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ABSTRACTWe propose a set of reformulation rules for models of coirgteatisfaction problems
that are written in our high-level constraint programmirgnguageesRA, which is more ex-
pressive tharopL and is compiled int@pL. These automatable rules achieve models that are
often very similar to what a human modeller would have trig;h as switching from a pure
constraint program to an integer linear program. Since, &ggiven solver and a given instance
of a problem, it is very hard to figure out which model is thetpbe&es advocate that tool support
of our reformulation rules should operate with a set of tiaminstances. Indeed, this is the
only way of guaranteeing that the actually chosen reforriotepays off, at least for instances
within the distribution underlying the training instances

RESUMENouUs proposons un jeu de régles de reformulation pour medigroblemes de satis-
faction de contraintes exprimés dans notre langage de h@eanESRApour programmation
par contraintes, qui est plus expressif Q@L et qui est compilé enpPL. Ces regles automa-
tisables donnent des modéles souvent trés similaires a 'c@ guodélisateur humain aurait
essayé, comme par exemple le passage d’'un pur programmepiaiotes a un programme
linéaire entier. Comme, pour un solveur donné et une ingtaennée d'un probléme, il est tres
difficile de déterminer quel modéle est le meilleur, nousntegions qu’un outil supportant nos
regles de reformulation devrait utiliser un jeu d’instasadentrainement. En effet, ceci est la
seule voie pour garantir que la reformulation effectivetr@oisie soit rentable, du moins pour
les instances dans la distribution sousjacente aux ingsukentrainement.

KEYWORDS Constraint programming, high-level modelling, reformtioa.
MOTS-CLES Programmation par contraintes, modélisation de haut niyeaformulation.
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1. Introduction

Constraint satisfaction problenf€SPs), be theglecision problemévhere appro-
priate values for the problem variables must be found with@ir domains, subject to
some constraints) aptimisation problemgwhere there also is a numeric cost func-
tion that has to be optimised), are very ubiquitous in induahd challenging, as the
algorithms needed to solve them efficiently are very complex

Effective modelling of CSPs is hard, is too much time-consgmnand requires
a lot of expertise. It is hard becausgif general CSPs are NP-complete [Mac:77],
and (i) the performance of any method that solves them is sengditiee problem
instances [TBK:95, Min:96]. It is too much time-consumirgchuse the modeller is
trapped in an iterative process of proposing a model andvaisatansforming them
possibly many times if she is not satisfied with the perforagaand redoing the whole
process all over if the distribution of the instances to Heebis changed. It requires
a lot of expertise because the space of possible transfromsdas huge, and deciding
which one to choose is still an art.

The ESRA language introduced in [FHK:01a] is a high-level languagerhod-
elling CSPs. It is based on high-level type constructorshsas mappings and per-
mutations. OulESRA-to-OPL compiler [FH:00] deterministically chooses an appro-
priate OPL representation for variables of these high-level typepedding on con-
text. Therefore, we can desi@sRAt0-ESRA model-reformulation rules that force
the compiler to choose one of the other possibe representations for these vari-
ables. Other reformulation rules add implied constraiekploit dual viewpoints of
high-level types, and so on. These automatable rules achidels that are often
very similar to what a human modeller would have tried, suslswitching from a
pure constraint program to an integer linear program. Weatdibuilding a practical
tool that automates the application of these reformulatid@s. The tool should be
provided with a set of training instances, so that, givenlaespit can automatically
select the best model for the particular distribution uhydieg these instances.

