
Revisiting Constraint-Directed Search

Magnus Ågren a,∗, Pierre Flener c,b,1, and Justin Pearson b

aSICS
Box 1263, SE – 164 29, Kista, Sweden
bDepartment of Information Technology

Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden
cFaculty of Engineering and Natural Sciences

Sabancı University, Orhanlı, Tuzla, TR – 34956 İstanbul, Turkey

Abstract

In constraint-based local search the solutions are described declaratively by a con-
junction of (often high-level) constraints. In this article we show that this opens up
new ideas for constraint-directed search. For a constraint we introduce three neigh-
bourhoods, where the penalty for that constraint alone is decreasing, increasing, or
unchanged. We give specialised algorithms for common constraints that efficiently
implement these neighbourhoods. Further, we give a general algorithm that imple-
ments these neighbourhoods from specifications of constraints in monadic existential
second-order logic. Finally, we show how common constraint-directed local search
algorithms are often easier to express using these neighbourhoods.

Key words: constraint-based local search, constraint-directed search, monadic
existential second-order logic

1 Introduction

Local search (e.g., [1]) starts from a possibly random initial configuration
(assignment of values to all the variables) of a combinatorial problem. Each
configuration has a penalty, which is zero if it is a solution to the problem.

∗ Corresponding author.
Email addresses: magnus.agren@sics.se (Magnus Ågren),

pierre.flener@it.uu.se (Pierre Flener), justin.pearson@it.uu.se (Justin
Pearson).
1 Work done while a Visiting Faculty Member at Sabancı University in 2006/07.

Preprint submitted to Elsevier 20th December 2008

Local search iteratively makes small changes to the current configuration in
an attempt to reduce its penalty, until either a solution is found or allocated
computational resources have been consumed. The configurations examined
for each such move constitute the neighbourhood of the current configura-
tion. Heuristics are used to choose a neighbouring configuration, using only
local information such as the current configuration and its neighbourhood,
but occasionally guide the search to a local optimum. Metaheuristics such as
tabu search [2] or simulated annealing [3] are thus needed to escape local op-
tima and guide the search to a global optimum, using information collected
or learned during the execution so far.

Constraint-based local search (CBLS, e.g., [4]) integrates ideas from constraint
programming into local search. Of particular interest to this article is that
rich modelling and search languages are offered towards a clean separation of
the model and search components of a local search algorithm, via abstractions
that facilitate its design and maintenance. One such abstraction is the concept
of constraint, which captures some common combinatorial substructure. For
instance, the AllDifferent(x1 , . . . , xn) constraint requires its arguments to be
pairwise different. A constraint can be represented as an object [5,4], storing
attributes, such as its set of variables and its penalty, and providing methods
such as the determination of the penalty change incurred if some of its variables
were assigned different values. For efficiency, the attributes and results of the
methods must be maintained incrementally upon each move.

Many neighbourhoods are variable-directed, in the sense that a (small) set of
variables is picked before considering the neighbouring configurations where
those variables take different values. One approach is to attach some level of
conflict to variables and to pick a most conflicting variable. However, the ab-
straction of constraint objects also offers opportunities for constraint-directed
search (e.g., [6,7,4]), in the sense that a (small) set of constraints is picked be-
fore considering the neighbouring configurations where those constraints have,
say, a decreased penalty. Now, we show that the knowledge of the semantics
of a built-in constraint, or even just of a constraint specification, allows the
exploration of constraint-directed neighbourhoods whose moves are known to
achieve a penalty decrease (or preservation, or increase), without forcing the
iteration over the other moves. We claim that this simplifies the design and
maintenance of local search algorithms.

The remainder of this article is organised as follows. First, we define the basic
concepts of local search more precisely and present the problems on which we
shall conduct our experiments (Section 2). The contributions and importance
of this work can then be stated as follows:

We abstract some constraint-directed neighbourhoods and show how they
can be implemented via new methods for constraint objects: (i) For a built-

2

in constraint, these methods are created using the knowledge of the seman-
tics of the constraint. (ii) For a non built-in constraint specified in monadic
existential second-order logic, we propose a generic algorithm that works
compositionally on that specification. Using existing compositional calculi
for inferring the existing constraint attributes and methods from such speci-
fications [8], an upper bound on the performance of a local search algorithm
can thus be obtained for a missing constraint, before deciding whether it is
worth building it in (Section 3).

Then, to show the usefulness of the approach, we present common local search
heuristics using constraint-directed neighbourhoods as well as a combination
of constraint-directed and variable-directed neighbourhoods. We successfully
experiment with one of these heuristics, showing how it simplifies the design
of the local search algorithm by not needing a data structure that is necessary
when using just a variable-directed neighbourhood (Section 4). Finally we
discuss implementation issues (Section 5), conclude, discuss related work, and
outline future work (Section 6).

2 Preliminaries

After recalling the concept of constraint satisfaction problems, we precisely
define the notions underlying local search. We also recall monadic existential
second-order logic and show its convenience for specifying set constraints that
are not built in. Finally, we give models based on set constraints for two
common benchmark problems, on which we will conduct our experiments.

2.1 Constraint Satisfaction Problems

We use constraint satisfaction problems to model combinatorial problems for-
mally:
Definition 1 (CSP) A constraint satisfaction problem (CSP) is a three-
tuple 〈V,D,C〉 where:

• V is a finite set of (decision) variables.
• D is a domain containing the possible values for the variables in V.
• C is a set of constraints, each constraint in C being defined on a sequence

of decision variables taken from V and specifying the allowed combinations
of values for that sequence.

Let vars(c) denote the set of decision variables of a constraint c ∈ C.

3

Without loss of generality, all variables share the same domain: we can always
achieve smaller domains for particular variables by additional membership
constraints.

In this article, we focus on set-CSPs, that is CSPs where the domain D is
the power-set P(U) of a set U , called the universe. Even though we only
consider set-CSPs, we make no claims about their superiority. However, the
principles underlying the results of this article are not specific to set-CSPs: we
just illustrate them on set-CSPs, since this is the main theme of our research.
Whenever a definition applies to any kind of decision variables, we refrain
from giving it specifically for set variables.

2.2 Local Search

For each concept of local search, we give both informal (inlined) and formal
(numbered) definitions, the latter being necessary for the inductive definitions
and algorithms of the next two sections.

In local search, an initial assignment of values to all the variables is main-
tained:
Definition 2 (Configuration and Solution) Let P = 〈V,D,C〉 be a CSP:

• A configuration is a function k : V→ D.
• The set of all configurations for P is denoted by KP .
• A configuration k is a solution to c ∈ C (or k satisfies c, or c is satis-

fied under k) if and only if 〈x1, . . . , xm〉 is the variable sequence of c and
〈k(x1), . . . , k(xm)〉 is one of the allowed combinations of values for that se-
quence, as required by c.
• A configuration k is a solution to P if and only if k is a solution to all the

constraints in C.

For simplicity of notation, we often consider the arbitrary CSP P = 〈V,D,C〉
to be implicit in the current context. As a result, we often write K instead of
KP and when we reason about a variable x, a set of variables X, a value v, a
constraint c, or a configuration k, it is always implicit that x ∈ V, X ⊆ V,
v ∈ U , c ∈ C, and k ∈ K.
Example 1 (Set-CSP, Configuration, and Solution) Consider the set-
CSP P = 〈{S, T},P({a, b, c}), {S ⊂ T}〉. A configuration for P is k = {S 7→
{a, b}, T 7→ ∅}. A solution to S ⊂ T is {S 7→ {a, b}, T 7→ {a, b, c}}, whereas
the configuration k is not a solution. J

Let ⊕ be the acquisition operator. Given two functions f : A → B and g :
A′ → B such that A′ ⊆ A:

4

• ∀a ∈ A \ A′ : (f ⊕ g)(a) = f(a)
• ∀a ∈ A′ : (f ⊕ g)(a) = g(a)

For example, if k = {S 7→ {a, b}, T 7→ {b}} and ` = {T 7→ {a}} then
k ⊕ ` = {S 7→ {a, b}, T 7→ {a}}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such moves, until a solution is found or
allocated resources have been exhausted. The configurations thus examined
constitute the neighbourhood of the current configuration:
Definition 3 (Move and Neighbourhood) Let 〈V,D,C〉 be a CSP:

• A move function is a function m : K → K. We call the configuration m(k)
a move from k, or a neighbour of k.
• A neighbourhood function is a function n : K → P(K). We call the set

of configurations n(k) a neighbourhood of k, and each element thereof a
neighbour of k.

Note that the noun ‘move’ here refers to the result (a configuration) of applying
a move function to a configuration, rather than to the act of changing that
given configuration.
Example 2 (Moves and Neighbourhoods for Set-CSPs) Given two set
variables S, T and a configuration k, we define the following move functions
for set-CSPs and we will use them throughout this article:

• add(S, v) adds v to S:

add(S, v)(k)
def
= k ⊕ {S 7→ k(S) ∪ {v}}

• drop(S, u) drops u from S:

drop(S, u)(k)
def
= k ⊕ {S 7→ k(S) \ {u}}

• flip(S, u, v) replaces u in S by v:

flip(S, u, v)(k)
def
= k ⊕ {S 7→ (k(S) \ {u}) ∪ {v}}

• transfer(S, u, T) transfers u from S to T :

transfer(S, u, T)(k)
def
= k ⊕ {S 7→ k(S) \ {u}, T 7→ k(S) ∪ {u}}

• swap(S, u, v, T) swaps u of S with v of T :

swap(S, u, v, T)(k)
def
= k ⊕

S 7→ (k(S) \ {u}) ∪ {v},
T 7→ (k(T) \ {v}) ∪ {u}



5

Note that the move functions flip(S, u, v), transfer(S, u, T), and swap(S, u, v, T)
are just transactions over add and drop moves. As we will see, these move func-
tions are necessary nevertheless since these transactions must be considered as
unit operations to construct some of our constraint-directed neighbourhoods.

