Contingency Plans for
Air Traffic Flow and Capacity Management
Using Constraint Programming*

Karl Sundequist Blomdahl, Pierre Flener, and Justin Pearson
Department of Information Technology
Uppsala University
Box 337, SE — 751 05 Uppsala, Sweden
Karl.Sundequist@it.uu.se, Pierre.Flener@Qit.uu.se,
Justin.Pearson@it.uu.se

9th December 2011

Abstract

‘We present a constraint-based local search heuristic that contributes to
solving the problem of generating contingency plans for air traffic flow and
capacity management, which are to be used in the case of a catastrophic
infrastructure failure within EUROCONTROL, the European Organisa-
tion for the Safety of Air Navigation. Experiments with the heuristic,
implemented in Comet, on real-world flight plans for the entire European
airspace show that it is feasible to automate the development of contin-
gency plans, which is currently done by human experts. This is desirable
as the development time goes down from two person months per year to
a few CPU hours, and as it allows contingency plans to be generated with
an increased frequency.

Keywords: Contingency planning, air traffic flow and capacity management,
constraint programming, constraint-based local search, tabu search

1 Introduction

1.1 Air Traffic Management

Air traffic management (ATM) is about managing and ensuring a safe, efficient,
and fair flow of air traffic, assuming negligible interference from side-effects, such
as adverse weather conditions or mechanical failures. During normal operation,
the Central Flow Management Unit (CEMU) of the Furopean Organisation for

*This paper extends [5] and [6].

mailto:Karl.Sundequist@it.uu.se
mailto:Pierre.Flener@it.uu.se
mailto:Justin.Pearson@it.uu.se

the Safety of Air Navigation (EUROCONTROL) has several planning stages,
each in increasing detail, to satisfy these three conflicting operational goals:

1. A strategic stage, taking place several months before the day of operation.
2. A pre-tactical stage that starts six days before the day of operation.

3. An online tactical stage during the day of operation. This stage is called
the air traffic flow and capacity management (ATFCM) stage [1], and has
two main functions:

(a) Calculate the demand of each airspace volume using live flight plan
information.

(b) Adjust the number of allocated departure slots of the involved aero-
dromes, such that they optimise the objectives defined in the pre-
tactical stage. These objectives typically include, but are not limited
to, minimising the total flight delay and the air volume overcapacity.

During an average day, the ATFCM unit currently handles approximately 30 000
flights spread over about 1500 aerodromes.

1.2 Contingency Planning

This study focuses on the special case of an ATFCM failure due to any reason,
such as downtime of the computer-assisted slot allocation (CASA) system. In
such a situation, where no timely updates from ATFCM are available and the
air controllers of each aerodrome have no idea whether it is proper to release a
flight or not, a safe alternative is necessary. EUROCONTROL addresses this by
a contingency plan, which contains a pre-defined number of allocated departure
slots for each major aerodrome in such a way that certain safety and efficiency
objectives are satisfied, for a maximum duration of one day. During the last
thirteen years, such a situation has occurred once, for a few hours. Nevertheless,
EUROCONTROL requires the existence of such contingency plans, and they
take time to develop.

An excerpt from such a contingency plan can be seen in Figure[1] It defines
the number of departure slots that the aerodrome with the International Civil
Awiation Organisation (ICAO) identifier EBBR (Brussels National Airport, Bel-
gium) is allowed to release for each hour to various destination aerodromes. For
example, from 09:00 to 12:00, a maximum of 7 flights are allowed to take off
in the flow EBBRI1, which is defined by the departure aerodrome EBBR and
a destination aerodrome whose ICAO identifier starts with C (Canada), EG
(Great Britain), EI (Ireland), K (United States), or M (Central America and
Mexico). Similarly, only 4 flights whose departure and destination aerodrome
match the description of the flow EBBR2 are allowed to take off per hour from
06:00 to 17:00.

The current contingency plan can always be downloaded from the CFMU
website https://www.cfmu.eurocontrol.int/|

https://www.cfmu.eurocontrol.int/

Flow identifier | Flow description Time span Hourly rate
EBBRI1 From: EBBR 00:00 — 06:00 2
To: CEGEIK M 06:00 — 09:00 3
09:00 — 12:00 7
12:00 — 14:00 4
14:00 — 22:00 8
22:00 — 24:00 2
EBBR2 From: EBBR 00:00 — 06:00 1
To: B EDDH EDDW EE | 06:00 — 17:00 4
EF EH EK EN ES 17:00 — 21:00 6
21:00 — 24:00 2

Figure 1: A contingency plan excerpt, which describes the hourly take-off rates
of two flows originating from the aerodrome EBBR, (Brussels National Airport,
Belgium).

The generation of ATM contingency plans within the EUROCONTROL FEx-
perimental Centre (EEC) and the CFMU is currently done by two human ex-
perts (using a process described in Section. They biannually (for the winter
and summer timetables) develop a three-fold plan, namely one for weekdays, one
for Saturdays, and one for Sundays.

The total contingency planning time is two person-months per year, hence
automated contingency planning is desirable. Another benefit with automating
the process is that it could be done at the tactical level instead of the strategic
level, which would increase the quality of the generated contingency plans.

