Declarative Local-Search Neighbourhoods
in MiniZinc

Gustav Bjordal*, Pierre Flener*, Justin Pearson*, Peter J. StuckeyT, and Guido Tack®
*Department of Information Technology, Uppsala University, Uppsala, Sweden
firstname.lastname@it.uu.se
*Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
firstname.lastname@monash.edu

Abstract—The aim of solver-independent modelling is to create
a model of a satisfaction or optimisation problem independent
of a particular technology. This avoids early commitment to a
solving technology and allows easy comparison of technologies.
MiniZinc is a solver-independent modelling language, supported
by CP, MIP, SAT, SMT, and constraint-based local search (CBLS)
backends. Some technologies, in particular CP and CBLS, require
not only a model but also a search strategy. While backends
for these technologies offer default search strategies, it is often
beneficial to include in a model a user-specified search strategy for
a particular technology, especially if the strategy can encapsulate
knowledge about the problem structure. This is complex since a
local-search strategy (comprising a neighbourhood, a heuristic,
and a meta-heuristic) is often tightly tied to the model. Hence we
wish to use the same language for specifying the model and the
local search. We show how to extend MiniZinc so that one can
attach a fully declarative neighbourhood specification to a model,
while maintaining the solver-independence of the language. We
explain how to integrate a model-specific declarative neighbour-
hood with an existing CBLS backend for MiniZinc.

Index Terms—declarative neighbourhood, (constraint-based)
local search, modelling

I. INTRODUCTION

The constraint-based modelling language MiniZinc [1] for
satisfaction and optimisation problems is independent of
solving technologies: it has backends for complete solv-
ers of diverse technologies, such as constraint programming
(CP), mixed-integer programming (MIP), Boolean satisfiab-
ility (SAT), SAT modulo theories (SMT), and hybrids, such
as CP with lazy clause generation (LCG), which injects SAT
ideas into CP. When their default inference and search turn
out to be inefficient, CP and LCG solvers offer elegant ways
for the modeller to prescribe declaratively (i) which inference
to perform (via a choice of propagators) when pruning the
space of candidate solutions, and (ii) which search to perform
(via a choice of variable and value selection strategies) when
traversing the remaining space of candidate solutions. In
MiniZinc, one can do this by providing model annotations,
which can be ignored by any backend (in particular MIP, SAT,
and SMT ones) but can be used by those that understand them.

The Sweden-based authors are supported by the Swedish Research Council
(VR) through Project Grant 2015-04910. Gustav Bjordal’s visit in March
2017 to the Australia-based authors was supported by the Ericsson Research
Foundation under grant FOSTIFT-17:075.

Recently, the first MiniZinc backends for incomplete solv-
ers have emerged, such as those of constraint-based local
search (CBLS) [2] technology. For example, fzn-oscar-cbls [3]
calls the OscaR.cbls solver [4] after categorising the hard
constraints of a given MiniZinc model into the three CBLS
constraint categories (soft, one-way, and implicit) and adding
a black-box search strategy.

Just like CP solvers, CBLS solvers are often used with pro-
grammed search strategies particular to the model in question.
CBLS search strategies are usually tightly tied to the model.
Therefore, in this paper we extend MiniZinc to enable stating
part of a local-search strategy within a model.

The contributions and organisation of this paper are as
follows. In Section we explain the required background
on MiniZinc, (constraint-based) local search, and the targeted
CBLS backend. In Section we introduce the new MiniZinc
syntax for declaratively prescribing neighbourhoods as search
annotations, as well as new FlatZinc concepts for supporting
the underlying representation. In Section we show how
to use declarative neighbourhoods within the MiniZinc CBLS
backend fzn-oscar-cbls. In Section [V] we experimentally show
how suitable neighbourhood annotations can accelerate the
solving: this helps close the inevitable gap between ad-hoc
local search and black-box local search. Finally, in Section |V}
we conclude, discuss related work, and outline future work.

II. BACKGROUND
A. MiniZinc and FlatZinc

The constraint-based modelling language MiniZinc [1]] for
satisfaction and optimisation problems is independent of solv-
ing technologies. Its open-source toolchain contains a flattener,
which translates a model and instance data into a sub-language
called FlatZinc, which is amenable to interpretation by a
backend that calls the targeted solver (note that ‘backend’ and
‘solver’ are not synonyms). The flattener is parametrised by
the native capabilities of the targeted technology and solver:
the variables of non-native types are encoded by variables of
native types and possibly consistency constraints thereon; and
the constraints with non-native predicates are decomposed into
sometimes complex or long conjunctions of constraints with
native predicates, possibly introducing additional variables.

We now present our running example and a MiniZinc model.

include "globals.mzn"; include "local-search.mzn";
set of int: Orders;
3 set of int: Slabs = Orders; % need max one slab per order
set of int: Colors;
set of int: Capacities;
6 int: maxColors;
int: maxCapa = max(capacity);
array [Capacities] of int: capacity;
array [Orders] of int: size;

20 var int:
21 ann:

[
array [Orders] of Colors: color;
[

array [0..maxCapa] of 0..maxCapa: slack=arrayld(0..maxCapa,
[min([c | ¢ in capacity++[0] where c >= x]) - x
| x in 0..maxCapal);
array [Orders] of var Slabs: placedIn;
array [Slabs] of var 0..maxCapa: load;
» array [Slabs] of var 0..maxColors: nColors;

constraint bin_packing load(load, placedIn, size);
constraint forall(s in Slabs) (nColors([s]=sum(c in Colors) (

exists (o in Orders where color[o]l=c) (placedIn[o]l=s)));
objective = sum(s in Slabs) (slack[load[s]]);
search; % here unspecified search annotation

solve ::search minimize objective;

Listing 1. A MiniZinc model for steel-mill slab design.

