J Heuristics manuscript No.
(will be inserted by the editor)

Underestimating the Cost of a Soft Constraint is Dangerous:

Reuvisiting the Edit-Distance Based Soft Regular Constraint

Jun He - Pierre Flener - Justin Pearson

Received: 2012 Feburary / Accepted: 2013 May

Abstract Many real-life problems are over-constrained, so that hatiem satisfying
all their constraints exists. Soft constraints, with cagoting how much the con-
straints are violated, are used to solve these problemssé/fhe edit-distance based
SoFTREGULAR Constraint as an example to show that a propagation algorittat
sometimes underestimates the cost may guide the searcbomwdnt (non-optimal)
solutions to an over-constrained problem. To compute ctyréhe cost for the edit-
distance basedorTReEGULAR CONStraint, we present a quadratic-time propagation al-
gorithm based on dynamic programming and a proof of its ctmess. We also give
an improved propagation algorithm using an idea of computire edit distance
between two strings, which may also be applied to other cains$ with propagators
based on dynamic programminghe asymptotic time complexity of our improved
propagator is always at least as good as the one of our gicatina¢ propagator, but
significantly better when the edit distance is sm@llir propagators achieve domain
consistency on the problem variables and bounds consystanthe cost variable.
Our method can also be adapted for the violation measure=@dit-distance based
REGULAR constraint for constraint-baséatal search.

Keywords Constraint programming Soft regular constraint Edit distance
Network flows- Dynamic programming

Jun He)

Department of Information Technology, Uppsala Universigl D5 Uppsala, Sweden

School of Information System and Managemnet, National Uistierof Defense Technology,
410073 Changsha, Hunan, China

E-mail: hejunnudt@gmail.com

Pierre Flener
Department of Information Technology, Uppsala Universifl D5 Uppsala, Sweden
E-mail: Pierre.Flener@it.uu.se

Justin Pearson
Department of Information Technology, Uppsala Universi§l D5 Uppsala, Sweden
E-mail: Justin.Pearson@it.uu.se

2 J. He, P. Flener, J. Pearson, and W.M. Zhang

Figure 1 A DFA for a simple work scheduling constraint with three staséad five transitions over an
alphabet of three letters

1 Introduction

In constraint programming (CP), soft constraints provigetural way to solve over-
constrained problems, by allowing constraints to be prtgatisfied. A soft con-
straint is allowed to be violated and is obtained by addinth&original constraint
a cost variable, which represents how much that constraiaiolated. When soft
constraints are used, an optimal solution that violatestiieconstraints as little as
possible, while satisfying the other constraints, is todaenfl by the CP solver.

TheRecuLAr constraint (Pesant 2004; a generalisation of which is atsevk as
the Automaton constraint, see Beldiceanu et al. 2004) is definedeasLar(X, M),
whereX = (xq,...,Xn) is a sequence of decision variables; and is a deterministic
finite automaton (DFA). A DFAM is defined adM = (Q,>,0,qo,F), whereQ is a
finite set of statess is the alphabet) : Q x = — Qs the transition functiongg € Q
is the start state, arfd C Q is the set of accepting states.

For example, Figure 1 gives a DR# that describes a simple work scheduling
constraint for one employee. There are values for two woifkssinamely day (d) and
evening (e), as well as a value for enjoying a one-day vactip Shift sequences are
subject to the following four constraints: one must stathve work shift, and must
end with some vacation; one must enjoy some vacation befdnarsge of work shift;
one cannot enjoy a vacation of more than one day; and one mjast & vacation
after working an evening. The start state O is marked by asitian entering from
nowhere, while state O is also the unique accepting statésamdrked by a double
circle. Missing transitions, say from state D upon readiauie e, are assumed to
go to an implicit failure state, with a self-loop transitiéor every symbol of the
alphabet (so that no accepting state is reachable fromhg.set of words accepted
by M defines the set of acceptable shift sequences for one engpleye, the set of
acceptable shift sequences of length $deddv, ddvdv, ddvev, dvddv, evdilv

The sorTRecuLAR constraint is the softened version of tResuLar constraint,
and is defined asortRecuLAR(X, M, Z), wherez is the cost variable. There are two
versions of thesortRecuLAR constraint (van Hoeve et al. 2004, 2006), namely the
Hamming-distance based and edit-distance basetkecuLar constraints, based on
two different cost measures. The edit distance (also kn@resenshtein distance)
between two words is the minimum number of non-copying epirations (namely
substitution, insertion, and deletion of a letter) needettansform one word into

Underestimating the Cost of a Soft Constraint is Dangerous: 3

the other. Compared with the Hamming-distance based coasune (where only
substitution is allowed) for theorTREGULAR CcONStraint, the edit-distance based cost
measure, which is the minimum edit distance between anyilpesssignment oK
under the current domains and the words of len¥thof the regular language o
(see Definition 10 on page 365 of van Hoeve et al. 2006), iseattmbe more suitable
for scheduling problems in (van Hoeve et al. 2004, 2006). é&xample, evddv is

a word accepted by the DFA of Figure 1, but not devdd. The Hargrdistance
between the two words is 4, but their edit distance is onlynzesiwe can delete
the ‘d’ at the beginning of the second word and insert a ‘vitseind. In this paper,
we are only concerned with the edit-distance bas&dRecuLar constraint, hence
whenever thesortRecuLAR CcONstraint is mentioned in the rest of the paper, we mean
the edit-distance basedrtRecuLAr constraint.

The authors of (van Hoeve et al. 2004, 2006) represent sof$tiints with
weighted flow networks, and then introduce a generic prapadeased on comput-
ing flows, with the precondition that evemgtegersource-to-sink flonnecessarily
represents a solution to the constraint and that the valaenasihimum-weight flow
is exactlythe cost measure of the constraint (see Algorithm 1 on pag@f&n Ho-
eve et al. 2006). Note that whenever a flow is mentioned inghjger, we mean a
minimum-weight maximunintegerflow from the source to the sink; and we use
propagator to mean a propagation algorithm in the rest effthper.

Consider asortRecULAR(X, M, Z) constraint, wher&X is a sequence ¢0K| = nde-
cision variables an = (Q, %, d,qp,F) is a DFA. The authors of (van Hoeve et al.
2004, 2006) introduce a flow network representation of $berRecuLar(X,M,z)
constraint and a propagator that implements the generjzagator based on topolo-
gical sort with table lookups (on pages 368 and 369 of van Ea\al. 2006). For
each decision variabbg in X and each value in the domain ofx;, the propagator
computes a flow (of value 1) that passes an arc related witlistsignment; := v, and
taking O((n+ |Q|) - 3]) time with O(n- (|8] + Q) +|Q1) = O(n-[3| +|QI?) space
(namelyO(n-|d]) space to store the flow network, |Q| space to compute minimum-
weight flows,|Q|? space to store the shortest distance between any two sta@gs i
and|d| = |Q|-|Z| > |QJ). Note that we use binding to mean an assignment of a value
to just one decision variable in the rest of this paper, hence agrassint ofX is a
set of|X| = n bindings. However the constructed input flow network (ongag8
of van Hoeve et al. 2006) for the propagator is not suitabléhiereason that the flows
represent words in theholeregular language underlying the constraint instead of the
n-letter regular language (hereletter regular language denotes the sub-language of
words of lengthn of the regular language), as we show in Section 4, and a propag
ator with such an unsuitable flow network may thwslerestimat¢he cost measure.
Hence the propagator cannot be used as in Corollary 6 (on3&8yean Hoeve et al.
2006), because its precondition is violated.

Furthermore, as we show in Section 4 for th@TRecuLAR CONStraint, using a
propagator that sometimes underestimates the cost meaasiran unwanted con-
sequence, as the propagator may guide the search to ino@weeoptimal) solutions
to an over-constrained problem. Hence we argue that it isarfor a propagator for
a soft constraint to compute the exact cost measure.

The rest of the paper is organised as follows:

4 J. He, P. Flener, J. Pearson, and W.M. Zhang

— Section 2 gives some background on CP.

— Section 3 gives a brief review of the weighted flow networkresentation of the
SOFTREGULAR CONstraint.

— Section 4 shows (by example) the danger of underestimdtangdst measure for
a soft constraint, namely missed propagations leadingcariact (non-optimal)
solutions being found. Another example is given in Appendbased on a re-
viewer error rather than an error in a publication.

— Section 5 presents our quadratic-time propagator fostheRecuLar constraint
based on dynamic programming instead of flow theory, as vgedl proof of its
correctness, and then gives an improved propagtterasymptotic time com-
plexity of which is always at least as good as the one of oudaii-time
propagator, but significantly better when the edit distdasmall.Our propagat-
ors achieve domain consistency on the decision variablasd bounds consist-
ency on the cost variable

— Section 6 theoretically compares our propagators with titkergpropagators that
we propose, one based on the propagator of (van Hoeve etGd, 2006), the
other based on the propagator for tlveicHTeEDGRAMMAR CONStraint (Katsirelos
et al. 2008, 2011).

— Section 7 demonstrates the efficiency of our propagatorssgine experiments.

