Towar ds Relational Modelling
of Combinatorial Optimisation Problems

Pierre Flener
Department of Information Science
Uppsala University, Box 513, S — 751 20 Uppsala, Sweden
Pierre.Flener@dis.uu.se

Abstract

A high-level abstract-datatype-based constraint
modelling language opens the door to an automat-
able empirical determination — by a compiler —
of how to ‘best’ represent the variables of a com-
binatorial optimisation problem, based on (real-
life) training instances of the problem. In the ex-
treme case where no such training instances are
provided, such a compiler would simply be non-
deterministic. A first-order relational calculus with
sets is a good candidate for such a language, as
it gives rise to very natural and easy-to-maintain

representation, depending on the confdkiand given (real-
life) training instance$8]. Other than retrieving the (unique)
image under a total function of a domain element, there has
(thus) been no support of relational expressions.

| here make two claims. First, a high-level abstract-
datatype-based constraint modelling language opens tire do
to an automatable empirical determination — by a compiler
— of how to ‘best’ represent the variables of a combinatorial
optimisation problem, based on (real-life) training imstes
of the problem. In the extreme case where no such train-
ing instances are provided, such a compiler would simply be
non-deterministic. Second, our previous work on an abistrac
datatype for total functionis; 8 can be usefully generalised

models of combinatorial optimisation problems. to supportany kind of relations, and a suitable first-order re-

lational calculus with sets is a good candidate for such a lan
. guage, as it gives rise to very natural and easy-to-maintain
1 Introduction models of combinatorial optimisation problems.

In recent years, modelling languages based on some logjc | here ignore the issue of how to parameterise a solver, say
with sets and relations have gained popularity in formatmet PY providing a suitable labelling heuristic, towards thé/so
ods, witness the [1] andz [13] specification languages, the N9 of the modelled problem. For non-expert or lazy mod-
ALLOY [9] object modelling language, and the Object con-éllers, this task can also be left to compllgﬁs 1?1. | thus
straint LanguagedcL) of UML. In database modelling, this here only aim at techniques that find the ‘best’ model for a
had been long advocated, most notably via entity-relation9iVen solver, under itslefault settings. A joint consideration
attribute (ERA) diagrams. This study examines whether con©f the modelling and the solver parameterisation is omitted
straint modelling can benefit from the same ideas. here so as not to clutter the reported ideas.

Sets and set expressions recently started appearing as mod/*S befltsha WﬁrkjhOp’ this ISI pa(;tlally a POS'}']?n paiaer, In
elling devices in some constraint programming Ianguage§ e sense that the denotational and operational formalrsema

with set variables often implemented by the set interval repticS Of the proposed language have not been fully worked out
resentatior7]. In the absence of such an explicit set conceptY©t (but sed3]), and that a prototype of the advocated com-
modellers usually represent a set variable as an array of 0RII€T IS notavailable yet. My aims here only are to preseet th
integer variables, indexed by the domain of the set. In termgotation, illustrate its elegance and the flexibility ofiitedels
of propagation, the set interval representation is eqeiiab Y S0me examples, and argue that the advocated compilation
the 0/1 representation. The latter of course consumes mofJlilosophy is feasible and useful.

memory, but is able to support more set expressions and con- 1 1iS Paper is organised as follows. In Section 2, | present
straints. Both options are restricted to finite sets. my relational notation for modelling combinatorial optimi

Relations have not received much attention yet in con-Sation problems. Next, | illustrate my c!aims on two such
straint programming languages, except the particular case ProPlems, namely the Warehouse Location problem in Sec-
a total function, via the concept of array. Indeed, a totatfu tion 3 qnd the S_table Marriage problem in Section 4. Finally,
tion f can be represented either as a 1D array of variable¥! Section 5, | discuss related and future work.
over the range of, indexed by its domain, or as a 2D array of . . .
0/1 variables, indexed by the domaind range off, or even 2 Relational Modelling with ESRA
with some redundancy. Alternatively, we have recently advo After discussing, in Section 2.1, the design decisions be-
cated that total functions should be supported by an alistrabind the newesrA modelling language, | introduce, in Sec-
datatype, so that it is the compiler that must choose a daitabtion 2.2, its concepts, syntax, and semantics.