Example 1: The steel-mill slab design problem [5] has a
set of orders, each with a size and colour, and a set of slabs,
each taking one of a set of capacities. The principal decisions
are to assign orders to slabs, such that at most maxColors
colours are used in orders on any one slab, and all orders
assigned fit on the slab. The aim is to minimise the total slack
in the slabs (empty slabs have zero slack). A MiniZinc model
corresponding to the one in [6] is in Listing [I] O

B. (Constraint-Based) Local Search

Local search (e.g., [7]) initialises and iteratively modifies
the current assignment, which maps each variable to a value,
called its current value, in its domain. The initial assignment,
with the initial values, is built under some amount of ran-
domisation. At every iteration, a two-step search heuristic
is followed. First, several candidate moves, giving a few
variables new values and thereby tentatively modifying the
current assignment, are probed for how much closer they bring
the current assignment to a feasible assignment and how much
they improve the value of the objective function, if there is one.
The set of probed candidate moves (or, equivalently, the set of
tentative assignments they reach) is called the neighbourhood,
which is said to be explored, and its elements are called
neighbours. A candidate move can be non-valid, for example
because it gives a variable a new value not in its domain.
Second, among the valid candidate moves, the heuristic picks
one under some amount of randomisation and actually commits
to it, yielding the new current assignment. A meta-heuristic is
used to escape local optima of the objective function. Together,
the neighbourhood, heuristic, and meta-heuristic form a local-
search strategy.

In constraint-based local search (CBLS) [2], [4], a CP-style
declarative model is coupled with a user-defined local-search
strategy. For each built-in constraint predicate, predefined
violation functions can be used for probing candidate moves.
A CBLS model has two categories of explicit constraints: soft
constraints are treated as penalty functions and search will
try to satisfy them by minimising the penalty, while one-way
constraints (such as p <== x x vy in OscaR.cbls syntax [4],

and referred to as invariants in [2]) cannot be violated by
candidate moves. In the example, the controlled variable p
cannot undergo a move, since its value is maintained by the
solver to be the product of the variables x and y, which
can undergo moves. An implicit constraint in a CBLS model
is satisfied by the initial assignment and preserved by all
committed moves: this can be done by instantiating and using
a constraint-specific neighbourhood [3]. For each constraint
of a problem, a CBLS modeller must choose whether to make
it soft, one-way, or implicit, thereby meshing search aspects
into the model, making it unsuitable for complete solvers.

C. A Local-Search Backend to MiniZinc

The fzn-oscar-cbls [3] backend to MiniZinc calls the
OscaR.cbls solver [4] after categorising the constraints of a
given MiniZinc model into the three CBLS constraint categor-
ies (soft, one-way, and implicit) by using the following three-
step structure identification scheme (for a full description of
the scheme see [3]).

First, it identifies each constraint of the MiniZinc model
that will be made one-way in the OscaR.cbls model that is
being generated. Each one-way constraint is said to control
the variable it functionally determines.

Second, it identifies each remaining constraint of the Mini-
Zinc model that will be made implicit, because fzn-oscar-cbls
provides a built-in constraint-specific neighbourhood for it.
Each such neighbourhood is said to control its variables.

Third and finally, it makes all remaining constraints of the
MiniZinc model soft in the OscaR.cbls model.

The black-box local search performed by fzn-oscar-cbls
works as follows. Regarding the search heuristic, each implicit
constraint corresponds to a constraint-specific neighbourhood
and all uncontrolled variables are put into a built-in non-
constraint-specific neighbourhood, whose candidate moves
assign any of its controlled variables a new value within
its domain. Note that an important design decision is that
every variable that is not controlled by a one-way constraint
participates in exactly one neighbourhood. At every iteration,
a random best candidate move is picked from the union of all
neighbourhoods. A tabu search [8] meta-heuristic is used.

Example 2: For the steel-mill slab design problem of
Example [T} the black-box search categorises the constraints
of lines [I8HIY] as one-way, controlling the nColors vari-
ables. The bin_packing load constraint of line is
replaced by its standard decomposition in MiniZinc, as fzn-
oscar-cbls does not support this global-constraint predicate
directly, and also categorised as one-way, controlling the 1oad
variables. No implicit constraint is identified. The uncontrolled
placedIn variables are put into a built-in non-constraint-
specific neighbourhood with assignment candidate moves,
which the black-box search explores. O

III. DECLARATIVE NEIGHBOURHOODS IN MINIZINC

After describing in Section the new MiniZinc syntax
for declarative neighbourhoods (but not for heuristics or meta-
heuristics) in order to get part of a local-search strategy, we
discuss in Section the FlatZinc implementation issues.

A. Extended MiniZinc Syntax for Declarative Neighbourhoods

1

In our extended MiniZinc syntaxﬂ a candidate simple move -

is stated using the infix operator : = or : =: for assignment and
swap respectively. The assignment x v assigns v to vari-
able x, where v can itself be a variable and must be of the same
type as x. The swap x y exchanges the current values of
variables x and y of the same type. The candidate compound
move 1 /\ po performs the moves p; and po in par-
allel. For example, Xs[1i] Xs[Xs[1]1]1 /\ Xs[7]

Xs[i] /\ Xs[Xs[i]]
move (e.g., [7]) when Xs[1]#7j and Xs [Xs[1]]#7.