— Section 8 shows how to adapt our method for the violation oreasf an edit-
distance baseRecuLar constraint for constraint-baséatal search (CBLS).

— Section 9 summarises this work.

2 Background

We first give some background material on constraint prograng (CP, e.g., see Apt
2003), which is a declarative paradigm to model and solvebioatorial problems.

2.1 Constraints and Decision Variables

In CP, a problem is modelled by a set of constraints. Xet (xi,...,X,) be a se-
guence oh decision variables, where the domain of a decision varialffer all x;
X) is a finite set of values that can be assigned &md is denoted by dofx). A con-
straintC on X is usually specified by an intensionally defined subset o&taesian
product of the domains of all decision variables{inC C dom(xz) x - - - x dom(Xy).
An assignmenkX := (vy,...,Vn) € Cis called asolutionto C, and is called aolution
to a problemif and only if it is a solution to all constraints of the probie

2.2 Search and Propagation

In CP, a problem is solved by exploring a search tree, whéngoakible variable-
value combinations in the domains are intelligently enwatest until a solution to the
problem is found or it is proved that none exists. At each nafdthe search tree,
constraint propagation is performed separately for allst@mnts in the problem to

Underestimating the Cost of a Soft Constraint is Dangerous: 5

remove some (but not necessarily all) inconsistent valwbgh cannot be part of a
solution to the constraint, from the domains, and is rekaidil no more pruning is
possible (a fix point). Hence, each constraint is associatttda propagator for this
purpose.

2.3 Consistency

To solve a problem efficiently in CP, one objective is to camsta small search tree,
hence the propagator should remove as many inconsisterts/fbm the domains as
possible; the other objective is to design low-complexitypagators, as propagators
are called many times during search. However the two objstire conflicting, as a
propagator that can remove more values from the domainsialy®f higher com-
plexity. This motivates the introduction of levels of catsincy. We give definitions
of the two levels of consistency that are used in this paper.

Definition 1 (Domain Consistency)Given a sequencé = (x1, ..., X,) of ndecision
variables and a constrai@ton X, we say that the do(w;) aredomain consisterit
for each 1<i < nand each valug € dom(x), there exist valued; € dom(x;) for
all j #isuchthatds,...,di_1,Vi,dii1,...,dn) €C.

Definition 2 (Bounds ConsistencyGiven a sequencé = (X, ...,Xn) Of ndecision
variables and a constrai@iton X, we say that the do(w;) arebounds consisteriiftfor
each 1<i < nand each valug € {min dom(x), max donix;)}, there exist values
dj € [min dom(x;), max dongx;)| for all j # i such thatds,...,di—1,Vi,dis1,...,0n)
eC.

Note that domain consistency is a stronger level of consistéhan bounds con-
sistency, as domain consistency checks every value in elenain while the latter
only checks the lower and upper bound values.

3 A Flow Network Representation of thesorTRecuLArR Constraint

Given asortRecuULAR(X,M,Zz) constraint, whereX = (xq,...,Xn) iS @ sequence of
|X| = n decision variables, anbl = (Q, %, ,do,F) is a DFA, the constraint is rep-
resented with a weighted flow network (van Hoeve et al. 200062 In the flow
network (an example is given in Figure 2), there is a sourcedsaasink T. Between
S and T, there ane+ 1 vertical layers of nodes, where each layer has a node for eac
state inQ. A node labelled with statgx € Q in layer j is namedqu(. Let nodeq8
(recall thatqp is the start state) in layer 0 be called start node let each nodey;
(for gk € F) in layern be called araccepting node

There are four arc sets in the flow network, depending on thecudomains of
the decision variables: the copy arc #gkpy (Which is calledA in van Hoeve et al.
2004, 2006), the substitution arc #&},, the insertion arc sefi,s, and the deletion
arc setAgel. Every arc inAsyhU Ains U Agel has a weight of 1, while every arc Agopy
has a weight of 0. All arcs have capacity 1. For each arc segiwethe original

6 J. He, P. Flener, J. Pearson, and W.M. Zhang

Layer O Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 \ copy arc

~~ .. Substitution arc
""" » deletion arc

‘ insertion arc

Figure 2 The revised flow network representation of theFSREGULAR(X,M,z) constraint for a se-
quenceX = (xi,...,xs) of 5 decision variables, with current domains dem = dom(xz) = {e},
dom(xz) = {v}, domxa) = {d, v}, and donfxs) = {d}; whereM = (Q, %, 3, qo,F) is the DFA depicted

in Figure 1; andz is the cost variable. Node S is the source, and node T is the Eirere aréX| +1=6
vertical layers of nodes between S and T, where each layex hade for each state . A node labelled
with stategy € Q in layer j is named},'(, e.g., ¥ denotes the node labelled with state D in layer 2. There
are four kinds of arcs in the flow network: copy arcs (solidsgrsubstitution arcs (purple dashed arcs),
deletion arcs (red dotted arcs), and insertion arcs (grash-dotted arcs). All arcs have capacity 1; each
solid arc has a weight of 0; each non-solid arc has a weight Nbie that the letters for the arcs aret
part of the flow network, but show how the network was conséaic

definition of (van Hoeve et al. 2004, 2006) and revise it in § weat will be useful
in the rest of the paper (but not for our propagator):

— An arc for symbolo € X at positioni is in thecopy arcsetAcopy if it is used when
measuring the edit distance to a word where ldtisra copy ofo (i.e.,i = 0).
Formally, Acopy is made up of three disjoint arc subsets containing theviatig
arcs respectively' the arc from the source S to the start qudevery arc from
nodeqk ‘to nodeq[satisfyingd(gx,t) = q, with some valug € dom(x;); and
every arc from any accepting node to the sink T.

Acopy
{(Sdd)}UUL1{(d) \Htedom(x.) O(ak,t) =y U{(ap,T) |k eF}

Hence, eacintegerflow thatonly passes arcs ifcopy represents a solution to the
hard RecuLar(X, M) constraint.

— An arc for symbolo € X at positioni is in the substitution arcset Agyp, if it
is used when measuring the edit distance to a word where iggesubstituted
by o. Formally, Ay, contains every arc not iAcopy that goes from nodqk 'to
nodeqé satisfyingd(gk,t) = g with some value € X:

Asub—U{ a% |SteZ:o(at) = qe}\Acopy

This definition is different from the one in (van Hoeve et &08) (but the same
as in van Hoeve et al. 2004), where the 0-weight arc&:ijpy are not excluded

Underestimating the Cost of a Soft Constraint is Dangerous: 7

from Agypeven though they are superfluous. Indeed, if a flow passessttstibn
arca thatis a duplicate of an a’ in Acopy, then we can get another flow of the
same maximum value but with a smaller weight by just reptpeinwith o’.
Therefore substitution arcs that are duplicate of arcAc#py cannot belong to
any minimum-weight maximum flow, and we can safely removetfrem Asyp

— An arc for symbolo € > at positioni is in theinsertion arcsetAys if it is used
when measuring the edit distance to a word wherie inserted after position
Formally, Ajrs contains every intra-layer arc from noqbto nodeqié satisfying
d(gk,t) = g, with some valug € :

n
Ans=J {(ald)) | It € =: 3(a.t) = qr}

i=0
This definition is different from the one in (van Hoeve et &08) (but the same
as in van Hoeve et al. 2004), where the self-loops are exdldiden Ajns. A
counterexample is given in Path 1 of Section 5.1, where daeff insertion arc
must be used.

— An arc for symbolo € > at positioni is in thedeletion arcsetAgg if it is used

when measuring the edit distance to a word wheris deleted from positiom
Formally, Age| containseveryarc from nodeg, * to nodeg, (for gk € Q):

Ader = J {(d . 0l) | ok € Q}
i=1

This definition is different from the one in (van Hoeve et &02, 2006), where
the arcs inAcopy are excluded fromge;. A counterexample is given in Path 2 of
Section 5.1, where a deletion arc that has a duplicate capyast be used.

Note that the flow network is domain-specific, as the arc Agjs, andAsy, change
incrementally upon propagation, and that arcs only mova fgypy to Asp, but never
otherwise.

For example, Figure 2 gives the flow network representatfdheoSorTRecuLAR
(X,M,z) constraint for a sequencé = (xy,...,xs) of 5 decision variables, with
current domains dofwy) = dom(xz) = {e}, dom(xp) = {v}, domxs) = {d,v}, and
dom(xs) = {d}, whereM is the DFA depicted in Figure 1.

4 An Example of an Incorrectly Computed Solution

The authors of (van Hoeve et al. 2004, 2006) represent softi@nts with weighted
flow networks, and then introduce a generic propagator basetbmputing flows
(see Algorithm 1 on page 354 of van Hoeve et al. 2006), withptieeondition that
everyintegerflow necessarilyepresents a solution to the constraint and that the value
of a minimum-weight flow isexactlythe cost measure of the constraint. Given a
SorTREGULAR constraint with the unrevised flow network representatib8extion 3,

a propagator that implements the generic propagator baséapological sort with
table lookups is introduced. However, the input flow netwfmkthe propagator is
not suitable, as the flows may pass different numbers oftiosearcs and deletion

8 J. He, P. Flener, J. Pearson, and W.M. Zhang

arcs. The propagator with the unsuitable flow network coeptite minimum edit
distance between any possible assignment afnder the current domains and the
wholeregular language instead of tindetter regular language, and may thus un-
derestimate the cost measure. Now, we usestireRecuLAr(X, M, z) constraint as
an example to show that using a propagator that sometimesestinates the cost
measure has an unwanted consequence, as the propagatouiceyhg search to
incorrect (non-optimal) solutions to an over-constraipeablem.

