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ABSTRACT.We propose a set of reformulation rules for models of constraint satisfaction problems
that are written in our high-level constraint programming languageESRA, which is more ex-
pressive thanOPL and is compiled intoOPL. These automatable rules achieve models that are
often very similar to what a human modeller would have tried,such as switching from a pure
constraint program to an integer linear program. Since, fora given solver and a given instance
of a problem, it is very hard to figure out which model is the best, we advocate that tool support
of our reformulation rules should operate with a set of training instances. Indeed, this is the
only way of guaranteeing that the actually chosen reformulation pays off, at least for instances
within the distribution underlying the training instances.

RÉSUMÉ.Nous proposons un jeu de règles de reformulation pour modèles de problèmes de satis-
faction de contraintes exprimés dans notre langage de haut niveauESRA pour programmation
par contraintes, qui est plus expressif qu’OPL et qui est compilé enOPL. Ces règles automa-
tisables donnent des modèles souvent très similaires à ce qu’un modélisateur humain aurait
essayé, comme par exemple le passage d’un pur programme par contraintes à un programme
linéaire entier. Comme, pour un solveur donné et une instance donnée d’un problème, il est très
difficile de déterminer quel modèle est le meilleur, nous maintenons qu’un outil supportant nos
règles de reformulation devrait utiliser un jeu d’instances d’entraînement. En effet, ceci est la
seule voie pour garantir que la reformulation effectivement choisie soit rentable, du moins pour
les instances dans la distribution sousjacente aux instances d’entraînement.
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1. Introduction

Constraint satisfaction problems(CSPs), be theydecision problems(where appro-
priate values for the problem variables must be found withintheir domains, subject to
some constraints) oroptimisation problems(where there also is a numeric cost func-
tion that has to be optimised), are very ubiquitous in industry and challenging, as the
algorithms needed to solve them efficiently are very complex.

Effective modelling of CSPs is hard, is too much time-consuming, and requires
a lot of expertise. It is hard because (i) in general CSPs are NP-complete [Mac:77],
and (ii ) the performance of any method that solves them is sensitiveto the problem
instances [TBK:95, Min:96]. It is too much time-consuming because the modeller is
trapped in an iterative process of proposing a model and a solver, transforming them
possibly many times if she is not satisfied with the performance, and redoing the whole
process all over if the distribution of the instances to be solved is changed. It requires
a lot of expertise because the space of possible transformations is huge, and deciding
which one to choose is still an art.

The ESRA language introduced in [FHK:01a] is a high-level language for mod-
elling CSPs. It is based on high-level type constructors, such as mappings and per-
mutations. OurESRA-to-OPL compiler [FH:00] deterministically chooses an appro-
priateOPL representation for variables of these high-level types, depending on con-
text. Therefore, we can designESRA-to-ESRA model-reformulation rules that force
the compiler to choose one of the other possibleOPL representations for these vari-
ables. Other reformulation rules add implied constraints,exploit dual viewpoints of
high-level types, and so on. These automatable rules achieve models that are often
very similar to what a human modeller would have tried, such as switching from a
pure constraint program to an integer linear program. We aimat building a practical
tool that automates the application of these reformulationrules. The tool should be
provided with a set of training instances, so that, given a solver, it can automatically
select the best model for the particular distribution underlying these instances.

This paper is organised as follows. In Section 2, we motivateour choice of the
ESRA language as the level at which we do reformulations. Then we discuss, in Sec-
tion 3, our approach to automatic reformulation and compareit to related work on
solver/model transformation. In Section 4, some reformulation rules for mappings
and permutations, as well as some experimental results, arepresented. Finally, in
Section 5, we conclude and discuss our directions of future work.