Xs[j] is a 3-exchange

g

9

0

1

4

If a candidate move is not valid, then it cannot be com- °

6

mitted: a valid candidate move neither accesses an out- ;

of-bounds array index, nor gives a variable a value out-
side its domain, nor gives all variables their current values,
nor transforms the current assignment so that it violates a
post-condition, which is any constraint satisfaction problem
(CSP) over the variables of the MiniZinc model, stated by
ensuring (PostCondition) , and is attached to the candid-
ate move using the infix /\ operator. For example, Xs [1]
y /\ ensuring(all_different (Xs)) is only
valid if index i is within the index set of array Xs, (the current
value of) y is different from the current value of Xs[i] but
in its domain, and all values in Xs are distinct after assigning
(the current value of) y to Xs[i].

A neighbourhood is a set of candidate moves,
stated by moves (Generators where PreCondition
) (CandidateMove /\ ensuring (PostCondition)),
similar to the MiniZinc syntax for generator calls, e.g.
forall (Generators where Condition) (Constraint) .
Here, the where clause can be any CSP over the variables
of the MiniZinc model and states a pre-condition that must
be satisfied by the current assignment for a move to be
valid. For example, moves (i in index_set (Xs),
v in V where v > Xs[1i]) (Xs[1i] v) denotes
the candidate moves where a variable Xs[i] is assigned
a value in set V that is larger than its current value. The
compound neighbourhood v, union vy denotes the union
of neighbourhoods v, and vs.

By default, a solver picks the initial values of the
variables. = However, an initialisation post-condition
initially (PostCondition), which can be any CSP,
can be attached to the neighbourhood using the infix /\
operator. An initial assignment must satisfy the initialisation
post-condition, but can be infeasible with regards to the
actual MiniZinc model. This is crucial, for example, when
using a constraint-specific neighbourhood, whose candidate
moves (i) require the underlying constraint to be satisfied by

the current assignment and (ii) preserve its satisfaction: that |

constraint is both a pre-condition and a post-condition on the

candidate moves, but it then need not be stated (using where |

and ensuring respectively) and hence not be dynamically

checked; it is up to the neighbourhood designer to ensure that

all candidate moves preserve its satisfaction.

'New keywords are typeset in purple, for those viewing the paper in colour.

10
11

function ann:
all_different_neighborhood(array [int]
: :neighborhood_definition =
moves (i, j in index_set (Xs) where i < j)
(Xs[i] :=: Xs[J])
union
moves (1 in index_set (Xs), v in dom_array (Xs)
where not member (Xs, v))
(Xs[i] := v) /\
initially(all_different (Xs));

of var int: Xs)

Listing 2. Constraint-specific neighbourhood for all_different (Xs).

function ann: hard_steelmill ()
moves (i in Orders, s in Slabs
where slack[load[placedIn[i]]]
size[i]+load([s]
(placedIn[i] := s /\
ensuring (nColors([s] <= maxColors)) /\
initially (forall (o in Orders) (placedIn(o]

: :neighborhood _definition =

> 0 /\

<= maxCapa)

= 0));

Listing 3. Hard neighbourhood for steel-mill slab design.

Example 3: Consider a constraint-specific neighbourhood
for all_different (Xs): if all variables of the array Xs
are initialised to distinct values, then the candidate moves
are either to swap the values of any two variables in Xs, or
to assign any variable in Xs any value not assigned to any
variable in Xs, as shown in Listing [2] O

For a constraint-specific neighbourhood, the initialisation
post-condition is always the constraint itself; a conjunctive
initialisation post-condition is given in the following example,
where we continue from Example [T}

Example 4: Two neighbourhoods for the steel-mill slab
design problem are described in [6]: a hard neighbourhood
that initialises to a feasible assignment and only has candidate
moves to feasible assignments, and a soft neighbourhood that
has candidate moves to infeasible assignments.

More specifically, the hard neighbourhood constructs an
initial feasible assignment by placing one order per slab
and has candidate moves to “all the assignments where all
orders but one remain unchanged and the remaining order is
placed in another slab without violating the capacity and color
constraints of this slab” [6]]. They use a semi-greedy search
heuristic for the hard neighbourhood: at every even-numbered
iteration, an order is removed from a slab with a positive slack;
and at every odd-numbered iteration, an order is removed from
a slab with the highest slack. While we argue that the search
heuristic is orthogonal to the neighbourhood, we can include
part of this heuristic in a neighbourhood by stating, as a pre-
condition, that only orders from slabs with a positive slack
can be removed. This revised neighbourhood can be stated in
MiniZinc as shown in Listing [3]

function ann: soft_steelmill(
moves (i, j in Orders
where (size[i] != size[]]
/\ i< 9)
(placedIn[i] :=:
union
moves (i in Orders, s in Slabs

: :neighborhood definition =
\/ color[i] != color([jl)

placedIn[j])

where load[s] > 0 /\ slack[load[placedIn[i]]] > 0)
(placedIn[i] := s) /\
initially(global_cardinality (placedIn,
[s | s in Slabs where s <= nlItems div 2],
[maxColors | o in Orders]));

Listing 4. Soft neighbourhood for steel-mill slab design.

)

IS

The soft neighbourhood initialises by placing two random
orders on every slab (leaving some empty) and has candidate
moves ‘“assigning an order to a new slab and swapping two
orders” [6]. Unlike in [6], where candidate moves “assigning
a singleton order to an empty slab and swapping two singleton
orders” are not considered, we here exclude moves that either
swap two orders of the same size and colour, or remove an
order from a slab with zero slack, or move an order to an
empty slab. Note that this last pre-condition will decrease the
number of used slabs over time. Our experiments showed that
these conditions were more appropriate under the black-box
(meta-)heuristic of fzn-oscar-cbls. This revised neighbourhood
is shown in Listing 4 O

As seen in Listings [2] to] a neighbourhood is defined as
a function that is of return type ann and is annotated as a
neighborhood_definition using the infix : : operator.
A neighbourhood can be made model-independent by taking
variables and parameters of the model as arguments, as seen
in Listing 2] However, if a neighbourhood is written as part of
a model, then it can refer directly to variables and parameters
of the model, as seen in Listings [3] and]

The neighbourhood to explore at each iteration is stated
in an annotation use_neighborhood (Neighbourhood) to
the solve keyword of a model.