Consider the following over-constrained probl&mn

— There is a sequence of 5 decision variabfes (xy, ...,Xs), with the initial do-
mains donfx;) = dom(xs) = {e}, domxz) = {v}, dom(x4) = {d, v}, and donfxs)
= {d}.

— There is only one constraint, namelysartRecuLAr(X, M, z) constraint, where
M is the DFA depicted in Figure 1, ardis the cost variable with the initial
domain donfz) = {0,...,2}.

— The problem is over-constrained, hence the objective isnib & solution that
minimisesz.

There are two possible assignmentsfonamelyX := (e, v, e, v, dandX := (e, v, €,
d, d). The minimum edit distance between evevd and the 5-lettgriae language
accepted by (namely{ddddv, ddvdv, ddvev, dvddv, evddlvis 3 (the edit distance
to evddv); the minimal edit distance between evedd and tle¢t&- regular language
is 2 (the edit distance to evddv). Hence the optimal solutdhis X := (e, v, e, d, ¢,
with z= 2.

However when using the propagator of (van Hoeve et al. 200d6Rwith the
unsuitable flow network that may underestimate the edttdie based cost measure,
the non-optimal solutionX := (e, v, e, v, d) is found. Figure 3 shows the difference
of using (denoted by dashed lines) the propagator of (varvéleeal. 2004, 2006)
with the unsuitable flow network and using (denoted by safidd) the propagator
computing the exact cost measure that will be given in Sedito solveP, where
w denotes the edit distance between two given words. The gabpaof (van Hoeve
et al. 2004, 2006) with the unsuitable flow network first finde for each binding.
For the binding := v, a flow of weight 1 is found, namely

copy ‘e’ copy V' copy ‘e’ copy ‘v’ delete ‘d’
SO py gl Py 02 Py E3 py o4 delete d 5+

This flow passes one deletion arc and no insertion arcs, aadures the edit distance
from evevd to the 4-letter word evev accepted\byRecall that evevd is actually at
edit distance 3 (not 1) from the 5-letter language accepietbFor the binding
X4 = d, a flow of weight 2 is found, namely

copy ‘e’ copy V' i ‘o’ copy ‘d’ i v
S oo Py El py 02 substitute ‘d D3 Py D4 substitute ‘v 05 T

This flow passes two substitution arcs, and measures thalisthince from evedd

to the 5-letter word evddv accepted M. As both of the flows have a weight not
larger than max do(z), which is 2, no value of dofx4) is removed; furthermore,

min dom(z) is updated to the minimum weight of the two flows, which is 1xt\e

assume without loss of generality that the CP solver enuer@onixs). For the

Underestimating the Cost of a Soft Constraint is Dangerous: 9

the whole regular the 5-letter regular
language X=<x) X2 X3 X4 X5> language
S R e
. T,
problem TR -
w=2 0<z<2 w=2 evddyv

L
evddyv
objective: minimise z

enumerate l dom(x,)={d,v} l

dom(x,) 1=z=2 I a tree with one node
- P e
W z
= m(x,):=dom =
search Xg=v, L o x=d dom(x,) d20=(;4)\{V} {d}
trees s N
K _ _ — >
I I I I
| 1<z<1 | | failure |
L I L __ |
I
.| . o
solutions an incorrect solution: the correct solution:
X=<e,v,e,v,d> with z=1 X:=<e,v,e,d,d> with z=2

Figure 3 Comparison between two ways of solving the over-constrgimebdlemP: one uses the propag-
ator of (van Hoeve et al. 2004, 2006) with the unsuitable fleiwork, and is denoted by dashed lines; the
other uses the propagator computing the exact cost meastiveilttize given in Section 5, and is denoted
by solid lines. The symbak denotes the edit distance between two given words

bindingxs := v, the same flow of weight 1 is found by the propagator, and atisol,
namelyX := (e, v, e, v, d with z= 1, is found. Thereafter the betterness constraint
z< 1is added by the solver. For the bindirg:= d, no flow of weight less than 1 is
found, hence the value d is removed from dem); since the domain of4 is wiped
out, there is no solution in this branch and the proof of optity is completed.
Hence the CP solver finds an incorrect optimal solution misiimg z, which isX :=

(e, v, e, v, d, with an incorrectly computed= 1.

5 A Correct Propagator for the sorTRecuLar Constraint

The propagator for theorTRecuLAR(X, M, Z) constraint with the unsuitable flow net-
work of (van Hoeve et al. 2004, 2006) may guide the searcictriact (non-optimal)
solutions. Hence one way to fix this problemcisanging the input flow networo
that every flownecessarilyrepresents afX|-letter word of the regular language (as
shown in Section 6.1). However, we preferdoange the propagatso that it com-
putes the cost measure with the unchanged (but revised) #tmork of flows rep-
resenting thevholeregular language, as the space complexity is lower and as our
experimental results in Section 7 show that the new propagairks better in prac-
tice. Hence we now present, prove, analyse, and improve gongpagator for the
SoFTREGULAR CONstraint. Our propagators achieve domain consistentlyeotlecision
variablesX and bounds consistency on the cost variable

10 J. He, P. Flener, J. Pearson, and W.M. Zhang

1
\ copyarc T~ substitutionarc » deletion arc * insertion arc

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4 Subfigure (a) is a DFA (not the same as in Figure 1). Subfiguris thg revised digraph repres-
entation of the BFTREGULAR(X, M, z) constraint for a sequeneée= (xg,..., xs) of 5 decision variables,

with current domains do(m;) = {d}, dom(xz) = {h}, dom(xz) = dom(xs) = {e}, and donfxs) = {Vv};
whereM = (Q, 2, J,qo, F) is the DFA depicted in subfigure (a); amis the cost variable

5.1 Description of the Propagator

Given asortRecuLAR(X, M, z) constraint with|X| = n decision variables and a DFA
M=(Q,%,d,qo0,F), letG be the revised flow network (seen as a digraph now) in Sec-
tion 3 with four arc setsAcopy, Asub, Ains, @ndAge. We introduce a propagator (see
Algorithm 1) for thesorTREGuULAR CONstraint based on dynamic programming, which
is a popular way of designing propagators (e.g., see QuirmpegiWalsh 2006; Ka-
dioglu and Sellmann 2010). Similarly to (van Hoeve et al. 20@086), our propag-
ator computes for each binding a minimum-weight path from $burce S to the
sink T in the digraphG, but it ensures that every computed minimum-weight path
passes the same number of insertion and deletion arcs, hetm@putes the cost
measure, which is the minimum edit distance between anyilpesssignment ok
under the current domains and tidetter regular language.

Note that the revised digraph is necessary for computingiémim-weight path
that passes the same number of insertion and deletion ancex&mple, Figure 4(b)
is the revised digraph representation of g rtRecuLArR(X,M,Zz) constraint for a
sequence&X = (x1,...,xs) of 5 decision variables, with current domains dem =
{d}, dom(xz) = {h}, dom(x3) = dom(xs) = {e}, and dontx4) = {v}; whereM =
(Q,2,0,q0,F) is the DFA depicted in Figure 4(a); azds the cost variable. We can
find the following two minimum-weight paths that pass the samamber of insertion
and deletion arcs: in the first path, a self-loop insertian(aamely ¥ Insert ', D?)
must be used; in the second path, a deletion arc (nam’el&’ﬁm D?) that has a

duplicate copy arc (namelleM D?) must be used.

Underestimating the Cost of a Soft Constraint is Dangerous: 11

o 1 2 3 4 5

J

e v e d d

0 ot 1213|458
fs

1le| 1|0 1]2]3] 4
fy

2 v | 2|t 0 1] 212
fs

3l dja2|1]1]1]2
f2

4,d |4 3|22 1|1
s|vis|alalal2]2alh

i ks ki ks ko Ky 0

Figure 5 The matrixh for computing the edit distanae = 2 between the words evddv and evedd

Path 1: S_s O° %Y o’ D1 SopY i D2 insert ‘h’ D2 oPY ‘e’ 3 copy v ot delete ‘e’
0T

copy ‘d’ delete ‘n’ copy ‘e’ copy 'V’ copy ‘e’ insert ‘v’
Path 2: S— Q0 V4, 1 delete ' o COBY €, 3 COBY V, (ya COPY €, 5 insert v
=T

5.1.1 Computing the Cost Measure

In order to compute the edit distaneebetween the words; anda, of lengthn
(whereay[i] is thei™ letter of the worda, andayi... j] is the subword o#; starting
from thei" letter to thej" letter), Wagner and Fischer (1974) introduced a dynamic
programming algorithm takin@(n?) time by computing ain+1) x (n+ 1) matrixh

row by row as follows:

[if j=0
j ifi=0
hii, j] = hii—1,] — 1] +if ay[i] = ap[j] then 0 elsel,
min hi,j—1]+1, otherwise
hi—1,j]+1

wherehli, j] denotes the edit distance between the subwayfis . .i] anday[1... j],
so thatw = h[n,n] (the value of the cell in the lower-right corner) is the edg-d
tance between the words anday. For example, Figure 5 gives the mathxvhen
computing the edit distanag = 2 between the words evddv and evedd.