2. Overview of the ESRA Language

Starting from the very expressive, declarative, and fastOPL (Optimisation Pro-
gramming Language) [VH:99], theESRA language is designed to be even more ex-
pressive, and equally fast [FHK:01a]. TheESRA language is in fact a conservative
extension ofOPL. Like OPL, theESRA language is strongly typed, and a sugared ver-
sion of what is essentially a first-order logic language. Unlike OPL, theESRA language
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supports more advanced types such as mappings, and allows variables of these types
as well as of type set, making it an actual set constraint language and thus more ex-
pressive thanOPL. A set of rewrite rules achieves compilation fromESRA into OPL

(see [FH:00] for details), yielding models that are often very similar to those that a
humanOPL modeller would (have to) write anyway, so that there is no loss in solving
speed compared to (the available labelling heuristics of)OPL.

In ESRA [FHK:01a], in order to support advanced modelling, powerful high-level
type constructors were introduced. The syntax and (informal) meaning of their usage
in variable declarations (of the formvar hTypei hV ariablei) is as follows:

– var fTg S: SetS is a subset of setT. A domain ofT must be known (i.e., eitherT is a domain orT is a subset of a domain). The internal representation of setsis
hidden from the modeller.

– var V->W M: MappingM is from setV into setW. The domains ofV andW must
be known. The internal representation of mappings is hiddenfrom the modeller.

– var perm(S) A: Array A, indexed by1..
ard(S), represents a permutation
of setS. The domain ofS must be known.

– var seq(S,K) A: Array A, indexed by1..K, represents a sequence, of
bounded cardinalityK, of elements drawn from setS. The domain ofS must be known.

These type constructors makeESRA a more expressive language thanOPL.

To illustrate the high expressive power ofESRA, let us have a look at theWarehouse
Locationproblem [VH:99], where a company considers opening warehouses on some
candidate locations in order to supply its existing stores.Each possible warehouse has
the same maintenance cost, and a capacity designating the maximum number of stores
that it can supply (C1). Each store must be supplied by exactly one open warehouse
(C2). The supply cost to a store depends on the warehouse. The objective is to deter-
mine which warehouses to open, and which of them should supply the various stores,
such that the sum of the maintenance and supply costs is minimised.

A way of modelling this problem inESRA is shown in Figure 1. The variable
declarations elegantly express thatOpenWarehouses is a subset ofWarehouses, and
that Supplier is a mapping fromStores into OpenWarehouses. A very natural
formulation of the cost function and constraintC1 arises from this, as well as a com-
plete capture ofC2 by the variable modelling. (The... notation means that actual
values are to be read in at run-time from a data file.) TheOPL model generated from
this ESRA model is in Figure 2 (see [FH:00] for the details of compilation). Note the
similarity with the hand-craftedOPL model in [VH:99] (page 178).OpenWarehouses
now has a 0/1-modelling. Also,Supplier now is an array, indexed byStores, with
values inWarehouses now: constraintC1 therefore now takes a less natural expres-
sion, andC2 now appears as an explicit constraint. TheESRA model in Figure 1 is
thus higher-level than both that hand-craftedOPL model and our generatedOPL model
in Figure 2, as it hides representation details from the modeller and allows her to state
constraints in a very natural way by the use of very powerful type constructors.



4 JFPLC’2001.int FixedCost = ...;enum Warehouses ...;enum Stores ...;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var {Warehouses} OpenWarehouses;var Stores->OpenWarehouses Supplier;minimizesum(I->J in Supplier) SupplyCost[I,J℄+ 
ard(OpenWarehouses) * FixedCostsubje
t to {forall(J in OpenWarehouses)
ount(I in Stores: I->J in Supplier) <= Capa
ity[J℄ };
Figure 1. An ESRA model of the Warehouse Location problemint FixedCost = ...;enum Warehouses ...;enum Stores ...;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var int OpenWarehouses[Warehouses℄ in 0..1;var Warehouses Supplier[Stores℄;minimizesum(I in Stores) SupplyCost[I,Supplier[I℄℄+ (sum(J in Warehouses) OpenWarehouses[J℄) * FixedCostsubje
t to {forall(I in Stores)OpenWarehouses[Supplier[I℄℄=1;forall(J in Warehouses)OpenWarehouses[J℄=1 =>(sum(I in Stores) (Supplier[I℄=J)) <= Capa
ity[J℄ };display(I in Warehouses: OpenWarehouses[I℄=1) <I>;
Figure 2. GeneratedOPL model from theESRA model in Figure 1

Now, it can be argued that high-level reformulations are very desirable, namely for
the following three reasons:

– High-level reformulation rules have rather simple left-hand sides, thus simplify-
ing the matching problem while determining which rules are applicable.

