Towards Automatic Generation and
Evaluation of Implied Constraints

Brahim Hnich!, Julian Richardson?, and Pierre Flener!
'Dept. of Information Science
Division of Computer Science
Uppsala University
S—751 20 Uppsala, Sweden
{ Brahim.Hnich, Pierre.Flener } @Qdis.uu.se
2Dept. of Computing and Electrical Engineering
Heriot-Watt University
EH 14 4AS Edinburgh, Scotland, UK
julianr@cee.hw.ac.uk

1 Introduction

Production planning subject to demand and resource availability so that profit
is maximized, air traffic control subject to safety protocols so that flight times
are minimized, transportation scheduling subject to initial and final location of
the goods and the transportation resources so that the delivery time and fuel
expenses are minimized, and many other real life examples can be stated as
optimization Constraint Satisfaction Problems (CSP).

A CSP is a 4-tuple (Vars, Doms, Cons, Obj), where each variable V; in Vars
has domain D; in Doms. Each k-ary constraint C' in Cons states a relation
between k variables in Vars. Obj is an optional objective function over the
variables in Vars. Solving a CSP requires assigning values to the variables from
their corresponding domains such that all the constraints in C'ons are satisfied
and the objective function is minimium. It is in general an NP-complete problem
[30]. We here restrict ourselves to decision CSPs, where there is no objective
function.

The variables may have different types: integer, real, boolean, set, list, etc.
The domains can either be finite or infinite. The constraints may also have dif-
ferent forms such as being arithmetic (linear and nonlinear), symbolic, set oper-
ations, list operations, etc. There are different methods for different instances of
the general CSP in the litterarture. In operation research many methods were
developed to deal with CSP. Linear Programming (LP) [10] allows a linear ob-
jective function subject to a set of linear constraints over real variables that are
nonnegative. Polynomial time robust solvers are available that can solve large

scale linear programs. A generalization of LP is Integer Linear Programming
(ILP) [16] where variables range over integers. However, this makes the problem
NP-complete. A Further generalization is when the objective function and the
constraints are allowed to be nonlinear. Constraint (Logic) Programming (CP)
[24] is an orthogonal paradigm to I(L)P to solve CSP. Many different solvers
have been proposed. Finite Domain (FD) solvers handle linear/nonlinear and
symbolic constraints and the variables may take discrete values [4, 40]. Real
solvers like in [21] efficiently handle linear constraints and uses lazy evaluation
for the nonlinear ones. In [17, 36], variables are allowed to range over finite sets
and constraints may have set operations.

Restricting the type of the variables, the domains, and the forms of the con-
straints can help developing more specialized methods to tackle those subclasses.
For instance, if the variables are integers and the constraints are conjunctive lin-
ear inequalities, then there has been appropriate tools developed especially to
handle that such as ILP. If the domains of the variables are finite, then consis-
tency techniques combined with a search algorithm can be viewed as a special
method that can handle effectively some problems, especially if the constraints
are nonlinear. We call restricted CSP any subclass of the general CSP, where
the domain type and/or the variable type and/or the form of the constraints
has been restricted. Restricted CSPs are less expressive than the general ones,
hence special methods that take advantage of those restrictions are in general
more efficient. The consequences of this are the following:

e The restricted language is more efficient.
o The restricted language is less expressive.

e The restricted language will either not be able to handle expressions that
do not obey the restrictions or handle them very inefficiently.

Given a restricted CSP, one of the major goals is to extend the expressivness
without decreasing the efficiency, or to improve the efficiency without loosing
expressivness, or both, whenever possible. One way to achieve this is to reason
on the constraints themselves. For example, in the case of ILP, one can extend
the expressivness by allowing nonlinear constraints (alien constraints) to be
formulated, but then those nonlinear constraints should be mapped to linear
ones for which the ILP methods would know how to handle very efficiently.
Another example is with constraint programs over finite domains; one can add
redundant constraints —which are implied by the constraints of the original
problem— to the program which would help achieve more pruning and hence
increase the efficiency.

Adding implied constraints —which are redundant constraints— to the orig-
inal problem may lead to a significant increase in the performance and may
extend the expressivness of the language. In the case of finite domain solvers
it may help pruning more inconsistent values from the variables domains, and
hence yielding a smaller search space. So far, researchers have been adding im-
plied constraints to the problems manually, or by using very highly specialized

methods for deriving a particular class of implied constraints such as the valid
cuts. We will focus on CSPs over finite domains. Furthermore, the generation of
implied constraints for constraint programs over finite domains can be done at
compile-time or run-time. Run-time generation can be done prior to the start of
the search (pre-search generation) as well during the search itself (within-search
generation.) We will focus on compile time and pre-search generation.