This paper is organised as follows. In Section 2, we motieatiechoice of the
ESRAlanguage as the level at which we do reformulations. Thenisauds, in Sec-
tion 3, our approach to automatic reformulation and comjitai@ related work on
solver/model transformation. In Section 4, some reforittarules for mappings
and permutations, as well as some experimental resultgrasented. Finally, in
Section 5, we conclude and discuss our directions of futunéw

2. Overview of the ESRA Language

Starting from the very expressive, declarative, and fast (Optimisation Pro-
gramming Language) [VH:99], thesrA language is designed to be even more ex-
pressive, and equally fast [FHK:01a]. TEsSRA language is in fact a conservative
extension oPL. Like opPL, theESRAlanguage is strongly typed, and a sugared ver-
sion of what is essentially a first-order logic language.ikénbpL, theesrRAlanguage
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supports more advanced types such as mappings, and alloablga of these types
as well as of type set, making it an actual set constraintuagg and thus more ex-
pressive tharoPL. A set of rewrite rules achieves compilation fra&@sRA into oPL
(see [FH:00] for details), yielding models that are oftemyvamilar to those that a
humanoprL modeller would (have to) write anyway, so that there is ns lassolving
speed compared to (the available labelling heuristicoef).

In ESRA[FHK:01a], in order to support advanced modelling, powkhnigh-level
type constructors were introduced. The syntax and (infgrmeaaning of their usage
in variable declarations (of the fortar (T'ype) (V ariable)) is as follows:

—var {T} S:SetSisa subset of sa. A domain ofT must be known (i.e., either
T is a domain oIT is a subset of a domain). The internal representation ofisets
hidden from the modeller.

—var V->W M: MappingM is from setv into setW. The domains of andw must
be known. The internal representation of mappings is hididen the modeller.

—var perm(S) A: Array A, indexed byl..card(S), represents a permutation
of setS. The domain o6 must be known.

—var seq(S,K) A: Array A, indexed by1..K, represents a sequence, of
bounded cardinalitg, of elements drawn from set The domain of must be known.

These type constructors makerRA a more expressive language thawi.

To illustrate the high expressive powerggRA, let us have a look at th&arehouse
Locationproblem [VH:99], where a company considers opening warsé®on some
candidate locations in order to supply its existing stoEzch possible warehouse has
the same maintenance cost, and a capacity designating #ieorma number of stores
that it can supply@;). Each store must be supplied by exactly one open warehouse
(Cs). The supply cost to a store depends on the warehouse. Téetiobjis to deter-
mine which warehouses to open, and which of them should gupelvarious stores,
such that the sum of the maintenance and supply costs is msgdm

A way of modelling this problem iresrA is shown in Figure 1. The variable
declarations elegantly express thgtnWarehouses is a subset oflarehouses, and
that Supplier is a mapping fronStores into OpenWarehouses. A very natural
formulation of the cost function and constraiit arises from this, as well as a com-
plete capture o, by the variable modelling. (The.. notation means that actual
values are to be read in at run-time from a data file.) ®he model generated from
this ESRAmModel is in Figure 2 (see [FH:00] for the details of compdali. Note the
similarity with the hand-craftedpL modelin [VH:99] (page 178)penWarehouses
now has a 0/1-modelling. AlsSupplier now is an array, indexed t8tores, with
values inWarehouses now: constraintC; therefore now takes a less natural expres-
sion, andC, now appears as an explicit constraint. TH&RA model in Figure 1 is
thus higher-level than both that hand-crafteel. model and our generated L model
in Figure 2, as it hides representation details from the riedand allows her to state
constraints in a very natural way by the use of very powefptconstructors.
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int FixedCost = ...;
enum Warehouses ...;
enum Stores ...;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores,Warehouses] = ...;
var {Warehouses} OpenWarehouses;
var Stores->0penWarehouses Supplier;
minimize

sum(I->J in Supplier) SupplyCost[I,J]

+ card(OpenWarehouses) * FixedCost
subject to {

forall(J in OpenWarehouses)

count (I in Stores: I->J in Supplier) <= Capacity[J] };