– High-level reformulation rules are less numerous, hence the resulting model
space is more manageable.

– High-level reformulation rules are independent of low-level data representation
decisions, as the compiler takes care of that.
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We thus strongly believe thatESRA models are more suitable for reformulation than
their correspondingOPL models, say.

3. Program Transformation in Constraint Programming

Program transformationis the equivalence-preserving modification of a program
into another program, of thesameprogramming language, with focus on achieving
greater efficiency, in time or space or both. In imperative, object-oriented, functional,
and logic programming, many years of widespread intensive efforts have led to a
deeper understanding of the complexity of programs and their interaction with the
execution mechanisms, to the identification of many useful transformation operators
(such as finite differencing, dynamic programming, loop fusion, and so on), and to
the design of many practical tools that encourage transformational programming as
a software life-cycle (see [Fea:87] for a good survey). These transformation opera-
tors, if applicable, come with an optimisation guarantee. However, in the more recent
paradigm of constraint programming, not so many results areavailable, and we survey
(below) the ones known to us.

The adaptation of program transformation ideas to constraint programming is not
so easy. Indeed, the execution of a constraint program has two phases, with different
trade-offs. First, execution of the model of a constraint program justpoststhe con-
straints to the constraint store, but this is often done in polynomial time and is thus
negligible compared to the actual solving time of the problem, if the latter is NP-hard
(which is usually the case). Transforming the model — in which case one usually
talks ofreformulation— is a little-understood art, which only recently started gaining
the attention it deserves. Its difficulty follows from the interaction of the model with
the solver (as shown next). But already note that there is in general almost nothing
to be gained from posting thesameconstraints faster! Second, execution of the la-
belling heuristic of a constraint program (if any, otherwise of the default heuristic of
the solver) actuallysolvesthe problem, using the search and propagation algorithms
of the solver. For non-approximate solving, this usually takes non-deterministic poly-
nomial time (NP) and is thus the real bottleneck. Choosing a heuristic and the rest of
the solver (namely the search and propagation algorithms) —in which case we here
talk of optimisation— is a very well-studied field, but also a very frustrating one: the
nature of heuristics after all is that they are not guaranteed to perform well in all situ-
ations. Experiments [Min:96, TBK:95] confirm this by showing that there not only is
no best solver for all problems, but that there even is no bestsolver for all instances of
a given problem, nor for all its models! This means that no guaranteed optimisation
can be achieved before solving-time (that is, when the actual instance of the problem
is still unknown), and that alternate models need to be considered.

Table 1 compares various existing CSP solver/model transformation approaches,
namely Smith’sKIDS [Smi:90], Minton’s MULTI -TAC [Min:96], Ellman’s DA-MSA

[EKBA:98], and the reformulation framework proposed by Borrett and Tsang [BT:xx].
The comparison is in terms of five features:
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KIDS MULTI -TAC DA-MSA B / T us
Time compile compile compile solve compile
Instances not explicit distribution distribution current one distribution
Object M;S; P;H M;S; P;H M;S; P;H M M ( ; H)
Choice manual automatic manual automatic automatic
Control intuitive hillclimbing intuitive N/A TBA

Table 1. Comparison of CSP solver/model transformation tools

– Transformation can occur at different times, the possibilities being compile-time
and solving-time.