1.3 Contributions and Organisation of this Paper

This paper presents a local search [2] heuristic that solves in just a few CPU
hours the problem of finding (near-)optimal time spans and hourly rates for given
flows (which typically do not change much between contingency plans anyway)
for the entire Furopean airspace. It is intended as a feasibility study about
replacing the human experts with constraint programming (CP) technology [3].
To our knowledge, this is the first time that contingency planning has been at
least partially automated.

We here outline the model and the best of the two local search heuristics in
our paper [5] at a specialist conference on CP.

The rest of this paper is split into four parts, dealing with the contingency
planning problem in increasingly concrete terms: a formal definition of the prob-
lem as a constraint model (Section , a local search heuristic that operates on
the constraint model (Section 7 experimental results with an implementation
of the heuristic (Section [4), and a conclusion (Section).

2 The Contingency Planning Problem

Informally, we address the following subproblem in contingency planning. We
are given a set of flight plans and a set of flows. Our objective is to determine
(near-)optimal hourly departure rates and time spans for these flows, such that
efficiency and safety of the global air traffic flow are maximised, under a fair
allocation of departure slots. We measure efficiency as the total delay cost of
all flights, under a first-submitted, first-served allocation. We measure safety as
the total overcapacity cost of all air volumes. We minimise the weighted sum of
these two terms and ensure fairness on the fly.

We now give the current state of the art algorithm, and give a formal de-
scription of this combinatorial optimisation problem as a constraint model.

2.1 Current State of the Art

The current state of the art, and the only known algorithm, to solve the con-
tingency planning problem is the unpublished process used by the CFMU and
EEC human experts. It has been described to us in the following high-level
steps:

1. A statistical analysis is performed in order to point out the airspace vol-
umes with a high demand. The duration and capacity of each air volume
are recorded (there may be several durations per air volume).

2. An analysis of departing flows is made:

e For the major European airports (i.e., with more than two arrivals or
departures per hour on average), the traffic needs to be divided into
main flows, where several destinations are grouped into each flow.

e For the other airports, the flows are mainly divided into two cate-
gories: domestic flights and international flights. If the number of
domestic flights is low, it seems better that a local flow manager
handles this traffic.

Recall that it takes one person-month each for two senior human experts to
perform this algorithm, and that all this is done twice a year (once for the
summer timetable and once for the winter timetable), for weekdays, Saturdays,
and Sundays.

2.2 Constraint Model

Our constraint model is implemented in Comet [4], an object-oriented constraint
programming language for the modelling of combinatorial problems. It has back-
end solvers for (global) tree search interleaved with constraint propagation, for
constraint-based local search, and for mixed integer linear programming. Comet
is available at http://dynadec.com/.

Comet offers a very-high-level modelling language for fully declaratively spec-
ifying a combinatorial optimisation problem by (1) identifying the decisions that

http://dynadec.com/

Input Data Decision variables

| Contingency Plan |

Constraints and Objective fundtjon

| CASA Simulation: FSFS |

Eﬂici@

Fairness

Figure 2: Overview of our constraint model.

need to be made, namely the so-called decision variables (or unknowns) and
their sets of possible values, called domains, (2) stating the constraints that are
to be satisfied, and (3) defining the expression (called the objective function)
that is to be minimised or maximised. Such a constraint model is (in principle)
independent of the back-end solver.

An overview of our constraint model is given in Figure 2] The inputs are
a set of flight plans, and the main decision variables denote the hourly rates
and the time spans of the output contingency plan. Through constraints that
simulate the slot allocation process of ATM, the hourly rate decision variables
are connected to overcapacity decision variables and take-off delay decision vari-
ables, from which the safety and efficiency terms of the objective function are
respectively determined. The fairness term of the objective function is obtained
through the search heuristic rather than through constraints.

2.2.1 Constraints and Decision Variables

An instance of the contingency planning problem is defined by the following
input and output data, where identifiers starting with capital letters denote
given sets, subscripted identifiers denote given constants, identifiers with indices
within square brackets denote decision variables (outputs), identifiers that are
Greek letters denote given parameters, and all time moments are measured in
seconds since some fixed origin:

o A set of flights F = {fi,...,fin}, where each flight f; has a departure

aerodrome adep,, a destination aerodrome adesy, an expected take-off
time etoty, a calculated take-off time ctot[f], an expected landing time
eldty, and a take-off delay delay[¢]. All later specified sets of flights are
subsets of F.

A set of air volumes AV = {avy,..., av,}, where each air volume av, €
AV has a capacity cap, that limits the hourly number of flights that can
enter it for the duration dur,. There is also a flight set F, C F for each
air volume av, that contains all flights that pass through av,, where each
flight f, € F, has an expected entering time enter,,, an expected exit
time exit, ¢, a calculated entering time cnter|a,], and a calculated exit
time czit[a,?]. In the real-world, an air volume can represent either a
part of the airspace or an aerodrome. Note that a dynamic airspace,
where air volumes can change over time, can be modelled by splitting
each air volume into its unique states and making sure the flights enter
the correct one. For example, consider a dynamic air volume av,y that
has the capacity 2 between 00:00 and 12:00 o’clock and the capacity 4
between 13:00 and 15:00 o’clock. This air volume avy can be modelled by
splitting it into two air volumes avq, with a capacity of 2 and avg4, with
a capacity of 4, and then partitioning Fy such that all flights entering avq
between 00:00 and 12:00 o’clock are stored in Fy, and all flights entering
avy between 13:00 and 15:00 o’clock are stored in Fy,.