Figurel. An EsrAmodel of the Warehouse Location problem

int FixedCost = ...;
enum Warehouses ...;
enum Stores ...;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores,Warehouses] = ...;
var int OpenWarehouses[Warehouses] in 0..1;
var Warehouses Supplier[Stores];
minimize
sum(I in Stores) SupplyCost[I,Supplier[I]]
+ (sum(J in Warehouses) OpenWarehouses[J]) * FixedCost
subject to {
forall(I in Stores)
OpenWarehouses [Supplier[I]]=1;
forall(J in Warehouses)
OpenWarehouses[J]=1 =>
(sum(I in Stores) (Supplier[I]=J)) <= Capacity[J] };
display(I in Warehouses: OpenWarehouses[I]=1) <I>;

Figure 2. GeneratedbpL model from theesRAmodel in Figure 1

Now, it can be argued that high-level reformulations arg desirable, namely for
the following three reasons:

— High-level reformulation rules have rather simple ledind sides, thus simplify-
ing the matching problem while determining which rules giplable.

— High-level reformulation rules are less numerous, heheerésulting model
space is more manageable.

— High-level reformulation rules are independent of loweledata representation
decisions, as the compiler takes care of that.
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We thus strongly believe th&sRrA models are more suitable for reformulation than
their correspondingPL models, say.

3. Program Transformation in Constraint Programming

Program transformatioris the equivalence-preserving modification of a program
into another program, of theameprogramming language, with focus on achieving
greater efficiency, in time or space or both. In imperatil®ect-oriented, functional,
and logic programming, many years of widespread intensif@ts have led to a
deeper understanding of the complexity of programs ana thiraction with the
execution mechanisms, to the identification of many useéudformation operators
(such as finite differencing, dynamic programming, loogdnsand so on), and to
the design of many practical tools that encourage transftomal programming as
a software life-cycle (see [Fea:87] for a good survey). €heansformation opera-
tors, if applicable, come with an optimisation guaranteewklver, in the more recent
paradigm of constraint programming, not so many resultaea@able, and we survey
(below) the ones known to us.

The adaptation of program transformation ideas to comgtpgogramming is not
so easy. Indeed, the execution of a constraint program haphases, with different
trade-offs. First, execution of the model of a constraimtgoam justpoststhe con-
straints to the constraint store, but this is often done ilyrpmmial time and is thus
negligible compared to the actual solving time of the prohlé the latter is NP-hard
(which is usually the case). Transforming the model — in \whiase one usually
talks ofreformulation— is a little-understood art, which only recently startethgay
the attention it deserves. lIts difficulty follows from thaaraction of the model with
the solver (as shown next). But already note that there ieirerpl almost nothing
to be gained from posting theameconstraints faster! Second, execution of the la-
belling heuristic of a constraint program (if any, othemvisf the default heuristic of
the solver) actuallgolvesthe problem, using the search and propagation algorithms
of the solver. For non-approximate solving, this usualketanon-deterministic poly-
nomial time (NP) and is thus the real bottleneck. Choosinguxibktic and the rest of
the solver (namely the search and propagation algorithm#) which case we here
talk of optimisation— is a very well-studied field, but also a very frustrating ot
nature of heuristics after all is that they are not guarahtegerform well in all situ-
ations. Experiments [Min:96, TBK:95] confirm this by shogithat there not only is
no best solver for all problems, but that there even is nodmger for all instances of
a given problem, nor for all its models! This means that norguieed optimisation
can be achieved before solving-time (that is, when the &utsance of the problem
is still unknown), and that alternate models need to be densd.

Table 1 compares various existing CSP solver/model tramsftion approaches,
namely Smith’skiDs [Smi:90], Minton’s MULTI-TAC [Min:96], Ellman’s DA-MSA
[EKBA:98], and the reformulation framework proposed by &trand Tsang [BT:xx].
The comparison is in terms of five features:
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KIDS MULTI-TAC DA-MSA B/T us
Time compile compile compile solve compile
Instances| not explicit | distribution | distribution | currentone | distribution
Object M,S,P.H | M,S,P,H | M,S,P,H | M M (,H)
Choice manual automatic | manual automatic | automatic
Control | intuitive hillclimbing | intuitive N/A TBA

Table 1. Comparison of CSP solver/model transformation tools

— Transformation can occur at different times, the podsi#slbeing compile-time
and solving-time.