– Due to the mentioned sensitivity of solvers to problem instances [TBK:95,
Min:96], some transformation tools request a set of training instances reflecting the
desired distribution (or a generator producing instances of that distribution), so that a
solver/model fine-tuned for instances of that distributioncan be sought. Other tools
do not ask for an explicit set of training instances, either because navigation through
the transformation space is manually steered, by intuitionor by experimentation out-
side the tool, or because transformation occurs at solving-time and is thus necessarily
about the current instance.

– The transformed object is either the model only, or the solver only, or both. Con-
straint solvers are composed of a search algorithm (denotedS here) such as forward-
checking, plus a constraint propagation algorithm (denoted P here) based on con-
sistency techniques such as bounds consistency, and labelling heuristics (denotedH
here), one of which is the default; the model is denotedM here. When both the
model and the (entire) solver are being transformed, then wehave transformation of
a problem-specific solver. When only the model is being transformed, then the entire
solver is fixed (for instance, standard backtracking in the Borrett/Tsang experiments).
When the model and part of the solver are being transformed, then the rest of the
solver is fixed.

– The choice of which transformation operator (or:transform) is applied to which
part of the chosen object is either manual (performed by the user, in an interactive
tool) or automatic (performed by the tool itself). In both cases, the actual application
of the transform is done by the tool, as such error-prone, clerical work should always
be left to the machine. In the Borrett/Tsang context, there is (currently) only one
reformulation operator, so there is no real choice issue (yet), but their intention seems
to be automated choice.

– The search control within the transformation space, and thus the choice of which
object to transform next, is either intuitive (leading to a manual choice of the trans-
form) or somehow systematic. For instance,MULTI -TAC performs a hill-climbing
beam search; in the Borrett/Tsang framework, there is (currently) only one reformu-
lation operator, so there is no real control issue (yet), as the operator is exhaustively
applied to the current instance.

Table 1 also shows that many more (novel) combinations of these features exist. We
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advocate the following approach (summarised in the last column of the table), and are
following it with the work presented here:

– Considering that solving-time transformation would haveto be sufficiently fast
for its benefits toalwaysoffset its overhead, and that achieving this is far from trivial,
we opted for compile-time transformation, and even (only) for situations where com-
pilation time does not matter. The underlying hypothesis isthus that the transformed
solver/model is run on sufficiently many instances for the compilation time to be offset
by gains in solving time. The responsibility for choosing whether (and for how long)
to use our transformation tool will thus rest with the user.

– Considering the sensitivity of solvers to problem instances, we opted for train-
ing instances of some target distribution to be an explicit input to our transformation
tool, so that it can automatically do its own experiments towards evaluating candi-
date solver/model pairs. These experiments, plus the logging and comparing of their
results, are very tedious, but they have to be made, as human intuition breaks down.

– Considering that we want to focus on reformulating models in our ESRA con-
straint programming language [FHK:01a], we do not aim at solver optimisation and
thus fix the search and propagation algorithms to the ones ofESRA. AlthoughESRA

models cannot contain labelling heuristics, we can argue that we also transform these
heuristics, asESRA models are compiled intoOPL [VH:99] models and labelling
heuristics. The underlying hypothesis is thus that one neednot always optimise en-
tire solvers, as their most critical component is an instance-specific labelling heuristic
(and new-generation solvers provide primitives for expressing such heuristics).

– Considering the large size of the reformulation space, we prefer automatic
choice of which reformulation is to be applied to which part of the chosen model.

– For the same reason, we chose systematic exploration of thereformulation
search space, but we have not decided yet which search control to adopt (mainly be-
cause we have not identified yet a sufficiently large set of reformulation operators).