Example 5: To invoke the neighbourhood of
Listing E[, we add search = use_neighborhood (
hard_steelmill()) to Listing i} O

B. Extended FlatZinc Syntax

A MiniZinc model and instance data are compiled into
FlatZinc in order to communicate a model instance to a
backend. FlatZinc is a low-level subset of MiniZinc, comprised
of only parameter, variable, and constraint declarations. All
expressions in a MiniZinc model are flattened such that
each sub-expression is defined by a constraint. Note that the
structure identification scheme of fzn-oscar-cbls essentially
un-flattens the FlatZinc instance during its analysis.

In order for a solver to use a declarative neighbourhood,
we need, for the first time, to be able to transmit code via
FlatZinc to the solver so that the latter can execute it during
solve time. To achieve this, we extend FlatZinc with the notion
of flat functions. A flat function takes the form:

function ann: FunctionName(Arguments) [Annotations] =

lEtF{latZinc constraint and wvariable declarations
} in Annotation;
A flat function is a legitimate function in MiniZinc [9]], so we
preserve that FlatZinc is a subset of MiniZinc. The body of a
flat function is defined using existing FlatZinc and its result
is an annotation that can take any number of arguments of
any type. The semantics of a flat function is defined through
its own annotations and the context it is called in. The main
advantage of this approach is that since the body of a let
expression is defined in terms of FlatZinc declarations, existing
backends can already parse the body of a flat function.
Normally, during flattening, generator-call expressions are
unrolled. For example, sum (i in Idx) (Xs[i]) yields

Xs[min (Idx)] + --- + Xs[max (Idx)], which is then
further flattened. However, we do not wish to unroll moves
expressions since this would defeat the purpose of leaving the
neighbourhood exploration to the solver. Therefore, moves
expressions are instead treated as a special kind of Mini-
Zinc expression. Specifically, we extract the components of a
moves expression so that they can be passed to the backend
by using flat functions.

We translate a neighbourhood moves (Generators
where PreCondition) (CandidateMove/\ensuring (
PostCondition)) in five steps into two flat functions:
one, here called fun_moves, encodes Generators,
PreCondition, CandidateMove, and a call to the other, here
called fun_ensuring, which encodes PostCondition.

First, the generator variables are extracted from
Generators: a generator variable is declared like a decision
variable but annotated with defines_generator. For
example, the generator i in S is compiled into var
S: 1 ::defines_generator. Generator variables are
different from normal FlatZinc decision variables: they are
iterated over by the solver during neighbourhood exploration.

Second, PreCondition is flattened as usual and added
to the body of fun_moves, together with the generator
variables. Note that generator variables are distinguished by
their annotation from the decision variables introduced when
flattening PreCondition. Also note that generator variables
are treated as decision variables, rather than parameters, when
flattening PreCondition, hence the resulting constraints can
be checked given any assignment of the generator variables.

Third, CandidateMowe is flattened. Each candidate simple
move is translated into an annotation, denoted by M, be-
low, namely assign(x,v) in FlatZinc for x := v in
MiniZinc, but assign_array(x,i,v) for the common
case x[i] := v, and swap(x,y) for x :=: y, but
swap_array (x,1i,y,J) for x[1i] :=: y[J]. Recall
that CandidateMove can be compound; either way, it is
encoded as an array of annotations for its n candidate simple
moves, which becomes part of the returned annotation of
fun_moves. Any sub-expressions of CandidateMove are
flattened as usual and added to the body of fun_moves.

Fourth, PostCondition, if it exists, is flattened as usual and
becomes the body of fun_ensuring, whose returned an-
notation is void, meaning that it will not be used by anyone.
The fun_ensuring function may need to take generator
variables as arguments. In our prototype implementation we do
not yet support arguments to FlatZinc functions, so we break
the scoping rules to access any generator variables (defined in
fun_moves) that may be used in fun_ensuring.

Fifth, fun_ensuring is used in the second argument of
the returned annotation of fun_moves:
neighborhood_and ([My,..., M,],
ensuring (fun_ensuring (Generators))).

The initially expression of a declarative neighbour-
hood is translated separately, analogously to the ensuring
expression, into a flat function fun_init, which is connected
with the m flattened moves expressions using the annotation

1

>

4

6

8

9
10
11
12
13
14
15

16
17

18
19
20
21

function ann: fun_hard_steelmill_moves () =

let {
var Orders: i ::defines_generator;
var Slabs: s ::defines_generator;
var Slabs: pi;
constraint int_element_var (i, placedIn, pi)
::defines_var (pi);
var int: 1i;
constraint int_element (pi, load, 1i) ::defines_var(li);
var int: sl;

constraint int_element (1i, slack, sl)
constraint int_le (1, sl);
var int: si;
constraint int_element (i, size, si)
var int: ls;
constraint int_element_var (s,
::defines_var (ls);
constraint int_1lin le([1,1,-1], [si,ls,maxCapal, 0);
} in neighborhood_and([assign_array (placedIn, i, s)],
ensuring (fun_hard_steelmill_ensuring(s)));
function ann: fun_hard_steelmill_ensuring(var Slabs:
let {
var int: ns;
constraint int_element_var (s, nColors, ns)
::defines_var (ns);
constraint int_le(ns, maxColors);

