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.uk1 Introdu
tionProdu
tion planning subje
t to demand and resour
e availability so that pro�tis maximized, air traÆ
 
ontrol subje
t to safety proto
ols so that 
ight timesare minimized, transportation s
heduling subje
t to initial and �nal lo
ation ofthe goods and the transportation resour
es so that the delivery time and fuelexpenses are minimized, and many other real life examples 
an be stated asoptimization Constraint Satisfa
tion Problems (CSP).A CSP is a 4-tuple hV ars;Doms;Cons;Obji, where ea
h variable Vi in V arshas domain Di in Doms. Ea
h k-ary 
onstraint C in Cons states a relationbetween k variables in V ars. Obj is an optional obje
tive fun
tion over thevariables in V ars. Solving a CSP requires assigning values to the variables fromtheir 
orresponding domains su
h that all the 
onstraints in Cons are satis�edand the obje
tive fun
tion is minimium. It is in general an NP-
omplete problem[30℄. We here restri
t ourselves to de
ision CSPs, where there is no obje
tivefun
tion.The variables may have di�erent types: integer, real, boolean, set, list, et
.The domains 
an either be �nite or in�nite. The 
onstraints may also have dif-ferent forms su
h as being arithmeti
 (linear and nonlinear), symboli
, set oper-ations, list operations, et
. There are di�erent methods for di�erent instan
es ofthe general CSP in the litterarture. In operation resear
h many methods weredeveloped to deal with CSP. Linear Programming (LP) [10℄ allows a linear ob-je
tive fun
tion subje
t to a set of linear 
onstraints over real variables that arenonnegative. Polynomial time robust solvers are available that 
an solve large1



s
ale linear programs. A generalization of LP is Integer Linear Programming(ILP) [16℄ where variables range over integers. However, this makes the problemNP-
omplete. A Further generalization is when the obje
tive fun
tion and the
onstraints are allowed to be nonlinear. Constraint (Logi
) Programming (CP)[24℄ is an orthogonal paradigm to I(L)P to solve CSP. Many di�erent solvershave been proposed. Finite Domain (FD) solvers handle linear/nonlinear andsymboli
 
onstraints and the variables may take dis
rete values [4, 40℄. Realsolvers like in [21℄ eÆ
iently handle linear 
onstraints and uses lazy evaluationfor the nonlinear ones. In [17, 36℄, variables are allowed to range over �nite setsand 
onstraints may have set operations.Restri
ting the type of the variables, the domains, and the forms of the 
on-straints 
an help developing more spe
ialized methods to ta
kle those sub
lasses.For instan
e, if the variables are integers and the 
onstraints are 
onjun
tive lin-ear inequalities, then there has been appropriate tools developed espe
ially tohandle that su
h as ILP. If the domains of the variables are �nite, then 
onsis-ten
y te
hniques 
ombined with a sear
h algorithm 
an be viewed as a spe
ialmethod that 
an handle e�e
tively some problems, espe
ially if the 
onstraintsare nonlinear. We 
all restri
ted CSP any sub
lass of the general CSP, wherethe domain type and/or the variable type and/or the form of the 
onstraintshas been restri
ted. Restri
ted CSPs are less expressive than the general ones,hen
e spe
ial methods that take advantage of those restri
tions are in generalmore eÆ
ient. The 
onsequen
es of this are the following:� The restri
ted language is more eÆ
ient.� The restri
ted language is less expressive.� The restri
ted language will either not be able to handle expressions thatdo not obey the restri
tions or handle them very ineÆ
iently.Given a restri
ted CSP, one of the major goals is to extend the expressivnesswithout de
reasing the eÆ
ien
y, or to improve the eÆ
ien
y without loosingexpressivness, or both, whenever possible. One way to a
hieve this is to reasonon the 
onstraints themselves. For example, in the 
ase of ILP, one 
an extendthe expressivness by allowing nonlinear 
onstraints (alien 
onstraints) to beformulated, but then those nonlinear 
onstraints should be mapped to linearones for whi
h the ILP methods would know how to handle very eÆ
iently.Another example is with 
onstraint programs over �nite domains; one 
an addredundant 
onstraints |whi
h are implied by the 
onstraints of the originalproblem| to the program whi
h would help a
hieve more pruning and hen
ein
rease the eÆ
ien
y.Adding implied 
onstraints {whi
h are redundant 
onstraints{ to the orig-inal problem may lead to a signi�
ant in
rease in the performan
e and mayextend the expressivness of the language. In the 
ase of �nite domain solversit may help pruning more in
onsistent values from the variables domains, andhen
e yielding a smaller sear
h spa
e. So far, resear
hers have been adding im-plied 
onstraints to the problems manually, or by using very highly spe
ialized2