A set of flows F = {F1,...,F,}, where each flow F; consists of a set
of flights Fy and a set of span-rate pairs Ry = {r1,...,7,,}, where each
span-rate pair r; consists of a time span span[i] denoting when it is active,
and an hourly rate of allocated departure slots rate[i] in the closed integer
interval [1, demand|[f,i]], where demand|f,1] is the maximum number of
flights that are re-scheduled to depart in flow F; during the time span
spanli]:

demand|f,i] = tlél%] {fe € Fy :t < ctot[¢] < t+ 3600}

where set T'[i] contains the beginning times of all one-hour-long time
intervals that fit inside the time span span|i] of the span-rate pair r;, with
a five minute step:

T[i] = {t € span[i] : t + 3600 € span]i] A t mod 300 = 0}

Further, for any two span-rate pairs 7; and r;, where 7 # j, their spans
must not overlap, but for each r; its lower bound must either be zero
or immediately follow the upper bound of another span-rate (which can
be accomplished by inserting dummy spans with infinite rates during a
pre-processing stage); note that the union of all spans for a given flow
need not be 00:00 — 24:00 since no constraint on the upper bound of the
span has been given. To ease the manipulation of the spans, and to avoid
violations of the given constraints, a span length lenli] € [0,24] is defined

as the difference between the lower and the upper bound of spanli]; note
that since we know there is no free space between each span we can, given
some fixed ordering among the span-rates within each flow, say that the
lower bound of each span-rate pair must be at the end of another (or 0 if
it is the first). This means that one can fully determine the span bounds
in a flow given their lengths:

[0, len[0]) ifi=0
spcm[i] = [maX(Span[i . 1])7 3
max (Span[l - 1]) + len[z]) otherwis

where the notation [z,y) designates the right open integer interval {x,z +
1,z+2,...,y—1}. Thereis also a flight set F; C F for each flow F; that
contains all flights matching the flow description. For example, Figure [I]
defines two flows EBBR1 and EBBR2, where the flights are defined by a
subset of F' that matches the flow description, and the spans and rates are
defined by the two right-most columns.

Additional decision variables used in the objective function will be defined in
the following paragraphs.

Recall that ATM has three conflicting operational goals: ensure an efficient
flow of air traffic (by minimising the total delay), ensure a safe flow of air traffic
(by minimising the total overcapacity), and ensure a fair flow of air traffic. Dur-
ing a crisis situation, safety is especially important. Before giving the objective
function, we first discuss the constraints induced by these operational goals.

2.2.2 Constraints on Air Traffic Efficiency

The take-off delay delay[¢] of any flight f; is the difference between its calculated
take-off time ctot[¢] and its expected take-off time etot,:

delay[l] = ctot[l] — etoty

where ctot[f] is calculated using the allocated departure slots as defined by the
span-rate pairs for each flow. These slots are assigned to flights using the first-
submitted, first-served principle (FSFS) [7]. For example, consider Figure
which shows the flow EBBRI1 (defined in Figure , where there are three de-
parture slots allocated for each hour between 06:00 and 09:00: if three flights
with expected take-off times 06:00 (A), 06:30 (B), and 06:35 (C) were available,
then they would get the calculated take-off times 06:00 (A), 06:30 (B), and
06:40 (C), and delays of 0, 0, and 300 seconds, respectively; note that flight C
was delayed since its slot had already been allocated to B. Another example,
which shows the domino effect of delaying a flight, is Figure |4l which shows
the same flow EBBR1, where there are two departure slots allocated for each
hour between 00:00 and 06:00: if three flights with expected take-off times 04:05
(A), 04:20 (B), and 04:30 (C) were available, then they would get the calculated
take-off times 04:05 (A), 04:30 (B), and 05:00 (C); notice that the last flight was

06:00 06:30 07:00 07:30 08:00

Nl

Expected Departure Times: |
Departure slots: | 06:00 | 06:20 [0640 [07:.00 [07:20 | 0740 |

A

Figure 3: An example showing how the calculated take-off times are calculated
for three fights, A, B, and C for the flow EBBRI1 (defined in Figure [1]) between
06:00 and 08:00 o’clock with an hourly departure rate of 3.

04:00 04:30 05:00 05:30 06:00
Expected Departure Times: I I I I I
A\ B c\\L
Departure slots: | 04:00 | 04:30 | 05:00 | 05:30 | -

Figure 4: An example showing how the calculated take-off times are calculated
for three fights, A, B, and C for the flow EBBRI1 (defined in Figure[1]) between
04:00 and 06:00 o’clock with an hourly departure rate of 2.

given a departure slot in the hour after its planned departure hour and might
therefore delay flights that were planned to depart during that hour.