Similarly, Algorithm 1 computes a matrig[0..n,0..n, Q] using a dynamic pro-
gramming algorithm (lines 4 to 15). The matixhas one more dimension than
and any celh[i, j] is represented byQ| cells inc (namely{c[i, j,q¢] | dr € Q}), with
cli, j,q¢] denoting the minimum edit distance between any possibligrasent of
(X1,...,%) under the current domains and any wordjofymbols accepted b
from stateqp upon passing transitions to statey. Here only thec]i, j,q,] values

12 J. He, P. Flener, J. Pearson, and W.M. Zhang

Algorithm 1 A propagator computing the cost measune for the
SorTREGULAR(X,M,Z) constraint, with |[X| = n decision variables, a DFA
M =(Q,Z,d,do,F), and the cost variable

1: global variable: G stores the digraph representing theFSREGULAR(X, M, z) constraint

2: global variable: setreacHi in 0..n] stores the set of states@reachable from S in layerf G
3: function propagatofSOFTREGULAR(X,M,z),G)

4:intcfiin 0..n,jin 0.n,q; in Q] <—n

5: c[iin 0..n,0,0qo] < i; €[0, j in 1..n,qy in reachj]] + |

6

7

8

: forall i < 1tondo
forall j«1ltondo
for all arc(q) *,q!) € Acopy Such thaty € reachj — 1] do

9: C[ivjvqé] e‘minv(c[i—l.,j—1,qk],c[i7j7q/])

10: for all arc(q) *,q!) € Asubsuch thaty € reachj — 1] do
11 cfi, j,de] <~ min(cfi— 1, j — L a¢] + 1,cfi, j,q])

12: for all arc(q) *,q) ") € Ans Such thaty € reachj — 1] do
13: cli, j,de] <= min(cfi, j — 1,q¢] + 1,¢[i, j, q])

14: for all arc(q) *,q}) € Ager such thaty, ¢ reach{j] do

15: C[i,j,qg}emin(c[i71,j,q[]+1,c[i,j,qd)

16: int u <+ min{c[n,n,q] | q; € F Nreachn|}
17: if u> min dom(z) then

18: min donfz) < u

19: if u> max don{z) then

20: return fail

21: else ifu+1 < max don{z) then

22: return succeed

23: boolrfiin 0..n, j in 0..n,q; in Q] + false
24: for all stateq, € F Nreachn| do

25: if ¢[n,n,q/] = uthen

26: r[n,n,q] < true

27: setgliin 1.nj <0

28: forall i + nto1do

29: forall j<ntoldo

30: for all arc(q) *,q)) € Acopy Such thaty € reachj — 1] do
31: if rfi,j,q/ andcli, j,q/] =cli—1,j —1,qy] then

32: rli—1,j— 1,04 « true; sfi] « sfij U {the value labelled on the grc
33: for all arc(q) *,q!) € Asubsuch thaty € reachj — 1] do
34: if rfi,j,q/ andci,j,q/] =cli—1,j—1,q¢+1then

35: rli—1,j—1,q¢] < true; sfi] + dom(x;)

36: for all arc(q) *,q) ") € Ains such thaty € reach{j — 1] do
37: if rfi, j,q, andcli, j,q/] =cli,j — 1,q¢] + 1 then

38: rfi,j— 1,04 < true

39: for all arc(q}’l,qj) € Agel such thaty, € reacHj] do

40: if rfi,j,q¢ andcli, j,q/] =cli—1,]j,q/]+1then

41: rli—1,j,q < true; gi] < dom(x;)

42: forall i < 1tondo
43: dom(x) < di]
44: return succeed

with g, € reach(j] are interesting, as there is no word jofymbols accepted byl
from qo passingj transitions tog, for any g, ¢ reachj], hencec is a sparse matrix
unlike h. The global variableeacH0..n] is a vector of sets of states, withachi]
denoting the set of states & labelled on the nodes in layérof G that can be
reached from the start stadg throughi transitions ofM. For example, in Figure 2,

Underestimating the Cost of a Soft Constraint is Dangerous: 13

Algorithm 2 Computing the vectoreachfor the sortRecuLArR(X, M, z) constraint,
with |X| = n decision variables, a DFM = (Q, X, 4, 0o, F), and the cost variable

1: global variable: G stores the digraph representing theFSREGULAR(X, M, z) constraint

2: global variable: setreachi in 0..n] stores the set of states@reachable from S in layérof G

3: procedure compreach’M)

4: reach0] + {qo}

5: forall i <~ 1tondo

6: reachi]«+ 0

7: for all stategy € reachi — 1] do

8: for all transitiond(g, V) = g, do

9: reacH|i] < reacHi] U {q,}

reacHO] = {O}, reach1] = {D, E}, andreach2] = - -- = reach5] = {O, D, E}. The

vectorreachonly needs to be computed once before the first call of theguator,
by exploring at mosh times all transitions oM (as shown in Algorithm 2), and it
never changes during propagation and search. First, thiéxmad created and initial-
ised (line 4), and then each cell ofs computed similarly td (lines 5 to 15). Note
that, for any word in thex-letter regular language, the DR recognises the word
as a sequence of+ 1 states inQ, hence the minimum edit distancebetween any
possible assignment &f under the current domains and tidetter regular language
accepted by, is assigned the minimum among ttfe, n,g,] with g, € reacHnjNF
(line 16).

5.1.2 Removing Inconsistent Values

Considering a binding; :=t for a decision variable; (with 1 <i < n) and a value
t € dom(x), we say that a path from the source S to the sink misimum-weight-
related with the bindingf the following conditions are satisfied:

— The path passes the same number of insertion and deletioreauet thus repres-
ents a word in the-letter regular language acceptedMy

— The path passes an arc representing the binding.

— The path has a weight that is the minimum edit distance betwag assignment
to X (with x; :=t) and then-letter regular language acceptedMy

Lemma 1 The SortRecuULAR(X, M, Z) constraint is domain consistent on X (and is
bounds consistent on z) if and only if

1. For every binding, a minimum-weight-related path has &htenot larger than
max donfz).
2. The minimum weight of all such paths is not larger than noim@).

Proof: The result follows from the theorem on domain consistencysfaft con-
straints (Theorem 2 on page 354 of van Hoeve et al. 2006). O

Note that for a soft constraint, the objective is to minimtseost, hence only the
lower bound on the cost is considered.

Revisit the example in Figure 2, where the minimum edit distabetween any
possible assignment of under the current domains and the 5-letter regular language

14 J. He, P. Flener, J. Pearson, and W.M. Zhang

accepted b is 2. We find that every minimum-weight-related path for gJgind-
ing has a weight of either 2 or21 = 3. For example, the minimum-weight-related
path forx,4 := d, namely

copy ‘e’ copy V' substitute ‘d’ copy ‘d’ substitute ‘v’

has a weight of 2; and the minimum-weight-related pathdae v, namely

S, OO copy ‘e’ El copy V' 02 substitute ‘d’ D3 substitute ‘d’ D4 substitute ‘v’ 05 T

)

has a weight of 3. We have the following lemma:

Lemma 2 Given the minimum edit distance u between any possibleransigt of X
under the current domains and the n-letter regular languageepted by M, every
minimum-weight-related path for every binding has a wedagtdither u or - 1.

Proof: There exist a wordks, ..., k,) in then-letter regular language acceptedMy
and an assignmett := (ay,...,an) (with & € dom(x)), such that the edit distance
between(ki,...,ky) and{ay,...,a) is exactlyu. Give any bindings :=t (with t €
dom(x)), if t = g then the edit distance betweéq, ... k) and(a,...,a_1,t,811,
...,an) is exactlyu; otherwise the edit distance is at mast 1 by substituting
with g first. a

Similarly to the propagator for theorrGCcC constraint (Zanarini et al. 2006), us-
ing Lemmas 1 and 2, Algorithm 1 removes inconsistent valifesetessary) from
the domains for achieving domain consistency>ofand bounds consistency ap
for the sortRecuLAR(X, M, Z) constraint (lines 17 to 43), after computing the cost
measureal. If u > min dom(z), then min don(z) is updated tai (lines 17 and 18)
so that the second condition in Lemma 1 is satisfiedi ¥ max don{iz), then by
Lemma 2 we have that for every binding, every minimum-weigiated path has a
weight (eitheru or u+ 1) larger than max dofa), hence all values oX are incon-
sistent (lines 19 and 20); elseuft 1 < max don{z), then by Lemma 2 we have that
for every binding, all minimum-weight-related paths havergight not larger than
max don{z), and all values oK are domain consistent (lines 21 and 22); otherwise
u = max don{z), a vectors of n sets is computed by tracing paths of weightack-
wards (lines 23 to 41) such thdli] (for 1 <i < n) stores all values in do(w;) that
have minimum-weight-related paths of weightind all values not ig[i] are removed
from dom(x) (lines 42 and 43; by Lemma 2, they all have minimum-weigHe:esl
paths of weighti+ 1, which is larger than max daf = u). The matrixr is used to
trace paths of weight backwards, withr|i, j,g] = true (or false) denoting whether
cli, j,q] is (or not) a support to obtain the minimum weight

5.2 Correctness of the Propagator
Lemma 3 Each element |t j,q,] with gy € reaclj] is the minimum edit distance

between any possible assignmentxaf ..., x;) under the current domains and any
word of j symbols accepted by M frorg passing j transitions to g

Underestimating the Cost of a Soft Constraint is Dangerous: 15

Proof: (1) c[i,0,qp] is the minimum edit distance between any possible assighofien
(x1,...,%) and the empty path, thusiiby i deletionsg|0, j, /] with q, € reachj] is
the minimum edit distance between the empty sequence ang@ndyof j symbols,
thus isj by j insertions (line 5).