methods for deriving a parti
ular 
lass of implied 
onstraints su
h as the valid
uts. We will fo
us on CSPs over �nite domains. Furthermore, the generation ofimplied 
onstraints for 
onstraint programs over �nite domains 
an be done at
ompile-time or run-time. Run-time generation 
an be done prior to the start ofthe sear
h (pre-sear
h generation) as well during the sear
h itself (within-sear
hgeneration.) We will fo
us on 
ompile time and pre-sear
h generation.Driven by the importan
e of implied 
onstraints being added to the originalproblem, we are aiming at the following:� A 
lassi�
ation of the implied 
onstraints� Sin
e implied 
onstraints are logi
ally implied by the set of initial 
on-straints, then Automated Theorem Proving (ATP) te
hnologies will beexplored. We will experien
e with and evaluate di�erent existing systemsthat have a potential of generating implied 
onstraints. Namely, we willstudy and evaluate the following theorem provers in a bla
k-box approa
h:{ Press system: heuristi
s-based theorem prover that deals with linearand nonlinear 
onstraints alike.{ 
lp(q,r) solver: employs a de
ision algorithm for linear inequalitieswhi
h derives implied 
onstraints and handles linear (dis-)equations.{ Otter: brute-for
e approa
h...� Compare the di�erent theorem provers and propose a general method thatwould 
ombine the pros and dis
ard the 
ons of the existing systems. Thiswill result in a tool that automati
ally generates implied 
onstraints.� As the set of implied 
onstraints generated may be huge, we will try todevise some methods to 
hoose "useful" implied 
onstraints to add tothe original problem and dis
ard the "un-useful" ones. Hen
e we willtry to 
ome out with some evaluation methods for the generated implied
onstraints. This dire
tion of resear
h may reveal some results that 
anbe in
orporated in the generation step, so as to generate only "useful"implied 
onstraints.� develop methods that analyze the problems and de
ide if we need to addimplied 
onstraints or not to the initial problem.This report is organized as follows: in Se
tion 2 we will present some moti-vating examples and ba
kground knowledge in Se
tion 3. Se
tion 4 will des
riberelated work while in Se
tion 5 we will present our results on the 
lassi�
ationand generation of implied 
onstraints. In Se
tion 6, the fo
us will be on theevaluation of implied 
onstraints in the �nite domain 
ase where 
onsisten
ymethods are employed. We will elaborate on future a
tivities in Se
tion 7 and
on
lude in Se
tion 8.
3



2 MotivationConstraints over Finite DomainsIf the domains of the variables are �nite, then the CSP 
an be modeled asa 
onstraint program and solved by a 
onstraint solver over �nite domains.Due to the the propagation algorithms employed by the solver, some level of
onsisten
y is maintained. Maintaining 
onsisten
y leads to the pruning ofin
onsistent values from the domains of the variables, and hen
e will produ
e asmaller sear
h tree. More pruning 
an be a
hieved, if some redundant 
onstraints(
onstraints that logi
ally follow from the initial set of the 
onstraints) are addedto the problem as shown in [35, 18, 32, 37℄.Example 2.1 For the following assume we are using the 
lp(FD) solver of Si
-stus Prolog [4℄ as bla
k-box, whi
h maintains interval 
onsisten
y for the vari-ables whi
h have interval domains. Suppose we have the following toy problem:V ars = fA;B;CgDom = f0::100; 0::100; 0::100gCons = f A+B + C = 178; 2A�B + 4C = 99; B + C = Ag (1)If we 
all the CLP(FD) solver, then the domains of the variables will be asfollows: A 2 59::99B 2 59::99C 2 0::20 (2)But, by some simple algebrai
 manipulation we 
an derive the following:A+B + C = 178 ^ B + C = A! B + C = 89 (3)So, we add this 
onstraint to our initial problem, yielding the following:V ars = fA;B;CgDom = f0::100; 0::100; 0::100gCons = f A+B + C = 178; 2A�B + 4C = 99; B + C = A;B + C = 89g(4)By 
alling the CLP(FD) solver,the domains of the variables will be as follows(whi
h is 
learly better than the original model):A 2 84::94B 2 84::89C 2 0::5 (5)We 
an also derive the following:A+B + C = 178 ^ 2A�B + 4C = 99! 3A+ 5C = 277 (6)4



Now, adding this implied 
onstraint to our initial problem will yield the follow-ing: V ars = fA;B;CgDom = f0::100; 0::100; 0::100gCons = f A+B + C = 178; 2A�B + 4C = 99; B + C = A; 3A+ 5C = 277g(7)By maintaining the same level of 
onsisten
y, the domains of the variables willbe as follows (note that no labeling is needed as all the domains are singleton):A = 89B = 87C = 2 (8)From the example, we 
an see that adding implied 
onstraints to our initial setof 
onstraints helps pruning more the domains of the variables and thus a
hievea higher level of 
onsisten
y. However, not all implied 
onstraints help a
hievingmore pruning. Here is an example of su
h redundant 
onstraint:V ars = fA;B;C;DgDom = f0::100; 0::100; 0::100; 0::100gCons = f A+B � C = 100; A+D = 50g (9)Maintaining 
onsisten
y will yield the following domains for the variables:A 2 0::50B 2 50::100C 2 0::50D 2 0::25 (10)We 
an derive the following implied 
onstraint:A+B � C = 100 ^ A+D = 50! B � 2D � C = 50 (11)However, adding this 
onstraint to the initial problem will not lead to any 
hangein the variables domains after maintaining the same level of 
onsisten
y.Example 2.2 Given the following CSP, where all variables have domain 1..9,V ars = fA;B;C;D;E; F;G;H; IgCons = fA=B � C +D=E � F +G=H � I = 1;A �E � F � D �B � C;D �H � I � G �E � Fg (12)We 
an derive the implied 
onstraints 3 � A � B � C ^ 3 � G � H � I . If werun the original problem on Si
stus CLP(FD) then it takes 17240 mse
 and31051 ba
ktra
ks, while if we add the implied 
onstraints the run-time redu
esto 13640 mse
 and the ba
ktra
ks to 24827. Note that the derivation time ofthe implied 
onstraint is not measured here. It will be worthwhile to generatesu
h an implied 
onstraint if it takes less than 17240 mse
 minus 13640 mse
.5