— Due to the mentioned sensitivity of solvers to problemanses [TBK:95,
Min:96], some transformation tools request a set of trajnivstances reflecting the
desired distribution (or a generator producing instanééisai distribution), so that a
solver/model fine-tuned for instances of that distributtam be sought. Other tools
do not ask for an explicit set of training instances, eitherause navigation through
the transformation space is manually steered, by intuiioloy experimentation out-
side the tool, or because transformation occurs at soliimg-and is thus necessarily
about the currentinstance.

— The transformed object is either the model only, or theesadwly, or both. Con-
straint solvers are composed of a search algorithm (dertbtezte) such as forward-
checking, plus a constraint propagation algorithm (desh@tehere) based on con-
sistency techniques such as bounds consistency, andhableduristics (denoted/
here), one of which is the default; the model is denatéchere. When both the
model and the (entire) solver are being transformed, thehave transformation of
a problem-specific solver. When only the model is being fansed, then the entire
solver is fixed (for instance, standard backtracking in tber&t/Tsang experiments).
When the model and part of the solver are being transfornieh the rest of the
solver is fixed.

— The choice of which transformation operator (mansforn) is applied to which
part of the chosen object is either manual (performed by #e,un an interactive
tool) or automatic (performed by the tool itself). In botlses, the actual application
of the transform is done by the tool, as such error-proneicalework should always
be left to the machine. In the Borrett/Tsang context, therécurrently) only one
reformulation operator, so there is no real choice issug, (et their intention seems
to be automated choice.

— The search control within the transformation space, ansltie choice of which
object to transform next, is either intuitive (leading to amual choice of the trans-
form) or somehow systematic. For instanegjLTI-TAC performs a hill-climbing
beam search; in the Borrett/Tsang framework, there is écty) only one reformu-
lation operator, so there is no real control issue (yet)hasoperator is exhaustively
applied to the current instance.

Table 1 also shows that many more (nhovel) combinations cietfieatures exist. We
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advocate the following approach (summarised in the lastonlof the table), and are
following it with the work presented here:

— Considering that solving-time transformation would hawvée sufficiently fast
for its benefits talwaysoffset its overhead, and that achieving this is far fromiativ
we opted for compile-time transformation, and even (ondy)situations where com-
pilation time does not matter. The underlying hypothesthis that the transformed
solver/modelis run on sufficiently many instances for th@piation time to be offset
by gains in solving time. The responsibility for choosingeilier (and for how long)
to use our transformation tool will thus rest with the user.

— Considering the sensitivity of solvers to problem instaave opted for train-
ing instances of some target distribution to be an expligut to our transformation
tool, so that it can automatically do its own experimentsamg evaluating candi-
date solver/model pairs. These experiments, plus thenggaid comparing of their
results, are very tedious, but they have to be made, as hurhatian breaks down.

— Considering that we want to focus on reformulating modeleur ESRA con-
straint programming language [FHK:01a], we do not aim atesobptimisation and
thus fix the search and propagation algorithms to the onesef. AlthoughESRA
models cannot contain labelling heuristics, we can argaiewe also transform these
heuristics, aESRA models are compiled intorL [VH:99] models and labelling
heuristics. The underlying hypothesis is thus that one me¢clways optimise en-
tire solvers, as their most critical component is an instagpecific labelling heuristic
(and new-generation solvers provide primitives for exgpirggsuch heuristics).

— Considering the large size of the reformulation space, vedep automatic
choice of which reformulation is to be applied to which pdrtree chosen model.

— For the same reason, we chose systematic exploration afetbemulation
search space, but we have not decided yet which search can&dopt (mainly be-
cause we have not identified yet a sufficiently large set airmaf@ilation operators).