(2) For any(0,0) <jex (io, jo) <iex (i,]) <iex (n,n), and any stat@o < reachjo|,
the induction hypothesis is théio, jo, po] is the minimum edit distance between any
possible assignment dky,...,x,) and any word ofjo symbols fromgg to po. For
anyqy € reach{j], we prove thatli, j,q] is the minimum edit distance between any
possible assignment dks,...,X) and any word ofj symbols fromqp to q,. The
following four cases must hold:

1. Ifthereis acopy ar(qﬂfl, q}) € Acopy such thaty, € reach j — 1], thencli, j,q/] =
cfi—1,j—1,a«, as this arc has a weight of zero (no edit operation). Thezefe
haveci, j,q/] = min{c[i — 1,j — 1,a] | (q} *,a}) € Acopy A G € reactj — 1]}
(lines 8 and 9). The conditiog € reacHj — 1] is crucial: if gx ¢ reacHj — 1],
then we cannot computi, j,q,] from c[i — 1, j — 1,0k, as there is no word of
j — 1 symbols accepted byl from gp passingj — 1 transitions tagy; note that
gk € reacHj — 1] also impliesy, € reach j], so thatc[i — 1, j — 1, qx] andci, j, q¢]
are well-defined. _ _

2. If there is a substitution ar@) *,q!) € Asyb Such thatgy € reacHj — 1], then
cli,j,q] =cfi—1,j—1,0¢+1, as this arc has a weight of one (one substitution).
Therefore we haveli, j, q/] = min{cfi — 1, j — 1, + 1| (g, ", q}) € Asub A Gk €
reachj—1]} (lines 10 and 11). The conditiap € reach j — 1] is crucial similarly
to case 1.)

3. If there is an insertion ar@qkjfl,qé_l) in Aj,s such thaigy € reachj — 1], then
cli,j,q] = cli,j — L,a + 1, as this arc has a weight of one (one insertion).
Therefore we haveli, j,q/] = min{cfi, j — 1,a +1| (g} g} ") € Ans A Gk €
reachj— 1]} (lines 12 and 13). The conditiap € reach j — 1] is crucial similarly
to case 1.))

4. There is always a deletion a(rq[l,qé) in Age for every q € Q, soc]i, j,q/] =
cli—1,j,q/]+1, as such an arc has a weight of one (one deletion). Thenefre
havecli, j,q¢] = min{c[i — 1, j,q,]+ 1| q; € reacl{j]} (lines 14 and 15). The con-
dition g, € reach{j] is crucial so that[i — 1, j,q,] andc]i, j, q,] are well-defined.

Hencecli, j,q,] with g, € reacHtj] is the minimum among the four cases, which is the
same as computed by the method. By complete induction, wehfthe proof. 0O

Lemma 4 The value of u computed by Algorithm 1 is the minimum editdcs
between any possible assignmentxf...,x,) under the current domains and the
n-letter regular language accepted by M.

Proof: From Lemma 3, we know thafn, n, g] is the minimum edit distance between
any possible assignment @fy,...,x,) and any word oh symbols accepted byl
from gp passingn transitions tog,. So if g, € reachin|NF, then the sequence of
n values labelled on tha transitions of such a path is a word of lengttaccepted
by M. Henceu is the minimum edit distance between any possible assighofen
(x1,...,%n) and then-letter regular language accepted¥yline 16). O

16 J. He, P. Flener, J. Pearson, and W.M. Zhang

Lemma 5 Algorithm 1 computes all bindings that have minimum-weigldted paths
of weight u.

Proof: Consider the following four cases, wheweis the minimum edit distance
between any possible assignment(xf,...,X,) under the current domains and the
n-letter regular language acceptedMy

1. Assume a path of weight passes a copy arc (line 31), and the arc is labelled
with t. The path is a minimum-weight path related with the binding=t, hence
the valuet is added tai] (line 32).

2. Assume a path of weightpasses a substitution arc (line 34). We know there is
an assignmerd, namelyX := (Vi,...,V;), such that the edit distance between
a and the word represented by the pathu.is-or any valug € dom(x;), we can
get an assignmerd, namely(Vi,...,Vi_1,t,Viy1,...,Vn), and the edit distance
betweena’ and the word represented by the path is alfas the arc denotes a
substitution operation o¥: replacingV; by t cannot increase the edit distance,
and the edit distance cannot be larger thaasu is the minimum weight, the edit
distance cannot be less tharalso). Hence for any valuec dom(x;), the path
is a minimum-weight path related with :=t, ands|i] is assigned dofx;) (any
value in donfx;) is domain consistent) (line 35).

3. Assume a path of weightpasses an insertion arc (line 37). As an insertion arc
is not an edit operation related with the bindinggtono value is added tgfi] (no
related path is found; line 38).

4. Assume a path of weiglitpasses a deletion arc (line 40). Similarly to case 2, for
any valuet € dom(x;), the path is a minimum-weight path related wi¢h=t,
ands]i] is assigned dofx;) (any value in dorfx;) is domain consistent) (line 41).

Hence Algorithm 1 correctly computes all bindings that henieimum weight re-
lated paths of weight. O

Theorem 1 Algorithm 1 computes the cost measure and achieves domasisto
ency on X and bounds consistency on z forsheRecuLar(X, M, z) constraint.

Proof: The result follows from Lemmas 1, 2, 4, and 5. O

5.3 Complexity of the Propagator

To establish the time complexity of Algorithm 1, note thaé thectorreach only
needs to be computed once, by exploring at nmosimes all transitions oM (as
shown in Algorithm 2) inO(n- |3|) time, wherg 8| denotes the number of transitions
of M. The initialisation of the matrix takesO(n+n-|Q|) = O(n-|Q|) time. For any
1<i,j <n, the setof all elementi, j, ;] with g, € reacH j] can be computed (upon
using distributive laws) by exploringnceeach arc imcopyU AsupJ Ains U Adel (Which
can haveO(|d| + |Q|) arcs: Acopy hasO(|d]) arcs,Asyp hasO(|d]) arcs, Ains has
O(|9]) arcs, andAqe| has®(|Q|) arcs), inO(|d| + |Q|) time total. Hence computing
the matrixc takesO(n? - (|8 +|Q|)) time in total, and the same holds for tracing
all minimum-weight paths backwards. ComputimgakesO(|Q|) time by querying

Underestimating the Cost of a Soft Constraint is Dangerous: 17

O(|Q|) elements ot. As |d| =|Q|-|Z| > |Q|, the overall complexity of the algorithm

isO(n- 8] +n-|Q|+n2- (|8 +|Q|) +|Q|) = O(n?-|3|) time, which is%fq times
more expensive than the propagator of (van Hoeve et al. 20@8), which however
may guide the search to incorrect (non-optimal) solutioiits &n unsuitable flow
network.

In (van Hoeve et al. 2006) (on page 369), it is assumed|®jaE n. However
in the worst case, we hay®| = ||, asM is at most a complete tree of depth
where each state ha5| transitions.

Considering space complexity, Algorithm 1 takéén-|Q| +n- (|Q|+19])) =
O(n-|d]) space to store the nodes and arcs in the dig@gas there ar®©(n- |Q|)
nodes an®(n- (|Q| +d])) arcs inG, and|d| = |Q| - |Z| > |Q|); it takesO(r? - |Q|)
space for the matricesandr, andO(n- |Q|) space for the vectarach in addition, it
takesO(n- |Z|) space for the vect®: Hence Algorithm 1 take®(n- 5| 4 n?- Q| +
n-|Q|+n-|Z|) =O(n-|d| +n?-|Q|) space in total, a®| = |Q| - |Z| > |Z|.