For each of these move functions, given a set X of set variables and a config-
uration k, we define the following neighbourhood functions for set-CSPs:

• Add(X) returns the set of all add moves with respect to X:

Add(X)(k)
def
= {add(S, v)(k)|S ∈ X ∧ v ∈ U \ k(S)}

• Drop(X) returns the set of all drop moves with respect to X:

Drop(X)(k)
def
= {drop(S, u)(k)|S ∈ X ∧ u ∈ k(S)}

• Flip(X) returns the set of all flip moves with respect to X:

Flip(X)(k)
def
= {flip(S, u, v)(k)|S ∈ X ∧ u ∈ k(S) ∧ v ∈ U \ k(S)}

• Transfer(X) returns the set of all transfer moves with respect to X:

Transfer(X)(k)
def
=

transfer(S, u, T)(k)

∣∣∣∣∣∣∣
S 6= T ∈ X ∧
u ∈ k(S) ∧ u ∈ U \ k(T)



• Swap(X) returns the set of all swap moves with respect to X:

Swap(X)(k)
def
=

swap(S, u, v, T)(k)

∣∣∣∣∣∣∣
S 6= T ∈ X ∧ u ∈ k(S) ∧
v ∈ U \ k(S) ∧ v ∈ k(T) ∧ u ∈ U \ k(T)



For instance, consider the set variables S, T and the universe U = {a, b}.

6

Given a configuration k = {S 7→ {a}, T 7→ ∅}, we have:

Add({S, T})(k) = {add(S, b)(k), add(T, a)(k), add(T, b)(k)}

=


{S 7→ {a, b}, T 7→ ∅},
{S 7→ {a}, T 7→ {a}},
{S 7→ {a}, T 7→ {b}}


Drop({S, T})(k) = {drop(S, a)(k)}

= {{S 7→ ∅, T 7→ ∅}}
Flip({S, T})(k) = {flip(S, a, b)(k)}

= {{S 7→ {b}, T 7→ ∅}}
Transfer({S, T})(k) = {transfer(S, a, T)(k)}

= {{S 7→ ∅, T 7→ {a}}}
Swap({S, T})(k) = ∅

Let N (X) denote the universal neighbourhood function, resulting from the
union of all these functions. J

The penalty of a constraint set C is an estimate on how much C is violated. The
penalty is used to rank the configurations of a neighbourhood. Furthermore, it
is often crucial for efficiency reasons to limit the size of the neighbourhood. One
way of doing this is to focus on conflicting variables. The conflict of a variable
is an estimate on how much it contributes to the penalty. The variable conflict
is used to rank the variables and, say, focus on the variable neighbourhood for
the most conflicting variable(s). To be useful these estimates must satisfy (at
least) some basic properties:

• A penalty function penalty(C) of C ⊆ C is a function with signature

penalty(C) : K → N

such that penalty(C)(k), called the penalty of C under k, is zero if and only
if k is a solution to all constraints in C.
• A variable-conflict function conflict(C) of C ⊆ C is a function with signa-

ture
conflict(C) : V ×K → N

such that if conflict(C)(x, k), called the variable conflict of x with respect
to C under k, is zero then no configuration in the neighbourhood of k where
only the value of x is changed has a smaller penalty.

The given requirements on penalty and variable-conflict functions are rather
weak. The merits of actual such functions can only be discussed in relation-

7

ship to the semantics of the given constraint set. Also, by abuse of notation we
usually write penalty(c) to denote the penalty function of a single constraint
c ∈ C, instead of the correct penalty({c}). We illustrate all this in the follow-
ing example where we present penalty and variable-conflict functions of the
AllDisjoint(X) constraint.
Example 3 (Penalty and Variable Conflict of AllDisjoint(X)) The con-
straint AllDisjoint(X) is satisfied under configuration k if and only if the
intersection between any two distinct set variables in X is empty.

The penalty function

penalty(AllDisjoint(X))(k) =

(∑
S∈X
|k(S)|

)
−
∣∣∣∣∣ ⋃
S∈X

k(S)

∣∣∣∣∣ (1)

computes the minimum number of moves needed to nullify the penalty of the
constraint, that is to transform the current configuration k into a solution. For
instance, the penalty of AllDisjoint({S, T, V }) under configuration k = {S 7→
{a, b, c}, T 7→ {b, c, d}, V 7→ {d, e}} is 8 − 5 = 3, and it suffices to, e.g., drop
the three shared elements b, c, and d from respectively S, T , and V to get a
solution.

The variable-conflict function

conflict(AllDisjoint(X))(S, k) = |{u ∈ k(S)|∃T ∈ X \ {S}|u ∈ k(T)}|

computes the minimum number of moves on the set variable S that nullify
its conflict, under the penalty function (1). For instance, the conflict of set
variable S under configuration k above is 2, and it suffices to drop the two
elements b, c it shares with other sets to get a zero conflict of S (but not a
zero penalty) under the resulting configuration. J

2.3 Constraint Specification in Monadic Existential Second-Order Logic

When a useful constraint is not built-in to our local search framework, we let
the modeller use monadic existential second-order logic (∃MSO) for specifying
that constraint, and we call such a specification an ∃MSO constraint. In the
BNF grammar of that logic in Figure 1, the non-terminal start symbol 〈∃MSO〉
denotes a second-order formula and the non-terminal symbol 〈FORMULA〉 de-
notes a formula with first-order quantifications. Furthermore, the non-terminal
symbol 〈S〉 denotes an identifier for a bound set variable S such that S ⊆ U ,
where U is the common universe for all the set variables. The non-terminal
symbols 〈x〉 and 〈y〉 denote identifiers for bound first-order variables x and y
such that x, y ∈ U . The terminal symbols have their standard meaning from
logic and are underlined. The base cases of the BNF grammar correspond to

8

〈∃MSO〉 ::= (∃ 〈S 〉)+ 〈FORMULA〉
〈FORMULA〉 ::= (〈FORMULA〉)

| (∀ | ∃)〈x〉 〈FORMULA〉
| 〈FORMULA〉 (∧ | ∨) 〈FORMULA〉
| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉
| 〈x〉 (∈ | /∈) 〈S〉

Figure 1. BNF grammar for Monadic Existential Second-Order Logic (∃MSO).

the primitive predicates of ∃MSO (of which ∈ and /∈ are primitive constraints
of ∃MSO). Note that, at present, the other (built-in) constraints of our local
search framework are not primitive constraints of ∃MSO. At no gain in ex-
pressiveness negation and implication can be added to the first-order fragment
of the logic. A formula containing negations can be rewritten with all nega-
tion pushed into the primitive predicates, because the relational symbols are
closed under negation, while implications can be rewritten using disjunction.
We use this this form of the logic to simplify the extraction of computational
information from formulas.

By overloading, let vars(Φ) denote the set of decision variables of an ∃MSO
formula Φ, i.e., the set of (existentially quantified) second-order (set) variables
of Φ, but not any (existentially or universally quantified) first-order (scalar)
variables thereof.
Example 4 (∃MSO Specification of AllDisjoint({S, T, V })) The con-
straint AllDisjoint({S, T, V }) may be specified in ∃MSO by

Ω
def
= ∀x((x /∈ S ∨ (x /∈ T ∧ x /∈ V)) ∧ (x /∈ T ∨ x /∈ V)) J

Note that Ω in the example above should be considered a constraint of a
given set-CSP and, as such, the decision variables of Ω are existentially quan-
tified by the given set-CSP and not by Ω. So S, T, V are free variables of Ω
and, hence, the models of Ω denote the semantics of the specified AllDisjoint
constraint. In the following though, to be able to reason with closed ∃MSO
formulas, we will usually add such free variables as existentially quantified
second-order variables and will then rather write ∃S∃T∃V Ω. Note also that
x /∈ vars(∃S∃T∃V Ω) = {S, T, V } since x is bound by the first-order universal
quantifier in Ω. Furthermore, note that we have specified a special case of the
AllDisjoint constraint, namely for n = 3 set variables. Finally, it is also impor-
tant to note that any ∃MSO specification of AllDisjoint over n set variables
has a length (measured in number of primitive constraints) that is quadratic
in n in this encoding. In consequence, there may be a price to pay for the
convenience of using ∃MSO constraints. We will come back to this issue in

9

Sections 4.3 and 5.

We introduced ∃MSO to local search in [9,8] and will use the inductively
defined penalty function we proposed there. 2 For example, the penalty of a
primitive predicate under a configuration k is 0 if the primitive predicate is
satisfied under k, and 1 otherwise. The penalty of a conjunction (disjunction) is
the sum (minimum) of the penalties of its conjuncts (disjuncts). The penalty of
a first-order universal (existential) quantification is the sum (minimum) of the
penalties of the quantified formula where the occurrences of the bound variable
are replaced by each value in the universe. We will also use the inductively
defined variable-conflict function for ∃MSO constraints we gave in [11,8]. Since
variable conflicts play only a minor role in this article (namely in Algorithm 3),
we need not give the intuition of that inductive definition here.
Example 5 (Penalty and Variable Conflict of an ∃MSO Constraint)
Recall the configuration k = {S 7→ {a, b, c}, T 7→ {b, c, d}, V 7→ {d, e}} of Ex-
ample 3 and consider the ∃MSO specification ∃S∃T∃V Ω of the AllDisjoint({S, T, V })
constraint in Example 4. Then penalty(∃S∃T∃V Ω)(k) = 3 and conflict(∃S∃T∃V Ω)(S, k) =
2, i.e., the same values as obtained by the handcrafted penalty(AllDisjoint(X))
and conflict(AllDisjoint(X)) functions of Example 3. J

2.4 Sample Set-CSPs

To finish these preliminaries, we present set-CSPs for two classical benchmark
problems (in local search), on which we will conduct our experiments.
Example 6 (Progressive Party Problem) The progressive party problem [12]
is about timetabling a party at a yacht club, where the crews of some guest
boats party at host boats over a number of periods. The crew of a guest boat
must party at some host boat in each period (c1). The spare capacity of a
host boat is never to be exceeded (c2). The crew of a guest boat may visit a
particular host boat at most once (c3). The crews of two distinct guest boats
may meet at most once (c4).