2.1 Design Decisions or a finite range of integers, indicated by its lower and upper
In constraint satisfaction, much more effort has been tiec Pounds. Constant and variable identifiers can be any mix of
at efficiently solving the constraints than at facilitatithgir ~ /owercase and uppercase letters. The only prgdefmed primi-
modelling. Constraint programming languages reflect tris, Ve types are the rangeat andint , which ared:maxint

their control structures and variable representatioroogtare 2nd-maxintmaxint , respectively, withmaxint - being
usually quite low-level. This has significantly changedhwit the maximum representable integer.
the advent of the Optimisation Programming Languamra) An enumeration is viewed assat, and can thus have sub-

[14], which provides a (nicely sugared) bigger subset of first-sets. For this, the binary } type constructor allows the con-
order logic than the usual Horn clauses, plus enumerated segtruction of thepowerset of a set as a new type, so that sets
for dispensing with the frequent need of encoding evergthin can be declared of that type. Consider the powerset e
as integers, and direct-access arrays (of any dimensien) ifn:n }. ThenS must be a primitive type of the enumeration
stead of the usual sequential-access lists.dButdoes notgo ~ kind, while the rangen:n is amultiplicity, stating that any
far enough as a modelling language, in our opinion: set varimember of the powerset &must have betweemandn el-
ables, relations, and some useful quantifiers are stillimjss ements, wherenandn are natural-number expressions.
and thus need to be represented at a rather low level, in-unnat Relationsare declared using the quaternémelation type-
ural but standard ways (see below for examples). The solver constructor. Consider the relation type m:n # p:q B .
of opL is excellent, especially due to its being a front-endThenA andB must be primitive types, designating the two
to both constraint and linear programming solvers, though goarticipants of any relation of this type, withbeing called
more open parameterisation would be useful. thedomain andB therange of such a relation, by extension of
The key design decisions for our new constraint modellinghe terminology for functions, which are just particulasea
language — calle@SRA— are as follows. We want to cap- Of relations. The second and third argument# afre mul-
ture common modelling idioms in new abstract datatypes anéplicities, with the following semantics: for every elente
quantifiers, especially for sets and relations, so as tgdesi of A, there are betweemandn elements oB, and for ev-
truly high-level language. Computational completenessts ery element o, there are betweep andq elements ofA
aimed at, as long as the notation is useful for elegantly modin such a relatio. For partial and total functionsn:n is
elling a large number of combinatorial optimisation prob-0:1 and1:1 , respectively. For injections, surjections, and
lems. LikeopL, we (currently) do not support procedures, bijections,p:q is 0:1 , 1:maxint , and1:1 , respectively.
and hence no procedure calls and no recursion. Similay, li Rather than elevating functions and their particular cases
opL, we focus on finite domains, and support only boundedirst-class concepts with specific syntax @sRA, | prefer
quantification. In order to maximally sugar the first-order- keeping the notation lean and leave their specialised andl
logic nature of the language, we adopt @nL/ALLOY -like to the compiler. This has the further advantage that only the
‘lower-128 Ascil’ syntax, unlike theATgX-requiring syntax ~ multiplicities need to be changed during model maintenance
of z, as well as aPL-like JAvA-style declaration of the uni- when a function becomes a relation (as seen in Section 4.3).
versally quantified input/output parameters. Like in opL, (arrays of) instance data variables are declared
Considering the excellent starting point tleatL thus pro- in a JAVA-style strongly typed syntax. Unlike ioPL, all in-
vides, it became natural to desi@sRA by extending a stance data are here read in at run-time from a dat& Rieb-
streamlined (significant) subset afPL.! The semantids lem variable declarations follow the same syntax, but age pr
of ESrRA will be given in an implementation-independent ceded by thevar keyword. The usage of arrays of problem
way, in two layers. Indeed, some featuresesiRA are just variables, though possible, is sometimes discouragetiegs t
syntactic sugar for combinations of (a few) kernel featuressometimes amount to a premature commitment to a low-level
hence we will provide an operational semantics (by rewriterepresentation of what essentially are relation varialibese
rules) for the non-kernel features, and a set-oriented -dendo the (current) restrictions on relations, arrays raoea re-
tational semantics for the kernel features. As showiBin dundant feature atSrRA All declarations denote universally
4], it is actually possible to give an operational semantics byquantified variables, with the instance data ones expeoted t
ESRA-t0-OPL rewrite rules for thentire language. be ground at solving-time and the problem ones expected to

] still be variables then. Consider the following declamasio
2.2 Concepts, Syntax, and Semantics of ESRA

For reasons of space, | here only introduce the concepts ofgﬁhx%\évggﬁ Men
ESRA that are actually illustrated in this paper. Also, | can {Men 1'maxint’} MarriedMen
“only” give an informal semantics. The reader may monitor '

[3] for a complete description of the full language. 3| thus (currently) restrict the focus tbinary relations, be-

tween primitive types only. My convention is the oppositettoé
Modelling the Instance Data and Variables. A primitive UML/ALLOY one, say, where multiplicities are written in the other

typeis either a finite enumeration of new constant identifiers order, with thesame semantics. That convention can howewerbe
e — usefully upgraded to relations of arity higher than 2, anéhted to

lopL leaves numerous opportunities for reducing its syntaxleave the possibility for that extension open.
while increasing its power. For time reasons, wergb support 4] thus dispensed with all otherpL forms of initialisation, and
floats, scheduling, and some other featuresmi. thus with its ... ’ notation for data-file initialisation. | also dis-
2opL doesnot (yet) have a published semantics. pensed with its semicolon * after declarations.