Similarly, the take-off delay delay[l] of any flight f; also is the difference
between its calculated entering time cnter[a,f] into any air volume av, and
its expected entering time enter, into that air volume; the same applies to a
flight’s calculated exit time:

delay[l] = cnter|[a,] — enterq

delay[l] = cxit|a, l] — exity

The delay cost of any flight f; is as defined by the dynamic delay cost function
of [§], which assigns a different cost (constructed from real-world measurements)
to each aircraft based on maintenance cost, number of passengers, roster rota-
tions, etc. Our model is slightly simplified in the sense that we define a global
cost function instead of using one per aircraft; however if such granularity is
desired then our model could be adopted without any major work. The delay
cost delayCost[t], where t is the number of seconds of delay, is presented as a
weight function, however it is recommended that interpolation is used in order

to make the transition between the weights smoother:

0.00 ift =0 sec

0.10 if 0 <t < 300 sec
0.50 if 300 < ¢ <900 sec
1.52 if 900 < t < 1800 sec
delayCost[t] = < 5.00 if 1800 < ¢ < 2700 sec
9.85 if 2700 < t < 3600 sec
15.61 if 3600 < t < 5400 sec
30.86 if 5400 < t < 7200 sec
50.00 if 7200 < t sec

Notice that the exact shape of this function can be changed, as the only as-
sumption our heuristic makes is that it is monotonically non-decreasing. The
total delay cost is the sum of the delay costs of all the flights:

Z delayCost[delay|{]]

freF

2.2.3 Constraints on Air Traffic Safety

The safety of air traffic is determined by how crowded the air volumes are. The
air volume av, is capable of handling up to cap, flights entering per hour, so
any flight above this capacity creates an additional risk and any flight below
this capacity means unused resources (in the form of underused controllers) that
could be better utilised elsewhere. Hence, safety is here defined by the difference
between each air volume’s hourly capacity and its demand.

For each air volume av,, a set T[a] is defined that contains the beginning
times of all one-hour-long time intervals that fit inside the air volume’s capacity
duration dur,, with a five minute step, as depicted by the x axis in Figure

Tla] = {t € dury : t + 3600 € dur, At mod 300 = 0}

The overcapacity of each air volume av, and beginning time ¢t € TJ[a] is
the number of flights, above the capacity of av,, that enter av, during the
right-open time interval [t, ¢ + 3600):

overcapacityla,t] = |{fe € F, : cnter|a,f] € [t,t 4+ 3600)}| — cap,

Note that a negative overcapacity designates an undercapacity.

Alternatively one can use a load constraint that controls the number of
flights inside the air volume at any given time (one can simply substitute
overcapacity|a, t] for overload|a,t] and cap, for load, in all consecutive equations
to get the desired result):

overload|a,t] = [{fy € Fy : cnter[a,] <t A czit[a,l] > t}| — load,

demand|a,t]

time

Figure 5: Demand for an air volume a over time: the vertical bars denote
overlapping one-hour-intervals that start every five minutes, and the height of a
bar for start time ¢ indicates the number of flights scheduled to enter a during
the hour following ¢, so that any excess of a bar over the capacity of a denotes
an overcapacity.

Which of the two formulations is most suitable depends on the regulations of
the particular country hosting the air volumes. In this particular study we have
used only capacity constraints, but for example the Netherlands and the United
Kingdom use load constraints in the air volumes they control. It would be a
trivial change, only to the model but not to the search, to use a suitable mixture
of capacity constraints and load constraints.

The overcapacity cost of air volume av, and beginning time t € T'[a], de-
noted by overcapacityCost[a,t], is defined by a piecewise linear function of the

overcapacity percentage %j{w, where a suitable slope is defined for the

overcapacity percentage breakpoints —30%, —20%, —10%, 0%, 10%, 20%, and
30%. An illustration of our chosen function can be seen in Figure [} Note that
the exact shape of this function can be changed, the only property that we re-
quire is that it is monotonically non-decreasing on the distance from zero. The
cost scales exponentially, because a small overcapacity will likely only increase
the workload of the affected ATM personnel slightly, while a large overcapacity
might result in a mistake by the ATM personnel.

The total overcapacity cost is the sum of the overcapacity costs of all the air
volumes and beginning times:

Z Z overcapacityCost[a, t]

ava €AV te T[a)

2.2.4 Constraints on Air Traffic Fairness

The fairness of air traffic is here defined by how fairly the departure slots are
allocated among the flows. No formal definition of fairness will be given at this
point, as fairness is ensured by the search heuristic rather than by the constraint
model, so we defer its discussion to Section [3.4}

160 r b
140 1
120 b
100 - 1

B0 [\ 1

overloadCost[a,t]

40 :]
30 j]

|

-30 -20 -10 0 10 20 30
Overload Percentage (%)

Figure 6: Piecewise linear function giving the overcapacity cost
overcapacityCost[a, t] in terms of the overcapacity percentage.

2.2.5 The Objective Function

The objective function, to be minimised, is a linear combination of the total
delay cost and the total overcapacity cost, where o and (are parameters that
can be chosen by the user:

cost = «- Z delayCost[{]
" (1)
+ B- Z Z overcapacityCost|a, t]

ava €AV t€ T|a)

Experiment results and feedback from our research partners at the EEC sug-
gest that & = 6 and 8 = 1 are good values, because there are currently about
six times fewer flights than air volumes and time steps. However, they can be
changed to reflect any desired balance between a low delay and a low overca-
pacity.

3 Local Search Heuristic

Comet [] also offers a very-high-level search language for expressing a search
procedure including its heuristics and meta-heuristics. The Comet constraint
solving architecture takes care of all low-level, tedious, and error-prone computa-
tional details, and thereby significantly accelerates the development of effective

and efficient search procedures, as well as enormously eases the experimenta-
tion with alternative constraints or (meta-)heuristics. Often, this convenience is
achieved at no additional cost in run-time compared to a hand-crafted program
written in a low-level language. High-level Comet programs have even been
reported to out-perform low-level programs that were hand-crafted by experts.
Achievements based on Comet are listed at the Comet web-site and are easily
found on the internet.