Let H and G be the sets of host boats and guest boats, respectively. Let
capacity(h) and size(g) denote the spare capacity of host boat h and the crew
size of guest boat g, respectively. Let P be the set of periods. Let Sh,p be a set
variable denoting the set of guest crews that are hosted by host boat h during

2 In [10] ∃MSO is used for generating propagators for set constraints.

10

period p. The following set constraints then model the problem:

(c1) ∀p ∈ P : Partition({Sh,p|h ∈ H}, G)

(c2) ∀h ∈ H : ∀p ∈ P : MaxWeightedSum(Sh,p, size, capacity(h))

(c3) ∀h ∈ H : AllDisjoint({Sh,p|p ∈ P})
(c4) MaxIntersect({Sh,p|h ∈ H ∧ p ∈ P}, 1)

The global constraint Partition(X,Q) is satisfied under configuration k if
and only if the values of the set variables in X partition the constant set
Q, where the value of each S ∈ X may be the empty set. The constraint
MaxWeightedSum(S,w ,m) is satisfied under k if and only if the weighted
sum of the elements of S under the weight function w (that is

∑
u∈k(S) w(u))

does not exceed the constant m. The global constraint MaxIntersect(X,m) is
satisfied under k if and only if the cardinality of the intersection of any two
distinct set variables in X is at most the constant m. J
Example 7 (Social Golfer Problem) In the social golfer problem, there is
a set of golfers, each of whom plays golf once a week (c5) and always in ng
groups of ns players (c6). The objective is to determine whether there is a
schedule of nw weeks of play for these golfers, such that there is at most one
week where any two distinct players are scheduled to play in the same group
(c7).

Let G be the set of ng · ns golfers. Let Sg,w be a set variable denoting the
golfers playing in group g in week w. The following set constraints then model
the problem:

(c5) ∀w ∈ 1 . . . nw : Partition({Sg,w|g ∈ 1 . . . ng}, G)

(c6) ∀g ∈ 1 . . . ng : ∀w ∈ 1 . . . nw : Cardinality(Sg,w, ns)

(c7) MaxIntersect({Sg,w|g ∈ 1 . . . ng ∧ w ∈ 1 . . . nw}, 1)

The constraint Cardinality(S, n) is satisfied under configuration k if and only
if the cardinality of S under k is the constant n. J

3 Constraint-Directed Neighbourhoods

When constructing a neighbourhood from a variable perspective, we start from
a set of variables and change some of them, while evaluating (incrementally)
the effect that the changes have on the penalty. From a constraint perspective,
we start from a set of constraints and obtain the neighbours directly from
those constraints. For instance, configurations in such a neighbourhood may
have a different penalty of those constraints. The advantage is that we can

11

exploit combinatorial sub-structures of the CSP, and focus on constructing
neighbourhoods with particular properties. For instance, we can extend the
idea of constraint-directed search [6,7,4] to accommodate moves guaranteed
to decrease, preserve, or increase the penalty.
Definition 4 (Constraint-Directed Neighbourhoods of Constraints)
Let c be a constraint, let k be a configuration, and let penalty(c) be a penalty
function of c. The decreasing, preserving, and increasing neighbourhoods of c
under k and penalty(c) respectively are:

{c}↓k = {` ∈ N (vars(c))(k)|penalty(c)(k) > penalty(c)(`)}
{c}=

k = {` ∈ N (vars(c))(k)|penalty(c)(k) = penalty(c)(`)}
{c}↑k = {` ∈ N (vars(c))(k)|penalty(c)(k) < penalty(c)(`)}

This definition gives the properties of moves of decreasing, preserving, and
increasing neighbourhoods, respectively. 3 Given this target concept, we may
define such neighbourhoods for particular constraints. We now show how to
do this, first for any ∃MSO constraint and then for built-in constraints, just
giving the example of the built-in global AllDisjoint(X) constraint.

3.1 Constraint-Directed Neighbourhoods of ∃MSO Constraints

We first define decreasing, preserving, and increasing neighbourhoods for any
∃MSO constraint. To do this, we must know the actual impact of a move in
terms of the penalty difference.
Definition 5 (Delta) Let c be a constraint and let k be a configuration
for the variables of c. A delta for c under k is a pair (`, δ) such that ` is
a neighbour of k and δ is the penalty increase when moving from k to `:
δ = penalty(c)(`)− penalty(c)(k).

Now, using the set of all deltas for a constraint c under k, it is possible to
obtain the decreasing, preserving, and increasing neighbourhoods of c under
k. Towards this we need some notation. Given a configuration ` and a delta
set D, let D|1 denote the deltas of D projected onto their first components,

3 Note the difference between our {c}↓k decreasing neighbourhood and the
x
↓
k

V[c]

notation of [13], which gives (in our terminology) the conflict of variable x with
respect to constraint c under configuration k, measured as the maximum penalty
decrease obtainable by only changing the value of variable x.

12

that is the set of their configurations. Furthermore, let

` . D
def
=

δ , if (`, δ) ∈ D
0 , otherwise

which is to be read ‘` query D’, denote the penalty increase recorded in D for
`. Considering, for example, the delta set

D = {(add(S, a)(k), 0), (drop(S, b)(k),−1), (flip(S, b, a)(k),−1)}

we have:

drop(S, b)(k) . D = − 1

drop(T, b)(k) . D = 0

Note that . is a total function since there is at most one delta in D for a given
configuration `, and since ` . D = 0 when there is no delta in D for `.

In the inductive definition below we use φ[u/x] to denote the formula φ where
all occurrences of variable x are replaced by the (ground) value u.
Definition 6 (Constraint-Directed Neighbourhoods of ∃MSO Constraints)
Let Φ be an ∃MSO constraint and let k be a configuration for vars(Φ). Let
the set ∆(Φ)(k) be defined inductively on the structure of Φ by:

∆(∃S1 · · · ∃Snφ)(k) = ∆(φ)(k) (a)

∆(∀xφ)(k) =

(`, δ)

∣∣∣∣∣∣∣∣
` ∈ (

⋃
u∈U

∆(φ[u/x])(k))|1 ∧
δ =

∑
u∈U

(` .∆(φ[u/x])(k))

 (b)

∆(∃xφ)(k) =


(`, δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

` ∈ (
⋃
u∈U

∆(φ[u/x])(k))|1 ∧

δ = min
u∈U

 penalty(φ[u/x])(k) +

(` .∆(φ[u/x])(k))


− penalty(∃xφ)(k)


(c)

∆(φ ∧ ψ)(k) =

(`, δ)

∣∣∣∣∣∣∣
` ∈ (∆(φ)(k) ∪∆(ψ)(k))|1 ∧
δ = ` .∆(φ)(k) + ` .∆(ψ)(k)

 (d)

∆(φ ∨ ψ)(k) =


(`, δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

` ∈ (∆(φ)(k) ∪∆(ψ)(k))|1 ∧

δ = min

 penalty(φ)(k) + (` .∆(φ)(k)),

penalty(ψ)(k) + (` .∆(ψ)(k))


− penalty(φ ∨ ψ)(k)


(e)

13

∆(u ≤ v)(k) = ∅ (* similarly for <,=, 6=,≥, > *) (f)

∆(u ∈ S)(k) = (* similarly for /∈ *)

{(drop(S, u)(k), 1)}
∪ {(flip(S, u, v)(k), 1)|v ∈ U \ k(S)}
∪ {(transfer(S, u, T)(k), 1)|T ∈ X ∧ u ∈ U \ k(T)}

∪
(swap(S, u, v, T)(k), 1)

∣∣∣∣∣∣ v /∈ k(S) ∧ T ∈ X ∧
u /∈ k(T) ∧ v ∈ k(T)

 , if u ∈ k(S)

{(add(S, u)(k),−1)}
∪ {(flip(S, v, u)(k),−1)|v ∈ k(S)}
∪ {(transfer(T, u, S)(k),−1)|T ∈ X ∧ u ∈ k(T)}

∪
(swap(S, v, u, T)(k),−1)

∣∣∣∣∣∣ v ∈ k(S) ∧ T ∈ X ∧
u ∈ k(T) ∧ v /∈ k(T)

 , if u /∈ k(S)

(g)

The decreasing, preserving, increasing, and delta neighbourhoods of Φ under k
and penalty(Φ) (as defined inductively on the structure of Φ in [9,8]) are then
respectively defined by: 4

{Φ}↓k = {`|(`, γ) ∈ ∆(Φ)(k) ∧ γ < 0}
{Φ}=

k = {`|(`, γ) ∈ ∆(Φ)(k) ∧ γ = 0}
{Φ}↑k = {`|(`, γ) ∈ ∆(Φ)(k) ∧ γ > 0}
{Φ}δk = {`|(`, γ) ∈ ∆(Φ)(k) ∧ γ = δ}

Given an ∃MSO constraint Φ and a configuration k, the calculation of ∆(Φ)(k)
in the definition above needs some further explanation. Consider first the result
of the base case (g) and assume that u ∈ k(S). Any move that removes u from
S will increase the penalty (of u ∈ S) by one. This includes the move that
drops u from S, any move that flips u in S into another value, any move that
transfers u from S to another set variable, as well as any move that swaps u
of S with a value of another set variable. The case when u /∈ k(S) is similar
although the considered moves are those that add u to S resulting in a penalty
decrease (of u ∈ S) by one.