Usage of the considered transformation tools, includirgathe we are building, fol-
lows the same generic scenario, shown in Figure 3, wheresddstes indicate op-
tional features. Given (an informal version of) a CSP, a humser formulates a
(formal) model thereof in some constraint language. Forestwols, the user also
prepares a set of training instances of a certain distohyto which actual instances
to be solved later are supposed to belong; this may also beloppproviding a gen-
erator producing instances of that distribution. Anothmguit that may only exist for
some tools consists dfansformation search control parametérsFor instance, a
time-interval could be given, after which the best solverdal found that far is to
be returned, or a limit on how many transforms should at mesifplied, or a limit
on the number of models to be considered. These inputs aneptissed to the tool,
which consists of two modules. Firstsgnthesisetakes the CSP model and returns a
solver; this may be an elaborate synthesis of a problemifgpsalver, as withkiDs,
MULTI-TAC, DA-MSA, or it may simply amount to grabbing an existing solver (pos-

1. Itis important not to confuse transformation search amdrsp search.
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Figure3. Generic scenario of CSP solver/model transformation

sibly from a singleton list, as in the Borrett/Tsang expents). Second, the actual
transformation enginés given as inputs the obtained solver/model pair, as well as
possibly the training instances and the transformatiorchezontrol parameters. The
transformation engine itself consists of at least two parasnely atransformerthat
chooses and applies a transform on some object, aedanatorthat tries an object
on the training instances to measure the progress (if amygeed by a transforma-
tion. The transformation engine eventually returns the delser/model pair it could
find within the circumscribed transformation search spémethe training instances.
The assumption is that this solver/model pair will perforempwell on other instances
of the same underlying distribution. Some tools also retutransformatioristory;
consisting of the tree of transforms actually applied, aptiomally of an isomorphic
tree with the solving-cost statistics for the training arstes.

The transformation tool we advocate takthe features mentioned in Figure 3.
Considering our choices in the last column of Table 1, wesage a synthesiser that
simply takes theesrAsolver.
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Case| ESRAdeclarations oPL declarations
var V->W M;
. M 5
1 whereV andw are domains var W MV]
var V->W M;
. > . . int i I
2 whereV is a set variable of domai Xzi qunM [\SI][?] in 0
andw is a domain ’
var V->W M;
. ¢ . int W[T] in O0..1;
3 whereV is a domain Xz ,},HM [V]['] H
andv is a set variable of domain ’
var V->W M; var int V[S] in 0..1;
4 whereV andw are set variables var int W[T] in 0..1;
of domainss andT, respectively var int M[S,T] in 0..1;

Table 2. oPL representations acf SRA mappings

4. Reformulation Rulesfor Mappings and Permutations

We now introduce reformulation rules fasrRA mappings and permutations, and
explain their motivation. Reformulation rules are heretigri asL. = R, meaning
that expressioid is rewritten intoR, under a condition identified in the context. For
convenience, new variables introduceddrcontain an underscore (*_") character.

4.1. Mappings

At the ESRA level, the mapping type constructor takes two argumentsh e&
which can be either a domain or a set variable, giving riseto €ases. For each case,
the ESRA compiler chooses a differePL representation, as shown in Table 2, and
posts any necessary constraints (omitted here, but se@(QFfdr full details).

For mappings, the reformulation rules (identified so famcéothe compiler to
choose a differenbpPL representation. For instance, if we have a mappirfgppm
a set variabl& into a domairi, then one can introduce a new set varidble that
is a subset ofi, and change the mapping to be framinto W_s instead. This will
make theesrA compiler choose a differetpL representation. However, we need to
preserve the semantics of the mapping, and hence add theaionhthatw is equal
to W_s. Now we can present all our reformulation rules for mappimgsonsidering
each case separately. We omit case 4 as we do not have anfomnites

Reformulation Rules for Case 1. When a mappind! is from a domainv into a
domainw, we have the following rules:

var V->W M;
= var {V} V_s; var V_s->W M; V = V_s; (M})
= var {W} W_s; var V->W_s M; W = W_s; (Alf)

= var {V} V_s; var {W} W_s; var V_s->W_s M;
V=V_s; W= W_s; (Aff)
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Case| ESRAdeclarations oPL declarations
var perm(V) P;