We here report on using the local search [2] back-end solver of Comet, which
performs constraint-based local search (CBLS) [4]. This backend was chosen
because of the sheer size of the data sets we have to handle. Trying the global
search back-ends (tree search interleaved with propagation, and mixed integer
linear programming) is considered future work.

In CBLS, constraints are used not only to state the problem but also to con-
trol the search. Search heuristics are guided by measures of constraint violation
and variable violation. Constraint violation measures how close a constraint is
to being satisfied. Variable violation measures for each decision variable in a
constraint the variation of the constraint violation that could be achieved if that
variable was suitably modified. Although these terms are not formally defined
here, it is possible, for a large number of constraints, to come up with heuris-
tically useful definitions of constraint and variable violations, and to compute
them quickly.

Given an initial assignment of domain values to all the decision variables, a
CBLS heuristic iteratively tries to find a better assignment that decreases the
amount of constraint violation, by making a move to an assignment within the
neighbourhood of the current assignment, that is a set of assignments that do not
differ much from the current one. An assignment with zero (or minimal) con-
straint violation and an optimal value of the objective function is to be found.
Meta-heuristics are used to escape local minima, that is when the neighbour-
hood contains no better assignments than the current one. Since the constraint
and variable violations might thus need to be calculated thousands of times so
as to pick the best move, and since thousands of moves might be needed, the
algorithms and data structures implementing these violation calculations must
be very efficient and, where possible, incremental.

We have developed two CBLS heuristics that operate on our constraint
model. We here outline the better one of the two heuristics, which performs
tabu search, and refer the reader to our paper [5] for a detailed description of
the other heuristic, which performs large neighbourhood search.

The generalised local search machine (GLSM) of our tabu search heuristic
can be seen in Figure[7] A GLSM [2] is a finite-state machine that describes a
local search heuristic by breaking it down into smaller algorithms, such that each
state represents an individual algorithm and the edges represent the conditions
for switching between these algorithms.

Our heuristic uses a tabu [9] meta-heuristic for escaping local minima. It
uses a slightly modified objective function, which adds a penalty term to in
order to guide the heuristic toward a fair traffic flow, where Penalty is a set of

apply penalty

Figure 7: The generalised local search machine (GLSM) [2] of our tabu search
heuristic.

values maintained by integer invariants (discussed in Section below):

cost = a- Z delayCost[{]

LeF
+ G- Z Z overcapacityCostla, t]
a€AV teT]al
+) p
p€E Penalty

The heuristic can be summarised in the following steps, where each step and
new terminology will be described in further details below:

1. (Re)start the search by assigning each flow rate variable rate[i] a random
value in its domain.

2. Hill-climb the current solution, until a local minimum has been reached.

3. Do a single run of tabu search, and then pick a random real number
u € [0,1]. If w < 0.05, then pick a flow rate variable rate[i] with an unfair
value, add its penalty to the set Penalty, and repeat Step 3. Otherwise,
if more than 200 iterations have gone by since the last improvement, then
go to Step 1, else repeat Step 3.

The heuristic terminates once mazlter iterations have been completed, where
mazlter is initialised to 1000 and is set to the number of the current iteration
plus 500 whenever a new best solution is found, unless this sum is smaller than

1000.

The main source of diversification (directing the search toward another re-
gion of the search space) is Step 1, the main source of intensification (focussing
the search on promising regions of the search space) is Step 2, while Step 3
performs a mix of both diversification and intensification.

3.1 The Restart Mechanism

The restart mechanism is the main source of diversification in our heuristic. It
completely (re)starts the search by assigning each flow rate variable rate[i] a
random value in its domain, and the len[i] variable of each flow i is reassigned
a new value v;41 — v; where v is a list of sorted random variables in the range
[0,24). Tt also clears the tabu list, which is the list of most recently visited
assignments, stored for the sake of avoiding an untimely return to them.

3.2 Hill-climbing

The hill climbing algorithm is a non-greedy algorithm: during each iteration, it
picks the first move rate[i] :== v or len[i] := v such that the objective function
is decreased. It does so until no such move can be found, that is until a local
minimum has been reached. The method used to find this assignment is through
the use of a meta-neighbourhood, which is a circular list of neighbourhoods
{N1,..., Ny} (where ¢ is the total number of flow rate and span length variables)
that are searched in successive order until an improving assignment is found.
Each neighbourhood N; consists of all moves on flow rate variable rate[i] or
a span length variable len[i]. The method terminates once a cycle has been
completed with no improving assignment found.