Constraints over Real DomainsIf the domains of the variables are rational or real valued, then 
onstraint solversover rational domain may be employed. However, su
h systems, su
h as 
lp(q,r)[21℄ are mainly designed for dealing with linear 
onstraints and use a lazy eval-uation approa
h for the nonlinear 
ase, i.e., it 
olle
ts the nonlinear 
onstraintswith the hope that through the addition of further linear 
onstraints they mightget simple enough to solve, otherwise a solution is found and 
he
ked for thenonlinear 
onstraints . On the other hand, if some redundant linear 
onstraints{that 
an be implied by the linear and nonlinear 
onstraints { are added to theoriginal set of 
onstraints may make su
h solvers 
ope in a better way with thenonlinear 
onstraints.Example 2.3 For the following assume we are using the 
lp(q,r) solver of Si
-stus Prolog [21℄ as bla
k-box. Suppose we have the following toy problem (herewe assume that all variables are real valued):V ars = fA;B;CgCons = fA+B + C � 6; A2 > 1; A � 0; B � 0; C � 0g (13)The 
lp(q,r) will delay the solving of the 
onstraint A2 > 1. But, we 
an inferfrom the 
onstraints the linear 
onstraint B + C < 5 whi
h 
an be handledeÆ
iently by 
lp(q,r), sin
e A2 > 1^A � 0! A > 1 and A > 1^A+B +C �6! B + C < 5 .3 Ba
kground3.1 Compile Time Versus Runtime Generation of ImpliedConstraintsOur fo
us in this work is on CSPs where the domains are �nite with no ob-je
tive fun
tion. In what follows we will use CSP to denote this sub
lass. Wehere de�ne 
ompile-time and run-time generation of implied 
onstraints. If thegeneration is at 
ompile-time, then the generation time will be irrelevant whileif the generation is at run-time, then it will be 
ounted as part of the time spentto a
tually solve the problem. We start �rst by some de�nition.De�nition 3.1 Implied 
onstraint:Given a set C of 
onstraints, an implied 
onstraint is any formula � su
h thatC ` �.De�nition 3.2 Equivalent sets of 
onstraints:Given two sets C1 and C2 of 
onstraints, C1 and C2 are equivalent i� C1 `C2 ^ C2 ` C1.De�nition 3.3 Redundant Constraint:Given a CSP = hV;D;Ci and CSPR = hV [V 0; D[D0; C [fRgi, where R is a6




onstraint not appearing in C, and V 0 is the set of extra variables (may be empty)that are 
onstrained by R and having 
orresponding (may be empty) domains inD0. R is said to be redundant, i� for the set of solutions of CSP denoted bysol(CSP ) and for the proje
tion of the set of solution of CSPR over the set ofvariables V denoted by �V sol(CSPR) we have sol(CSP ) = �V sol(CSPR).It follows from the de�nitions that all implied 
onstraints are redundant and ifa subset of C is equivalent to C 0 then all the 
onstraints in C 0 are redundant.Solving a CSP requires that the set of variables V , their 
orresponding setof domains D, and the set of 
onstraints C should be available. On
e, all theinformation about the CSP is available, any kind of pro
essing or solving is arun-time pro
ess be
ause if it was a 
ompile-time pro
ess then one 
an use adi�erent approa
h or even the same solver to a
tually solve the problem andthen 
all the solver with a solved CSP that gives an answer in 
onstant time,whi
h will make it look as if we have a 
onstant time algorithm for solving anNP-
omplete problem, hen
e it 
an only be a run-time pro
ess. However, If Vand/or D and/or C is not known, then any pro
essing is a 
ompile-time pro
essbe
ause we a
tually 
annot solve the problem (some might say, what if C and Vare given, then we assume that the domains of the variables 
ontain all possiblevalues, solve the problem at 
ompile time, then at runtime we �nd a subsetof the solution set whi
h satisfy the a
tual domains of the variables. One 
ando that, but �nding a subset of the solution set satisfying the domains of thevariables is an NP-
omplete problem that need to be solved).On the other hand, the generation of implied 
onstraints 
annot be doneunless a subset of 
onstraints C is known and obviously a subset of variablesV . However, C may still 
ontain non-domain variables, whi
h are unknown ora when subset of D is not known then the generation of implied 
onstraints is a
ompile-time pro
ess and the generation time is not an issue to be 
onsidered.However, if D, C, and D are also available, i.e., ground then the generationof implied 
onstraints is a run-time pro
ess and the generation time is to bea

ounted for the overall solving time. Furthermore, if the CSP is supposed tobe solved using some 
onsisten
y algorithm plus a sear
h algorithm (whi
h mightin
lude 
onsisten
y te
hniques also) then the run-time generation of implied
onstraints 
an be done prior to the start of the sear
h (pre-sear
h generation)as well during the sear
h itself, (within-sear
h generation.) One is also fa
edwith the 
hoi
e of whether to feed the generated implied 
onstraints ba
k to theoriginal set of 
onstraints, and use them to generate more implied 
onstraint,or not to use them further .3.2 De�nitions and TerminologyDe�nition 3.4 Mathemati
al Programming (MP):In MP, one tries to �nd an extreme (i.e., maximium or minimium) pointof a fun
tion f(x1; x2; :::; xn), whi
h satis�es a set of 
onstraints of the formg(x1; x2; :::; xn) � b 7