Usage of the considered transformation tools, including the one we are building, fol-
lows the same generic scenario, shown in Figure 3, where dashed lines indicate op-
tional features. Given (an informal version of) a CSP, a human user formulates a
(formal) model thereof in some constraint language. For some tools, the user also
prepares a set of training instances of a certain distribution, to which actual instances
to be solved later are supposed to belong; this may also be done by providing a gen-
erator producing instances of that distribution. Another input that may only exist for
some tools consists oftransformation search control parameters.1 For instance, a
time-interval could be given, after which the best solver/model found that far is to
be returned, or a limit on how many transforms should at most be applied, or a limit
on the number of models to be considered. These inputs are then passed to the tool,
which consists of two modules. First, asynthesisertakes the CSP model and returns a
solver; this may be an elaborate synthesis of a problem-specific solver, as withKIDS,
MULTI -TAC, DA-MSA, or it may simply amount to grabbing an existing solver (pos-1. It is important not to confuse transformation search and solving search.
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Figure 3. Generic scenario of CSP solver/model transformation

sibly from a singleton list, as in the Borrett/Tsang experiments). Second, the actual
transformation engineis given as inputs the obtained solver/model pair, as well as
possibly the training instances and the transformation search control parameters. The
transformation engine itself consists of at least two parts, namely atransformerthat
chooses and applies a transform on some object, and anevaluatorthat tries an object
on the training instances to measure the progress (if any) achieved by a transforma-
tion. The transformation engine eventually returns the best solver/model pair it could
find within the circumscribed transformation search space,for the training instances.
The assumption is that this solver/model pair will perform very well on other instances
of the same underlying distribution. Some tools also returna transformationhistory,
consisting of the tree of transforms actually applied, and optionally of an isomorphic
tree with the solving-cost statistics for the training instances.

The transformation tool we advocate hasall the features mentioned in Figure 3.
Considering our choices in the last column of Table 1, we envisage a synthesiser that
simply takes theESRA solver.
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Case ESRA declarations OPL declarations

1
var V->W M;
whereV andW are domains

var W M[V℄;
2

var V->W M;
whereV is a set variable of domainS
andW is a domain

var int V[S℄ in 0..1;var W M[S℄;
3

var V->W M;
whereV is a domain
andW is a set variable of domainT var int W[T℄ in 0..1;var T M[V℄;

4
var V->W M;
whereV andW are set variables
of domainsS andT, respectively

var int V[S℄ in 0..1;var int W[T℄ in 0..1;var int M[S,T℄ in 0..1;
Table 2. OPL representations ofESRA mappings

4. Reformulation Rules for Mappings and Permutations

We now introduce reformulation rules forESRA mappings and permutations, and
explain their motivation. Reformulation rules are here written asL ) R, meaning
that expressionL is rewritten intoR, under a condition identified in the context. For
convenience, new variables introduced inR contain an underscore (“_”) character.

4.1. Mappings

At the ESRA level, the mapping type constructor takes two arguments, each of
which can be either a domain or a set variable, giving rise to four cases. For each case,
the ESRA compiler chooses a differentOPL representation, as shown in Table 2, and
posts any necessary constraints (omitted here, but see [FH:00] for full details).

For mappings, the reformulation rules (identified so far) force the compiler to
choose a differentOPL representation. For instance, if we have a mappingM from
a set variableV into a domainW, then one can introduce a new set variableW_s that
is a subset ofW, and change the mapping to be fromV into W_s instead. This will
make theESRA compiler choose a differentOPL representation. However, we need to
preserve the semantics of the mapping, and hence add the constraint thatW is equal
to W_s. Now we can present all our reformulation rules for mappingsby considering
each case separately. We omit case 4 as we do not have any rulesfor it.

Reformulation Rules for Case 1. When a mappingM is from a domainV into a
domainW, we have the following rules:var V->W M;) var {V} V_s; var V_s->W M; V = V_s; (M11 )) var {W} W_s; var V->W_s M; W = W_s; (M21 )) var {V} V_s; var {W} W_s; var V_s->W_s M;V = V_s; W = W_s; (M31 )
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Case ESRA declarations OPL declarations

1
var perm(V) P;
whereV is a domain

var V P[1..
ard(V)℄;
2

var perm(V) P;
whereV is a set variable

of domainS var S P[1..
ard(S)℄;var int P_s[1..
ard(S)℄ in 0..1;
Table 3. OPL representations ofESRA permutations

The ruleM11 reformulatesM as a mapping from the new set variableV_s into the
domainW, whereV_s is a subset ofV, butV = V_s. Conversely, the ruleM21 refor-
mulatesM as a mapping from the domainV into the new set variableW_s, whereW_s
is a subset ofW, but W = W_s. Combining both options, the ruleM31 reformulatesM
as a mapping from the new set variableV_s into the new set variableW_s, whereV_s
(resp.W_s) is a subset ofV (resp.W), butV = V_s andW = W_s.