Driven by the importance of implied constraints being added to the original
problem, we are aiming at the following:

e A classification of the implied constraints

e Since implied constraints are logically implied by the set of initial con-
straints, then Automated Theorem Proving (ATP) technologies will be
explored. We will experience with and evaluate different existing systems
that have a potential of generating implied constraints. Namely, we will
study and evaluate the following theorem provers in a black-box approach:

— Press system: heuristics-based theorem prover that deals with linear
and nonlinear constraints alike.

— clp(q,r) solver: employs a decision algorithm for linear inequalities
which derives implied constraints and handles linear (dis-)equations.

— Otter: brute-force approach...

e Compare the different theorem provers and propose a general method that
would combine the pros and discard the cons of the existing systems. This
will result in a tool that automatically generates implied constraints.

e As the set of implied constraints generated may be huge, we will try to
devise some methods to choose ”useful” implied constraints to add to
the original problem and discard the ”un-useful” ones. Hence we will
try to come out with some evaluation methods for the generated implied
constraints. This direction of research may reveal some results that can
be incorporated in the generation step, so as to generate only ”useful”
implied constraints.

e develop methods that analyze the problems and decide if we need to add
implied constraints or not to the initial problem.

This report is organized as follows: in Section 2 we will present some moti-
vating examples and background knowledge in Section 3. Section 4 will describe
related work while in Section 5 we will present our results on the classification
and generation of implied constraints. In Section 6, the focus will be on the
evaluation of implied constraints in the finite domain case where consistency
methods are employed. We will elaborate on future activities in Section 7 and
conclude in Section 8.

2 DMotivation

Constraints over Finite Domains

If the domains of the variables are finite, then the CSP can be modeled as
a constraint program and solved by a constraint solver over finite domains.
Due to the the propagation algorithms employed by the solver, some level of
consistency is maintained. Maintaining consistency leads to the pruning of
inconsistent values from the domains of the variables, and hence will produce a
smaller search tree. More pruning can be achieved, if some redundant constraints
(constraints that logically follow from the initial set of the constraints) are added
to the problem as shown in [35, 18, 32, 37].

Example 2.1 For the following assume we are using the clp(FD) solver of Sic-
stus Prolog [4] as black-box, which maintains interval consistency for the vari-
ables which have interval domains. Suppose we have the following toy problem:

Vars = {A,B,C}
Dom = {0..100,0..100, 0..100} (1)
Cons={A+B+C=178,2A-B+4C =99,B+C = A}

If we call the CLP(FD) solver, then the domains of the variables will be as

follows:
A €59..99

B € 59..99 (2)
C €0..20

But, by some simple algebraic manipulation we can derive the following:
A+B+C=18ANB+C=A—-B+C =289 (3)
So, we add this constraint to our initial problem, yielding the following:

Vars = {A,B,C}
Dom = {0..100,0..100, 0..100}
Cons={A+B+C=178,2A—-B+4C =99,B+C = A,B+ C =89}
(4)
By calling the CLP(FD) solver,the domains of the variables will be as follows
(which is clearly better than the original model):

A€ 84.94
B € 84..89 (5)
Ce0.5
We can also derive the following:
A+B+C=1718N24A-B+4C =99 =+ 3A 4+ 5C = 277 (6)

Now, adding this implied constraint to our initial problem will yield the follow-
ing:

Vars ={A,B,C}
Dom = {0..100, 0..100, 0..100}
Cons ={A+B+C=178,2A—-B+4C =99,B+C = A,34+5C =277}
(7)
By maintaining the same level of consistency, the domains of the variables will
be as follows (note that no labeling is needed as all the domains are singleton):

A =89
B =87 (8)
C=2

From the example, we can see that adding implied constraints to our initial set
of constraints helps pruning more the domains of the variables and thus achieve
a higher level of consistency. However, not all implied constraints help achieving
more pruning. Here is an example of such redundant constraint:

Vars ={A,B,C,D}
Dom = {0..100,0..100, 0..100, 0..100} 9)
Cons ={ A+ B—C =100,A+ D = 50}

Maintaining consistency will yield the following domains for the variables:

A €0..50
B € 50..100
C €0..50
D €0.25

(10)

We can derive the following implied constraint:
A+B-C=100NA+D=50—-B-2D—-C =50 (11)

However, adding this constraint to the initial problem will not lead to any change
in the variables domains after maintaining the same level of consistency.

Example 2.2 Given the following CSP, where all variables have domain 1..9,

Vars ={A,B,C,D,E,F,G,H,I}
Cons ={A/BxC+D/ExF+G/Hx1=1, (12)
AxExF>DxB+xC,DxH+I>GxExF}

We can derive the implied constraints 3x A > BxC A3« G < H x1. If we
run the original problem on Sicstus CLP(FD) then it takes 17240 msec and
31051 backtracks, while if we add the implied constraints the run-time reduces
to 13640 msec and the backtracks to 24827. Note that the derivation time of
the implied constraint is not measured here. It will be worthwhile to generate
such an implied constraint if it takes less than 17240 msec minus 13640 msec.