De�nition 3.5 Linear Programming (LP):LP is a spe
ialization of MP, where 1 f { to be 
alled obje
tive fun
tion{ andthe set of 
onstraints are linear. The general formulation is as follows:Obje
tive fun
tion :max=min 
1X1 + 
2X2 + :::+ 
nXnSubje
t to :ai1X1 + ai2X2 + :::+ ainXnf�;=;�gbi; i = 1; :::; n (14)where all variables are either positive or negative or unrestri
ted.De�nition 3.6 Integer Linear Programming (ILP):ILP is a spe
ialization of LP, where all the variables 
an only take integer values.De�nition 3.7 Mixed Integer Linear Programming (MILP):MILP is a spe
ialization of LP, where some but not all of the variables 
an onlytake integer values. Problems in this 
lass are NP-
omplete.De�nition 3.8 Linear Relaxation (LR):LR is the result of relaxing the integrality requirements in an ILP or MILPformulation. Near optimal solutions are found by solving the 0relaxed LP for-mulation.De�nition 3.9 Standard Form:an LP formulation is in standard form if1. all 
onstraints are equality 
onstraints2. all variables have non negativity sign restri
tionHere are some de�nitions of di�erent kinds of 
onsisten
y ([39℄):De�nition 3.10 A problem is (i; j)-
onsistent [14℄ i� it has non-empty do-mains and any 
onsistent instantiation of i variables 
an be extended to a 
on-sistent instantiation involving j additional variables.De�nition 3.11 A problem is k-
onsistent i� it is (k � 1; 1)-
onsistent.De�nition 3.12 A problem is strongly k-
onsistent i� it is (j; 1)-
onsistent,for all j < k.De�nition 3.13 A problem is node-
onsistent i� for all variables all values inits domain satisfy the 
onstraints on that variable.De�nition 3.14 A problem is ar
-
onsistent (AC) i� it is (1; 1)-
onsistent.De�nition 3.15 A problem is path-
onsistent (PC) i� it is (2; 1)-
onsistent.De�nition 3.16 A problem is strong path-
onsistent i� it is (j; 1)-
onsistentfor all j � 2. 8



De�nition 3.17 A problem is path inverse 
onsistent (PIC) i� it id (1; 2)-
onsistent.De�nition 3.18 A problem is neighborhood inverse 
onsistent (NIC) i� anyvalue for a variable 
an be extended to a 
onsistent instantiation for its imme-diate neighborhood.De�nition 3.19 a (non-binary) CSP is Generalized ar
-
onsisten
y (GAC) i�for any variable in a 
onstraint and value that is assigned, there exists 
ompatiblevalue for all the other variables in the 
onstraint.4 Related WorkSimplex MethodThe simplex method is a well established method for solving linear programs instandard format. The algorithm starts with an initial basi
 feasible solution andtests its optimality. If some optimality 
ondition is veri�ed, then the algorithmterminates. Otherwise, it tries an adja
ent basi
 feasible solution whi
h hasa better obje
tive value, and optimality is tested again. The entire pro
ess isrepeated till an optimal solution is found. However, sin
e the simplex methodworks only for problems in standard form a transformation is required to mapthe other linear 
onstraints to ones in a standard form. In fa
t, every LP 
anbe transformed into one in standard form by the following transformation rules:� a1X1+ a2X2+ :::+ anXn � b 
an be transformed into an equality one byintrodu
ing a sla
k variable S, resulting in a1X1+a2X2+:::+anXn+S = b� a1X1+ a2X2+ :::+ anXn � b 
an be transformed into an equality one byintrodu
ing an ex
ess variable E, resulting in a1X1+ a2X2+ :::+ anXn�E = b� a variable Xi : Xi � 0 is repla
ed by Xiprime : Xi = �Xiprime� an unrestri
ted variable X 
an be substituted by Y and Z su
h thatX = Y � Z and Y; Z � 0This transformation rules 
an be viewed as a way of generating a parti
ular
lass of implied 
onstraints.Inferen
e MethodsConsisten
y MethodsConsisten
y methods (e.g., [3, 8, 12, 13, 25℄) 
an be viewed as methods thatgenerate implied 
onstraints. Consisten
y methods are de�ned in su
h a waythat if a value in a domain or a 
ompound label in a 
onstraint does not satisfysome property, then they 
an be eliminated by adding the appropriate implied9




onstraints. For instan
e, if we have the 
onstraints X 2 f1; :::; 10g ^ X � 5then by maintaining node 
onsisten
y the domain of the variable will be redu
edto f5; :::; 10g. Here is another example that shows the di�eren
e of maintainingdi�erent levels of 
onsisten
y:Example 4.1 Suppose we have the following set of 
onstraintsX;Y; Z 2 f1; 2g^X 6= Y ^Y 6= Z^X 6= Z. Maintaining ar
 
onsisten
y will not lead to any 
hangein the variable domains, sin
e the problem is inherently ar
-
onsistent. How-ever, the same problem 
an be stated using a global 
onstraint alldi�erent forwhi
h there is a spe
ial algorithm to maintain the 
onsisten
y, whi
h is strongerthan ar
 
onsisten
y. Hen
e, having X;Y; Z 2 f1; 2g ^ alldifferent([X;Y; Z℄)will result in unsatis�able problem.Cutting PlanesA LR of an ILP 
an be solved by the Chvatal-Gomory method [1℄ through theaddition of 
utting planes, whi
h are new inequalities inferred from the originalset of 
onstraints. The 
utting plane 
ut of part of the sear
h spa
e but does noteliminate any solution to the original problem. They strengthen the relaxationin order to get better bound on the optimal value when the relaxation is solved.Example 4.2 Suppose we have two variables X and Y ea
h having domainf0; 1g and our problem is to maximize 2X + 2Y � 1 then some 
utting planesare X + Y � 1=3 and X + Y � 0.The Chvatal-Gomory pro
edure is a 
omplete inferen
e system, for integer linear
onstraints whi
h generate 
utting planes. The 
utting planes are nothing butimplied 
onstraints from the original set of 
onstraints.Resolution MethodFor propositional logi
al formulae in 
onjun
tive normal form (CNF), the reso-lution rule of inferen
e is a 
omplete inferen
e method. The rule is as follows: _ �1: _ �2�1 _ �2 (15)Furthermore, for any 
onstraint that in
ludes only binary variables there existsan equivalent CNF formula. The values of the variables are interpreted as Trueand False. In [19℄, it is pointed out that for any 
onstraint set in binary variables,a generalized version of resolution [20℄ 
an generate all valid inequality 
uts.NB-Resolution [15, 19℄Resolution 
an be extended to the logi
 of dis
rete variables. NB-
lauses involvevariables whose domains have arbitrary size and have the following form:Xi1=Si1 _ ::: _Xin=Sin (16)10