5.4 Reuvisiting the Example of Section 4

Given the same over-constrained problem as in Section 4, adBfer using the
propagator of Algorithm 1 will find the correct optimal sdbrt to the problem.
The propagator first computes the minimum edit distanbetween all possible as-
signments (hamelX := (e, v, e, v, d andX := (e, v, e, d, d) and the 5-letter reg-
ular language (namelyddddyv, ddvdv, ddvev, dvddv, evd#ly which is 2 here. As
u > min dom(z), we have that do(z) is updated to{2}. As u = max don{z), the
propagator traces all related minimum weight paths of waidiackwards, and finds
two flows, namely

S OO copy ‘e’ El copy ‘v’ 02 substitute ‘d’ D3 copy ‘d’ D4 substitute ‘v’ 05 N

(assigns dortxs) = {d} to s[5], inserts{d} into s[4], assigns doifxs) = {e} to 5[3],
inserts{v} into s[2], and insertge} into s[1]) and

S 0° copy ‘e’ El copy V' 02 delete ‘e’ o3 copy ‘d’ D copy ‘d’ D5 insertion ‘v’ 05T

(inserts{d} into s[5], inserts{d} into s[4], assigns dorfxs) = {e} to s3], inserts
{v} into §[2], and inserts{e} into §[1]). Hences[1] = {e}, 5[2] = {v}, 53] = {€},
s[4] = {d}, andg[5] = {d}. As v ¢ s[4], the value v is removed from ddmy). The
domains of each decision variable and the cost variabtstain only one value, and
the correct optimal solution (also the unique solutionynely X := (e, v, e, d, d
with z= 2, is found.

5.5 An Improved Propagator
Ukkonen (1985) observed that the dynamic programming afgorof (Wagner and

Fischer 1974), which computes the edit distance betweemtwds, is often not ef-
ficient in practice, as it often evaluates unnecessary satfiehe matrixh. Revisit

18 J. He, P. Flener, J. Pearson, and W.M. Zhang

the example in Figure 5, which gives the mathixor computing the edit distance
between the words evddv and evedd of length 5. Each cell on the diagony
(or fj) has a value larger than or equalitas it is computed by operating at least
i insertions (or deletions). If a cell on the diagoka(or f;) is a support to obtain the
edit distancew, i.e., if there exists a path from this cell to the cell in tbevér-right
corner to compute the edit distanae then this path passes at least anothdele-
tions (or insertions), and henee= h[n,n] > 2-i. Therefore only the sequendg, of
diagonals (hamel@,, = {kLgJ ..., k1,0, f1..., fL"?VJ}’ see Figure 7) is necessary for
computing the edit distanae. Recall that each cefifi, j] (with i, j > 1) is computed
from three adjacent cells (nametyi — 1, j — 1], h[i, j — 1], andh[i — 1, j]). If hi, j]
is on the first or last diagonal @, thenh[i, j — 1] or h[i — 1, j] may be an unneces-
sary cell (we call a cell outsid#y,, an unnecessary cell), and its value is not computed.
Whenever an unnecessary cell is queried, we just assumeltieeofahis cell to bewo
(as this cell is not a support to obtain the edit distanf:eFor example, in Figure 7,
h(2,1] = min{h[1,0]+1,h[2,0]+1,h[1,1] + 1} = min{1+1,04+1,0+1} =1, as
h[2,0] is an unnecessary cell.

Based on the observation above, an improved dynamic progiagnalgorithm
taking O(w - n) time is introduced in (Ukkonen 1985). Initially, the impeay al-
gorithm assumes the edit distancew's= 1 and computes the edit distance using

the sequencd,, of diagonals (namelf,, = |Kj s |,---,k1,0, f1,..., f; /|, which
z z

is [0] here). If the computed edit distaneeis larger thanw/, then the algorithm
doubles the value of/ and recomputew with the enlarged sequengg, of diagon-
als. This process repeats untilis not larger thaw'. The improved algorithm runs
for [log,w] + 1 iterations and computes+12'~* (or 1) diagonals in iterationwith

i > 1 (ori=1), where each diagonal has at mastells. Hence the overall time
complexity of the improved algorithm is

[log, w]+1 .
<1+ ; (1+ 2'1)> n=(2-w+ [log,w] —1)-n= O(w-n)

and the worst-case time complexity@¢n?), sincew < n.

For example, the improved dynamic programming algorithmpates the edit
distancew between the words evedd and evddv as follows. Initiallysuasesv = 1
and the matrihis computed as in Figure 6. A= h[5,5] =2> 1=w, itdoublesw’.
Now we havev = 2 and the matrixiis computed as in Figure 7. Ag=h[5,5| =2 <
w, the algorithm terminates and returns the edit distamee2 between the words
evedd and evddv after computing-§5+ 6+ 5) = 22 cells of the matrih (instead
of computing all 36 cells ofi as in Figure 5 when using the algorithm of Wagner and
Fischer 1974).

Similarly to the algorithm of (Ukkonen 1985), the propagadd Algorithm 3
computes the cost measure and achieves domain consisteXcfand bounds con-
sistency onz) for the sortRecuLAR(X, M, 2) constraint inO(min(u,max don{z)) -
n-|5|) time with O(n-|5| +n?-|Q|) space, where is the minimum edit distance
between any possible assignmentxyf, ..., x,) under the current domains and the
letter regular language acceptedMyAlthough the space complexity of Algorithm 3

Underestimating the Cost of a Soft Constraint is Dangerous: 19

0 1 2 4 0 1 2 4
J J
e v e e Y e d
0 Q 0 Q 1
11 e Q 11 e 1 Q 1
2| v Q 2| v 1 Q 1
3| d 1 3| d 1 1 1
4| d 1 4| d 2 1]
5| v 2 5| v 2| 2 fi
i 0 i kq 0
Figure 6 The matrixh for computing the edit Figure 7 The matrixh for computing the edit
distancew = 2 between the words evddv and distancew = 2 between the words evddv and
evedd withi = 1 andw’ = 1 evedd withi = 2 andw’ =2

Algorithm 3 An improved propagator computing the cost measuréor the
SorTREGULAR(X,M,Z) constraint, with|X| = n decision variables, a DFAM =
(Q,Z,0,q0,F), and the cost variable

1: lines 1 to 2 of Algorithm 1

2: function propagatorimproved SOFTREGULAR(X,M,z),G)
3: lines 4 to 5 of Algorithm 1
4:intu

5 intu « 1
6

7

8

9

. repeat

forall i < 1tondo

forall j « max(1,i— %) tomin(n,i + %) do

: lines 8 to 15 of Algorithm 1
10: u<min{c[n,n,q/] | g, € F Nreachn]}
11: v +2-J
12: until (u< ”7') or (u> max don{z))
13: lines 16 to 27 of Algorithm 1
14: forall i <~ nto 1do
15: forall j« min(n,i+ “7/) to max(1,i — %’) do
16: lines 30 to 41 of Algorithm 1
17: lines 42 to 44 of Algorithm 1

is the same as the one of Algorithm 1, the asymptotic time dexity of Algorithm 3
is always at least as good as the one of Algorithm (&), but significantly better
whenu is small. Indeed, our experimental results in Section 7 sthawAlgorithm 3
works much better than Algorithm 1 in practice.

6 Other Propagators

Given asorTRecULAR(X, M,) constraint with X| = n decision variables and the DFA
M =(Q, Z,9d,q0,F), we introduce and analyse two other correct propagatorsrte c
pute the cost measure and achieve domain consistenéy(amnd bounds consistency
on 2) for the sortRecuLAR(X, M,) constraint.

20 J. He, P. Flener, J. Pearson, and W.M. Zhang

We can also use the propagator for th@ i CostReGuULAR CONStraint (Menana and
Demassey 2009) with two cost variableandz, wherez; with dom(z;) = {0} de-
notes the number of insertion arcs minus the number of delatics in each flow of
the flow network constructed froi with the revisions we indicated in Section 3, to
compute the cost measure and achieve domain consisten¢yam bounds consist-
ency onz). However there is no published time and space complexithie@propag-
ator for themuLtiCosTREGULAR cOnstraint, hence we cannot compare asymptotically.

6.1 Making Every Flow Represent a Word of Length

Given a flow network with every flomecessarilypassing the same number of de-
letion and insertion arcs, the propagator of (van Hoeve .e2@04, 2006) for the
SorTREGULAR(X, M, 2) constraint correctly computes the edit-distance basetdees-
ure, as the precondition of the generic propagator of (vaeveet al. 2004, 2006)
is now satisfied. We can construct such a flow network as falldinst compute the
minimised intersection dfl with the DFA accepting", which will give a DFAM’
that only accepts words of lengthaccepted by; and then construct a flow network
from M’ according to Section 3 (with or without the revisions we aaded).

The time complexity of the propagator is established in taxdg The first part of
the propagator computes the smallest distance fijpto g, for every pair of states
q, andg; of M’. This can be done i®(|Q'| - |8'|) time through breadth-first search
from every state oM’, where|Q'| = O(n-|QJ) is the number of states iM’, and
|0'| = O(n-|d|) is the number of transitions i’

The second part of the propagator computes shortest paiinstifie source S to
the sink T of the flow network through topological sort wittbl@ lookups, taking
O(n-|d'|) time. However we cannot match thi¥n- |d'|) time complexity for our
implementation, which take@(\Q’\Z) time to deal with the insertion arcs on one
layer by querying the smallest distance frognto g, for all pairs of statesy, and
q, of M. Hence our implementation of the propagator tais - (IQ)P+19) =
O(n3-|Q|?+n?-|3]|) time to compute shortest paths from the source S to the sink T,
with O(n- |Q'|?) time for insertion arcs an®(n- |&'|) time for the other arcs.