Reformulation Rule for Case 2. When a mappingM is from a set variableV into a
domainW, we have the following rule:var V->W M;) var {W} W_s; var V->W_s M; W = W_s; (M12 )

The ruleM12 reformulatesM as a mapping from the set variableV into the new set
variableW_s, whereW_s is a subset ofW, butW = W_s.

Reformulation Rule for Case 3. When a mappingM is from a domainV into a set
variableW, we have the following rule:var V->W M;) var {V} V_s; var V_s->W M; V = V_s; (M13 )

The ruleM13 reformulatesM as a mapping from the new set variableV_s into the set
variableW, whereV_s is a subset ofV, butV = V_s.

4.2. Permutations

At theESRA level, the permutation type constructor takes one argument, which can
be either a domain or a set variable, giving rise to two cases.For each case, theESRA

compiler chooses a differentOPL representation, as shown in Table 3, and posts any
necessary constraints (omitted here, but see [FH:00] for full details). Furthermore, as
discussed in [Gee:92], a permutation over a setV has a dual viewpoint, i.e., it can be
viewed either as a mapping fromV into the range1..
ard(V), or as a mapping from
the range1..
ard(V) into V, plus a suitable constraint to actually force the mapping
to be a bijection, i.e., any two distinct elements of the domain must be mapped to two
distinct elements of the co-domain.
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For permutations, the reformulations (identified so far) either force the compiler to
choose a differentOPL representation, or exploit the dual viewpoint of permutations.
We here discuss the reformulation rule for case 1, as well as the reformulation rules
for the dual viewpoint of permutations.

Reformulation Rule for Case 1. The rule:var perm(V) P;) var {V} V_s; var perm(V_s) P; V = V_s; (P 11 )

reformulates a permutation over a domainV as a permutation over the new set variableV_s, whereV_s is a subset ofV, butV = V_s.

Reformulation Rules Exploiting the Dual Viewpoint. The following rule captures
the reformulation of a permutation over a domainV as a mapping fromV into the range1..
ard(V):var perm(V) P;) range B_s 1..
ard(V); var V->B_s P;forall(I->J,K->L in P) I<K => J<>L;AggrOp(i in 1..
ard(V): Q[i℄) F [P[i℄℄) AggrOp(j_s->i in P) Q[i℄*F [j_s℄forall(i in 1..
ard(V): Q[i℄) F [P[i℄℄ (P 13 )) forall(j_s->i in P) Q[i℄ => F [j_s℄exists(i in 1..
ard(V): Q[i℄) F [P[i℄℄) exists(j_s->i in P) Q[i℄ & F [j_s℄Constraint[P[i℄℄;) j_s->i in P;Constraint[j_s℄;
The previous rules for mappings and permutations need not reformulate any of the
constraints as they do not change any type constructors. However, ruleP 13 reformu-
lates the permutation as a mapping and hence all the constraints on the permutation
need to be reformulated in terms of the mapping. Therefore, ruleP 13 is composed of
different parts that are either all applied or not at all. Thefirst part reformulates the per-
mutationP as a mapping from domainV into the rangeB_s (which is1..
ard(V)),
and forces the mapping to be a bijection. In the second part,AggrOp can besum,prod, min, or max. A summation (resp. product, minimum, maximum) over the el-
ements of a permutation is reformulated as a summation (resp. product, minimum,
maximum) over the elements of the mapping. The third and fourth parts reformulate
a universal (resp. existential) quantification over the elements of a permutation as a
universal (resp. existential) quantification over the elements of the mapping. Note thatF can be anyESRA constraint, whileQ can be anyESRA relation. The last part refor-
mulates any non-aggregate constraint involvingP[i℄ into a constraint onj_s, wherei is the image ofj_s under the mappingP.
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The following rule captures the reformulation of a permutation over a domainV as
a mapping from the range1..
ard(V) into V:var perm(V) P;) range B_s 1..
ard(V); var B_s->V P;forall(I->J,K->L in P) I<K => J<>L;AggrOp(i in 1..
ard(V): Q[i℄) F [P[i℄℄) AggrOp(i->j_s in P) Q[i℄*F [j_s℄forall(i in 1..
ard(V): Q[i℄) F [P[i℄℄ (P 23 )) forall(i->j_s in P) Q[i℄ => F [j_s℄exists(i in 1..
ard(V): Q[i℄) F [P[i℄℄) exists(i->j_s in P) Q[i℄ & F [j_s℄Constraint[P[i℄℄;) i->j_s in P;Constraint[j_s℄;
Similarly to ruleP 13 , the ruleP 23 is composed of different parts. The first part reformu-
lates the permutationP as a mapping from rangeB_s into the domainV, and forces the
mapping to be a bijection. The second to fourth parts are analoguous to ruleP 13 . The
last part reformulates any non-aggregate constraint involving P[i℄ into a constraint
onj_s, wherej_s is the image ofi under the mappingP.