The resolution rule of inferen
e 
an be extended to NB-resolution for NB-
lauses:Xi=S1 _ �1Xi=S2 _ �2:::Xi=Sk _ �k�1 _ �2 _ ::: _ �k (17)where the premises are a minimal set of 
lauses su
h that S1 \ ::: \ Sk = ;. In[19℄, it is shown that k-resolution a
hieves k-
onsisten
y and another restri
tionof resolution a
hieves adaptive 
onsisten
y [9℄.Constraint Handling Rules (CHR)CHR is a 
ommitted-
hoi
e language 
onsisting of guarded rules with multiplehead atoms. Some of the rules de�ne simpli�
ation of 
onstraints. Other rulesde�ne propagation over 
onstraints, whi
h add implied 
onstraints in a similarmanner to the 
onsisten
y methods.Solvers ExtensionsSoLeX [26℄ is a generi
 s
heme, whi
h 
onsists of a set of symboli
 rule-basedtransformations that extend 
onstraint solvers so that they handle 
onstraintsinvolving new fun
tion symbols 
alled alien 
onstraints. SoLeX handles three
lasses of alien 
onstraints:1. introdu
ing a name to an extensional de�nition of a fun
tion. For example,3:x2 
an be named p(x) and hen
e 3:y2 will be named p(y).2. fun
tions that are not handled by the solver su
h as sin for some of thearithmeti
 solvers.3. fun
tions with no de�ned meaning in the solver's domain.SoLeX has four phases. First, the redu
tion phase adds semanti
 and synta
ti
alinformation 
arried by the alien fun
tion. Se
ond, implied valid 
onstraintsfrom the alien fun
tions are added by the expansion phase. Third, the solvingphase a
tually solves the 
onstraints, after abstra
ting the remaining of thealien fun
tions. Finally, the 
ontra
tion phase undo the e�e
t of abstra
tionand removes redundan
ies introdu
ed by the expansion phase.Solvers CollaborationsCollaboration of solvers 
an also be viewed as a way of generating implied
onstraints. For example, one 
an 
ombine the ILP approa
h with 
onstraintsolvers of �nite domain su
h as the work presented in [31℄. These two solvers 
an11



ex
hange information, in terms of implied 
onstraints, and 
ollaborate to solvethe problem. In [28℄, 
ollaboration of solvers has been employed to solve non-linear polynomial 
onstraints and a general s
heme BALI [27℄ that allows for theintegration, re-usability and 
ollaboration of solvers in a domain independentway has been proposed.Redundant ModelingIn [2℄, the authors present a way of 
ollaboration between redundant modelsfor the same problem, through what they 
alled 
hanneling 
onstraints. Theinformation ex
hanged through the 
hanneling 
onstraints is nothing but im-plied 
onstraints, whi
h help a
hieve more pruning very similar to the e�e
t ofadding redundant 
onstraints.5 Generation of Implied Constraints5.1 Classi�
ation of Implied ConstraintsWe propose the following the 
lassi�
ations of implied 
onstraints:1. Simpli�ed implied 
onstraint (or variable elimination): given a 
onstraintC 
onstraining n variables (V = fV1; :::; Vng), and a set S of other 
on-straints among the n variables. We try to derive Cimp su
h that fCg[S !Cimp, and Cimp 
onstrains n� 1 variables or less. Here is an example:C � X + Y + Z = 12V = fX;Y; ZgS = fY > ZgC [ S ! Cimp � X + 2 � Y � 12 (18)We 
all this 
lass C1.2. Spe
ialized implied 
onstraint: we try to derive a spe
ialized implied 
on-straint (global 
onstraint), for whi
h there exists an eÆ
ient implementa-tion. Here is an example whi
h derives the alldi�erent 
onstraint:C = fX 6= Y ^X 6=W ^X 6= Q ^X 6= Z ^ Z 6= Y ^Q 6= Y gC ! alldifferent(X;Y; Z) (19)We 
all this 
lass C2.3. linear implied 
onstraints inferred from linear and nonlinear 
onstraints:we try to imply a linear 
onstraint provided a set of linear and nonlinear
onstraints. su
h as the 
ase in the following example:A2 = 1 mod 2! A = 1 mod 2 (20)We 
all this 
lass C3. 12



4. Abstra
t implied 
onstraint (Variable introdu
tion): we try to abstra
tsome relationship between some variables of the initial problem by intro-du
ing extra variables and try to infer implied 
onstraints on the newlyintrodu
ed variables. Here is an example:V = fX;Y; Z;WgC = fX + Y 6= 2W � 3ZgC ! P = X + Y ^Q = 2W � 3Z ^ P 6= Q (21)We 
all this 
lass C4.5. Abstra
tion of problems into di�erent 
onstraint systems: given a problemformulation in a parti
ular domain (integer, set, list, et
), we will try toderive some implied 
onstraints on a di�erent domain from the originaldomain. For instan
e, suppose X;Y; S and T are sets and in [17℄ one 
anstate the 
onstraints S [ T = X ^ S \ T = Y . However, one 
an infer the
onstraints j S j + j T j�j X j ^ j Y j� 0 whi
h are in integer domain. We
all this 
lass C5.6. Implied 
onstraint over a new subset of variables: given a set of 
onstraintsover a set of variables, we would like to infer a 
onstraint over a subset ofvariable for whi
h there exists no 
onstraint among them.V = fX;Y; Z;W;M;NgC = fX = Y + Z ^W =M �N ^ Y + Z = 3:(M �N)gC ! X = 3W (22)We 
all this 
lass C6.Assuming that we are able to generate su
h implied 
onstraints, we shouldidentify how to use them. We here present how to use ea
h 
lass.1. Class C15.2 The PRESS SystemOverviewPRESS (PRolog Equation Solving System) [38℄ is a system whi
h automati
allysolves symboli
 equations in one or more variables. It is modular, with di�erentkinds of equation-solving a
tivity de�ned by axioms of the domain, and spe
ial-purpose problem-solving pro
edures 
alled methods, and has in the past beentested on 'A' level examination questions, whi
h it 
an mostly solve quite well,an overall 86.8 per 
ent su

