the DFAM; thusu can be taken as
the edit-distance based constraint violation measure of aREGULAR(X,M) constraint in
CBLS.

9 Conclusion

We have used the edit-distance basedSOFTREGULAR constraint as an example to show
that a propagator that sometimes underestimates the cost measure for a soft constraint
may guide the search to incorrect (non-optimal) solutions to an over-constrained
problem. We have presented a propagator and an improved version that correctly
compute the cost measure for theSOFTREGULAR constraint, and favourably compared
theoretically and experimentally our propagators with twoother propagators. We
have shown that our method can also be adapted for the violation measure of the
edit-distance basedREGULAR constraint for constraint-based local search.

Future work includes using the idea of (Ukkonen 1985) to improve propagators
that are based on dynamic programming for other constraints.
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Appendix A: An Example of Encoding the SOFTREGULAR Constraint Incorrectly

Given an edit-distance based SOFTREGULAR(X,M,z) constraint withM = 〈Q,Σ ,δ ,q0,F〉 and |X| = n,
we give an example to show that the CYK-based propagator for the WEIGHTEDGRAMMAR constraint
of (Katsirelos et al. 2008, 2011) with a weighted grammar obtained fromM may underestimate the edit-
distance based cost measure, as the grammar accepts words of thewhole regular language instead of
the n-letter regular language ofM. Hence we cannot use the weighted grammar obtained fromM when
encoding the SOFTREGULAR(X,M,z) constraint with the WEIGHTEDGRAMMAR constraint.

The DFA M in Figure 1 can be converted into the following context-freegrammar (CFG) G1 by
encoding every transition ofM into a linear production, where O is the start symbol:

G1 : O → dD | eE| ε
D → dD | vO

E → vO

The CFG G1 can be converted into the following Chomsky normal form (CNF) G2:

G2 : O → YdD | YeE

D → YdD | YvO | v

E → YvO | v

Yd → d

Ye → e

Yv → v

The WEIGHTEDGRAMMAR constraint can be used to encode the edit-distance based SOFTGRAMMAR

constraint (Katsirelos et al. 2008, 2011). Given the CNF G2, the following weighted productions will be
added to simulate substitution, insertion, and deletion operations:

substitution productions : Yd → e | v, with weight 1

Ye → d | v, with weight 1

Yv → d | e, with weight 1

insertion productions : Yd → ε, with weight 1

Ye → ε, with weight 1

Yv → ε, with weight 1

D → ε, with weight 1

E → ε, with weight 1

deletion productions : O→ HO | OH, with weight 0

D → HD | DH, with weight 0

E → HE | EH, with weight 0

Yd → HYd | YdH, with weight 0

Ye → HYe | YeH, with weight 0

Yv → HYv | YvH, with weight 0

H → d | e | v, with weight 1
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Figure 9 A minimum-weight parse tree computed by the CYK-based propagator of (Katsirelos et al.
2011)

Consider the SOFTREGULAR(X,M,z) constraint, whereX = 〈x1, . . . ,x5〉 is a sequence of|X| = 5 de-
cision variables, with current domains dom(x1) = dom(x3) = {e}, dom(x2) = {v}, dom(x4) = {d, v}, and
dom(x5)= {d}, andM is the DFA of Figure 1. The minimum edit distance between all feasible assignments
(namely{evedd, evevd}) and the 5-letter regular language accepted byM (namely{ddddv, ddvdv, ddvev,
dvddv, evddv}) is 2. However, as shown in Figure 9, the minimum weight computedby the CYK-based
propagator of (Katsirelos et al. 2008, 2011) with the obtained weighted grammar is 1 (instead of 2), which
is the same as the one computed in (van Hoeve et al. 2004, 2006) measuring the edit distance from word
evevd to evev (in the 4-letter regular language accepted byM) through one deletion operation, hence the
CYK-based propagator with the unsuitable weighted grammar underestimates the cost measure in this
case.

Actually, in order to make the CYK-based propagator for the WEIGHTEDGRAMMAR constraint
of (Katsirelos et al. 2008, 2011) work properly for the edit-distance based SOFTGRAMMAR constraint,
we claim that two more changes are needed in addition to the onementioned for this purpose on page 200
of (Katsirelos et al. 2011), which changes a loop control variable in order to handleε productions.

1. Unit-weightε productions are introduced to simulate insertion operations. Here,ε production means a
production that generatesε. In order to handle theseε productions, the CYK-based propagator allows
a symbol generated from another symbol in the same cell. For example, in Figure 10, there are 2
symbols, C and E, in the cell(i = 1, j = 0) generated from the two insertion productions C→ ε and
E→ ε. Note that the example of Figure 10 has no relation to our running example of Section 4. In the
cell (i = 1, j = 2), there are three symbols O, D, and A generated from the three productions O→CD,
D→ EA, and A→ BC respectively. When the CYK-based propagator computes the lower (or upper)
bounds, it is crucial that these three productions are explored in a correct order: first A→ BC, then
D→ EA, and finally O→ CD (or in the opposite order), so that the lower (or upper) bounds of O,
D, and A in cell(i = 1, j = 2) are computed correctly. Hence all symbols in each cell must be sorted
before computing the bounds.

2. Line 73 of the CYK-based propagator on page 191 of (Katsirelos et al. 2011), where the domains
of the decision variables are pruned, also needs to be modifiedto suit the case of substitution and
deletion productions, so that the domain of the decision variable xi should not be pruned if there
exists a symbol with an upper bound of 1 in cell(i,1) denoting a substitution or deletion production.
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