Constraints over Real Domains

If the domains of the variables are rational or real valued, then constraint solvers
over rational domain may be employed. However, such systems, such as clp(q,r)
[21] are mainly designed for dealing with linear constraints and use a lazy eval-
uation approach for the nonlinear case, i.e., it collects the nonlinear constraints
with the hope that through the addition of further linear constraints they might
get simple enough to solve, otherwise a solution is found and checked for the
nonlinear constraints . On the other hand, if some redundant linear constraints
—that can be implied by the linear and nonlinear constraints — are added to the
original set of constraints may make such solvers cope in a better way with the
nonlinear constraints.

Example 2.3 For the following assume we are using the clp(q,r) solver of Sic-
stus Prolog [21] as black-box. Suppose we have the following toy problem (here
we assume that all variables are real valued):

Vars ={A,B,C} 13
Cons={A+B+C<6,A2>1,A>0,B>0,C >0} (13)
The clp(q,r) will delay the solving of the constraint A% > 1. But, we can infer
from the constraints the linear constraint B + C' < 5 which can be handled
efficiently by clp(q,r), since A2 >1AA>0— A>1land A>1AA+B+C <
6 >B+C<5.

3 Background

3.1 Compile Time Versus Runtime Generation of Implied
Constraints

Our focus in this work is on CSPs where the domains are finite with no ob-
jective function. In what follows we will use CSP to denote this subclass. We
here define compile-time and run-time generation of implied constraints. If the
generation is at compile-time, then the generation time will be irrelevant while
if the generation is at run-time, then it will be counted as part of the time spent
to actually solve the problem. We start first by some definition.

Definition 3.1 Implied constraint:
Given a set C of constraints, an implied constraint is any formula 6 such that

Cré.

Definition 3.2 Equivalent sets of constraints:

Given two sets C1 and Cy of constraints, C1 and C3 are equivalent iff C; F
ConNCyF Ch.

Definition 3.3 Redundant Constraint:
Given a CSP = (V,D,C) and CSPr = (VUV',DUD’',CU{R}), where R is a

constraint not appearing in C, and V' is the set of extra variables (may be empty)
that are constrained by R and having corresponding (may be empty) domains in
D'. R is said to be redundant, iff for the set of solutions of CSP denoted by
sol(CSP) and for the projection of the set of solution of CSPg over the set of
variables V' denoted by oy sol(CSPr) we have sol(CSP) = oy sol(CSPg).

It follows from the definitions that all implied constraints are redundant and if
a subset of C' is equivalent to C' then all the constraints in C' are redundant.

Solving a CSP requires that the set of variables V', their corresponding set
of domains D, and the set of constraints C' should be available. Once, all the
information about the CSP is available, any kind of processing or solving is a
run-time process because if it was a compile-time process then one can use a
different approach or even the same solver to actually solve the problem and
then call the solver with a solved CSP that gives an answer in constant time,
which will make it look as if we have a constant time algorithm for solving an
NP-complete problem, hence it can only be a run-time process. However, If V
and/or D and/or C is not known, then any processing is a compile-time process
because we actually cannot solve the problem (some might say, what if C and V
are given, then we assume that the domains of the variables contain all possible
values, solve the problem at compile time, then at runtime we find a subset
of the solution set which satisfy the actual domains of the variables. One can
do that, but finding a subset of the solution set satisfying the domains of the
variables is an NP-complete problem that need to be solved).

On the other hand, the generation of implied constraints cannot be done
unless a subset of constraints C' is known and obviously a subset of variables
V. However, C' may still contain non-domain variables, which are unknown or
a when subset of D is not known then the generation of implied constraints is a
compile-time process and the generation time is not an issue to be considered.
However, if D, C, and D are also available, i.e., ground then the generation
of implied constraints is a run-time process and the generation time is to be
accounted for the overall solving time. Furthermore, if the CSP is supposed to
be solved using some consistency algorithm plus a search algorithm (which might
include consistency techniques also) then the run-time generation of implied
constraints can be done prior to the start of the search (pre-search generation)
as well during the search itself, (within-search generation.) One is also faced
with the choice of whether to feed the generated implied constraints back to the
original set of constraints, and use them to generate more implied constraint,
or not to use them further .