ess rate. The system generally tries to simplifythe (set of) (in)equations it has been asked to solve until it has a solution.PRESS works in the domain of R-elementary equations, i.e., equations involvingpolynomials, and exponential, logarithmi
, trigonometri
, hyperboli
, inversetrigonometri
 and inverse hyperboli
 fun
tions over real numbers. PRESS hassix major methods: 13



� Isolation is a method for solving equations involving only a single o

ur-ren
e of an unknown. It a
hieves this by applying some isolation rewriterules. Examples of su
h rewrite rules are:loguV =W ! V = UWU � V =W ! U = V +W (23)� Polysolve is a 
olle
tion of polynomial methods thar are tried in turn de-pending on the 
hara
teristi
s of the polynomial su
h as being symmetri
or ant-symmetri
. For example, x4 � 4:x2 + 3 = 0 is identi�ed to bequadrati
 in x2 and the solution x2 = 1orx2 = 3 is found.� Colle
tion is a method to redu
e the number of o

urren
es of the un-known. Example of su
h rewrite rule is (U + V ):(U � V )! U2 � V 2.� Attra
tion is a method for bringing the o

urren
es of the unknown 
loser.For instan
e the rule loguV + loguW ! logu(V:W ) is an attra
tion rule.� Homogenization parses the equation and 
olle
ts the terms whi
h 
ontainthe unknown that are non algebrai
 in the unknown. Then it tries torepla
e su
h terms by some algebrai
 fun
tion of some single term. Forinstan
e, (ex)3 � 4:ex + 3=ex = 0 
an be 
hanged to y3 � 4:y+ 3=y wherey is substituted for ex.� Fun
tion swapping is a 
olle
tion of methods that transform an equationa

ording to preferen
e. For instan
e, px+ y = 2 is transformed to (x+y)2 = 4.Sin
e PRESS is modular, it seemed like a good 
andidate for our initial experi-ments in deriving implied 
onstraints.Improvements to the Press SystemWe modi�ed PRESS is several ways in order to better suit our purposes:11. (Trivially) we updated the system to run on 
urrent versions of Prolog(si
stus version 3).2. We extensively modi�ed the system to allow it to solve inequalities. Ratherthan extending the existing inequality module, whi
h is rather minimal,we 
hose to generalise the equation-solving pro
edures, for example �ndingroots of polynomials, to deal with inequalities. A key 
omponent of thissolution was to extend the notion of substitution from the preexistingsubstitution using equalities | x = B ` � ! �[B=x℄ | to inequalities.Care must be taken over the dire
tion of the inequalities, and the sign of1The following �les were 
hanged, from the distribution version: ./pressdir/toplevel/sim,./pressdir/toplevel/simeq, ./pressdir/pressjunk/�lin, ./pressdir/toplevel/solve, ./press-dir/axioms/ineqis.ax, ./pressdir/methods/poly, ./util/stru
t.pl.14



any 
oeÆ
ients multiplying the substituted variable. The following tabledes
ribes whi
h substitutions using inequalities 
an be made, and how theprin
ipal 
onne
tive is e�e
ted.Expression L < R L � R L > R L � R L = RSubstitutionA < B � � > > >A � B � � > � �A > B < � � � <A � B < � � � �A = B < � > � =The table shows the main 
onne
tive when an o

urren
e of A in the lefthand side of the formula has been repla
ed with B. An � in a 
ell meansthat that substitution 
annot be made. Substitution on the right handside is de�ned in terms of substitution on the left hand side.As when rewriting under impli
ation and negation, ea
h position in theexpression has a polarity. The polarities of the subterms of B in A � Bis the opposite of the polarities of the subterms of B in A + B. Likewisefor A � 2B 
ompared to A + 2B. Substitution of terms whi
h are in aposition of negative polarity reverses the inequality of the substitutingterm. A notion of uni�
ation on relations is de�ned to ensure that theprin
ipal 
onne
tive in a substituting formula is 
ompatible with the main
onne
tive in the expression on whi
h the substitution is operating, andwhat the resulting 
onne
tive should be.We plan the following improvements in the very near future:1. Provide PRESS with relevant theory for whatever 
onstraint domain weare ta
kling.2. PRESS tries to solve (in)equations. If it 
annot �nd a solution, 
onsidersthat it has failed, and ba
ktra
ks to the most re
ent 
hoi
e point. In fa
t,although the result of its manipulations may not 
onstitute a \solution"to the problem, they may be very useful implied 
onstraints. We willtherefore modify the system with a

eptan
e 
riteria, whi
h are predi
atesapplied at the leaves of its derivation tree2 to determine if the derivedformula should be kept as a 
andidate implied 
onstraint. If it is a

eptedin this way, then it is re
orded in Prolog's internal database and retrievedwhen PRESS has �nished its attempt to �nd a solution.3. PRESS is heavily biased to �nding a solution. The guidan
e may be tootight and thereby miss some implied 
onstraints. We may have to weakenthis guidan
e.2We 
an represent an attempted derivation as a tree. Ea
h 
hoi
e point 
reates a bran
h.The leaves are the formulae rea
hed during dedu
tion to whi
h it 
ould do no more and hen
eba
ktra
ked. 15



