Energy-Efficient Task-Mapping for Data-Driven Sensor Network Macroprogramming Using Constraint Programming

Farshid Hassani Bijarbooneh Pierre Flener Edith Ngai Justin Pearson

> ASTRA and CoRe Research Groups Department of Information Technology Uppsala University, Sweden http://www.it.uu.se/research/group/astra http://www.it.uu.se/research/group/core

ICS'11, the 12th INFORMS Computing Society Conference Monterey, California, USA, January 9 – 11, 2011

'ER

Task Mapping Problem Models Experiments Conclusion

Task Mapping Problem

2 Models

Task Mapping Problem

Models Experiments Conclusion

Task Mapping Problem

2 Models

Wireless Sensor Networks

Task Mapping Problem

Models

Experiments

Conclusion

A node has:

- A sensor or an actuator.
- A radio transmitter.
- A processor.
- A power source.

- A task implements applications of the network: The tasks are to be mapped to the nodes.
- A node fires its tasks at a fixed rate per round.
- The network repeats the same behaviour in all rounds.

Wireless Sensor Networks: Applications

Task Mapping Problem

- Models
- Experiments
- Conclusion

- Military and security
- Environment and agriculture monitoring
- Industrial sensing and monitoring
- Health monitoring
- Home automation
- Automotive

Task Types

Task Mapping Problem

- Models
- Experiments
- Conclusion

Sensing task:

Calls a sensor to collect data at each round. Example: A task sensing the temperature of a room.

Operative task:

Operates on data collected by sensing tasks. Example: A task computing an average temperature.

Actuator task:

Performs an action to affect the environment. Example: A task turning on a heater in a room.

Challenges

Task Mapping Problem

- Models
- Experiments
- Conclusion

- Programming tasks for sensors is very time consuming.
- Data-driven macroprogramming: Create a task graph based on the flo
 - Create a task graph based on the flow of data, subject to placement and energy constraints:

Application: Highway Traffic Management

Task Mapping Problem

Models

Experiments

Conclusion

Reduce the congestion of vehicles on a highway:

Sensing tasks

RampSampler

SpeedSampler

- Control speed limits.
- Control highway access.

AvgQueueLength

Calculator

AvgSpeed

Calculator

Goal and Motivation

- Task Mapping Problem
- Models Experiments Conclusion

- Take a published IP model of the problem, and solve it using constraint programming (CP).
- Network communication is the most costly process:
 - The number of tasks running on a node.
 - The task firing rate.
 - The cost of routing a message is paid by all nodes, not just by the end nodes.
- Objective: Minimise the maximum fraction of initial energy spent by any node during one round. That is: Maximise the time to reconfiguration = the time when energy drops below some fraction of the initial energy for some node.

Task Mapping Problem

Models

Experiments Conclusion

Task Mapping Problem

A Mathematical Model

Task Mapping Problem

Models

Experiments

Conclusion

Constants:

- *N* = set of wireless sensor network nodes
- T = set of tasks
- A = set of arcs in the task graph (T, A)
- *f*[*t*] = firing rate of task *t*
- s[t, t'] = size of data sent from task t to task t'
- e[n, n', n''] = routing energy spent by node *n* for one unit of data sent from node *n'* to node *n''* via node *n*
- $e^0[n] =$ initial energy of node n

Task Mapping Problem

Models

Experiments Conclusion

A Mathematical Model (continued)

Decision variables and energy constraints:

- *node*[t] \in N = the node assigned to task $t \in T$.
- *energy*[*n*] = the energy spent by node *n* in one round:

$$energy[n] = \sum_{(t',t'') \in A} f[t'] \cdot s[t',t''] \cdot e[n, node[t'], node[t'']]$$

Observe the decision variables node[t'] and node[t''] among the indices to the given e[...] matrix.

Objective function, to be minimised: The maximum fraction of initial energy spent by any node during one round:

$$\max_{n \in N} \frac{1}{e^0[n]} \cdot \frac{e^{nergy}[n]}{e^0[n]}$$

Task Mapping Problem

Models

Experiments Conclusion

Integer Programming (IP) Model

• Let x[t, n] = 1 iff task t is mapped to node n. The energy constraints temporarily become guadratic: $energy[n] = \sum \sum f[t'] \cdot s[t', t''] \cdot e[n, n', n''] \cdot x[t', n'] \cdot x[t'', n'']$ $(t', \overline{t''}) \in A n' \in N n'' \in N$ • So let $y[t', n', t'', n''] = x[t', n'] \cdot x[t'', n'']$ and add the following channelling constraints: y[t', n', t'', n''] < x[t', n']y[t', n', t'', n''] < x[t'', n'']v[t', n', t'', n''] > x[t', n'] + x[t'', n''] - 1The energy constraints are now linear: $energy[n] = \sum \sum f[t'] \cdot s[t', t''] \cdot e[n, n', n''] \cdot y[t', n', t'', n'']$ $(t',t'') \in A n' \in N n'' \in N$ • We have thus added $|T|^2 \cdot |N|^2 + |T| \cdot |N|$ decision variables, as well as $3 \cdot |T|^2 \cdot |N|^2 + |T|$ constraints.