The result of the base case (f) is the empty set since there are no (set) decision
variables of Φ in the ground test u ≤ v.

The result of the conjunctive case (d) is the union of the results of the recursive
calls on the two conjuncts: the penalty increase of each delta is the sum of the

4 Note that we do not discuss delta neighbourhoods any further in this article
except in the paragraph on future work in Section 6.

14

penalty increases calculated for the two conjuncts. This corresponds to the
penalty of a conjunction being the sum of the penalties of the two conjuncts.

The result of the disjunctive case (e) is the union of the results of the recursive
calls on the two disjuncts: the penalty increase of each delta is the difference
between the minimum penalty under the move of the delta with respect to each
disjunct, and the penalty of the disjunction. This corresponds to the penalty
of a disjunction being the minimum of the penalties of the two disjuncts.

The result of the case for first-order universal quantification (b) is a gen-
eralisation of case (d). (Recall that φ[u/x] denotes the formula φ where all
occurrences of variable x are replaced by the (ground) value u.) Similarly, the
result of the case for first-order existential quantification (c) is a generalisation
of case (e).

The result of the case for second-order existential quantification (a) is just the
result of the recursive call on the quantified formula.
Example 8 (Constraint-Directed Neighbourhoods of AllDisjoint({S, T, V }))
Recall the ∃MSO specification ∃S∃T∃V Ω of AllDisjoint({S, T, V }) in Exam-
ple 4, the configuration k = {S 7→ {b}, T 7→ {b}, V 7→ ∅}, and the universe
U = {a, b}:

∆(∃S∃T∃V Ω)(k) =



(drop(S, b)(k),−1), (drop(T, b)(k),−1),

(add(S, a)(k), 0), (add(T, a)(k), 0),

(add(V, a)(k), 0), (add(V, b)(k), 1),

(flip(S, b, a)(k),−1), (flip(T, b, a)(k),−1),

(transfer(S, b, V)(k), 0), (transfer(T, b, V)(k), 0)


The obtained constraint-directed neighbourhoods are as follows:

{∃S∃T∃V Ω}↓k =

 drop(S, b)(k), drop(T, b)(k),

flip(S, b, a)(k),flip(T, b, a)(k)


{∃S∃T∃V Ω}=

k =

 add(S, a)(k), add(T, a)(k), add(V, a)(k),

transfer(S, b, V)(k), transfer(T, b, V)(k)


{∃S∃T∃V Ω}↑k = {add(V, b)(k)}

In Example 9, we will show another definition of these constraint-directed
neighbourhoods of the AllDisjoint(X) constraint (and this for any amount n
of set variables, rather than the n = 3 set variables of ∃S∃T∃V Ω), handcrafted
directly from the semantics of the constraint, rather than from the syntax of
an ∃MSO specification thereof. J

15

We now prove that the sets in Definition 6 are equal to the corresponding
sets in Definition 4. First, all and only the possible moves are captured in the
inductively computed delta set:
Lemma 1 (Correctness and Completeness of Moves) Let Φ be an ∃MSO
constraint and let k be a configuration for Φ. Then ∆(Φ)(k)|1 = N (vars(Φ))(k).

Proof. (⊆) Trivial, as N (vars(Φ))(k) is the set of all possible moves for the set
variables of Φ. (⊇) First note that, for a subformula φ of a formula Φ in ∃MSO,
we have that ` ∈ (∆(φ)(k))|1 implies ` ∈ (∆(Φ)(k))|1, since the step cases of
Definition 6 are the union of the results of some recursive calls. Assume now
that ` ∈ N (vars(Φ))(k) and that ` is of the form add(S, v)(k). According to
the definitions of Add(X) and N (X) in Example 2 it must be the case that
add(S, v)(k) ∈ Add(vars(Φ))(k) ⊆ N (vars(Φ))(k). Furthermore, there must
be a subformula φ in Φ of the form v ∈ S or v /∈ S, since these are the only
kinds of primitive constraints of ∃MSO on set variables. Since v /∈ k(S) by
the definition of Add(vars(Φ)) in Example 2, we have that add(S, v)(k) ∈
(∆(φ)(k))|1 by Definition 6 and hence add(S, v)(k) ∈ (∆(Φ)(k))|1. Similarly
for drop, as well as for flip, swap, and transfer , which are just transactions
over add and drop moves. 2

Second, the inductive definition of ∆(Φ)(k) in Definition 6 computes a set of
deltas, as defined in Definition 5:
Lemma 2 (Correctness of Deltas) Let Φ be an ∃MSO constraint and let
k be a configuration for Φ. For every ` ∈ N (vars(Φ))(k), we have that ` .
∆(Φ)(k) = penalty(Φ)(`)− penalty(Φ)(k).

Proof. The proof is by structural induction on Φ. The lemma holds for the
base cases (f) and (g), and follows for case (a) by induction from the definition.
The quantifier cases (b) and (c) are just generalisations of the following two
cases:

Case (d): φ ∧ ψ. Consider a configuration ` ∈ N (vars(Φ))(k). We have that:

penalty(φ ∧ ψ)(`)− penalty(φ ∧ ψ)(k)

= penalty(φ)(`)− penalty(φ)(k) + penalty(ψ)(`)− penalty(ψ)(k),

by the inductive definition of penalty in [9,8]

= ` .∆(φ)(k) + ` .∆(ψ)(k), by induction

= ` .∆(φ ∧ ψ)(k), by Definition 6.

16

Case (e): φ ∨ ψ. Consider a configuration ` ∈ N (vars(Φ))(k). We have that:

penalty(φ ∨ ψ)(`)− penalty(φ ∨ ψ)(k)

= min(penalty(φ)(`), penalty(ψ)(`))− penalty(φ ∨ ψ)(k),

by the inductive definition of penalty in [9,8]

= min

 penalty(φ)(k) + ` .∆(φ)(k),

penalty(ψ)(k) + ` .∆(ψ)(k)

− penalty(φ ∨ ψ)(k), by induction

= ` .∆(φ ∨ ψ)(k), by Definition 6. 2

In conclusion, Definition 6 correctly captures the considered constraint-directed
neighbourhoods according to Definition 4:
Proposition 1 (Soundness of Definition 6) Let Φ be an ∃MSO constraint,
let k be a configuration for Φ, and let ` ∈ N (vars(Φ))(k). We have that:

` ∈ {Φ}↓k ⇔ penalty(Φ)(`) < penalty(Φ)(k)

` ∈ {Φ}=
k ⇔ penalty(Φ)(`) = penalty(Φ)(k)

` ∈ {Φ}↑k ⇔ penalty(Φ)(`) > penalty(Φ)(k)

Proof. Directly follows from Lemmas 1 and 2. 2

3.2 Constraint-Directed Neighbourhoods for Built-In Constraints

We here just give constraint-directed neighbourhoods for one built-in con-
straint, namely the global AllDisjoint(X) constraint on set variables. Neigh-
bourhoods for other built-in constraints are handcrafted similarly.
Example 9 (Constraint-Directed Neighbourhoods of AllDisjoint(X))
We can define the decreasing, preserving, and increasing neighbourhoods of
AllDisjoint(X) under a configuration k and the penalty function (1) of Ex-

17

ample 3 as follows:

{AllDisjoint(X)}↓k = {drop(S, u)(k) | S ∈ X ∧ u ∈ k(S) ∧ |X|ku > 1}

∪
flip(S, u, v)(k)

∣∣∣∣∣∣∣
drop(S, u)(k) ∈ {AllDisjoint(X)}↓k ∧
add(S, v)(k) ∈ {AllDisjoint(X)}=

k


{AllDisjoint(X)}=

k = {drop(S, u)(k) | S ∈ X ∧ u ∈ k(S) ∧ |X|ku = 1}
∪ {add(S, v)(k) | S ∈ X ∧ |X|kv = 0}

∪


flip(S, u, v)(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

drop(S, u)(k) ∈ {AllDisjoint(X)}↓k ∧
add(S, v)(k) ∈ {AllDisjoint(X)}↑k

∨
drop(S, u)(k) ∈ {AllDisjoint(X)}=

k ∧
add(S, v)(k) ∈ {AllDisjoint(X)}=

k


∪ {transfer(S, u, T)(k) | S 6= T ∈ X ∧ u ∈ k(S) ∧ u /∈ k(T)}

∪
swap(S, u, v, T)(k)

∣∣∣∣∣∣∣
S 6= T ∈ X ∧ u ∈ k(S) ∧ u /∈ k(T) ∧

v ∈ k(T) ∧ v /∈ k(S)


∪ {` ∈ K | S ∈ X ∧ `(S) = k(S)}

{AllDisjoint(X)}↑k = {add(S, v)(k) | S ∈ X ∧ v /∈ k(S) ∧ |X|kv > 0}

∪
flip(S, u, v)(k)

∣∣∣∣∣∣∣
drop(S, u)(k) ∈ {AllDisjoint(X)}=

k ∧
add(S, v)(k) ∈ {AllDisjoint(X)}↑k



where |X|ku denotes the number of set variables in X that contain element u
under configuration k. Note that the preserving neighbourhood was expanded
with all moves on the set variables of the CSP that are not involved in the
AllDisjoint(X) constraint.

Even though these definitions are mutually recursive (for flip moves), this is
just a matter of presentation, as they can be finitely unfolded (since a flip is
just a drop and an add), and has no impact on runtime efficiency in practice.