4. Allow PRESS, in tightly-
ontrolled 
ir
umstan
es, to make external 
allsto a theorem prover (e.g. Clam, Otter) or a 
omputer algebra system (e.g.Maple) in order to further simplify or prune some 
onstraints.Experiments with the Press systemThe following table shows a 
olle
tion of examples. Some of the examples havebeen en
ountred in [35, 32, 37℄. The �rst 
olumn shows the 
lass of the im-plied 
onstraints, the se
ond the set of 
onstraints and the last is the implied
onstraints.Class Constraints Implied ConstraintsC1 A+B + C = 12^ A � B^ B � C C � 4 ^ A � 4C2 X 6= Y ^ Y 6= Z ^X 6= Z alldifferent([X;Y; Z℄)C3 A2 +B2 + C2 = 12^ A � 0^ A � B ^ B � C (C � 2 _ C � �2) ^ (A � 2 _A � �2)C3 X � Y � Z = 8 ^ Y � Z^ Z � 2 X � 2C4 A+B 6= C +D X = A+B ^ Y = C +D ^X 6= YC5 S [ Y = X j S j + j T j�j X jC6 X = N �M ^ Y = P �N^ Z = P �M Z = X + YC6 X = A+B ^ Y = C +D^ A+ C = 1 ^ B +D = 3 X + Y = 4C6 X = A+B ^ Y = C +D^ A+B 6= C +D X 6= YOur task is to 
he
k how mu
h of these implied 
onstraints 
an PRESSprodu
e. Here are the results:Class Constraints PressresultsC1 A+B + C = 12 ^A � B ^ B � C yesC2 X 6= Y ^ Y 6= Z ^X 6= Z noC3 A2 +B2 + C2 = 12 ^ A � 0 ^ A � B ^ B � C yesC3 X � Y � Z = 8 ^ Y � Z ^ Z � 2 yesC4 A+B 6= C +D noC5 S [ Y = X noC6 X = N �M ^ Y = P �N ^ Z = P �M noC6 X = A+B ^ Y = C +D ^ A+ C = 1 ^B +D = 3 noC6 X = A+B ^ Y = C +D ^ A+B 6= C +D noIn addition to being modular and easy to update the PRESS system has thefollowing advantages: 16



� The PRESS system handles linear and nonlinear arithmeti
 
onstraints.� The substitution me
hanism of the PRESS system and its isolation, 
ol-le
tion and attra
tion rules allow it to handle very 
omplex nonlinear 
on-straints in a very ni
e way.� PRESS 
an generate some implied 
onstraints in 
lasses C1 and C3� The PRESS system 
an be easily updated to handle 
onstraints over otherdomains, su
h as set domain by adding the appropriate set axioms 
odedas rewrite rules.However, the PRESS system su�ers from the following problems:� PRESS is heavily biased to �nding a solution. The guidan
e may be tootight and thereby miss some implied 
onstraints in the 
lasses C1 and C3.� PRESS 
an't handle 
lasses C2, C4, C5, and C6.5.3 the 
lp(q,r) solverOverviewThe 
lp(q,r) solver [22, 23℄ of Si
stus Prolog [21℄ solves linear equations overrational or real valued variables, employs a de
ision algorithm for linear in-equalities whi
h derives implied 
onstraints, handles linear dis-equations, anduses the lazy treatment for nonlinear equations, i.e. it 
olle
ts them hoping thatwith the addition of further linear 
onstraints they might get simple enough tosolve.Experiments with the 
lp(q,r) solverThe 
lp(q,r) as the PRESS system try to a
tually solve the set of 
onstraintsprovided, however what we were interested in is the implied 
onstraints gener-ated rather than the solutions. We 
arried out the same experiments as withthe PRESS system and here are the results:Class Constraints PressresultsC1 A+B + C = 12 ^A � B ^ B � C noC2 X 6= Y ^ Y 6= Z ^X 6= Z noC3 A2 +B2 + C2 = 12 ^ A � 0 ^ A � B ^ B � C noC3 X � Y � Z = 8 ^ Y � Z ^ Z � 2 noC4 A+B 6= C +D noC5 S [ Y = X noC6 X = N �M ^ Y = P �N ^ Z = P �M yesC6 X = A+B ^ Y = C +D ^ A+ C = 1 ^B +D = 3 yesC6 X = A+B ^ Y = C +D ^ A+B 6= C +D yesAs it 
an be seen from the experiments, the 
lp(q,r) solver has a great potentialto handle 
lass C6. However, it 
annot handle 
lasses C1, C2, C3, C4, and C5.17