int RankW[Women,Men] int MaintCost = ..;
var Women f enum WareHs ...;

var Women 0:1 # 0:MaxWives Men Marriage enum Stores ...;
. . . int Capacity[WareHs] = ..;
Here,MaxWives is declared to be a natural number, while j, SupplyCost[Stores,WareHs] = ...:

WomerandMenare enumerated sets. The btrriedMen var WareHs Supply[Stores]; /| C1
is an element of the powersetMen, that is a subset den, 5 int OpenWareHs[WareHs] in 0..1;

and must be non-empty. The 2D integer arRgnkWis in- inimize

dexed by the setd/omerandMen. The problem variablé sum(s in Stores) SupplyCost[s,Supply[s]]

designates an element of the ¥ébmen Finally, the prob- + sum(w in WareHs) OpenWareHs[w]

lem variableMarriage designates a relation over the sets * MaintCost

WomenrandMen, such that there is at most one husband forsubject to {

each woman, and at mdgtlaxWives wives for each man. forall(s in Stores) /I link
OpenWareHs[Supply[s]]=1;

Modelling the Cost Function and the Constraints. Ex- forall(w in WareHSs) /I C2

pressions are constructed in the usual way. Rameric (sum(s in Stores) (Supply[s]=w))

expressions, arguments are either integers, or the constant <= Capacity[w]

maxint , or variables of typenat orint , and the usual }
unary, binary, and aggregate arithmetic operators ard-avai
able, such agard for the cardinality of a set expression,
ord for the position of an identifier in an enumeration, the
infix *+" and *’ for the addition and multiplication of two |n the first constraint, the navigation expression
numeric expressions, aisdm for the sum of a bounded (and Women.Marriage designates the set of married men,
possibly filtered) number of numeric expressions. while Men. ~Marriage designates the set of married
For set expressions, arguments are either enumerated setsyomen, which must thus be larger than the previous set. The
or set variables, and the usual binary and aggregate set op&econd constraint requires that no man be actually married
ators are available, such as the infixion for the union of to the maximum legal number of wives. The third constraint
two set expressions, and navigation expressions, explaingays that womari must be married, to a man who is
next. LetR be a relation of typeA m:n # p:q B . For monogamous. Note the finite bounda ‘Men’ and the
any element (or subsed of A, the navigation expression optional filters (with problem variables), such dH in
a.R designates the relational image @f that is the possi- Marriage ', in these quantifications.
bly empty set of all elements Bthat are related biRto (any
elementink. If m:n is1:1 , thena.R simply designates the ;
(unique) element oB that is related to elemeiat of A. The 3 TheWarehouse L ocation Problem
relation expression ~Rdesignates thieansposerelation ofR, In the Warehouse Location problem, a company considers
which is thus of typeB p:q # m:n A . Transitive closure opening warehouses on some candidate locations in order to
will be added if suitable examples justify it. The elemerfts o supply its existing stores. Each candidate warehouse kas th
a relation are representeda#h pairs. same maintenance cost, and the supply cost to a store depends
First-order logic formulas are also constructed in the lisuaon the warehouse. Each store must be supplied by exactly
way, with some restrictions. Atoms are built from expres-one open warehous€(). Each candidate warehouse has a
sions with the usual predicates, such as the infiXor setor ~ capacity designating the maximum number of stores that it
relation membership and the infix=’ for the ‘<’ inequality ~ can supply €z). The objective is to determine which ware-
between numeric expressions. Formulas are built from atomouses to open, and which of these warehouses should supply
with the usual connectives and quantifiers, suchats for the various stores, such that the sum of the maintenance and
negation, the infix& and ‘=>" for conjunction and implica- supply costs is minimised. In more mathematical terms, the
tion, andforall andexists for bounded (and possibly sought supply relationship istatal function (or: mapping)
filtered) universal and existential quantification. Thealsu from the set of stores into the set of warehouses, and the set
typing and precedence rules for operators and predicates apf warehouses to be opened is tlaage of that function.
ply. All binary operators associate to the left.
_The codt function is a numeric expression that has 0 be o fjrg opL Model. This problem was first modelled
either minimised or maximised. Thenstraintson the prob- as a constraint program in the reference manuaiLofG

lem variables are a conjunction of formulas. Consider theSOLVER4.0 (in 1997), and then modelled @PL in [14]: see
following three constraints, given the declarations above Figure 1 for (a syntac,tic and re-typeset variant of) that etod