For instance, as in Example 8, for the configuration k = {S 7→ {b}, T 7→
{b}, V 7→ ∅} and the universe U = {a, b}, we get the following neighbour-

18

hoods:

{AllDisjoint({S, T, V })}↓k =

 drop(S, b)(k), drop(T, b)(k),

flip(S, b, a)(k),flip(T, b, a)(k)


{AllDisjoint({S, T, V })}=

k =

 add(S, a)(k), add(T, a)(k), add(V, a)(k),

transfer(S, b, V)(k), transfer(T, b, V)(k)}


{AllDisjoint({S, T, V })}↑k = {add(V, b)(k)}

Note that these neighbourhoods are the same as those obtained for the ∃MSO-
specified AllDisjoint({S, T, V }) in Example 8. J

4 Using Constraint-Directed Neighbourhoods

We first revisit three common heuristics using our constraint-directed neigh-
bourhoods. All heuristics are greedy and would be extended with metaheuris-
tics (e.g., tabu search and restarting mechanisms) in real applications. Then
we show that our constraint-directed neighbourhoods even avoid certain (usu-
ally necessary) data structures. Finally, we present some experimental results.

4.1 Constraint-Directed Heuristics

All heuristics below use a non-deterministic choose operator to pick a member
in a set; if that set is empty then the choose becomes a skip. We start with a
simple constraint-directed heuristic and then consider some more sophisticated
ones.

4.1.1 Simple Heuristics

The heuristic Cds in Algorithm 1 greedily picks the best neighbour in the
set of decreasing neighbours of an unsatisfied constraint. More precisely, Cds
takes a set of constraints C and returns a solution if one is found. It starts
by initialising k to a random configuration for all variables in C (line 2). It
then iterates as long as there are any unsatisfied constraints (lines 3 to 9).
At each iteration, it picks a violated constraint c (line 4), and updates k to
any configuration in the decreasing neighbourhood of c minimising the total
penalty of C (lines 5 to 7). A solution is returned if there are no unsatisfied
constraints (line 10).

19

Algorithm 1 Simple heuristic using constraint-directed neighbourhoods

1: function Cds(C)
2: k ← RandomConfiguration(C)
3: while penalty(C)(k) > 0 do
4: choose c ∈ C such that penalty(c)(k) > 0 for
5: choose ` ∈ {c}↓k minimising penalty(C)(`) for
6: k ← `
7: end choose
8: end choose
9: end while

10: return k
11: end function

Cds is a variant of the heuristic constraintDirectedSearch in [4]. Apart
from the additional tabu mechanism of the latter (omitted here for read-
ability reasons, as such metaheuristics are orthogonal to heuristics), the only
difference is line 5. In Cds, the decreasing moves are obtained directly from
the chosen constraint c, meaning that no other moves are evaluated if the
decreasing neighbourhood of c can be constructed in this way. Note that, for
example, the decreasing neighbourhood of AllDisjoint(X) can be constructed
by not evaluating any other moves, which will be seen in Section 5.1 below.
However, it may not be possible to construct the decreasing neighbourhood of
an arbitrary constraint by not evaluating any other moves. For example, the
decreasing neighbourhood of an ∃MSO constraint may need to evaluate other
moves, which will be seen in Section 5.2 below. In contrast, the decreasing
moves of constraintDirectedSearch are obtained by always evaluating all
possible moves on the variables of c, i.e., also the moves that turn out to be
preserving or increasing.

As it requires that there always exists at least one decreasing neighbour, Cds is
easily trapped in local minima. We may improve it by also allowing preserving
and increasing moves, if need be. This can be done by replacing lines 5 to 7
with the following, assuming the set union is evaluated in a lazy fashion:

choose ` ∈ {c}↓k ∪ {c}=
k ∪ {c}↑k minimising penalty(C)(`) for

k ← `
end choose

This is still different from constraintDirectedSearch, as, say, the preserving
moves on the variables of c are only evaluated if there is no decreasing move
on the variables of c.

While these heuristics are simple to express also in a variable-directed ap-
proach (by, e.g., evaluating the penalty differences with respect to changing a
particular set of variables according to some neighbourhood function, focusing
on those giving a decreased, preserved, or increased penalty), the constraint-

20

Algorithm 2 Multi-phase heuristic using constraint-directed neighbourhoods

1: function CdsPreservingFull(Π,Σ)
2: k ← Solve(Π)
3: while penalty(Σ)(k) > 0 do
4: choose ` ∈ Π=

k minimising penalty(Σ)(k) for
5: k ← `
6: end choose
7: end while
8: return k
9: end function

directed approach allows us to focus directly on the particular kind of moves
that we are interested in.

4.1.2 Multi-Phase Heuristics

One of the advantages with the considered constraint-directed neighbourhoods
is the possibilities that they open up for the simple design of multi-phase
heuristics. This is a well-known method and often crucial to obtain efficient
local search algorithms (see [14,15], for example). In a multi-phase heuristic,
a configuration satisfying a subset Π ⊆ C of the constraints is first obtained.
This configuration is then transformed into a solution satisfying all the con-
straints by only considering the preserving neighbourhoods of the constraints
in Π. The difficulty of choosing a good subset Π varies. In order to guide the
user in this task, a candidate set Π can be automatically identified in Mul-
tiTAC [16] style, as we have shown in [17]. Further, as shown in [15], it is
important that the set of move functions be rich enough so that all solutions
to C are reachable from the initial solution to Π.

In Algorithms 2 and 3, we show the two multi-phase heuristics CdsPreservingFull
and CdsPreserving. Both take two sets of constraints Π and Σ, where Π ∪
Σ = C, and return a solution to C if one is found. In CdsPreservingFull,
a configuration k for all the variables of C, satisfying the constraints in Π,
is obtained by the call Solve(Π) (line 2). The function Solve could use a
heuristic method or some other suitable solution method, possibly without
search. We then iterate as long as there are any unsatisfied constraints in Σ
(lines 3 to 7). At each iteration, we update k to be any neighbour ` that
preserves all constraints in Π and minimises the total penalty of Σ (lines 4
to 6).

A problem with CdsPreservingFull is that if Π is large or has constraints
involving many variables, then the size of the preserving neighbourhood on
line 4 may be too large to obtain an efficient heuristic. We here present one way
to overcome this problem, using variable conflicts. Recall that the conflict of a
variable is an estimate on how much it contributes to the penalty. By focusing

21

Algorithm 3 Multi-phase heuristic using constraint-directed neighbourhoods

1: function CdsPreserving(Π,Σ)
2: k ← Solve(Π)
3: X ← the set of all variables of the constraints in Π
4: while penalty(Σ)(k) > 0 do
5: choose x ∈ X maximising conflict(Σ)(x, k) for
6: choose ` ∈ (Π|x)

=

k
minimising penalty(Σ|x)(k) for

7: k ← `
8: end choose
9: end choose

10: end while
11: return k
12: end function

on moves involving conflicting variables or perhaps even the most conflicting
variables, we may drastically shrink the size of the neighbourhood, obtaining
a more efficient algorithm, while still preserving its robustness.

The heuristic CdsPreserving in Algorithm 3 differs from CdsPreservingFull
in the following way: After k is initialised, X is assigned the set of all vari-
ables of the constraints in Π (line 3). Then, at each iteration, a most conflicting
variable x ∈ X is picked (line 5) before the preserving neighbourhoods of the
constraints in Π are searched. When the best neighbour is chosen (lines 6 to 8),
the constraints in Π and Σ are projected onto those containing x, thereby of-
ten drastically reducing the size of the neighbourhood; we use Γ|x to denote
the constraints in constraint set Γ containing x.

Note that projecting neighbourhoods onto those containing a particular set
of variables, such as conflicting variables, is a very useful variable-directed
approach for speeding up heuristic methods. In this way, CdsPreserving
is a fruitful cross-fertilisation between the variable-directed and constraint-
directed approaches for generating neighbourhoods.

4.2 Avoiding Data-Structures

Another advantage with the considered constraint-directed neighbourhoods is
that data structures for generating neighbourhoods that traditionally have to
be explicitly created are not needed here. For example, the model of the pro-
gressive party problem of Example 6 is based on set variables Sh,p denoting the
set of guest boats whose crews are hosted by the crew of boat h during period
p. Assume now that we want to solve this problem using CdsPreserving
where Π is the set of Partition constraints. Having obtained a partial solution
that satisfies Π in line 2, the only moves preserving Π are transfer moves of
a guest boat from a host boat in some period to another host boat in the

22

same period, and swap moves of two guest boats between host boats in the
same period. 5 To generate these preserving moves from a variable-directed
perspective, we would have to create data structures for obtaining the set of
variables in the same period as a given variable chosen in line 5. By instead
viewing this problem from a constraint-directed perspective, we obtain the
preserving moves directly from the constraints in Π and no additional data
structures are needed.

A similar reasoning can be done for the model of the social golfer problem of
Example 7, which is based on set variables Sg,w denoting the set of golfers in
group g of week w. Assuming that Π is the set of Partition and Cardinality
constraints, the only moves preserving Π are swap moves of two golfers between
groups in the same week. Again, by looking at this from a constraint-directed
perspective, the preserving moves are obtained directly from the constraints
in Π and no additional data structures are needed for accessing the different
weeks.

4.3 Experimental Results

The first claim of this article is that algorithms exploiting the proposed constraint-
directed neighbourhoods are easier to write (in our local-search framework),
because at a higher level of abstraction, and this without having to pay for it
by a loss of runtime efficiency. The second claim is that such a convenience
can even be made available, at reasonable loss of runtime efficiency, when the
framework lacks a built-in constraint that would be useful for modelling the
problem at hand.

To show this, the purpose of experiments is to compare such algorithms, within
a given local search framework, with algorithms not using such neighbour-
hoods, for both built-in and ∃MSO constraints. The purpose here need thus not
be to compare algorithms with constraint-directed neighbourhoods in our local
search framework with algorithms in other local search frameworks, whether
they have such neighbourhoods or not. Nor is the purpose a comparison of
our problem models (under our framework) with other models (under other
frameworks), as our objective is not (yet) to beat runtime records (as that
requires a very careful implementation).