5.4 The Otter systemOtter (I need refs) is an automated dedu
tion system. Resolution and paramod-ulation are the basis of its inferen
e rules. The theorem to be proven by Ottershould be stated in �rst-order logi
 with equality.OverviewExperiments with the Otter System6 Evaluation of Implied ConstraintsIt is important to know when to add implied 
onstraints and when not as su
himplied 
onstraints do not always save the sear
h e�ort. If the set of 
onstraintsare linear and the domains of variables are real, then there exist e�e
tive meth-ods that 
an solve that, and any generation of implied 
onstraints will not beuseful. If the 
onstraints are linear and nonlinear and the problem is supposed tobe solved by MIP methods, then generating 
onstraints of the 
lasses C3 and C4will be bene�
ial. If we have solvers over di�erent domains 
ooperating to solvea hybrid CSP, then generating implied 
onstraints of 
lass C5, may help. Ourmajor fo
us, though, is on �nite domain CSPs {where 
onsisten
y te
hniquesand sear
h are used to solve them { for whi
h all 
lasses (C1; C2; C3; C4; C5 andC6) of implied 
onstraints 
an be generated and may or may not be useful inthe sense that adding implied 
onstraints to the original problem may or maynot improve the eÆ
ien
y. In order to evaluate the implied 
onstraints the do-mains of the variables should be provided in addition to the set of variablesand the set of 
onstraints. Thus, making the evaluation a runtime pro
ess, andhen
e e�e
tive methods should be developed. We will �rst show that evaluationof implied 
onstraints is dependent on the instan
e data. The domains of thevariables should be known in order to judge if an implied 
onstraint will lead tomore pruning or not. Sin
e adding implied 
onstraints to the original problem
hanges the topology of the 
onstraint hyper-graph/(primal and dual) graph, wewill study the 
hange to the properties of the 
onstraint hyper-graph and theirrelationship to lo
al 
onsisten
y and ba
ktra
k-free sear
h. We will also try tounderstand the e�e
t of adding implied 
onstraints to the original problem andthe level of lo
al 
onsisten
y, i.e., we will try to investigate the following ques-tion: Given a problem P1 and adding implied 
onstraints to P1 will yield a newproblem P2. Now assume we maintain a 
ertain level of 
onsisten
y for problemP2. What 
ertain level of 
onsisten
y is a
hieved for P1? Is it a stronger levelof 
onsisten
y? Is it the same level of 
onsisten
y? What are the 
onditionsand how to predi
t them beforehand? The exploration of this question will be
arried out for ea
h 
lass of implied 
onstraints seperately.6.1 Why is the Evaluation Instan
e Data Dependent?Assume we have an original CSP involving the set of variables V , the set of
onstraints C and the set of domains D is not yet known. Suppose further that18



C ` R, i.e., R is a redundant 
onstraint. Assume further that we are trying tomaintain a 
ertain level of 
onsisten
y by algorithm L. Now, if there exists amethod M that takes as input V , C, R, and L and returns yes if the redundant
onstraint will lead to more pruning and no otherwise. We 
an always 
onstru
tD in a way that 
ontradi
ts the answer returned byM in the following manner;if the answer returned by M is yes then we simply 
hoose the domains D in away so that it is inherently 
onsistent a

ording to L and thus R won't lead toany further pruning. If the answer returned by M is no, then we simply 
hoosethe domains D in a way so that it is inherently in
onsistent a

ording to L andthus R will lead to some further pruning. Therefore, su
h an M does not existand the domains of the variables should be used as a parameter if we wish to�nd su
h an M .6.2 Graph-related Con
eptsHyper-graphs are a generalization of graphs. In a hyper-graph, ea
h hyper-ar
may 
onne
t more than two nodes. Every CSP, with the set of variables V andthe set of 
onstraints C, 
an be asso
iated with a 
onstraint hyper-graph whereV will be the set of nodes and for every 
onstraint 
 in C, there is an asso
iatedhyper-ar
 (drawn as a region) among the variables 
onstrained by 
. Whenthe 
onstraints are binary, the CSP will be represented by a graph. A primal-
onstraint graph represents variables by nodes and asso
iates an ar
 with anytwo nodes involved in the same 
onstraint. A dual-
onstraint graph representsthe variables involved in a 
onstraint by a node and asso
iates a labeled ar
 withany two nodes who share some variables. The ar
s are labeled with the sharedvariables. The dual graph transforms a non-binary CSP into a spe
ial type ofbinary CSP where the variables involved in a 
onstraint in the non-binary CSPare represented by a variable in the binary CSP with their domains rangingover all 
ombinations permitted by the 
orresponding 
onstraint, and any twoadja
ent nodes in the dual graph, their shared variables should have the samevalue. In [6℄, the author surveys some of the methods that relate the level oflo
al 
onsisten
y and ba
ktra
k-free sear
h based on the topologi
al features ofthe primal 
onstraint graph. For a binary CSP, if the 
onstraint graph is a treethen it 
an be solved in a linear time ([11, 29, 7℄.)6.3 Class C1...6.4 Class C2...6.5 Class C3... 19



6.6 Class C4Given an initial CSP involving the set of variables V and the set of 
onstraintsC, the implied 
onstraints of 
lass C4 will introdu
e a new set of variables Vnewand new set of 
onstraints Cnew to the original CSP . Thus our new problemCSPnew will be involving the set of variables V [Vnew and the set of 
onstraintsC [ Cnew . Solving CSPnew and proje
ting the answer on the set of variablesV is in fa
t a solution to the CSP . The set of variables Vnew is redundant inthe sense that the removal of Vnew together with all the 
onstraints 
onne
tingthem Cnew does not 
hange the set of solutions to the original problem CSP .In [33℄, Vnew is 
alled the set of hidden variables while V is the set of visiblevariables. Furthermore, in [33℄, suÆ
ient 
onditions for hidden variables areexplored. We will try to use the results found there ...6.7 Class C5...6.8 Class C6...7 Work PlanThe following is a proposed timetable of the tasks that need to be done for nextyear.� Carry out the same experiments with the otter system. Should be doneby September the 15th, 2000 .� 
arry out a deep study about the evaluation of implied 
onstraints ingeneral. Should be done by O
tober 30th, 2000.� Study the evaluation of two 
lass of implied 
onstraints (to be 
hosenlater). Should be done by April 2001.� Propose a hybrid system (whi
h may have ATP 
omponents as well asother 0 
omponents) that has the 
apabilities of generating implied 
on-straints of the 
hosen two 
lasses. Should be done by June 15th, 2001.� Implement a prototype system. Should be done by August, 30th, 2001. .� Sele
ting the fast te
hniques to be used if the generation is at run-time.Should be done by O
tober the 15th, 2001.
20



8 Con
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