3.3 Tabu Search

Tabu search [J] is the core of the heuristic. While it is the main contributor
of neither intensification nor diversification, it ensures that the neighbourhood
of a local minimum has been properly explored so that no improvements have
been missed. During each iteration, it searches a neighbourhood (to be defined
in the next paragraph) for a best non-taboo move rateli] := v or len[i] := v
and, after making the inverse move taboo for the number of iterations defined
by the tabu tenure, it performs the assignment rate[i] := v or len[i] := v. The
only exception to this process is the aspiration criterion, which kicks in if the
candidate solution is better than any solution found so far. If this is the case,
then a move is performed even if it is in the tabu list. Our experiments were
made with a tabu tenure 7 = 20, which seems to work well on our data sets.
The tabu search uses a specialised neighbourhood (outlined below) that is
designed to reduce the most severe air volume overcapacities. It does so using
a four-step algorithm that begins by looking at which flights are responsible for
said overcapacities, and then finds their respective rate[i] and len[i] variables:

1. The minimum and maximum one-hour time intervals ¢ of overcapacity|a, t]
for each air volume a are found. The algorithm then chooses, at random,

one of the time intervals (across all air volumes), where each time interval
t has a probability P(a,t) proportional to its value compared to its mini-
mum (in the case of a maximum one-hour time interval) or maximum (in
the case of a minimum one-hour time interval) value in its domain:

Plat) {max (overcapacityla,t]) — overcapacityla,t] if minimum
a,t) =

overcapacity[a, t] — min (overcapacityla,t]) otherwise

2. All flights in F that contribute (in the case of a maximum) or do not
contribute (in the case of a minimum) are collected. Note that flights
that always contribute, and never contribute should be omitted in order
to avoid creating moves with a very low effect on the objective function.

3. The rate[i] and len[i] decision variables belonging to a flow containing at
least one of the collected flights are gathered. Note that decision variables
that cannot affect the objective function should be ignored, such as the
rate of a span with a length of zero.

4. The neighbourhood consists of all single assignment moves on the gathered
decision variables.

The reason for using this type of neighbourhood is because of two facts: (1) We
always start the tabu search in a local minimum, and (2) Our model contains
a lot of moves that has a very small, or no, effect on the objective function,
such as changing the rate of a span with a length of zero. Hence this choice of
neighbourhood limits the available moves to a subset of all moves that have a
large probability of working on variables that are relevant to the whole network
rather than working with variables that change only a very small portion of the
objective function while still retaining (with a comparatively low probability)
the ability to change any decision variable hence making any part of the solution
space reachable.

3.4 Penalty Invariant

The apply-penalty state is the part of the heuristic that tries to ensure a high
level of fairness of the air traffic flow. It does so by suitably modifying the value
of the cost function under a fixed probability after each run of tabu search,
such that the flow rate variable rate[i] with the minimum #ﬂ;ﬂm quotient
is deemed wunfair and an expression that tries to guide rate[i] toward a fairer
value is added to the set Penalty. It is an exponential expression that decreases
the higher the value of rate[i]:

rate[i]

v - e ° demand[f,i]

where + is a user-definable parameter that controls how aggressively the heuristic
should be guided toward fairness. In our experiments, we used v = 200, which
is only slightly aggressive.

4 Experiment Results

Three real-life flight plans, which are comparable to those used by EUROCON-
TROL when generating the official contingency plans, have been provided by
the EEC, and have been used as training flight plans:

e A weekday (Friday 2008-06-27), with 261 flows (320 rates), 36 161 flights,
and 348 air volumes.

e A Saturday (2008-08-30), with 256 flows (387 rates), 29842 flights, and
348 air volumes.

e A Sunday (2008-08-31), with 259 flows (397 rates), 31 024 flights, and 348
air volumes.

When translated into a constrained optimisation problem, each instance yields
approximately 150000 constraints and 50 000 decision variables.

All experiments were done on a Linux x86-64 dual-core laptop with 4GB of
primary memory, 2MB of L2 cache, and a CPU frequency of 2.2GHz. Under
Comet version 2.1.1, the tabu search usually terminated after approximately
three CPU hours. Keep in mind that this is a proof-of-concept implementation
and that significant improvements can be made to improve this speed if it were
to be deployed in practice. Similarly, if speed in some cases is more desirable
than quality, then the termination criteria could be rewritten to suit such needs.

An overview of the results of our tabu search heuristic for different values
of a and [for the weekday flight plan can be seen in Figure As indicated
earlier, the average delay of delayed flights decreases as a grows in comparison
to (3, and the average overcapacity decreases as (3 grows in comparison to . The
minor artefacts that do not follow this pattern can be explained by the fact that
our heuristic only converges to a local minimum, and therefore some runs might
get luckier than others. For the rest of this section we will use («, 5) = (6, 1),
which provides a reasonable mix of low delay and low overcapacity, however
any other assignment to said parameters is equally feasible depending on what
properties are desirable in the final solution. Note that the reason why the
average overcapacity is still greater than zero, even at very high values of
compared to «, is because it was impossible to fix all overcapacities on the data
set we were provided with, as some sectors (usually with capacities less than 2)
were overcapacitated by flights that are not contained in any flow (presumably
originating from outside Europe) and are therefore unaffected by any change to
the decision variables.

Our own comparison between contingency plans generated by our heuristic
(denoted by Tabu) and contingency plans generated by the EEC and CFMU
human experts (denoted by EEC) can be seen in Table |1} giving the expected
take-off delay (in seconds, only for the delayed flights) and the 95th percentile
thereof, as well as the expected air volume overcapacity percentage (only for the
overcapacitated sectors and overcapacities greater than zero) and the 95th per-
centile thereof. We observe that our heuristic outperforms the EEC algorithm
on both measures.

1000
800
E(delay)
600
400

200

SIS
0
K K55

lj I i

i

""" i
I
I ,",',lm,;,

I
i i

i
ﬂ‘!,u

i
i
I,I'M

{l
0

[

13

1.28

E(overload)

1.24

1.22

12

10
8

alpha 2

Figure 8: The resulting average delay[{] of all delayed flights (above) and average
overcapacityla, t] of all overcapacitated air volumes (below) for different values
of a and (. Note that the o and 3 axes are not oriented the same way in both
figures.