We implemented a prototype of the ideas presented in this article for all

5 The reason why flip moves of a guest boat for a host boat in a period are impos-
sible, even though flip moves are in the neighbourhood {Partition(X, Q)}=k , is that
Q = G = U here and that k satisfies the considered constraint. Whenever this is
the case, there are no flip moves in {Partition(X,Q)}=k because there are no values
outside Q that could be flipped for.

23

the constraints used in the given models of the progressive party and social
golfer problems, as well as for any ∃MSO constraint, using the implementa-
tion ideas discussed in Section 5 below. Classical instances for both problems
were then run, mimicking the algorithm we used in [18] but using a vari-
ant of CdsPreserving. This meant that the preserved constraint sets Π
were chosen as indicated in the previous sub-section and that we extended
CdsPreserving with the same metaheuristics, maximum number of itera-
tions, and so on, as in [18]. This also meant that the preserving neighbourhood
for the progressive party problem had to be restricted to transfer moves, be-
cause swap moves were not considered in [18].

We show the experimental comparison with the algorithm of [18] in Tables 1
and 2. Each entry is the mean runtime in CPU seconds of the successful runs
out of 100 for a particular instance, and the numbers in parentheses are the
numbers of unsuccessful runs, if any, for that instance. All experiments were
run on an Intel 2.4 GHz Linux machine with 512 MB of RAM.

When using built-in constraints, the runtimes in Tables 1(a,b) and 2(a,b)
are quite similar between the designed variant of CdsPreserving and the
algorithm in [18], hence (considering that this is just a prototype) there
seem to be no runtime overhead problems with our proposed constraint-
directed neighbourhoods. However, the programming time was much reduced
for CdsPreserving, because reasoning at a higher level of abstraction and
thus not needing to initialise and maintain some data structures (as discussed
in the previous sub-section). Note that different random seeds were used in
CdsPreserving and the algorithm in [18], which explains the differences in
the numbers of unsuccessful runs in the two tables.

When pretending that Partition is not built in and using an ∃MSO-specified
Partition instead, the runtimes in Tables 1(a,c) are (only) three to four times
apart for all the instances. This is not a surprise since the chosen ∃MSO
specification of Partition is of quadratic length in its number of set variables,
leading to an at worst quadratic slowdown for the ∃MSO-based computations
compared to the built-in Partition. However, on these instances, the slowdown
is observed to be linear. Furthermore, compared to using the built-in Partition,
it must be noted that efforts such as designing penalty and variable-conflict
functions with incremental maintenance algorithms, as well as implementing
member and iterate methods were not necessary, since all this is obtained
automatically given the ∃MSO constraint, as shown in [9,11,8] and this article,
respectively. In general, testing the chosen combination of heuristics and meta-
heuristics using ∃MSO constraints can help to decide if it is worth producing a
faster handcrafted implementation. Again, different random seeds were used,
which explains why the numbers of unsuccessful runs differ.

24

Table 1
Runtimes in CPU seconds for classical instances [12] of the progressive party prob-
lem. Mean runtime of successful runs (out of 100) and number of unsuccessful runs
(if any) in parentheses.

Number of periods
Host boats H 6 7 8 9 10

{1− 12, 16} 0.7 1.8 19.1
{1− 13} 8.8 105.2
{1, 3− 13, 19} 10.2 143.9 (1)
{3− 13, 25, 26} 21.0 220.5 (14)
{1− 11, 19, 21} 11.8 96.0 (1)
{1− 9, 16− 19} 17.7 184.7 (11)

(a) CdsPreserving with built-in Partition(X, Q)

Number of periods
Host boats H 6 7 8 9 10

{1− 12, 16} 1.2 2.3 21.0
{1− 13} 7.0 90.5
{1, 3− 13, 19} 7.2 128.4 (4)
{3− 13, 25, 26} 13.9 170.0 (17)
{1− 11, 19, 21} 10.3 83.0 (1)
{1− 9, 16− 19} 18.2 160.6 (22)

(b) Algorithm of [18] with built-in Partition(X, Q)

Number of periods
Host boats H 6 7 8 9 10

{1− 12, 16} 2.4 6.2 72.6
{1− 13} 31.2 411.8
{1, 3− 13, 19} 37.9 582.4 (3)
{3− 13, 25, 26} 81.0 903.4 (12)
{1− 11, 19, 21} 43.6 367.2
{1− 9, 16− 19} 66.5 750.8 (8)

(c) CdsPreserving with ∃MSO-specified Partition(X, Q)

5 Implementation Issues

After discussing implementation issues for built-in constraints, we do the same
for ∃MSO constraints. In both cases, we give the runtime complexity of the
proposed algorithms.

25

Table 2
Runtimes in CPU seconds for classical instances of the social golfer problem. Mean
run time of successful runs (out of 100) and number of unsuccessful runs (if any) in
parentheses.

ng-ns-nw time (fails) ng-ns-nw time (fails)

6-3-7 0.2 6-3-8 253.4 (79)
7-3-9 127.4 (1) 8-3-10 6.0
9-3-11 1.1 10-3-13 331.4 (3)
6-4-5 0.1 7-4-7 446.4 (57)
8-4-7 0.3 9-4-8 0.5
10-4-9 0.7 7-5-5 0.6
8-5-6 3.8 9-5-6 0.3
10-5-7 0.6 6-6-3 0.1
7-6-4 0.6 8-6-5 9.5
9-6-5 0.4 10-6-6 1.1
7-7-3 0.1 8-7-4 2.7
9-7-4 0.3 10-7-5 1.1
8-8-3 0.2 9-8-3 0.2
10-8-4 0.6 9-9-3 0.3
10-9-3 0.3 10-10-3 0.5

(a) CdsPreserving with built-in constraints

ng-ns-nw time (fails) ng-ns-nw time (fails)

6-3-7 0.4 6-3-8 215.0 (76)
7-3-9 138.0 (5) 8-3-10 14.4
9-3-11 3.5 10-3-13 325.0 (35)
6-4-5 0.3 7-4-7 333.0 (76)
8-4-7 0.9 9-4-8 1.7
10-4-9 2.5 7-5-5 1.3
8-5-6 8.6 9-5-6 0.9
10-5-7 1.7 6-6-3 0.2
7-6-4 1.2 8-6-5 18.6
9-6-5 1.0 10-6-6 3.7
7-7-3 0.3 8-7-4 4.9
9-7-4 0.8 10-7-5 3.4
8-8-3 0.5 9-8-3 0.6
10-8-4 1.4 9-9-3 0.7
10-9-3 0.8 10-10-3 1.1

(b) Algorithm of [18] with built-in constraints

5.1 Implementation Issues for Built-In Constraints

For built-in constraints, the decreasing, preserving, and increasing neighbour-
hoods may be represented procedurally, with the support of underlying data
structures, by two proposed new methods for constraint objects, called member
and iterate. In Algorithm 4, we only show these methods for {AllDisjoint(X)}↓k.

26

Algorithm 4 The member and iterate methods for AllDisjoint(X)

1: function member({AllDisjoint(X)}↓k)(`, k) : boolean
2: case ` of
3: drop(S, u)(k) : return |X|ku > 1
4: | flip(S, u, v)(k) : return |X|ku > 1 ∧ |X|kv = 0
5: | any other : return false
6: end case
7: end function

8: procedure iterate({AllDisjoint(X)}↓k)(S, k, σ)
9: for all u ∈ {x ∈ k(S) | |X|kx > 1} do

10: σ(drop(S, u)(k))
11: for all v ∈ {x ∈ U \ k(S) | |X|kx = 0} do
12: σ(flip(S, u, v)(k))
13: end for
14: end for
15: end procedure

The member({AllDisjoint(X)}↓k)(`, k) method takes two configurations ` and
k and returns true if and only if ` ∈ {AllDisjoint(X)}↓k. As observable from
the definition of {AllDisjoint(X)}↓k in Example 9, this is the case only when ` is
of the form drop(S, u)(k) and u occurs more than once in X, or flip(S, u, v)(k)
and u (respectively v) occurs more than once (respectively not at all) in X
(lines 3 and 4). A call member({AllDisjoint(X)}↓k)(`, k) can be performed in
constant time, assuming that |X|ku and |X|kv are maintained incrementally.

The iterate({AllDisjoint(X)}↓k)(S, k, σ) method takes a set variable S, a con-
figuration k, as well as a function σ and applies σ to each configuration ` ∈
{AllDisjoint(X)}↓k involving S. This is the case for each configuration ` of the
form drop(S, u)(k) or flip(S, u, v)(k) such that member({AllDisjoint(X)}↓k)(`, k)
holds (lines 10 to 13). 6 The argument function σ must take a configuration
and work by side effects. For example, a call σ(`) could evaluate the penalty in-
crease between the current configuration and `, and update some internal data
structure keeping track of the best such move. A call iterate({AllDisjoint(X)}↓k)(S, k, σ)
can be performed in O(|{AllDisjoint(X)}↓k|) time, assuming that the set com-
prehensions on lines 9 and 11 are maintained incrementally, and that a call to
σ takes constant time.

The following example shows how to use these methods in practice.
Example 10 Consider again the heuristic CdsPreserving in Algorithm 3
and assume that the set Π of preserved constraints in that heuristic contains
exactly two constraints π1 and π2. Given the member and iterate methods for
those constraints, we could implement the choose block on lines 6 to 8 as

6 Note that an explicit call to member is not desirable since this would require
iterating over all moves.

27

follows:

`s ← []
minPenalty ← maxInt
iterate({π1}=

k)(x, k, updateBest(k, `s ,minPenalty , π2))
k ← random element in `s

Hence, the preserving neighbourhood of π1 is iterated over, applying updateBest
to each move in that neighbourhood. When this iteration finishes, the buffer
`s contains the best moves of the neighbourhood, and k is set to a random
element of this buffer. The procedure updateBest works by side effects as fol-
lows:

procedure updateBest(k, `s ,minPenalty , π2)(m)
if member({π2}=

k)(m, k) then
if penalty(Σ|x)(m) < minPenalty then

minPenalty ← penalty(Σ|x)(m)
`s ← [m]

else if penalty(Σ|x)(m) = minPenalty then
`s ← m :: `s

end if
end if

end procedure

Hence, if the argument move m is also in the preserving neighbourhood of π2,
then it may be added to the buffer `s of best moves. This buffer is reset when-
ever a better move is found. Note that updateBest is similar to the neighbour
abstraction and neighbour selector constructions of [4, page 165]. J

5.2 Implementation Issues for ∃MSO Constraints

For ∃MSO constraints, the decreasing, preserving, and increasing neighbour-
hoods may be represented partly extensionally, namely for the add and drop
moves, and partly procedurally, since the flip, transfer , and swap moves can
be generated from the former, and since representing the latter extensionally
would be too costly in terms of both space and time.