4.3. Experimental Results

For the Warehouse Location problem, theESRA model in Figure 1 uses a mapping
from a domain (Stores) into a set variable (Openwarehouses). Thus, the reformu-
lation ruleM13 can be applied. In Figure 4 is the resultingESRA model after applyingM13 . TheOPL model generated from theESRAmodel in Figure 4 is shown in Figure 5.
The constraints of the generatedOPL model in Figure 5 can be simplified (manually
for the time being), resulting in constraints (shown in Figure 6) very similar to the ones
of the hand-craftedOPL model in [VH:99] (page 161, which mistakenly lacks the sec-
ond constraint). The simplification is as follows. The second and third constraints in
Figure 5 are simplified to the second and third constraints inFigure 6 because all the
Booleans of the set variableStores_s are set to 1, andA=1 => B=1 is equivalent toA <= B. The last constraint in Figure 5 is simplified to the last constraint in Figure 6
becauseSupplier[I,J℄=1 implies thatOpenWarehouses[J℄=1.

Note also that the generatedOPL model from theESRA model in Figure 1 is a con-
straint program (CP), while the simplified version of the generatedOPL model from
the ESRA model in Figure 4 is a pure 0-1 integer linear program (ILP). We experi-
mented with the instance data provided in [VH:99] (page 162), and the reformulation
paid off in terms of solving times, as the new model is 10 timesfaster.

The reader should not be misled with the results of such experiments, as they
just show that the performance of any model is instance-dependent, but not that our
reformulated models are always better.



High-Level Reformulation 13int FixedCost = ...;enum Warehouses ...;enum Stores ...;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var {Stores} Stores_s;var {Warehouses} OpenWarehouses;var Stores_s->OpenWarehouses Supplier;minimizesum(I->J in Supplier) SupplyCost[I,J℄+ 
ard(OpenWarehouses) * FixedCostsubje
t to {Stores subset Stores_s;forall(J in OpenWarehouses)
ount(I in Stores: I->J in Supplier) <= Capa
ity[J℄ };
Figure 4. A reformulatedESRA model of the one in Figure 1int FixedCost = ...;enum Warehouses ...;enum Stores ...;int Capa
ity[Warehouses℄ = ...;int SupplyCost[Stores,Warehouses℄ = ...;var int Stores_s[Stores℄ in 0..1;var int OpenWarehouses[Warehouses℄ in 0..1;var int Supplier[Stores,Warehouses℄ in 0..1;minimizesum(I in Stores, J in Warehouses) SupplyCost[I,J℄ * Supplier[I,J℄+ (sum(J in Warehouses) OpenWarehouses[J℄) * FixedCostsubje
t to {forall(I in Stores) Stores_s[I℄ = 1;forall(I in Stores, J in Warehouses)Supplier[I,J℄=1 => (OpenWarehouses[J℄ = 1 & Stores_s[I℄ = 1);forall(I in Stores)Stores_s[I℄ = 1 => (sum(J in Warehouses) Supplier[I,J℄) = 1;forall(J in Warehouses)(OpenWarehouses[J℄=1) =>(sum(I in Stores) (Supplier[I,J℄=1)) <= Capa
ity[J℄ };display(I in Warehouses: OpenWarehouses[I℄=1) <I>;display(I in Stores, J in Warehouses: Supplier[I,J℄=1) <I,J>;
Figure 5. GeneratedOPL model from theESRA model in Figure 4