::defines_var(sl);

::defines_var(si);

load, 1s)

s) =

3} in wvoid;

24

function ann: fun_hard_steelmill_initially() =

25 let {

26

28
2
30

31

constraint int_element (1,
constraint int_element (2,

1);
2);

placedIn,
placedIn,
} in void;

search = use_neighborhood (neighborhood_declaration (
[fun_hard_steelmill_moves ()],
initially (fun_hard_steelmill_initially())));

Listing 5. FlatZinc instance of the neighbourhood & model in Listings E| & m

neighborhood_declaration ([fun_moves; (),

, fun_moves,, ()], initially (fun_init())).
Example 6: A FlatZinc instance of the neighbourhood in

Listing[3|and the model in Listing|[T]is shown in Listing[5] Note

that a constraint that functionally defines a variable x may

be annotated during flattening with : :defines_var (x) in

order to communicate this to the backend. O

IV. USING DECLARATIVE NEIGHBOURHOODS IN CBLS

When using a declarative neighbourhood in a MiniZinc
CBLS backend, the backend must choose initial values for
the variables in the initially expression (Section
as well as probe candidate moves and evaluate their pre-
and post-conditions (Section [V-B). Furthermore, declarative
neighbourhoods should also integrate with the rest of the
backend, such as its (meta-)heuristic and structure identific-
ation scheme (Section and [[V-D)). We now show how we
have implemented this in fzn-oscar-cbls [3]. Of course, other
backends may use different implementations and offer more
or less flexibility.

A. Initialisation for Declarative Neighbourhoods

Initial values for the variables in a declarative neighbour-
hood are chosen using OscaR.cp, the CP solver of OscaR [10],
thereby exploiting the felicitous co-existence of CP and CBLS
solvers within the OscaR toolkit. If a declarative neighbour-
hood has an initially expression, with a conjunction
of constraints and possibly introduced variables, then the
corresponding CP model is created. At the start of the CBLS

search, and possibly upon restarts, the CP solver is run for such
a neighbourhood, with the conflict ordering [11] variable and
value selection strategy plus randomised tie breaking for value
selection, in order to get random feasible initial values for
the variables in the initially expression. The advantage
of using a CP solver for initialisation is that the MiniZinc
modeller can really give any CSP as the initialisation post-
condition, provided it is solvable in reasonable time. Variables
not occurring in the initially expression are initialised by
the default initialisation process of fzn-oscar-cbls.

B. Probing of Declarative Neighbourhoods

A neighbourhood is explored by iterating over all value
tuples of the generator: if a tuple satisfies the pre-condition,
then the candidate move is probed and checked for validity (re-
call that validity includes satisfaction of the post-condition).

The constraints of a pre- (or post-)condition are clustered
in a constraint system [2] that the CBLS backend can query,
separately from the constraint system of the actual model,
for violation before (or while) probing candidate moves. By
using the constraint syntax of OscaR.cbls to express the pre-
and post-conditions, we really support any CSP as a pre- or
post-condition. Also, since the violation of constraints and
constraint systems is incrementally maintained by OscaR.cbls,
the pre- and post-conditions can be checked very efficiently
and will benefit from future improvements to OscaR.cbls.

C. Declarative Neighbourhoods in Black-Box Search

Declarative neighbourhoods are implemented in fzn-oscar-
cbls by extending its base class of neighbourhoods and im-
plementing the non-optional methods of its interface, namely
initialisation and exploration. This allows a declarative neigh-
bourhood to be used interchangeably with a built-in one.

Any variable that is controlled by neither a declarative
neighbourhood nor a one-way constraint is put into built-
in neighbourhoods of fzn-oscar-cbls, as determined by the
latter’s structure identification scheme: this means that built-in
neighbourhoods can be used together with declarative ones.

We integrate a declarative neighbourhood more tightly with
the black-box search of fzn-oscar-cbls by using two extra
features that are specific to this backend but not necessary
for implementing a declarative neighbourhood: we enable a
declarative neighbourhood to better work together with (i) the
heuristics of fzn-oscar-cbls, by enabling the neighbourhood to
be explored in either a first-improving fashion or exhaustively,
and (ii) the tabu meta-heuristic of fzn-oscar-cbls, by extending
the validity check of a move to account for tabu variables.

D. The Controlled Variables of Declarative Neighbourhoods

As explained in Section a CBLS backend must decide
for each variable in a MiniZinc model if it is functionally
defined (and thus controlled) by a one-way constraint, or if it is
controlled by a neighbourhood. Also, as noted in Section [[I-C|
a design decision of fzn-oscar-cbls is that a variable can
only be controlled by one built-in neighbourhood. This design
decision is essential for the correct interaction of the built-in

neighbourhoods and the rules of the structure identification

1

scheme [3]]. Therefore, a variable is now to be controlled °

by either a one-way constraint, or a built-in neighbourhood,

or a declarative neighbourhood. In the structure identification °

scheme, when determining how each variable is controlled,
a declarative neighbourhood takes precedence over a one-
way-constraint, which in turn takes precedence over a built-
in neighbourhood. Hence the generated soft, one-way, and

implicit constraints of the OscaR.cbls model can actually 1

change if a declarative neighbourhood is present.