1 whereV is a domain var V PL1..card(V)];
var perm(V) P; var S P[1..card(S)];
2 wherevV is a set variable o ’

var int P_s[1..card(S)] in 0..1;

of domains

Table 3. oPL representations af SRA permutations

The rule M} reformulatest as a mapping from the new set variables into the
domainw, wherev_s is a subset of/, butv = V_s. Conversely, the ruld/? refor-
mulatesM as a mapping from the domaininto the new set variablé_s, wherew_s
is a subset off, butWw = W_s. Combining both options, the rule/; reformulatest
as a mapping from the new set variables into the new set variablg_s, wherev_s
(resp.W_s) is a subset of (resp.W), butv = V_sandw = W_s.

Reformulation Rule for Case 2. When a mapping! is from a set variablg into a
domainw, we have the following rule:

var V->W M;
= var {W} W_s; var V->W_s M; W = W_s; (Al%)

The rule M} reformulatest as a mapping from the set variabilento the new set
variablew_s, whereWw_s is a subset of, butw = W_s.

Reformulation Rule for Case 3. When a mapping is from a domair¥ into a set
variablew, we have the following rule:

var V->W M;
= var {V} V_s; var V_s->W M; V = V_s; (M3)

The ruleM;} reformulatet as a mapping from the new set variabiles into the set
variablew, whereV_s is a subset of, butv = V_s.

4.2. Permutations

Atthe EsRAlevel, the permutation type constructor takes one argumatitch can
be either a domain or a set variable, giving rise to two caseseach case, thesrA
compiler chooses a differeatPL representation, as shown in Table 3, and posts any
necessary constraints (omitted here, but see [FH:00] fbdétails). Furthermore, as
discussed in [Gee:92], a permutation over avskas a dual viewpoint, i.e., it can be
viewed either as a mapping frowinto the rangd . . card (V), or as a mapping from
the rangel. .card (V) into V, plus a suitable constraint to actually force the mapping
to be a bijection, i.e., any two distinct elements of the dimmaust be mapped to two
distinct elements of the co-domain.
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For permutations, the reformulations (identified so fath)&i force the compiler to
choose a differenbPL representation, or exploit the dual viewpoint of permotasi
We here discuss the reformulation rule for case 1, as welhasdformulation rules
for the dual viewpoint of permutations.

Reformulation Rule for Case 1. The rule:

var perm(V) P;
= var {V} V_s; var perm(V_s) P; V = V_s; (P

reformulates a permutation over a domeias a permutation over the new set variable
V_s, whereV_s is a subset of, butv = v_s.

Reformulation Rules Exploiting the Dual Viewpoint. The following rule captures
the reformulation of a permutation over a domwaias a mapping frori into the range
1..card(V):

var perm(V) P;
= range B_s 1..card(V); var V->B_s P;
forall(I->J,K->L in P) I<K => J<>L;
AggrOp(i in 1..card(V): Q[i]) F[P[i]]
=  AggrOp(j_s->i in P) Q[i]*F[j_s]
forall(i in 1..card(V): Q[i]) F[P[il] (P3)
=  forall(j_s->i in P) Q[i] => F[j_s]
exists(i in 1..card(V): Q[i]) F[P[il]
=  exists(j_s->i in P) Q[i] & F[j_s]
Constraint[P[i]];
= j_s->1 in P;
Constraint[j_s];