Figure 1: PublishedPL model of the Warehouse problem

card(Women.Marriage) No prior knowledge obpL is assumed here, as | explain all
< card(Men."Marriage) its features used here. The maintenance cost is an integer re
forall(m in Men) in at run-time from a data file (which is indicated by the *
card(m."Marriage) < MaxWives notation), and so are the enumerated sets of candidate ware-
exists(h in Men: f#h in Marriage) house locations and existing stores, the 1D array with the in

card(h."Marriage) = 1 teger capacities of the warehouses, and the 2D array with the

int MaintCost = ...; nat MaintCost

enum WareHs ...; enum WareHs, Stores
enum Stores ...; nat Capacity[WareHs],
int Capacity[WareHs] = ...; SupplyCost[Stores,WareHs]
int SupplyCost[Stores,WareHs] = ...; var Stores 1:1 # nat WareHs Supply // C1
var WareHs Supply[Stores]; /I C1 minimise
minimize sum(s#w in Supply) SupplyCost[s,w]
sum(s in Stores) SupplyCost[s,Supply|[s]] + card(Stores.Supply) * MaintCost
+ sum(w in WareHs) subject to {
(sum(s in Stores) (Supply[s]=w)>0) foralllw in WareHs) /I C2
* MaintCost card(w."Supply) <= Capacity[w]
subject to { }
foralllw in WareHs) /I C2

(sum(s in Stores) (Supply[s]=w)) Figure 3: AnesrRAmodel of the Warehouse problem

<= Capacity[w]
g An ESRA Model. Figure 3 shows arEsrRA model of the
Figure 2: A secon@pL model of the Warehouse problem Problem. It is very different from the one we previously
gavel4], as it uses navigation expressions and has no redun-
dancy. The modelling of the instance data is similar to the
integer supply costs to the stores from the warehouses. Thepi models above. The sought supply relationship is mod-
sought total function is modelled by a 1D array of variableselled as a relation and constrained to be a total functiom fro
representing the (unique) warehouse that supplies eah stothe stores into the warehouses, thereby capturing constrai
so this choice fully captures constraiif. The set of ware- (. The elegance of the cost function reflects the freedom
houses to be opened is modelled in a redundant way (becaugem representation choices, with the navigation expogssi
it would suffice to retrieve the range of that function), nme Stores.Supply retrieving the set of warehouses that are
as a 1D array of 0/1 variables, such tgenWareHs[w] is to be opened. The only constraint gracefully captufes
1 if and only if warehouse&vis opened. The objective state- using the navigation expression ~Supply to retrieve the
ment expresses that the addition of the sum of the actuallget of stores that warehousesupplies. This model can be
incurred supply costs and the sum of the maintenance costganslated into variouspL models, similar to the ones above.
for the actually opened warehouses must be minimal. The
second sum is awkward, as the Boolean©pknWareHs .
are re-interpreted as numeric weights. The first constisint 4 The Stable Marriage Problem
?el &T’kr:g%rg?rm%raagﬂﬁlg ngﬂ (;Oxgsrtggé Smt?]if Qev(\;grse?r?(% Sbg :Est | Jow consider the Stable Marriage problem, first in its origi
: ' [version (in Section 4.1) and then in two modified versions
actually supplying some store must be opened. The secon?ifl . - . .
h Sections 4.2 and 4.3). For the original version, | discus

constraint captures. using thehigher-order constraint fea- oo o models and exhibit a singlesrA model, which

ture of oPL, whereby a constraint wrapped in parentheses . g .
such agSupply[s]=w) , is associated with a 0/1 integer tould be mechanically compiled intwPL models not unlike

variable that becomes when the constraint can be proven theé)nles gr']Ven- FQrtheh mﬁdlf'lg'?' ver?c;]ns, I only e)((jhals;k/?
true, andd when the constraint can be proven false, but tha{no els, showcasing the flexibility of the proposed relation
- ; ; ; ' anguage, and leaving model maintenance at a lower level
remains undetermined otherwise. This may be a very power(-SUCh aPL) as an exercise to the reader
ful feature ofoPL, but reflects low-level thinking and should '

be hidden from th deller vi high-level syntax. - .
e hidden from the modeller via a more high-level syntax. , | Original Version

A Second opL Model. Let us design anothespPL model, The original version of théiable Marriage problem can be
which non-redundantly models the supply function, namerStated as follows. Consider a dating agency where an equal
just by the 1D array of variables representing the warehousdUmbem of women and men have signed up and are willing
that supplies each store. Figure 2 has the resulting motiel. T (for whatever reason) to marry any opposite-sex person of
linking constraint disappeared and the second sum of tie cof€ group. They have ranked all possible spouses by decreas-
function became much more awkward GenWareHs[w] ing preference. Figure 4 has sample instance data, where a
had to be replaced by a higher-order expression returhing lower rank means a higher preference. For instance, Hal is
iff there exists a store supplied by warehouseOn the in- Nat's ﬂrst _ch0|ce, but it is Eve who is Hal’s first choice. The
stance data | tried, this model is an order of magnitude mor@bjective is to match up the women and men such that all
efficient (by all measures) than the one above. This provedlarriages are stable. A marriage is said tatableif, when-

that redundancy elimination may pay off, but it may just as€Ver spouse prefers some other partner, this partner prefers

well be the converse, as shown in Section 4.1. But this i$€"/his spouse te. This means that may be unhappy, but
hard to guess, as human intuition may be weak here. s/he is bound to stay with her/his spouse. In more mathemat-

ical terms, the sought marriages forrbigection between the
opL doesnot allow set variables, unlike.0G SOLVER. sets of women and men.