V. EXPERIMENTAL EVALUATION

We evaluate declarative neighbourhoods and the implement-
ation discussed in Section by two sets of experiments.
First, we return to our running example, steel-mill slab design,
and show that a declarative neighbourhood overall improves
the performance (Section [V-Al). Second, we augment models
of the MiniZinc Benchmark”| with simple problem-specific
declarative neighbourhoods (Section [V-B). We do not expect
to surpass or even reach the best-known objective values
for any of the selected problems, as handcrafted methods
tend to outperform general methods, such as our declarative
neighbourhoods. Instead, our aim is to show the usability and
expressive power of declarative neighbourhoods, as well as
their benefit over black-box search.

For each instance of each experiment we made ten inde-
pendent runs with a 600 second timeout each and compute for
each instance of each model the average over the ten runs

A. Published Neighbourhoods for Steel-Mill Slab Design

Three technologies — CP, large-neighbourhood search, and
CBLS — are compared in [6] for solving the steel-mill slab
design problem of Example |1} they conclude that CBLS is
the most suitable and that their so-called hard neighbourhood
is better than their soft neighbourhood, both presented in
Example 4] As only one (real-world) instance was originally
availableﬁ] but easily solvable to optimality using the models
of [6], new instances were derived by changing its number
of available slab capacitiesE] The new instances with at most
seven capacities appear to be considerably harder than those
with more capacities: the minimal total slack is not reached
(efficiently) for most of these instances by any of the techno-
logies tried in [6]. However, using integer programming, all
of these instances are efficiently solved to optimality in [J5].

We ran the model in Listing [I] with the neighbourhood
of either Listing [3] or Listing @] We selected the derived
bench_3_xz instances, with x € 0..19, each with three
available slab capacities and thus among the hardest instances
tried in [6], [5]. Based on the geometric mean, using the soft
neighbourhood improves the total slack by 14% over black-
box search, while using the hard neighbourhood improves

Zhttps://github.com/MiniZinc/minizinc-benchmarks

3The neighbourhood-annotated models and data collected during the exper-
iments are at https://github.com/GustavBjordal/neighbourhood-experiments.

4http://www.csplib.org/Problems/prob038/data

Shttp://becool.info.ucl.ac.be/steelmillslab

4

6

8

9
10
11
12

14
15
16
1

function ann: gbac_neighborhood ()
: :neighborhood definition =
moves (c in courses, p in periods
where not isUndesirable[c,pl)
(period_of([c] :=p)
union moves (cl, c2 in courses where cl < c2)
(period_of[cl] :=: period_of[c2]) /\
initially(
forall(c in curricula) (
global_cardinality_ low_up_closed(
[period_of[i] | i in courses_of[c]],

[i | 1 in periods],
[min_courses | i in periods],
[max_courses | 1 in periods])

) /\ forall(i in precedences) (
period_of [precedes[i,1]] < period_of[precedes([i,2]]
)) i
Listing 6.
design.

Neighbourhood for generalised balanced academic curriculum

by 5% over black-box search. Using the soft neighbourhood
strictly improves the total slack on 15 of 20 instances, while
using the hard neighbourhood strictly improves on 12.
However, our best reached total slacks are about 1.8 times
the best ones found in [6]], which uses a handcrafted (meta-
) heuristic, whereas our grey-box search strategy generates a
(meta-)heuristic. Also, the best reached total slacks in [6] are
about 1.3 times above the proven optima reported in [5].

B. Published MiniZinc Models

We selected published models that we know to be well-
suited for local search.

Example 7: The generalised balanced academic curriculum
design problem [12] has a set of periods, a set of courses, each
belonging to a set of curricula and having a set of prerequisite
courses, a course-load interval for each period and curriculum,
and preferences on when it is desired not to hold a course.
The problem is to decide for each course which period it
is taught in, such that all prerequisites and course loads are
satisfied, while the workload imbalance of each curriculum
and the number of unsatisfied preferences are minimised.

We add the derived array isUndesirable to the pub-
lished model in order to make it easier to look up if teaching
a given course in a given period is undesirable. We declare in
Listing [6] a neighbourhood that requires an initial assignment
satisfying all prerequisite and course-load constraints, and has
candidate moves that either assign a non-undesirable period to
a course or swap the periods of two courses.

We use all the real-world instances of [12], called UD1
to UD10. Based on the geometric mean, using the neighbour-
hood improves the objective value by about 13% over black-
box search. On 7 of the 10 instances, using the neighbourhood
strictly improves the average objective value; on UD7, using
the neighbourhood backfires and the average objective value
is 157% of the value reached using black-box search. O

Example 8: The car sequencing problem [13] has a set of car
classes, each class with a set of used options (such as a radio
or GPS), each option with an upper bound on how many cars
of that option can be produced in a subsequence of given size,
and an order stating how many cars of each class to produce.
The problem is to find a production sequence for all ordered
cars, such that all restrictions on options are satisfied.

https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/GustavBjordal/neighbourhood-experiments
http://www.csplib.org/Problems/prob038/data
http://becool.info.ucl.ac.be/steelmillslab

4

6

3

function ann: car_neighborhood()
: :neighborhood definition =
moves (i, j in steps where i < j)
(step_class[i] :=: step_class[]j])
initially(
forall (c in classes) (
count (step_class, ¢, cars_in_class([c])
)) i

/\

Listing 7. Neighbourhood for car sequencing.

The published MiniZinc model contains a variable for each
position, called a step, in the production sequence, denoting its
produced car class. We declare in Listing [/| a neighbourhood
that requires an initial assignment where all ordered cars are
produced, so that candidate moves swapping two steps keep
that initialisation post-condition satisfied. Note that the initial
assignment can be a non-solution: it is only required to satisfy
the initialisation post-condition.