‘(nqe],) o1sLIMLY YoIRSS NQRY)
mo pue (DHH) 219U reyuswitiedxy TOYLNODOUNH 21} Jo mijLode o) Aq pajersusd sue[d Aouadurjuod a1y 0} 3urpioode
d[qrIPWI) QOO Towuns weadoinsy o) Ul Aepung ' pue ‘Aepimnjeg e ‘Aepsoom © U0 ‘JooIdl) o[1uedIod 1166 o) pue (oIoz uer)
199018 $o19100dROIOA0 PUR SOWIN[OA ITR Pogn10ndno.La00 o) I0] ATuo) ofejusotod Ajoedesiono owmoa Ire pPajoadxe o) st [[om
se ‘Joaret]) o[ruedIod [IGE oy} pur (SIYSIY pafivjop oY) 10 AUO ‘Spuodes Ul) Ae[op Jo-oqe) poajoadxy :sisA[eur Im() :T o[qeL

%LS %¥c %9¢ 298 G'FITT | 998 6°G¥€ %1€ 1€-80-800¢ Nq®L,
%89 %6¢ %8¢ 995 00041 | 29s 0°L0F %S€ 1€-80-800¢ DHH
%94 %cc %0¢€ 298 0°002T | 998 T'9T1¢€ %1€ 0€-80-800¢ Nq&L
%19 %EC %1e 998 0"008T | 998 1'8¢S %8¢ 0€-80-800¢ DHH
%L %Lc %Lc 998 0°00¢T | 998 g'01¢€ %9¢ L¢-90-800¢ NqBL
%00T %62 %8¢ 298 0'0F€C | 298 9°9F%9 %S¢ £2-90-800¢ DHH
(£y10eded10n0)96d | (A3100ded1an0)sg GOQﬁMWMMMWM\wo\,O (Aerop)96d | (Aefop)sg wMQHMMMWH ue[q £ouaSurjuo))

500

400

w
(=]
o

N
o
o

Average delay (min)

100

EEC tabu EEC tabu EEC tabu
2008-06-27 2008-08-30 2008-08-31
Weekday Saturday Sunday

Figure 9: EEC/CFMU analysis: Average take-off delay (in seconds), only for
the delayed flights, on a weekday, a Saturday, and a Sunday in the European
summer 2008 timetable according to the contingency plans generated by the
algorithm of the EUROCONTROL Experimental Centre (EEC), and our tabu
search heuristic (tabu).

This good performance of our heuristic has been validated independently
by the EEC and CFMU human experts, using their internal simulation tool
COSAAC. They compared our contingency plans and their contingency plans
on realistic test flight plans (which were not given to us), though not according
to the objective function we used in our optimisation, but more realistically
according to a CASA-style slot allocation, as if CASA was actually not down.
Indeed, our objective function and constraints only simulate (our understanding
of) CASA, as calls to CASA itself for every candidate move in the neighbourhood
of every iteration of local search would be prohibitively expensive.

Figures@]andrespectively give the average take-off delay (in seconds, only
for the delayed flights) and the average overcapacity percentage (only for the
overcapacitated air volumes and overcapacities greater than zero), on a weekday,
a Saturday, and a Sunday in the European summer 2008 timetable according to
the contingency plans generated by the algorithm of the EUROCONTROL Ex-
perimental Centre (EEC) and our tabu search heuristic (tabu). We observe that
our heuristic significantly decreases both the average take-off delay (among the
delayed flights) and the overcapacity (among the overcapacitated air volumes)
of the contingency plans generated by the human experts.

Our tabu search heuristic not only decreases the take-off delay of delayed
flights (as seen in Figure @ but also delays significantly fewer flights compared
to the EEC algorithm (as seen in column 2 of Table [I)).

Finally, our tabu search heuristic not only decreases the overcapacity of over-
capacitated air volumes (as seen in Figure but also overcapacitates fewer

Average overload (%)

EEC tabu EEC tabu EEC tabu
2008-06-27 2008-08-30 2008-08-31
Weekday Saturday Sunday

Figure 10: EEC/CFMU analysis: Average overcapacity percentage, only for the
overcapacitated air volumes and overcapacities greater than zero, on a weekday,
a Saturday, and a Sunday in the European summer 2008 timetable according
to the contingency plans generated by the algorithm of the EUROCONTROL
Experimental Centre (EEC) and our tabu search heuristic (tabu).

air volumes compared to the EEC algorithm (as seen in column 5 of Table [1)).
This is also visible when looking at the histograms of overcapacity in Figure
which shows the number of time-windows with a specific overcapacity for three
different contingency plans, our tabu search heuristic (tabu), a plan where all
flights depart on time (init), and the contingency plans developed by the EEC
(EEC). Notice that our tabu search heuristic significantly decreases the number
of overcapacities (which is good), but increases the number of undercapacities
(something that we want to avoid if possible). Another, slightly more subtle,
difference between the contingency plans is that our tabu search heuristic actu-
ally has more flights in the histogram than any of the others, that is the sum
of all the bars is higher for our tabu search heuristic. The reason for this is
because our tabu search heuristic improves some of the more severe underca-
pacities (< 70%) that are not visible in the figure. The other reason our tabu
search heuristic generates more undercapacities than the other two contingency
planners is because the total number of capacities, including the ones not visible
in the figure, must remain constant, and therefore fewer overcapacities imply
more undercapacities. Overall, these figures show that our tabu search heuristic
performs better than the human planners in terms of trying to keep all capacities
as close to 100% as possible.