Constraint Programming (CP) Model

Task Mapping Problem

Models

Experiments Conclusion The energy constraints can be directly modelled as in the mathematical model:

 $energy[n] = \sum_{(t',t'')\in A} f[t'] \cdot s[t',t''] \cdot e[n,node[t'],node[t'']]$

This is implemented via the *element* constraint (1988), which allows indexing a matrix by decision variables.

• We have added only $|A| \cdot |N|$ constraints and variables.

Branching only on the *node* decision variables.

Task Mapping Problem

Models

Experiments

Conclusion

Task Mapping Problem

Platform

Task Mapping Problem

Models

Experiments

Conclusion

CP solver: *Gecode* (version 3.4.0, open-source)

IP solvers:

- Gurobi (version 3.0.1, commercial)
- SCIP (version 1.2.0)
- *lp_solve* (version 5.5)

Operating system: Mac OS X 10.6.3 (64-bit)

- CPU: Intel Core 2 Duo 2.53GHz, 3MB cache
- Memory: 4GB

Results: Highway Traffic Management

Mapping
Problem

Task

Models

Experiments

Conclusion

Highway	Gecode			Gurobi		
$\langle n,t \rangle$	time	time _{opt}	cost	time	time _{opt}	cost
$\langle 7,9 \rangle$	0.001	0.010	20	< 1	0.03	20
⟨13, 18 ⟩	0.009	0.024	60	< 1	0.42	60
(19, 27)	0.022	0.034	100	< 1	8.12	100
(25, 36)	0.049	0.060	100	< 1	10.81	100
$\langle 32, 45 \rangle$	0.091	0.109	100	< 1	7.48	100
$\langle 38, 54 \rangle$	0.166	0.222	100	< 1	11.07	100
$\langle 44, 63 \rangle$	0.264	0.300	100	< 1	45.50	100
$\langle 63, 90 \rangle$	0.985	1.048	100	98	153.97	100
$\langle 74, 36 \rangle$	0.549	> 600.000	300	38	> 600.00	300
(75, 108)	1.888	2.007	100	142	428.90	100
⟨88, 126 ⟩	3.350	3.499	100	1	117.80	100
(113, 162)	8.427	8.756	100	2	96.73	100
(124,60)	3.155	286.338	300	165	> 600.00	300
(125, 180)	12.545	12.956	100	3	329.46	100
(138, 198)	17.598	18.282	100	421	546.33	100
$\langle 150, 216 \rangle$	24.205	25.033	100	3	> 600.00	100

ICS'11

Task Mapping Problem

Models

Experiments

Conclusion

Task Mapping Problem

2 Models

Experiments

Task

Mapping Problem

Models

Experiments Conclusion

Summary and Conclusion

- More efficient to use constraint programming (CP).
- CP model is at least competitive to published IP model.
- CP model captures the mathematical model directly, using CP technology of 1988.
- Similar performance of CP models (over published IP models) for quadratic assignment problems has been reported by Laurent Michel and Pascal Van Hentenryck at CPAIOR'08 + '09 and at CP'09 + '10.
- The whole setup and the constraints are different from task mapping in classical distributed systems:
 - Not just the end points pay the cost of routing.
 - There are energy constraints.

Future Work

Task Mapping Problem Models

models

Experiments

Conclusion

Implement heuristics and search procedure taking the structure of the task graph into account.

Investigate impact of task computation costs.

Challenge: Is there a better IP model?

Solve the problem using stochastic local search.

Acknowledgements

Task Mapping Problem

Models

Experiments

Conclusion

This research is sponsored by the Swedish Foundation for Strategic Research (SSF) under research grant RIT08-0065 for the project *ProFuN: A Programming Platform for Future Wireless Sensor Networks*.

 We thank Animesh Pathak of INRIA Paris Rocquencourt (France) for useful discussions and the datasets.