Hal [Jim [Bob | lan | G enum Women ..
Nat | 1 > 7 3 5 enum Men ...;
Eve | 3 5 1 2 4 int RankW[Women,Men] = ..;
Pat | 5 4 2 1 3 int RankM[Men,Women] = ..,;
Sue | 1 3 5 4 2 var Women Wife[Men];
Val | 4 2 3 5 1 solve { _ o
alldifferent(Wife); // bijection
Nat | Eve | Pat | Sue | Va /I stability 1:
Hal | 5 1 2 4 3 foralllw in Women, m,0 in Men)
Jim | 4 1 3 2 5 Wife[m]=w & RankW[w,0] < RankW[w,m]
Bob | 5 3 2 4 1 => RankM[o,Wife[o]] < RankM[o,w];
lan | 1 5 4 3 2 /I stability 2:
Guy | 4 3 2 1 5 forall(m,p in Men, o in Women)
Figure 4: Rankings of the women for the men (top), and rank- V!E[rg;gk\%v[ss]nliM[Ignégl](w[iﬂl;l;/l[m,WIfe[m]]

ings of the men for the women (bottom)

enum Women ...;

enum Men ..

int RankW[Women,Men] = ..;
int RankM[Men,Women] = ..;;

var Men Husband[Women];// all women marry
var Women Wife[Men]; // all men marry

solve {

foralllw in Women) // link 1: bijection
Wife[Husband[w]] = w;

forall(m in Men) /I link 2: bijection
Husband[Wife[m]] = m;

/I stability 1:

foralllw in Women, o in Men)
RankW[w,0] < RankW[w,Husband[w]]
=> RankM[o,Wife[o]] < RankM[o,w];

/I stability 2:

foralllm in Men, o in Women)
RankM[m,0] < RankM[m,Wife[m]]

k

Figure 6: A secondPLmodel of the original Stable Marriage
problem

feature oforPL, namely that expressions with variables, such
asWife[m] , can be used to index arrays (of variables). This
feature is crucial for concise and clear modelling of many
problems. Furthermore, the constraint-solving algorithim
OPL uses such expressions to reduce the domains of the vari-
ables in the arrays via bi-directional propagation.

A Second oPL Model. Let us design anothespL model,
which less well exploits the features of tloeL solver. It
non-redundantly models the marriages, namely by a single
total function, that is a 1D array of variables representirey
(unique) wife of each man, say. (Due to the symmetry in
the definition of marriage stability, the actual choice @ob

=> RankW][o,Husband[o]] < RankW[o,m] bly does not matter. However, in an optimisation version of
3 the problem, such as below, the choweuld matter if there
were some women or men that are more preferred than the
others.) Figure 6 has the resulting model. There is no need
for any linking constraints. To enforce the bijectivene$s o
the function, it suffices to constrain all variables to bdentif
A First opL Modd. This problem was first modelled ent. Finally, the two stability constraints had to be regkrh
as a constraint program in the reference manualLoG slightly, as there is now no direct way of retrieving the hus-
SOLVER 4.0 (in 1997), and then modelled wPL in a sig- band of a given woman: this is achieved by iterating over all
nificantly simpler way in[14]: see Figure 5 for (a syntactic the men. This model is probably less efficient, and this has
and re-typeset variant of) that model. The enumerated $ets deen the case with the instance data | tried.
women and men are to be read in at run-time, just like the
two 2D arrays of rankings of the women and men for each
other. Assertions could be added to ensure that both sets afe Third oPL Model. A third opPL model represents the
of sizen, and that each person’s ranking is a permutation omarriages in a 2D arraylarriage of 0/1 integer variables,
the range Ii. The sought marriages are modelled in a re-indexed by the women and men, so tMdrriage[w,m]
dundant way, via two 1D arrays of variables representing thés 1 iff womanwis married to mam Figure 7 shows the re-
(unique) husband of each woman and the (unique) wife ofulting model. Two bijectiveness constraints are necgdear
each man, respectively. A linking constraint is thus necesenforce that every person has exactly one spouse, thatis tha
sary to ensure that both total functions are the inversedif ea there is exactly oné in each row and in each column. The
other, that is to achieve a bijection. To achieve better @rop two stability constraints are obtained from those of the sec
gation, this linking constraint is here expresseddath func- ond model by the same technique as the stability constraints
tions, requiring every person to be identical to the spotise oof the second model were obtained from those of the first one.
their spouse. Finally, two stability constraints captinedef- This model is probably less efficient than the second one, and
inition of stability of a marriage. This model showcases¥ ke this has been the case with the instance data | tried.