The previous rules for mappings and permutations need fatmelate any of the
constraints as they do not change any type constructors.ettowruleP} reformu-
lates the permutation as a mapping and hence all the canstai the permutation
need to be reformulated in terms of the mapping. Therefate ] is composed of
different parts that are either all applied or not at all. Tirst part reformulates the per-
mutationP as a mapping from domaihinto the ranges_s (which is1..card(V)),
and forces the mapping to be a bijection. In the second gawgrOp can besum,
prod, min, Or max. A summation (resp. product, minimum, maximum) over the el-
ements of a permutation is reformulated as a summation.(pspuct, minimum,
maximum) over the elements of the mapping. The third andtfigparts reformulate
a universal (resp. existential) quantification over themglets of a permutation as a
universal (resp. existential) quantification over the edats of the mapping. Note that
F' can be an¥sRA constraint, while) can be anfgsrArelation. The last part refor-
mulates any non-aggregate constraint involig] into a constraint orj _s, where

i is the image ofj_s under the mapping.
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The following rule captures the reformulation of a permiotabver a domaiw as
a mapping from the range. . card (V) into V:

var perm(V) P;
= range B_s 1..card(V); var B_s->V P;
forall(I->J,K->L in P) I<K => J<>L;
AggrOp(i in 1..card(V): Q[i]) F[P[i]]
=  AggrOp(i->j_s in P) Q[i]*F[j_s]
forall(i in 1..card(V): Q[i]) F[P[i]] (P3)
=  forall(i->j_s in P) Q[i] => F[j_s]
exists(i in 1..card(V): Q[i]) F[P[i]]
=  exists(i->j_s in P) Q[i] & F[j_s]
Constraint[P[i]];
= i->j_s in P;
Constraint[j_s];

Similarly to rule P}, the ruleP? is composed of different parts. The first part reformu-
lates the permutatiohas a mapping from range s into the domairv, and forces the
mapping to be a bijection. The second to fourth parts areognalus to ruleP;. The
last part reformulates any non-aggregate constraintwinwgIP [i] into a constraint
onj_s, wherej_s is the image ofi under the mapping.

4.3. Experimental Results

For the Warehouse Location problem, t&RAmodel in Figure 1 uses a mapping
from a domain $tores) into a set variableQpenwarehouses). Thus, the reformu-
lation rule M1 can be applied. In Figure 4 is the resultingrA model after applying
M}. TheopL model generated from tiessrRAmodel in Figure 4 is shown in Figure 5.
The constraints of the generateeL model in Figure 5 can be simplified (manually
for the time being), resulting in constraints (shown in F&g6) very similar to the ones
of the hand-craftedPL model in [VH:99] (page 161, which mistakenly lacks the sec-
ond constraint). The simplification is as follows. The satand third constraints in
Figure 5 are simplified to the second and third constrainidgure 6 because all the
Booleans of the set variab$zores_s are setto 1, and=1 => B=1 is equivalent to
A <= B. The last constraint in Figure 5 is simplified to the last ¢aaist in Figure 6
becausSupplier[I,J]=1implies thatOpenWarehouses[J]=1.

Note also that the generate@éL model from theesrRAmodel in Figure 1 is a con-
straint program (CP), while the simplified version of the gitedopPL model from
the ESRA model in Figure 4 is a pure 0-1 integer linear program (ILPg &¥peri-
mented with the instance data provided in [VH:99] (page 188y the reformulation
paid off in terms of solving times, as the new model is 10 tifasser.

The reader should not be misled with the results of such @xpats, as they
just show that the performance of any model is instancetdgrg, but not that our
reformulated models are always better.
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int FixedCost = ...;
enum Warehouses ...;
enum Stores ...;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores,Warehouses] = ...;
var {Stores} Stores_s;
var {Warehouses} OpenWarehouses;
var Stores_s->0OpenWarehouses Supplier;
minimize
sum(I->J in Supplier) SupplyCost[I,J]
+ card(OpenWarehouses) * FixedCost
subject to {
Stores subset Stores_s;
forall(J in OpenWarehouses)
count (I in Stores: I->J in Supplier) <= Capacity[J] };