Given an ∃MSO constraint Φ and a configuration k, the subset ∆|{add ,drop}(Φ)(k)
of the delta set ∆(Φ)(k) with only elements of the form (add(S, v)(k), δ) or
(drop(S, u)(k), δ) may be represented extensionally at every node in the ex-
tended constraint dag (directed acyclic graph) of Φ, and updated incrementally
between moves, similarly to incrementally updating penalties [8]. A constraint
dag has as nodes the quantifications, connectives, and primitive predicates of
the ∃MSO constraint, with the arcs pointing from subformulas to formulas.

28

It originally only contained node annotations about the penalty and variable
conflicts under a configuration [9,11].
Example 11 (Extended constraint dag of ∃S∃T∃V Ω) Recall the ∃MSO
specification ∃S∃T∃V Ω of AllDisjoint({S, T, V }), the configuration k = {S 7→
{b}, T 7→ {b}, V 7→ ∅}, and the delta set ∆(∃S∃T∃V Ω)(k) of Example 8. The
extended constraint dag of ∃S∃T∃V Ω under k, shown in Figure 2, contains
penalty information (shaded sets, and not further explained here: see [9,8])
as well as the sets ∆|{add ,drop}(φ)(k) ⊆ ∆(φ)(k), for each subformula φ of
∃S∃T∃V Ω. J

In Algorithm 6, we present (public) generic member and iterate methods only
for the decreasing neighbourhood of ∃MSO constraints. Both methods call
the private collect(Φ) method of Algorithm 5, which takes a set variable S, a
configuration k, and a move set M as arguments such that:

• Each move in M affects S.
• M contains only flip, transfer , and swap moves (since add and drop moves

are already extensional in the dag of Φ).

A call collect(Φ)(S, k,M) returns the delta set for Φ under k, where the config-
uration ` of any element (`, δ) of this delta set is a member of M . This function
is only partly described in Algorithm 5; all other cases follow similarly from
Definition 6, and the sets of flip and swap moves are computed similarly. For
∃S1 · · · ∃Sn(φ), the function is called recursively for φ (line 3). For ∀x(φ), it is
called recursively for φ, and the value of δ, given a transfer move, is obtained
from the result of that call (line 5). For φ ∧ ψ: (i) if S is in both conjuncts,
then the value of δ, given a move of the form transfer(S, u, T)(k), is recur-
sively determined as the sum of transfer(S, u, T)(k) . collect(φ)(S, k,M) and
transfer(S, u, T)(k) . collect(ψ)(S, k,M) (line 8); (ii) if S is only in one of the
conjuncts, say φ, then the value of δ, given a move of the form transfer(S, u, T)(k),
is recursively determined as the sum of transfer(S, u, T)(k).collect(φ)(S, k,M)
and add(T, u)(k).∆|{add ,drop}(ψ)(k) (line 10). The benefit of representing ∆|{add ,drop}(Φ)(k)
extensionally can be seen in case (ii), where a recursive call is needed only for
the subformula where S appears. For x ∈ S, given a transfer(S, u, T)(k) move,
the value of δ is 1, since u is removed from S (line 15).
Example 12 (The collect Function) Consider again ∃S∃T∃V Ω and con-
figuration k = {S 7→ {b}, T 7→ {b}, V 7→ ∅} of Example 8. By stepping
through the call collect(∃S∃T∃V Ω)(V, k, {transfer(S, b, V)(k)}) while keeping
the dag in Figure 2 in mind, we see that

collect(∃S∃T∃V Ω)(V, k, {transfer(S, b, V)(k)}) = {(transfer(S, b, V)(k), 0)}

Hence, similarly to the end of Example 8, we have that transfer(S, b, V)(k) is
in the preserving neighbourhood of Φ under k. J

By a similar reasoning as in [8, Section 5.3], we can argue that the time

29

{() 7→ 1}
{(add(S, a)(k), 0),
(drop(S, b)(k),−1),
(add(T, a)(k), 0),
(drop(T, b)(k),−1),
(add(V, a)(k), 0),
(add(V, b)(k), 1)}

{() 7→ 1}
{(add(S, a)(k), 0),
(drop(S, b)(k),−1),
(add(T, a)(k), 0),
(drop(T, b)(k),−1),
(add(V, a)(k), 0),
(add(V, b)(k), 1)}

{(a) 7→ 0,
(b) 7→ 1}

{(add(S, a)(k), 0),
(drop(S, b)(k),−1),
(add(T, a)(k), 0),
(drop(T, b)(k),−1),
(add(V, a)(k), 0),
(add(V, b)(k), 1)}

{(a) 7→ 0,
(b) 7→ 1}

{(add(S, a)(k), 0),
(drop(S, b)(k),−1),
(add(T, a)(k), 0),
(drop(T, b)(k),−1),
(add(V, a)(k), 0),
(add(V, b)(k), 0)}

{(a) 7→ 0,
(b) 7→ 1}

{(add(T, a)(k), 1),
(drop(T, b)(k),−1),
(add(V, a)(k), 1),
(add(V, b)(k), 1)}

{(a) 7→ 0,
(b) 7→ 1}

{(add(T, a)(k), 1),
(drop(T, b)(k),−1)}

{(a) 7→ 0,
(b) 7→ 0}

{(add(V, a)(k), 1),
(add(V, b)(k), 1)}

{(a) 7→ 0,
(b) 7→ 1}

{(add(S, a)(k), 1),
(drop(S, b)(k),−1)}

{(a) 7→ 0,
(b) 7→ 0}

{(add(T, a)(k), 0),
(drop(T, b)(k), 0),
(add(V, a)(k), 0),
(add(V, b)(k), 1)}

∃S∃T∃V

∀x

∧

∨

∧

x /∈ T x /∈ V

x /∈ S ∨

Figure 2. Extended constraint dag of ∃S∃T∃V Ω under the configuration k of Ex-
ample 8. The dag contains penalty information (shaded sets) as well as delta sets
with add and drop moves.

complexity of collect(Φ) is at worst proportional to the length of Φ. The
∃MSO specification we have used for AllDisjoint({S, T, V }) is of a length

30

Algorithm 5 Private collect method for ∃MSO constraints

1: function collect(Φ)(S, k,M) : K × Z
2: case Φ of
3: ∃S1 · · · ∃Sn(φ) : return collect(φ)(S, k,M)
4: | ∀x(φ) :

5:

return {(flip(S, u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪
 (transfer(S, u, T)(k), δ) | transfer(S, u, T)(k) ∈ M ∧
δ = transfer(S, u, T)(k) . collect(φ)(S, k,M)


∪ {(swap(S, u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

6: | φ ∧ ψ :
7: if S ∈ vars(φ) ∩ vars(ψ) then

8:

return {(flip(S, u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪


(transfer(S, u, T)(k), δ) | transfer(S, u, T)(k) ∈ M ∧
δ = transfer(S, u, T)(k) . collect(φ)(S, k,M) +
transfer(S, u, T)(k) . collect(ψ)(S, k,M)


∪ {(swap(S, u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

9: else if S ∈ vars(φ) then

10:

return {(flip(S, u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪


(transfer(S, u, T)(k), δ) | transfer(S, u, T)(k) ∈ M ∧
δ = transfer(S, u, T)(k) . collect(φ)(S, k,M) +
add(T, u)(k) .∆|{add ,drop}(ψ)(k)


∪ {(swap(S, u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

11: else (∗ symmetric to the case when S ∈ vars(φ) ∗)
12: end if
13: · · · (∗ omitted cases ∗) · · ·
14: | x ∈ S :

15:
return {(flip(S, u, v)(k), δ) | · · · (∗ condition omitted ∗) · · · }

∪ {(transfer(S, u, T)(k), 1) | transfer(S, u, T)(k) ∈ M }
∪ {(swap(S, u, v, T)(k), δ) | · · · (∗ condition omitted ∗) · · · }

16: end case
17: end function

(measured in number of primitive constraints) that is quadratic in the number
of variables. In general, an ∃MSO specification may have some overhead in
terms of the formula length, which is the price to pay for the convenience
of using ∃MSO. As seen in Section 4.3, experiments show that a worst-case
quadratic overhead can in practice be linear.

The generic member({Φ}↓k)(`, k) method takes two configurations ` and k and
returns true if and only if ` ∈ {Φ}↓k. If ` is an add or drop move, then the

31

Algorithm 6 Generic member and iterate methods for ∃MSO constraints.