Figure 5: PublishedpPL model of the original Stable Mar-
riage problem

enum Women ...;
enum Men ..,
int RankW[Women,Men] =
int RankM[Men,Women] = ..;;
var int Marriage[Women,Men] in 0..1;
solve {
foralllw in Women) /I bijection 1
sum(m in Men) Marriage[w,m] = 1;
foralllm in Men) /I bijection 2
sum(w in Women) Marriage[w,m] = 1;
forall(w,p in Women, m,0 in Men) {
/I stability 1:
Marriage[w,m]=1 & Marriage[p,0]=1
& RankW[w,0] < RankW[w,m]
=> RankM[o,p] < RankM][o,w];
/I stability 2:
Marriage[w,m]=1 & Marriage[p,0]=1
& RankM[m,p] < RankM[m,w]
=> RankW[p,0] < RankWI[p,m];

}
h

Figure 7: A thirdopL model of the original Stable Marriage
problem

enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:1 # 1:1 Men Marriage // bij.
solve {
foralllw#m, p#o in Marriage) {
RankW[w,0] < RankW[w,m] // stability 1
=> RankM[o,p] < RankM[o,w]
&
RankM[m,p] < RankM[m,w] // stability 2
=> RankW[p,0] < RankWI[p,m]
}
}

Figure 8: AnESRA model of the original Stable Marriage
problem

An ESRA Model. Figure 8 shows aEsRA model of the

Model Maintenance. Paraphrasing the two model flexibil-
ity challenges raised in Section 8.4[a0], where a different
bijection problem was examined, let us now consider the fol-
lowing two additional constraints for the problem.

First, suppose that (for whatever reason) we cannot have
both (Sue, Jim and (Pat, Bol as married couples. In the
first and secondpPL models, this can easily be expressed as
the following new constraint:

not(Wife[Jim]=Sue & Wife[Bob]=Pat)
or, probably more efficiently but at a lower level, as:
(Wife[Jim]=Sue) + (Wife[Bob]=Pat) <= 1
whereas in the thirdpPL model, this can also easily be ex-
pressed, say as:
not(Marriage[Sue,Jim]=1
& Marriage[Pat,Bob]=1)
or, probably more efficiently but less naturally, as:
Marriage[Sue,Jim]+Marriage[Pat,Bob] <= 1

In the ESRA model, the constraint can also easily be ex-
pressed, say as follows:

not(Sue#Jim in Marriage
& Pat#Bob in Marriage)

In other words, botlopL andESRA easily handle this chal-
lenge. However, in a lower-level language thant, the
equivalents of the first and secoodL models make this new
constraint rather hard to express (§&€ for a solution).

Second, suppose that (for whatever reason) Bob must
marry a woman coming after the wife of Jim in the enumera-
tion of women. In the first and secomPL models, this can
easily be expressed as the following new constraint;

ord(Wife[Bob]) > ord(Wife[Jim])
but in the thirdopL model, this can be expressed only with
difficulty, say as:

sum(w in Women) Marriage[w,Bob] * ord(w)

> sum(w in Women) Marriage[w,Jim] *ord(w)
In the ESRA model, the constraint can easily be expressed,
say as follows:

problem. The modelling of the instance data is similar to the ord(Bob."Marriage) > ord(Jim."Marriage)

opL models above. The sought marriages are modelled a§ other words, this timeome opL models arenot easy to

a relation over the sets of women and men, such that it is ﬁ‘]aintain' SO OnlyESRA eas”y handles the Cha”enge’ be-
bijection: for every woman, there is exactly one man, and folcause its model is unencumbered with representation sletail
every man, there is exactly one woman. There is no need foporse, in a lower-level language thapL, the equivalent

any linking constraints. The two stability constraintsedity
capture the definition of stability of a marriage, by itengti
over all pairs of married couples.

This model can be translated into varicogL models, not

of the thirdopPL model makes this additional constraint even
harder to express (s¢&0] for a solution).

Model maintenance at the higtsrA level thus reduces to
adapting to the new problem, with all representation (and th

unlike the ones above, using the (possibly redundant) waysolving) issues left to the compiler. At lower levels, evathw

of representing relations, and exploiting insights gaiftecth ~ oPL, model maintenance may become quite tedious, because
thorough studies of bijectiond2; 19. The advantages of the already made representation choices have to be taken int

abstract relational modelling are that the modeller negd noaccount and because the lower-level notation is more awk-

worry about the actual (and possibly redundant) representavard. Worse, a representation change, a redundancy elimi-
tion of the relation and its multiplicity constraints, arftht nation, or a redundancy introduction (such as a model inte-

the model is (thus) more flexible when the problem changegration or the addition of implied constraints) may “have to

as shown next, as well as in Sections 4.2 and 4.3. be operated, because it is unlikely that, for the considered

training instances or even in general, the ‘best’ represent UM Women, Men
g g P nat RankW[Women,Men], RankM[Men,Women]

tion is the same for bijections as for full relations, saycisu X i .