Therefore, the overall time complexity@®|Q'| - |&'| +n- (|Q/|*+|5'|)) = O(n?-

Q- 8] 4+ n3- |Q[?), which is more expensive than the worst caxe? - |3|) of Al-
gorithm 3.

Considering that the DFM’ is necessarily acyclic, we can improve our imple-
mentation of the propagator by skipping the first part anahghray the second part to
use topological somwithouttable lookups. Hence our improvement of this propagator
takesO(n-|&'|) = O(n?-|d|) time, which is the same as the worst case of Algorithm 3.
However our experimental results in Section 7 show that Aflgm 3 works better in
practice.

The propagator take®(n- (|&'| +|Q'|)) space to store the flow network con-
structed fromM’, where|Q'| = O(n- |Q]) is the number of states iM’, with O(n-
|0'|) space for arcs an®(n- |Q'|) for nodes. Hence the overall space complexity is

Underestimating the Cost of a Soft Constraint is Dangerous: 21

o(r? - (|8] + |Q|)), which is more expensive than ti@(n-|J| +n?.|Q|) space of
Algorithm 3.

6.2 Using theweicHTEDGRAMMAR CoONStraint

Katsirelos et al. (2008, 2011) present a method of encodiagtit-distance based
SOFTGRAMMAR CONstraint into theveicHTEDGRAMMAR CONStraint, and give a propagator
for the weicHTEDGRAMMAR cCONStraint based on the Cocke-Younger-Kasami (CYK)
parser. Given an edit-distance basedrRecuLar(X, M, z) constraint (withM = (Q,
2,0,q0,F) and|X| = n), we can use the propagator for the&icHTEDGRAMMAR CON-
straint to compute the edit-distance based cost measuradneve domain con-
sistency onX (and bounds consistency @pfor the SortRecuLAr constraint as fol-
lows: first, we construct a DFM’ (with M" = (Q', Z,d',q;, F')) that only accepts
words of lengthn accepted by in the same way as in Section 6.1; second, we en-
code every transition od’ into a zero-weight production of a grammar; third, we
add unit-weight productions into the grammar to simulatessitution, insertion, and
deletion operations (as in Katsirelos et al. 2008, 20119, the resulting weighted
grammar has a size @(|d’|); finally, we use the CYK-based propagator on the
obtainedweicHTEDGRAMMAR CONStraint. As the obtained weighted grammar is neces-
sarily linear, the CYK-based propagator ugés?- |6'|) = O(n3-|5]) time and space,
as|d’| = O(n-|d]) (Katsirelos et al. 2009), which istimes more expensive (in both
time and space) than the worst ca@@? - |8|) of Algorithm 3. Our experimental
results in Section 7 confirm that Algorithm 3 works much beittepractice.

Note that it isnecessaryo use the DFAM’ (and notM) to generate the input
grammar. If we use the DFM, then the obtained grammar accepts words of the
wholeregular language instead of thdetter regular language &, and the CYK-
based propagator with such an unsuitable grammar may thdesestimate the cost
measure. A counterexample is given in Appendix A.

7 Experimental Evaluation

We now investigate experimentally the efficiency of Algbnit 3 by comparing it
to Algorithm 1 and the two propagators in Sections 6.1 and W/ implemented
all these propagators for the CP back-end afMET (Van Hentenryck and Michel
2005). We did two experiments, where each model containsstwerecuLAr CON-
straints sharing the variablésbut each constraint has its own cost variable, and the
objective is to find a solution that minimises the sum of the twst variables. All
experiments use the same search heuristic, which usesdhé&tfirprinciple first on
the two cost variables and then on the decision variakled/e need not try other
branching heuristics, as thatasthogonalto our purpose of giving a fair comparison
of the four propagators. All experiments were run undemeT (version 2.1.1) and
Suse Linux 11.3 on a 3.07 GHz Intel Core i7 with a 3GB RAM.

The first experiment uses the two small DFAs in Figure 8: ortl ®istates and
4 transitions, and the other with 6 states and 7 transitibhs. initial domains for

22 J. He, P. Flener, J. Pearson, and W.M. Zhang

|
OENONT RN

Figure 8 Two DFAs used in the first experiment

n obj | Algorithm 3 | Algorithm 1 | Section 6.1| Section 6.2| #branch #propag #fail \
12 6 0.6 1.7 2.2 16.5 538 3,489 1,522
16 8 31.0 90.4 115.9 1,190.6 | 16,289 105,097 46,462
20 | 10 1,401.6 4,390.5 5,416.3 74,644.0| 517,364 | 3,342,003| 1,477,278

Table 1 Results for the experiment with two small DFAs, where each ralicategX| = n, the computed
objective value, the runtime (in seconds) of the four propmgathe number of branchings, the number of
propagations, and the number of failures

all variables ofX are the same, namel{d, e, }, and the initial domains for the
two cost variables are the same, namgy. .., |X|}. In Table 1, each row indicates
|X| = n, the computed objective value (the minimum sum of the twa easables),
the runtime (in seconds) of the four propagators, the nurobleranchings, the num-
ber of propagations, and the number of failures. Note thatdich of the four columns
obj, #branch, #propag, and #fail, all four propagators ssaely have the same val-
ues. From Table 1, we observe that: Algorithm 3 has the besitme among the four
propagators, and is even about 3 times faster than the séastgropagator (Al-
gorithm 1); the propagator in Section 6.2 has the worst noatias it is the only one
with anO(n?) time complexity, while the other three have@m?) time complexity;
Algorithm 1 and the propagator in Section 6.1 have closemed, but Algorithm 1
is about 15 times faster. In this experiment, the computed objectalaerincreases
linearly with n, but the runtime of all propagators increases super-lipedth n.

The second experiment uses the two large DFAs from case 1Sas®l16 of
(Beldiceanu et al. 2013), which are used to model a nursedstihg problem. In
case 15, the DFA has 1,115 states and 2,272 transitions;sa 18, the DFA has
1,309 states and 3,698 transitions. The initial domainsflorariables ofX are the
same, namely1,2,3,4}, and the initial domains for the two cost variables are the
same, namely{0,...,|X]|}. Table 2 gives the results for the second experiment. We
observe that: the minimum sum of the two cost variables i@ in this exper-
iment, hence it is a test where the computed minimum ediadégtu during each
propagation takes small values; Algorithm 3 is the best antba four propagators,
and is already 13 times faster than the second-best prapaddgorithm 1) when
n = 28; the runtime of Algorithm 3 only increases a little whelincreases, as its
complexity is bounded by an expressionwrand the comparisons of the other three
propagators are the same as for Table 1.

Underestimating the Cost of a Soft Constraint is Dangerous: 23

n obj | Algorithm 3 | Algorithm 1 | Section 6.1| Section 6.2 #branch| #propag | #fail \
12 0 1.7 1.8 2.4 7.8 14 13 0
16 0 25 4.2 5.1 91.9 18 33 2
20 0 2.0 7.6 10.9 406.9 22 41 2
24 0 25 19.2 26.3 1,334.3 26 61 4
28 0 2.9 39.4 54.2 3,180.3 30 81 6

Table 2 Results for the experiment with two large DFAs, where eachindicates X| = n, the computed
objective value, the runtime (in seconds) of the four propmgathe number of branchings, the number of
propagations, and the number of failures

8 Constraint-Based Local Search

Constraint-based local search (CBLS, e.g., Van HenterapckMichel 2005) is the
local search approach to CP. In CBLS, constraints are usdddgoribe and control
local search. Given an initial assignment of values to @lvhriables, CBLS tries to
find a better assignment that decreases the amount of dohsicdation, by explor-
ing a neighbourhood of the current assignment, that is & sessgnments that do not
differ much from the current one. An assignment with zeroni@mimum) violation
is to be found. Meta-heuristics are used to escape locahmaini

In (Pralong 2007; He et al. 2011), two Hamming-distance thassation meas-
ures of therecuLAr constraint for CBLS have been introduced. However ther@is n
work on an edit-distance basedcuLar constraint for CBLS, as far as we know. In-
terestingly, our method can also be used for the edit-distd@sedrecuLar(X, M)
constraint for CBLS. Given the current assignmanto the n decision variables
X = {x1,...,%), the flow networkG can be constructed by setting the domain of
each decision variabbe to a singleton, namely dofr) = {a(x) }, wherea(x;) is the
value assigned tg undera. Given asortRecuLAR(X, M, z) constraint, in Algorithm 1
the variableu is computed as the minimum edit distance between the cudoenins
of X and then-letter regular language accepted by the DAthusu can be taken as
the edit-distance based constraint violation measuree&aLar(X, M) constraint in
CBLS.