We use the 73 satisfiable instances of the 79 instances
in the MiniZinc Benchmark. Using black-box search on the

published model, a solution is found in all but 114 of the ,
73 - 10 = 730 runs, and at least one solution was found for :

67 instances. When using the neighbourhood of Listing [/} a
solution is found in all but 17 runs, and at least one solution
was found for 72 instances. On the 67 instances where both

1

the black-box search and the neighbourhood lead to at least

one solution, using the neighbourhood finds a solution about
5 times faster.

However, the published model can be reformulated by
replacing the constraint conjunction

constraint forall(c in classes) (

count (step_class, ¢, cars_in_class|c]));

by the single constraint

constraint global cardinality low_up_closed(step_class,
classes, cars_in_class, cars_in_class);

whose even higher-level predicate is flattened in MiniZinc in
the same standard way as that conjunction, so that such a glob-
alising [14] reformulation normally cannot backfire under any
solving technology. Under black-box search, the built-in neigh-
bourhood for global_cardinality low_up_closed
is now picked by the structure identification scheme of fzn-
oscar-cbls: this neighbourhood performs essentially the same
moves as the declarative neighbourhood.

Using the globalised model lead to a solution in all but 90
runs using black-box search, and at least one solution was
found for 72 instances.

For these 3 models, a comparison of the average number of
solved instances within a given runtime is in Figure [I] O

So we could here improve the performance by just raising
the level of the model: this gives more evidence for the import-
ance of high-level modelling. However, low-level modelling
can often be compensated for by search annotations, such as
our declarative neighbourhoods.

Example 9: Community detection [[15] is about determining
communities of a network, that is groups of nodes that are
more connected to each other than those outside. The semi-
supervised version includes constraints that force nodes to be
in the same or different communities, and bounds on the size

600

550 original model

improved model

500 1__ original model with a declarative neighbourhood

450

400

350

300 ;
B0 /T - '
200

time in seconds

150 H
100 !

50

average number of solved instances

Figure 1. The average number of solved instances (z-axis) for the car
sequencing problem within a given runtime (y-axis).

function ann: community_neighborhood()
: :neighborhood_definition =
moves (i in 1..n, c in 1..Kk)

(x[1] :=c) /\
initially(
forall (m in must) (x[ML[m,1]] = x[ML[m,2]1]) /\
forall (c in cannot) (x[CL[c,1]] != x[CL[c,2]]) /\
global_cardinality low up(x, [i | 1 in 1..k],
[0] 1 in 1..k], [maxsize | 1 in 1..k]));

Listing 8. Neighbourhood for semi-supervised community detection.

of communities. The aim is to maximise modularity, a measure
of “communitiness”. Ganji et al. [15] demonstrate that CBLS
can be much faster than CP on large instances of this problem.

The published model [15] has size O(n?), where n is the
number of nodes. We use a more scalable model that is O(e),
where e is the number of edges. It uses suitably high-level
global-constraint predicates, but (unlike in our globalised car-
sequencing model in Example [§) these here cause the structure
identification scheme of fzn-oscar-cbls to identify (for black-
box search) an inappropriate built-in neighbourhood, namely
the one for global_cardinality_ low_up, which oc-
curs once in the model, but is not constraining. Any declarative
neighbourhood takes precedence in the structure identification
scheme, and can thus prevent this built-in neighbourhood from
being identified: we declare in Listing [8| a neighbourhood that
requires an initial assignment that satisfies all constraints of
the model and has candidate moves that assign a community
to a node.

We select 12 instances of the problem, varying in size
from 100 to 1000 nodes. Based on the geometic mean,
using the neighbourhood leads to an objective value that is
about 7.07 times higher (with a peak at 137.62) than for
black-box search, and the reached objective value strictly
improves for all instances. However, if we instead replace the
mentioned global constraint by its standard decomposition in
MiniZinc, then this also prevents the built-in neighbourhood
for global_cardinality low_up from being identi-
fied, and a neighbourhood similar to our declarative neigh-
bourhood is identified under black-box search: this even gives
an overall better performance than we have achieved by adding

a declarative neighbourhood to either model. However, we
propose an elegant way to bypass the need for de-globalising
in the future-work part of Section Indeed, black-box
search using the de-globalised model reaches an objective
value that is about 1.8 times higher than by the declarative
neighbourhood on the original model, and 12.75 times higher
than by black-box search using the original model. |

So, interestingly, we here improved performance by either
adding a declarative neighbourhood or de-globalising the
model. However, our insight for trying the de-globalising
reformulation in the first place heavily relies on an intimate
knowledge of the structure identification scheme of fzn-oscar-
cbls, so that we can force which built-in neighbourhood is
picked, thereby avoiding the need for a declarative neighbour-
hood in this case. Our declarative neighbourhoods give this
power to the modeller, without requiring this deep knowledge,
turning black-box search into a grey-box search.

VI. CONCLUSION, RELATED WORK, AND FUTURE WORK

We have extended MiniZinc with support for declaring
a local-search neighbourhood together with a model, thus
supporting rapid experimentation with various local-search
strategies, and started closing the inevitable gap between ad-
hoc local search and black-box local search. The extension
broadens the interface between MiniZinc and solvers in order
to allow code to be passed. This is relatively straightforward
for CBLS solvers, which essentially are efficient incremental
expression evaluators.