model maintenance may become necessary not only when tg" Women 0:1 # 0:1 Men Marriage

actual problem changes, but also because the distribution §@XIMise .

instances on which the model is deployed becomes differentcOUNt(w#m in Marriage)

from the training distribution used when the model was for-Subject to { .

mulated. But the modeller may be unwilling or unable to do forallw#m in Marriage) { .

this experimentation for finding the ‘best model, or sthegma ~ forall(0 in Men) II" stability 1

be unaware of insights gained from a general empirical study RankW[w,0] < RankW[w,m] =>

such as on how to ‘best’ model bijectioft]. exists(p in Women: p#o in Marriage)
Fortunately, relations and their particular cases (such as RankM[o,p] < RankM[o,w]

partial functions, total functions, injections, surjects, bi-

jections, and so on) are single, powerful concept for el-

egantly modelling many aspects of combinatorial optimisa-

tion problems. Also, there anaot too many different, and

evenstandard, ways of representing relations and relational

expressions. Therefore, | advocate that the compiler ca?}

actually make a (systematic) empirical evaluation of candi

date representations, using (real-life) training inséamaf the Figure 9: AnESrRA model of the monogamic/monoandric

problem. In the absence of such training instances, such gtable Marriage problem

compiler would simply be non-deterministic. Also, theeret

ical studies such &4.5] should be made for particular cases

of relations in order to obtain rules stating when a represen The sought marriages now form a fu#llation between the

tion is advisable and when not, thereby reducing the volumeets of women and men. The definition of marriage stability

forall(p in Women) /I stability 2
RankM[m,p] < RankM[m,w] =>

exists(o in Men: p#o in Marriage)
RankWI[p,0] < RankW[p,m]

of such empirical studies by compilers. again has to be modified. A polyandric marriage is said to be
stable if, whenever spouse prefers some other partner, this
4.2 Monogamy/Monoandry Version partneiis married,and s/he prefersll her/his spouses ta If

Let us change the Stable Marriage problem to make it moré&t least as many men as women have signed up at the agency,
realistic. The numbers of women and men may now dif-tn€ Problem again becomes a decision problem.
fer, so it may be impossible to arrange marriages for every- Figure 10 shows assRamodel of this new problemThe
one. However, let us keep the previous constraint that evcost function disappeared, the multiplicities were chahge
eryone may marry at most one person, of the opposite Seﬁ,nd the SeQO!’]q Stab|l|ty CQnSt[‘alnt was rephrased to reflect
hence we call this theronogamy/monoandry version. The the new defmlthn, as the f|_nelx|sts became dorall .
Sought marriages no |0nger form a bijection’ but rathm": (The S.ame Stablllty ConsltraJntS could actua”y also ham]be
t|a| functions between the sets of women and men. Theused n the mOdel of F|gure 8, because the new def|n|t|0n
definition of marriage stability now has to be modified. A of stability implies the original one in its context.) Agathe
monogamic/monoandric marriage is said to dable if, model maintenance was unburdened by representation issues
whenever spouse prefers some other partner, this partner
is married,and s/he prefer_s her/his spouse4o To prevent 5 Conclusion
the problem from now having the empty set of marriages as a
solution, it has to become an optimisation problem. VariousSummary. | have argued that a high-level abstract con-
‘happiness’ functions on the marriages can be defined, butdtraint modelling language would enable an automatable em-
here just take a simple one and maximise their number. pirical determination — by a compiler — of how to ‘best’
Figure 9 shows amsRA model of this new problerf. A represent the variables of a combinatorial optimisatiabpr

cost function appeared, the lower bounds of the multipdisit lem. This compilation process would be based on (the few)
were changed frorth to 0, and the stability constraints were standard ways of (possibly redundantly) representing-high
rephrased to reflect the new definition. (The same stabilityevel concepts such as relations, on theoretically or eémpir
constraints could actually also have been used in the modehlly gained knowledge about when to deploy which repre-
of Figure 8, because the new definition of stability impliessentation, as well as on (real-life) training instanceshef t
the original one in its context.) Model maintenance was thugproblem. In the absence of training instances, such a com-
easy, because no representation issues had to be dealt withpiler would simply be non-deterministic.

) The advantage of such high-level modelling is that model
4.3 Polyandry Version formulation and maintenance become much easier, because
Imagine now a country where the law allows women to marryunencumbered by early if not uninformed commitments to
up to 3 men, but men may marry 0n|y 1 woman. Also con_representation ChOi.CES. Automatable model reformulation
sider that all women who signed up at the agency need t@/so becomes possiblg].

marry (for some reason). We call this thelyandry version. — .) o
- - oPL doesnot allow problem variables in the filtering formula
®opL doesnot have existential quantification. after the ‘such that’ (denoted *) of universal quantifications.

enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:3 # 0:1 Men Marriage

solve {
forall(w#m in Marriage) {
/I stability 1:

forall(o in Men) /I stability 1
RankW[w,0] < RankW[w,m] =>
exists(p in Women: p#o in Marriage)
RankM[o,p] < RankM[o,w]
&
/I stability 2:
forall(p in Women) /I stability 2
RankM[m,p] < RankM[m,w] =>
forall(lo in Men: p#o in Marriage)
RankWI[p,0] < RankW[p,m]

}
} (3]

Figure 10: AneEsramodel of the polyandric Stable Marriage
problem

(1]
(2]

(4]

I have shown that a suitable first-order relational calculus
with sets is a good candidate for such a modelling language,
as it gives rise to very natural and easy-to-maintain moufels [5]
combinatorial optimisation problems.