1: function member({Φ}↓k)(`, k) : boolean
2: case ` of
3: add(S, v)(k) : return ` .∆|{add ,drop}(Φ)(k) < 0
4: | drop(S, u)(k) : return ` .∆|{add ,drop}(Φ)(k) < 0
5: | flip(S, u, v)(k) : return ` . collect(Φ)(S, k, {`}) < 0
6: | transfer(S, u, T)(k) : return ` . collect(Φ)(S, k, {`}) < 0
7: | swap(S, u, v, T)(k) : return ` . collect(Φ)(S, k, {`}) < 0
8: end case
9: end function

10: procedure iterate({Φ}↓k)(S, k, σ)
11: D ← ∆|{add ,drop}(Φ)(k)|S ∪ collect(Φ)(S, k, {` | ` ∈ N (vars(Φ))(k)|S})
12: for all (`, δ) ∈ D do
13: if δ < 0 then σ(`) end if
14: end for
15: end procedure

result is obtained directly from ∆|{add ,drop}(Φ)(k) (lines 3 and 4). Otherwise,
the result is obtained from a call collect(Φ)(S, k, {`}), where S is the variable
affected by the move from k to ` (lines 5 to 7). Since ∆|{add ,drop}(φ)(k) is
represented extensionally for each subformula, we access it in constant time.

The generic iterate({Φ}↓k)(S, k, σ) method takes a set variable S, a configu-
ration k, as well as a function σ, and applies σ to each move in {Φ}↓k in-
volving S. This set is obtained from a union of the extensionally represented
∆|{add ,drop}(Φ)(k) and the result of a call collect(Φ)(S, k,M), where M is the
set of all moves involving S. We use M|S to denote the deltas in M involving
S.

Given an ∃MSO constraint Φ, the time complexities of member and iterate
are both at worst proportional to the length of Φ, since both call collect .

6 Conclusion

In summary, we have first revisited the exploration of constraint-directed
neighbourhoods, where a (small) set of constraints is picked before considering
the neighbouring configurations where those constraints have a decreased (or
preserved, or increased) penalty. Given the semantics of a built-in constraint,
or just a formal specification of a new constraint, neighbourhoods consisting
only of configurations with decreased, preserved, or increased penalty can be
represented via new methods for constraint objects. We have then presented
a prototype implementation of the corresponding methods in our local search

32

framework and, using these new methods, have shown how some local search
algorithms are simplified, compared to using just a variable-directed neigh-
bourhood.

In terms of related work, the constraint objects of [5,4] have the methods
getAssignDelta(x , v) and getSwapDelta(x1 , x2) in their interface, returning the
penalty increases upon the (scalar) moves x := v and x1 :=: x2, respectively.
Although it is possible to construct decreasing, preserving, increasing neigh-
bourhoods using these methods, the signs of their penalty increases are not
known in advance. So if one wants to construct, say, a decreasing neighbour-
hood (as done in the procedure constraintDirectedSearch in [4, page 68],
for example), then one may have to iterate over many moves that turn out to be
non-decreasing. This contrasts using the methods for representing constraint-
directed neighbourhoods proposed in this article, where it is known in advance
that exploring the decreasing neighbourhood, say, will only yield moves with a
lower penalty. Of course, using the invariants of Comet, it is possible to extend
its constraint interface with methods similar to those proposed in this article,
thus achieving similar results in the (scalar) Comet framework. Conducting
payoff experiments (like the ones of Section 4.3) within the Comet framework
is considered future work, while comparisons between the frameworks are be-
yond the purpose of this article.

In [19], it is shown that the semantics of the constraints can be used to de-
rive suitable neighbourhoods for some models, but that work is orthogonal
to ours, which is concerned with a general framework for the implementation
and analysis of constraint-directed neighbourhoods.

In [20], it is also suggested that global constraints can be used in local search
to generate heuristics to guide search; however, that work differs in that the
provided heuristics are defined in an ad-hoc manner for each constraint.

In this article we have started to explore new directions in automatic neigh-
bourhood generation for local search, and there are still many directions for
future work.

First, considering that flip, transfer , and swap moves essentially are transac-
tions over add and drop moves, it should be possible to assist the designer of a
constraint object by inferring the constraint-directed neighbourhoods for the
former compound moves from the latter atomic moves.

Also, in this article, we just precompute the sign of the penalty change for
built-in constraints in our constraint-directed neighbourhoods, but it should
be possible to precompute the actual value of that change, as we have al-
ready done for the primitive predicates of ∃MSO in Definition 6. Then, upon
adding the built-in constraints as further base cases both to the BNF gram-
mar of ∃MSO in Figure 1 and to the inductive definition of ∆(Φ)(k) in Defini-

33

tion 6, the step cases of Definition 6 enable the precomputation of the penalty
change of an arbitrary ∃MSO formula over constraints. For instance, noting

that Partition(X,Q)
def
= AllDisjoint(X) ∧ Union(X,Q), we could then pre-

compute the constraint-directed neighbourhoods of Partition from those of
AllDisjoint (in Example 9) and Union (not listed here). Also, the preserving
neighbourhood Π=

k in line 4 of Algorithm 2 then does not need to be calculated
dynamically as

⋂
c∈Π{c}=

k but could be statically precomputed.

Further, in line 4 of Algorithm 2, instead of choosing a neighbour in the
preserving neighbourhood Π=

k minimising penalty(Σ)(k), one might choose a
neighbour in Π=

k ∩Σ↓
k, by representing the intersection of the moves preserving

the penalty of Π and the moves decreasing the penalty of Σ, if that intersection
is non-empty, thereby saving at each iteration the consideration of the non-
decreasing moves on Σ.

Finally, the neighbourhoods of Definition 4 should be parametrised by the
neighbourhood function to be used, rather than hardwiring the universal
neighbourhood function N (X), and the programmer should be supported in
the choice of this parameter.

Acknowledgements

The second author thanks Sabancı University, for the research time included
in his Visiting Faculty Member position. Part of this work was made when
he was visited there by the first author, on a grant by Ericsson’s Research
Foundation, or by both other authors, on Erasmus Teacher Exchange stipends:
these sponsors are also gratefully acknowledged. Many thanks also to the
anonymous referees for their useful comments on this article.

This article contains most, but not all the material of [17]. A preliminary ver-
sion of this article appears in the informally published Proceedings of LSCS’07,
the 4th International Workshop on Local Search Techniques in Constraint Sat-
isfaction, held at CP’07.

References

[1] E. Aarts, J. K. Lenstra (Eds.), Local Search in Combinatorial Optimization,
John Wiley & Sons, 1997.

[2] F. Glover, M. Laguna, Tabu search, in: Modern Heuristic Techniques for
Combinatorial Problems, John Wiley & Sons, 1993, pp. 70–150.

34

[3] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by simulated
annealing, Science 220 (4598) (1983) 671–680.

[4] P. Van Hentenryck, L. Michel, Constraint-Based Local Search, The MIT Press,
2005.

[5] L. Michel, P. Van Hentenryck, A constraint-based architecture for local search,
ACM SIGPLAN Notices 37 (11) (2002) 101–110, Proceedings of OOPSLA’02.

[6] M. S. Fox, Constraint-directed search: A case study of job-shop scheduling,
Ph.D. thesis, Computer Science Department, Carnegie Mellon University, USA
(December 1983).

[7] J. P. Walser, Integer Optimization by Local Search: A Domain-Independent
Approach, Vol. 1637 of LNCS, Springer-Verlag, 1999.

[8] M. Ågren, P. Flener, J. Pearson, Generic incremental algorithms for local search,
Constraints 12 (3) (2007) 293–324, (Collects the results of papers at CP-AI-
OR’05, CP’05, and CP’06, published in LNCS 3524, 3709, and 4204.).

[9] M. Ågren, P. Flener, J. Pearson, Incremental algorithms for local search from
existential second-order logic, in: P. van Beek (Ed.), Proceedings of CP’05, Vol.
3709 of LNCS, Springer-Verlag, 2005, pp. 47–61.

[10] G. Tack, C. Schulte, G. Smolka, Generating propagators for finite set
constraints, in: F. Benhamou (Ed.), Proceedings of CP’06, Vol. 4204 of LNCS,
Springer-Verlag, 2006, pp. 575–589.

[11] M. Ågren, P. Flener, J. Pearson, Inferring variable conflicts for local search, in:
F. Benhamou (Ed.), Proceedings of CP’06, Vol. 4204 of LNCS, Springer-Verlag,
2006, pp. 665–669.

[12] B. M. Smith, S. C. Brailsford, P. M. Hubbard, H. P. Williams, The progressive
party problem: Integer linear programming and constraint programming
compared, Constraints 1 (1996) 119–138.

[13] P. Van Hentenryck, L. Michel, Differentiable invariants, in: F. Benhamou (Ed.),
Proceedings of CP’06, Vol. 4204 of LNCS, Springer-Verlag, 2006, pp. 604–619.

[14] I. Dotú, P. Van Hentenryck, Scheduling social golfers locally, in: R. Barták,
M. Milano (Eds.), Proceedings of CP-AI-OR’05, Vol. 3524 of LNCS, Springer-
Verlag, 2005.

[15] H. Fang, Y. Kilani, J. Lee, P. Stuckey, The island confinement method for
reducing search space in local seach methods, Journal of Heuristics 13 (6) (2007)
557–585.

[16] S. Minton, Automatically configuring constraint satisfaction programs: A case
study, Constraints 1 (1-2) (1996) 7–43.

[17] M. Ågren, P. Flener, J. Pearson, On constraint-oriented neighbours for local
search, Tech. Rep. 2007-009, Department of Information Technology, Uppsala
University, Sweden, available at http://www.it.uu.se/research/reports/
2007-009 (March 2007).

35

[18] M. Ågren, P. Flener, J. Pearson, Set variables and local search, in: R. Barták,
M. Milano (Eds.), Proceedings of CP-AI-OR’05, Vol. 3524 of LNCS, Springer-
Verlag, 2005, pp. 19–33.

[19] P. Van Hentenryck, L. Michel, Synthesis of constraint-based local search
algorithms from high-level models, in: Proceedings of AAAI’07, AAAI Press,
2007, pp. 273–278.

[20] A. Nareyek, Using global constraints for local search, in: E. Freuder, R. Wallace
(Eds.), Constraint Programming and Large Scale Discrete Optimization, Vol. 57
of DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, 2001, pp. 9–28.

36