Capacity load 2008-06-27
2000 T T T T T T T

tabu search mmmmm
init m—
EEC

1500 - -

1000 - J

time windows

500 -

70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170%
Capacity load 2008-08-30

2000 T T T T T T T

tabu search mmmmm
init —

1500 - q

1000 - -

time windows

70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170%

Capacity load 2008-08-31
2000

tabu search mmmmm
init m—
EEC

1500 - J

1000 - -

time windows

70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170%

Figure 11: The capacity balance M, with values outside the closed

interval [70%,170%)] omitted, on the trz;ining flicht plans for three different
contingency plans, an empty contingency plan (init), a contingency plan gen-
erated by our tabu heuristic (tabu), and a contingency plan generated by EU-
ROCONTROL (EEC). A favourable distribution would be heavy around 100%
and decrease with distance, faster on the right-side (overcapacities) than on the
left-side (undercapacities). The reason this is not the case for undercapacities
is because during non-rush hours there are not enough flights to fully utilise the
airspace, hence undercapacities are inevitable.

5 Conclusion

This work was part of a feasibility study about whether it is possible to automate
the development of contingency plans for EUROCONTROL, the European Or-
ganisation for the Safety of Air Navigation. Our positive results were expected,
due to the similarities between the contingency planning problem and schedul-
ing problems, which have been solved successfully using constraint programming
technology for a couple decades. It thus seems to be possible to automate con-
tingency planning efficiently enough with constraint programming technology.

Regarding future work, compared to our old heuristic in [6], the new heuristic
in this paper still assumes that it is given a set of flows, however this is less of an
issue as currently the flows are derived based on geographical location and will
likely remain so in order to ease readability of the contingency plan by humans.
For example, the flows in Figure [1| are split based on whether the destination
is west (EBBR1), north or east (EBBR2) of the departure aerodrome; there is
also a southbound flow not included in the figure. Some experimentation (not
reported here) showed that if inference of flows is desired, then an approach
based on both bin-packing and clustering produces acceptable results, but this
has not been fully explored by the authors and is therefore future work.

Acknowledgements

We thank Serge Manchon, Elisabeth Petit, Bernard Kerstenne, Leila Zerrouki,
and Marc Dalichampt at the EUROCONTROL Experimental Centre for their
feedback on our progress.

References

[1] EUROCONTROL, Air Traffic Flow & Capacity Management Users
Manual, 15th ed. EUROCONTROL CFMU, March 2011, available
at http://www.cfmu.eurocontrol.int /j_nip/cfmu/public/standard _page/
library_handbook_supplements.html.

[2] H. H. Hoos and T. Stiitzle, Stochastic Local Search: Foundations & Appli-
cations. Elsevier / Morgan Kaufmann, 2004.

[3] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint Pro-
gramming. Elsevier, 2006.

[4] P. Van Hentenryck and L. Michel, Constraint-Based Local Search. The MIT
Press, 2005.

[5] K. Sundequist Blomdahl, P. Flener, and J. Pearson, “Contingency plans
for air traffic management,” in Proceedings of CP’10, the 16th international
conference on Constraint Programming, ser. Lecture Notes in Computer Sci-
ence, vol. 6308, D. Cohen, Ed. Springer-Verlag, 2010, pp. 643—657.

http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library _handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library _handbook_supplements.html

[6] K. Sundequist Blomdahl, P. Flener, and J. Pearson. “Contingency plans for
air traffic flow and capacity management”. In: D. Schaefer (editor), Proceed-
ings of INO’10, the 9th EUROCONTROL Innovative Research Workshop
& Ezhibition, EUROCONTROL Experimental Centre, 2010. ISBN 978-2-
87497-021-4.

[7] EUROCONTROL, General & CFMU Systems, 15th ed. EUROCONTROL
CFMU, March 2011, available at |http://www.cfmu.eurocontrol.int/j_nip/
cfmu/public/standard_page/library handbook_supplements.html.

[8] A. Cook, G. Tanner, and A. Lawes, “The hidden cost of airline unpunctu-
ality”, Journal of Transport Economics and Policy, January 2011, available
at http://www.ingentaconnect.com/content/lse/jtep/pre-prints.

[9] F. Glover and M. Laguna, “Tabu search,” in Modern Heuristic Techniques
for Combinatorial Problems. John Wiley & Sons, 1993, pp. 70-150.

http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html
http://www.ingentaconnect.com/content/lse/jtep/pre-prints

	Introduction
	Air Traffic Management
	Contingency Planning
	Contributions and Organisation of this Paper

	The Contingency Planning Problem
	Current State of the Art
	Constraint Model
	Constraints and Decision Variables
	Constraints on Air Traffic Efficiency
	Constraints on Air Traffic Safety
	Constraints on Air Traffic Fairness
	The Objective Function

	Local Search Heuristic
	The Restart Mechanism
	Hill-climbing
	Tabu Search
	Penalty Invariant

	Experiment Results
	Conclusion