9 Conclusion

We have used the edit-distance basegrRecuLar constraint as an example to show
that a propagator that sometimes underestimates the castinegfor a soft constraint
may guide the search to incorrect (non-optimal) solutiangn over-constrained
problem. We have presented a propagator and an improvetbvahsat correctly
compute the cost measure for theTRecuLAR constraint, and favourably compared
theoretically and experimentally our propagators with twtber propagators. We
have shown that our method can also be adapted for the wiolatieasure of the
edit-distance baserEcuLar constraint for constraint-based local search.

Future work includes using the idea of (Ukkonen 1985) to mmprpropagators
that are based on dynamic programming for other constraints

24 J. He, P. Flener, J. Pearson, and W.M. Zhang

Acknowledgements The authors are supported by grants 2007-6445 and 201165188 Swedish Re-
search Council (VR), and Jun He is also supported by grar-Ba0010 of China Scholarship Council
and the National University of Defence Technology of Chiany thanks to George Katsirelos for some
useful discussions on Section 6.2, to Louis-Martin Rous$eesome useful discussions on Section 4, and
to the anonymous referees of this paper for their helpful contsnen

Appendix A: An Example of Encoding the SorTREcuLAR Constraint Incorrectly

Given an edit-distance base®SrTREGULAR(X, M, z) constraint withM = (Q, Z,d,qo,F) and|X| =n,
we give an example to show that the CYK-based propagator ®MWHIGHTEDGRAMMAR constraint
of (Katsirelos et al. 2008, 2011) with a weighted grammar aolet&ifromM may underestimate the edit-
distance based cost measure, as the grammar accepts wordsvdidlesegular language instead of
the n-letter regular language &fl. Hence we cannot use the weighted grammar obtained Kowhen
encoding the SFTREGULAR(X, M, z) constraint with the VEIGHTEDGRAMMAR constraint.

The DFAM in Figure 1 can be converted into the following context-frgammar (CFG) @ by
encoding every transition &l into a linear production, where O is the start symbol:

Gy: O—~dD|eE|¢€
D —dD|vO
E —vO

The CFG G can be converted into the following Chomsky normal form (CNE) G

Gy: O —»Y4D|YeE
D —-Y4qD|Y\,O|v
E -VY,O|v
Yq —d
Ye v €
Yy =V

The WEIGHTEDGRAMMAR constraint can be used to encode the edit-distance baspUGRAMMAR
constraint (Katsirelos et al. 2008, 2011). Given the CN#F e following weighted productions will be
added to simulate substitution, insertion, and deletionaijmns:

substitution productions : & — e| v, with weight 1

Ye — d| v, with weight 1
Yy —d| e, with weight 1

insertion productions : Y — €, with weight 1
Ye — €, with weight 1
Yy — €, with weight 1
D — &, with weight 1
E — g, with weight 1

deletion productions: O— HO | OH, with weight O
D — HD | DH, with weight O
E — HE | EH, with weight O
Y4 — HYq4 | YgH, with weight O
Ye — HYe | YeH, with weight O
Yv — HYy | YyH, with weight O
H —d]e]v, with weight 1

Underestimating the Cost of a Soft Constraint is Dangerous: 25

T H 1 Node introduced by deletion productions

EEER

Nodes introduced by insertion productions

G% © QW Qo j o

-0 E-E

@é) @

Figure 9 A minimum-weight parse tree computed by the CYK-based propagditKatsirelos et al.
2011)

Consider the BFTREGULAR(X,M,z) constraint, whereX = (xi,...,Xs) is @ sequence giX| =5 de-
cision variables, with current domains dom) = dom(xz) = {e}, dom(xz) = {v}, domxs) = {d, v}, and
dom(xs) = {d}, andM is the DFA of Figure 1. The minimum edit distance between afifdla assignments
(namely{evedd, evev}) and the 5-letter regular language acceptetb§namely{ddddv, ddvdyv, ddvev,
dvddv, evddy) is 2. However, as shown in Figure 9, the minimum weight compbtethe CYK-based
propagator of (Katsirelos et al. 2008, 2011) with the ol#tdimeighted grammar is 1 (instead of 2), which
is the same as the one computed in (van Hoeve et al. 2004, 2006ynmepthe edit distance from word
evevd to evev (in the 4-letter regular language accepteld pbthrough one deletion operation, hence the
CYK-based propagator with the unsuitable weighted grammdergstimates the cost measure in this
case.

Actually, in order to make the CYK-based propagator for thel@HTEDGRAMMAR constraint
of (Katsirelos et al. 2008, 2011) work properly for the edigtance based & TGRAMMAR constraint,
we claim that two more changes are needed in addition to theneméioned for this purpose on page 200
of (Katsirelos et al. 2011), which changes a loop controialde in order to handle productions.

1. Unit-weighte productions are introduced to simulate insertion operatiblere £ production means a
production that generatesIn order to handle theseproductions, the CYK-based propagator allows
a symbol generated from another symbol in the same cell. For dgampFigure 10, there are 2
symbols, C and E, in the cqli = 1, j = 0) generated from the two insertion productions-Ce and
E — &. Note that the example of Figure 10 has no relation to our ngnekample of Section 4. In the
cell (i=1, j=2), there are three symbols O, D, and A generated from the theeliptions O— CD,

D — EA, and A— BC respectively. When the CYK-based propagator compute®tier|(or upper)
bounds, it is crucial that these three productions are egglm a correct order: first A> BC, then
D — EA, and finally O— CD (or in the opposite order), so that the lower (or upper)nasuof O,
D, and Ain cell(i = 1, j = 2) are computed correctly. Hence all symbols in each cell must ttedso
before computing the bounds.

2. Line 73 of the CYK-based propagator on page 191 of (Kdtsret al. 2011), where the domains
of the decision variables are pruned, also needs to be modiifiedit the case of substitution and
deletion productions, so that the domain of the decisionabégix; should not be pruned if there
exists a symbol with an upper bound of 1 in qéllil) denoting a substitution or deletion production.

26 J. He, P. Flener, J. Pearson, and W.M. Zhang

Figure 10 An example for the CYK-based propagator of (Katsirelos e@l1) with insertion produc-
tions that generate

References

Apt, K.: Principles of Constraint Programmin@ambridge University Press, Cambridge (2003)

Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: Origesf automata, and double counting in con-
straint programmingConstraintsl18(1), 108—-140 (2013).

Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filterialgjorithms from constraint checkers. In: Wallace,
M. (ed.)Proceedings of CP’04volume 3258 of LNCS, pp. 107-122. Springer, Berlin (2004)

He, J., Flener, P., Pearson, J.: &momatorconstraint for local searclrundamenta Informatica&07(2—
3), 223-248 (2011)

Kadioglu, S., Sellmann, M.: Grammar constrairfonstraintsl5(1), 117-144 (2010)

Katsirelos, G., Narodytska, N., Walsh, T.: The weighted Céeg@straint. In: Perron, L., Trick, M. (ed.)
Proceedings of CP-Al-OR’Q&olume 5015 of LNCS, pp. 323-327. Springer, Berlin (2008)

Katsirelos, G., Maneth, S., Narodytska, N., Walsh, T.: Reted global grammar constraints. In: Gent, |.P.
(ed.)Proceedings of CP'09volume 5732 of LNCS, pp. 501-508. Springer, Berlin (2009)

Katsirelos, G., Narodytska, N., Walsh, T.: The weighteHABIMAR constraint. Annals of Operations
Researct84, 179-207 (2011)

Menana, J., Demassey, S.: Sequencing and counting with thEostdregular constraint. In: van Hoeve,
W.-J., Hooker, J.N. (edRroceedings of CP-Al-OR’Q%olume 5547 of LNCS, pp. 178-192. Springer,
Berlin (2009)

Pesant, G.: A regular language membership constraint foe fe@tjuences of variables. In: Wallace, M.
(ed.)Proceedings of CP'04volume 3258 of LNCS, pp. 482-495. Springer, Berlin (2004)

Pralong, B.: Impkmentation de la contrainfegularen Comet Master’s Thesisizcole Polytechnique de
Montréal, Canada (2007)

Quimper, C.-G., Walsh, T.: Global grammar constraints. In:Hzgnou, F. (ed.Proceedings of CP’'06
volume 4204 of LNCS, pp. 751-755. Springer, Berlin (2006)

Ukkonen, E.: Algorithms for approximate string matchimgformation and Control64(1-3), 100-118
(1985)

Van Hentenryck, P., Michel, LConstraint-Based Local SearcMIT Press, Cambridge (2005)

van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On globaiiwar (Softening global constraints). In:
Proceedings of the 6th International Workshop on Prefezsrand Soft Constraintavailable ahttp:
//www.andrew.cmu.edu/user/vanhoeve/papers/softglob.pdf (2004)

van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On globainmay. Flow-based soft global constraints.
Journal of Heuristicsl2(4-5), 347—-373 (2006)

Wagner, R.A., Fischer M.J.: The string-to-string correetproblem.Journal of the ACM21, 168-173
(1974)

Zanarini, A., Milano, M., Pesant, G.: Improved algorithm fibre soft global cardinality constraint.
In: Beck, J.C., Smith, B. (edfproceedings of CP-Al-OR’Q8/olume 3990 of LNCS, pp. 288-299.
Springer, Berlin (2006)