Related Work. This research owes a lot to previous work
on relational modelling in formal methods and on ERA-style
semantic data modelling, especially to theLoy object
modelling languagg9], which itself gained much from the
specification notatioh13] (and learned fronumL/ocL how
not to do it). Contrary to ERA modelling, | do not distinguish
between attributes and relations.

In constraint programmingpPL [14] stands out as a [§]
medium-level constraint modelling language, andvA
[2] is also becoming a very powerful notation, on top of
MODULA-2. Our ESRA shares with them the quest for a
practical declarative modelling language based on a slyeng
typed (full) first-order logic with arrays (and with the look
an imperative language), while dispensing with such hard-
to-properly-implement and rarely-necessary (for corstra [10]
modelling) ‘luxuries’ as recursion and unbounded quaraific
tion. As showngsRrAeven goes beyond them, by advocating[11]
an abstract view of sets and relations.

(6]

(7]

(9]

Future Work. | plan to evolve theesrA report[3] into a [12]

complete (and more formal) description of the concepts; syn
tax, and semantics of the fullsrRA language, as well as to
implement its semantics with aasrRA-to-oPL compiler. |

can then tackle the joint consideration of the modelling and13]
the solver parameterisation, as well as automated refarmul
tion at theesrA level. The language could be extended with[14]
a syntax for declaratively expressing symmettiéls so that

the compiler can generate suitable code for breaking thenh5]
Also, a graphical language could be developed for the vari*
able modelling, including the multiplicity constraints mela-

tions, so that only the cost function and the constraintslgvou

need to be textually expressed.

Acknowledgements. This research is partly funded under
grant 221-99-369 of TFR, the Swedish Research Council for
Engineering Sciences. | would also like to acknowledgée-frui
ful discussions with my students Zeynep Kiziltan and Brahim
Hnich, as well as the useful feedback from the referee.

References

J.-R. Abrial.The B-Book: Assigning Programsto Mean-
ings. Cambridge University Press, 1996.

K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf.
ALMA -0: An imperative language that supports declar-
ative programmingACM TOPLAS 20(5):1014-1066,
1998.

P. Flener and B. Hnich. The syntax and semantics of
ESRA Evolving internal report of thesTRA Team, at
http://www.dis.uu.setpierref/astral.

P. Flener, B. Hnich, and Z. Kiziltan. Compiling high-
level type constructors in constraint programming. In:
I.V. Ramakrishnan (ed)Proc. of PADL'01, pp. 229—
244, LNCS 1990. Springer-Verlag, 2001.

P. Flener, B. Hnich, and Z. Kiziltan. A meta-heuristic for
subset problems. In: 1.V. Ramakrishnan (efljoc. of
PADL’01, pp. 274-287. LNCS 1990. Springer-Verlag,
2001.

I.P. Gent and B.M. Smith. Symmetry breaking during
search in constraint programmingroc. of ECAI’ 00,
pp. 599-603. John Wiley & Sons, 2000.

C. Gervet. Interval propagation to reason about sets:
Definition and implementation of a practical language.
Congtraints 1(3):191-244, 1997.

B. Hnich and P. Flener. High-level reformulation of con-
straint programs. In: Ph. Codognet (e&pc. of JF-
PLC 01. Editions Hermes, 2001.

D. JacksonaALLOY: A lightweight object modelling
notation.ACM TOPLAS, forthcoming. Available from
http://sdg.lcs.mit.edu/dnj/.

K. Marriott and P.J. Stuckeyrogramming with Con-
straints: An Introduction. The MIT Press, 1998.

S. Minton. Automatically configuring constraint satis-
faction programs: A case stud@onstraints 1(1-2):7—
43, 1996.

B.M. Smith. Modelling a permutation problem.
RR 18, University of Leeds (United Kingdom),
School of Computer Studies, 2000. Available from
http://www.comp.leeds.ac.uk/bms/.

J.M. Spivey.The z Notation: A Reference Manual (sec-
ond edition). Prentice-Hall, 1992.

P. Van HentenryckThe opL Optimization Program-
ming Language. The MIT Press, 1999.

T. Walsh. Permutation problems and channelling con-
straints. TR 26, APES Group, 2001. http://www.dcs.st-
and.ac.ukapes/.