In Comet [2], the entire search strategy has to be expressed
in procedural code for each problem; by using closures [16],
one can express not only the union of heterogeneous sub-
neighbourhoods, similarly to our declarative neighbourhoods,
but also their exploration. In OscaR.cbls [4], there are a
few built-in general-purpose neighbourhoods and a combinator
language [17] that allows one to define how neighbourhoods
are combined (including our union) and explored; further-
more, one can define procedurally a new neighbourhood
by using a common interface. However, our neighbourhoods
declaratively and separately express only the pre-condition,
post-condition, and candidate moves themselves, as opposed
to the neighbour(hood) constructs in [16], [2] and [4], [17],
where these are interleaved with each other in procedural code.
Our approach currently cannot express (meta-) heuristics. The
declarative formalisation of neighbourhoods is also outlined
in [18]], using predicate logic; however, to the best of our
knowledge, there is currently no information on the express-
iveness and performance of this approach.

Future work includes creating a MiniZinc library of standard
declarative definitions of common neighbourhoods, such as
in Listing [2| Then, similarly to global constraint predicates,
a backend can provide a native implementation of such a
neighbourhood, which would be used instead of the standard
definition. Indeed, in Example [0] a declarative neighbourhood
was outperformed by a similar built-in neighbourhood, due
to overhead. Likewise, a MiniZinc library of annotations for

predefined (meta-)heuristics, say to express intensification and
diversification (e.g., [[7]]), will be created.

One drawback of our neighbourhoods is that they cannot
have candidate moves on a run-time-dependent set of vari-
ables, such as “assign value v to all variables of current
value w”, which in a bin-packing problem could mean empty-
ing bin w into bin v. Instead, such a candidate move must be
simplified to “assign value v to a variable of current value w”.
This can be worked around by supporting further simple moves
using new annotations, such as assign_all (Xs,w, V).

Finally, we plan on using the same FlatZinc function mech-
anism to support more complex programmed search for CP
solvers, where the CP solver needs to evaluate expressions to
determine what branching decision to make next, by accessing
views on the current solver state.

ACKNOWLEDGEMENTS

Many thanks to Kevin Leo for helping with the internals of
the MiniZinc compiler, and to the referees for their feedback.

REFERENCES

[1] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “MiniZinc: Towards a standard CP modelling language,” in
CP 2007, ser. LNCS, vol. 4741. Springer, 2007, pp. 529-543.

[2] P. Van Hentenryck and L. Michel, Constraint-Based Local Search. The
MIT Press, 2005.

[3] G. Bjordal, J.-N. Monette, P. Flener, and J. Pearson, “A constraint-based
local search backend for MiniZinc,” Constraints, vol. 20, no. 3, pp. 325—
345, 2015, fzn-oscar-cbls at http://astra.research.it.uu.se/software,

[4] R. De Landtsheer and C. Ponsard, “OscaR.cbls: An open source frame-
work for constraint-based local search,” in ORBEL-27, 2013, available
as http://www.orbel.be/orbel27/pdf/abstract293.pdf.

[5] S. Heinz, T. Schlechte, R. Stephan, and M. Winkler, “Solving steel mill
slab design problems,” Constraints, vol. 17, no. 1, pp. 39-50, 2012.

[6] P. Schaus, P. Van Hentenryck, J.-N. Monette, C. Coffrin, L. Michel,
and Y. Deville, “Solving steel mill slab problems with constraint-based
techniques: CP, LNS, and CBLS,” Constraints, vol. 16, no. 2, pp. 125-
147, 2011.

[71 H. H. Hoos and T. Stiitzle, Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004.

[8] F. Glover and M. Laguna, “Tabu search,” in Modern Heuristic Tech-
niques for Combinatorial Problems. Wiley, 1993, pp. 70-150.

[9] P.J. Stuckey and G. Tack, “MiniZinc with functions,” in CPAIOR 2013,

ser. LNCS, vol. 7874. Springer, 2013, pp. 268-283.

OscaR Team, “OscaR: Scala in OR,” 2012, http://www.oscarlib.org,

S. Gay, R. Hartert, C. Lecoutre, and P. Schaus, “Conflict ordering search

for scheduling problems,” in CP 2015, ser. LNCS, vol. 9255. Springer,

2015, pp. 140-148.

M. Chiarandini, L. Di Gaspero, S. Gualandi, and A. Schaerf, “The bal-

anced academic curriculum problem revisited,” J of Heuristics, vol. 18,

no. 1, pp. 119-148, 2012, http://satt.diegm.uniud.it/projects/gbac.

M. Dincbas, H. Simonis, and P. Van Hentenryck, “Solving the car-

sequencing problem in constraint logic programming,” in ECAI 1988.

Pitman, 1988, pp. 290-295.

K. Leo, C. Mears, G. Tack, and M. Garcia de la Banda, “Globalizing

constraint models,” in CP 2013, ser. LNCS, vol. 8124. Springer, 2013,

pp. 432-447.

M. Ganji, J. Bailey, and P. J. Stuckey, “A declarative approach to

constrained community detection,” in CP 2017, ser. LNCS, vol. 10416.

Springer, 2017, pp. 477-494.

P. Van Hentenryck and L. Michel, “Control abstractions for local search,”

in CP 2003, ser. LNCS, vol. 2833. Springer, 2003, pp. 65-80.

R. De Landtsheer, Y. Guyot, G. Ospina, and C. Ponsard, “Combining

neighborhoods into local search strategies,” in Recent Developments in

Metaheuristics, ser. ORCS, vol. 62. Springer, 2018, pp. 43-57.

S. T. Pham, J. Devriendt, and P. De Causmaecker, “Formalize neighbor-

hoods for local search using predicate logic,” in Data Science meets Op-

timization, 2017, https://ds-o.org/images/Workshop_papers/Pham.pdf,

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

http://astra.research.it.uu.se/software
http://www.orbel.be/orbel27/pdf/abstract293.pdf
http://www.oscarlib.org
http://satt.diegm.uniud.it/projects/gbac
https://ds-o.org/images/Workshop_papers/Pham.pdf