Figure 4. A reformulatece sSRAmodel of the one in Figure 1

int FixedCost = ...;
enum Warehouses ...;
enum Stores ...;
int Capacity[Warehouses] = ...}
int SupplyCost[Stores,Warehouses] = ...;
var int Stores_s[Stores] in 0..1;
var int OpenWarehouses[Warehouses] in 0..1;
var int Supplier[Stores,Warehouses] in 0..1;
minimize
sum(I in Stores, J in Warehouses) SupplyCost[I,J] * Supplier[I,J]
+ (sum(J in Warehouses) OpenWarehouses[J]) * FixedCost
subject to {
forall(I in Stores) Stores_s[I] = 1;
forall(I in Stores, J in Warehouses)

Supplier[I,J]=1 => (OpenWarehouses[J] = 1 & Stores_s[I] = 1);
forall(I in Stores)
Stores_s[I] = 1 => (sum(J in Warehouses) Supplier[I,J]) = 1;

forall(J in Warehouses)
(OpenWarehouses[J]=1) =>
(sum(I in Stores) (Supplier[I,J]=1)) <= Capacity[J] };
display(I in Warehouses: OpenWarehouses[I]=1) <I>;
display(I in Stores, J in Warehouses: Supplier[I,J]=1) <I,J>;

Figure5. GeneratedbpPL model from theesRAmModel in Figure 4

The N-queens problem can be modelled as a permutation over tlod geeens,
each of them being assigned to a column of the chessboare lath modelling. By
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forall(I in Stores) Stores_s[I] = 1;
forall(I in Stores, J in Warehouses)
Supplier[I,J] <= OpenWarehouses[J];
forall(I in Stores)
(sum(J in Warehouses) Supplier[I,J]) = 1;
forall(J in Warehouses)
(sum(I in Stores) (Supplier[I,J]=1)) <= Capacityl[J];

Figure 6. Simplified constraints of therpL model in Figure 5

applying rulesP; and P#, the resulting models involve a mapping that either maps
queens (i.e., columns) to rows, or maps rows to queensc¢okimns). For each of
these reformulated models, the reformulation rulés, M2, and M3 can then be
applied. For instance, after the applicationidf, we get after simplification a pure
0-1 integer linear program, which views thequeens problem as assigning Booleans
to the squares of the chessboard, such that assigning 1 tolad®omeans that we
must place a queen in its corresponding square and assigmiggns the opposite.

5. Conclusion

Our main contribution is a set of automatable rules (for niggpand permuta-
tions) for reformulating CSP models written in a high-legehstraint programming
language, such as ogsRA After compilation intoopL of the resultinge SRA mod-
els, and after simplification of thesePL models, we often get what a humamwL
modeller would have tried anyway, such as switching from& gonstraint program
to an integer linear program. The key idea is the choice ofitite level at which we
do the reformulations, namely at tesRrRA level.

As some of our reformulation rules basically force th&rA-to-oPL compiler to
choose a different internal representation of a high-lde¢h structure, it is clear that
the same effect could have been achieved by making the cenmmih-deterministic.
However, we prefer to have a deterministic compiler, as ithibe traditional view
of compilers and as such a non-deterministic compiler wadagdinable to make a
recommendation about when each of its output programs fernatee. Helping with
this choice is rather the task of a programming environnteking a set of training
instances as further input, and our advocated reformuldtiol proposes just that.
Indeed, notice that our other rules propose ‘classicatimafilations.

Related to our work are Smithisibs [Smi:90], Minton’sMULTI-TAC [Min:96],
Ellman’s bA-MSA [EKBA:98], and the reformulation framework proposed by Bor
rett and Tsang [BT:xx]. A comparison between these appremahd ours has been
presented in Section 3.

As future work, we will implement a prototype reformulatitool, working under
the scenario shown in Section 3. We also need to enhanaessuycompilation ma-
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chinery, so that the generate@L models are automatically simplified, thus enabling
the full effect of the reformulations. We will furthermoremtinue searching for refor-
mulation rules, for mappings and permutations, as well asdquences and subsets.
Finally, since the model in Figure 2 is a pure CP model and théahin Figure 6 is a
pure ILP model, we will investigate the possibility of refieulation rules that integrate
CP and ILP models at thesrA level so as to generate hybiE$RA models.
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