TheN -queens problem can be modelled as a permutation over the setof queens,
each of them being assigned to a column of the chessboard by the data modelling. By



14 JFPLC’2001.forall(I in Stores) Stores_s[I℄ = 1;forall(I in Stores, J in Warehouses)Supplier[I,J℄ <= OpenWarehouses[J℄;forall(I in Stores)(sum(J in Warehouses) Supplier[I,J℄) = 1;forall(J in Warehouses)(sum(I in Stores) (Supplier[I,J℄=1)) <= Capa
ity[J℄;
Figure 6. Simplified constraints of theOPL model in Figure 5

applying rulesP 13 andP 23 , the resulting models involve a mapping that either maps
queens (i.e., columns) to rows, or maps rows to queens (i.e.,columns). For each of
these reformulated models, the reformulation rulesM11 , M21 , andM31 can then be
applied. For instance, after the application ofM31 , we get after simplification a pure
0-1 integer linear program, which views theN -queens problem as assigning Booleans
to the squares of the chessboard, such that assigning 1 to a Boolean means that we
must place a queen in its corresponding square and assigning0 means the opposite.

5. Conclusion

Our main contribution is a set of automatable rules (for mappings and permuta-
tions) for reformulating CSP models written in a high-levelconstraint programming
language, such as ourESRA. After compilation intoOPL of the resultingESRA mod-
els, and after simplification of theseOPL models, we often get what a humanOPL

modeller would have tried anyway, such as switching from a pure constraint program
to an integer linear program. The key idea is the choice of theright level at which we
do the reformulations, namely at theESRA level.

As some of our reformulation rules basically force theESRA-to-OPL compiler to
choose a different internal representation of a high-leveldata structure, it is clear that
the same effect could have been achieved by making the compiler non-deterministic.
However, we prefer to have a deterministic compiler, as thisis the traditional view
of compilers and as such a non-deterministic compiler wouldbe unable to make a
recommendation about when each of its output programs is preferable. Helping with
this choice is rather the task of a programming environment,taking a set of training
instances as further input, and our advocated reformulation tool proposes just that.
Indeed, notice that our other rules propose ‘classical’ reformulations.

Related to our work are Smith’sKIDS [Smi:90], Minton’s MULTI -TAC [Min:96],
Ellman’s DA-MSA [EKBA:98], and the reformulation framework proposed by Bor-
rett and Tsang [BT:xx]. A comparison between these approaches and ours has been
presented in Section 3.

As future work, we will implement a prototype reformulationtool, working under
the scenario shown in Section 3. We also need to enhance ourESRA compilation ma-
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chinery, so that the generatedOPL models are automatically simplified, thus enabling
the full effect of the reformulations. We will furthermore continue searching for refor-
mulation rules, for mappings and permutations, as well as for sequences and subsets.
Finally, since the model in Figure 2 is a pure CP model and the model in Figure 6 is a
pure ILP model, we will investigate the possibility of reformulation rules that integrate
CP and ILP models at theESRA level so as to generate hybridESRA models.
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