3.2 Definitions and Terminology

Definition 3.4 Mathematical Programming (MP):

In MP, one tries to find an extreme (i.e., mazimium or minimiuwm) point
of a function f(x1,x2,...,x,), which satisfies a set of constraints of the form
9(331,562, 7$n) Z b

Definition 3.5 Linear Programming (LP):
LP is a specialization of MP, where 1 f — to be called objective function— and
the set of constraints are linear. The general formulation is as follows:

Objective function :

maz/min c; X1 + c2Xo + ... + ¢, X,

Subject to :

a,-le + a,'QXQ + ...+ aan{S,:, Z}b,,l -]., R

where all variables are either positive or negative or unrestricted.

Definition 3.6 Integer Linear Programming (ILP):
ILP is a specialization of LP, where all the variables can only take integer values.

Definition 3.7 Mized Integer Linear Programming (MILP):
MILP is a specialization of LP, where some but not all of the variables can only
take integer values. Problems in this class are NP-complete.

Definition 3.8 Linear Relazation (LR):

LR is the result of relaxzing the integrality requirements in an ILP or MILP
formulation. Near optimal solutions are found by solving the Orelaxed LP for-
mulation.

Definition 3.9 Standard Form:
an LP formulation is in standard form if

1. all constraints are equality constraints
2. all variables have mon negativity sign restriction
Here are some definitions of different kinds of consistency ([39]):

Definition 3.10 A problem is (i, j)-consistent [14] iff it has non-empty do-
mains and any consistent instantiation of i variables can be extended to a con-
sistent instantiation involving j additional variables.

Definition 3.11 A problem is k-consistent iff it is (k — 1, 1)-consistent.

Definition 3.12 A problem is strongly k-consistent ff it is (j,1)-consistent,
forall j < k.

Definition 3.13 A problem is node-consistent iff for all variables all values in
its domain satisfy the constraints on that variable.

Definition 3.14 A problem is arc-consistent (AC) iff it is (1,1)-consistent.
Definition 3.15 A problem is path-consistent (PC) iff it is (2, 1)-consistent.

Definition 3.16 A problem is strong path-consistent iff it is (j,1)-consistent
for all j < 2.

Definition 3.17 A problem is path inverse consistent (PIC) iff it id (1,2)-
consistent.

Definition 3.18 A problem is neighborhood inverse consistent (NIC) iff any
value for a variable can be extended to a consistent instantiation for its imme-
diate neighborhood.

Definition 3.19 a (non-binary) CSP is Generalized arc-consistency (GAC) iff
for any variable in a constraint and value that is assigned, there exists compatible
value for all the other variables in the constraint.

4 Related Work

Simplex Method

The simplex method is a well established method for solving linear programs in
standard format. The algorithm starts with an initial basic feasible solution and
tests its optimality. If some optimality condition is verified, then the algorithm
terminates. Otherwise, it tries an adjacent basic feasible solution which has
a better objective value, and optimality is tested again. The entire process is
repeated till an optimal solution is found. However, since the simplex method
works only for problems in standard form a transformation is required to map
the other linear constraints to ones in a standard form. In fact, every LP can
be transformed into one in standard form by the following transformation rules:

e a1 X7 +axXs+ ... +a, X, <bcan be transformed into an equality one by
introducing a slack variable S, resulting in a1 X1 +as Xo+...4a,X,,+5 = b

e 0. X) +as Xy +...+a,X, > b can be transformed into an equality one by
introducing an excess variable E, resulting in a1 X7 +a2X5 + ... +a, X,, —
E=0b

e a variable X; : X; < 0 is replaced by X;prime : X; = —X;prime

e an unrestricted variable X can be substituted by Y and Z such that
X=Y-ZandY,Z>0

This transformation rules can be viewed as a way of generating a particular
class of implied constraints.

Inference Methods
Counsistency Methods

Counsistency methods (e.g., [3, 8, 12, 13, 25]) can be viewed as methods that
generate implied constraints. Consistency methods are defined in such a way
that if a value in a domain or a compound label in a constraint does not satisfy
some property, then they can be eliminated by adding the appropriate implied

constraints. For instance, if we have the constraints X € {1,...,10} AX > 5
then by maintaining node consistency the domain of the variable will be reduced
to {5, ...,10}. Here is another example that shows the difference of maintaining
different levels of consistency:

Example 4.1 Suppose we have the following set of constraints X,Y, Z € {1,2}A
X #£YAY # ZAX # Z. Maintaining arc consistency will not lead to any change
in the variable domains, since the problem is inherently arc-consistent. How-
ever, the same problem can be stated using a global constraint alldifferent for
which there is a special algorithm to maintain the consistency, which is stronger
than arc consistency. Hence, having X,Y, Z € {1,2} A alldif ferent([X,Y, Z])
will result in unsatisfiable problem.

Cutting Planes

A LR of an ILP can be solved by the Chvatal-Gomory method [1] through the
addition of cutting planes, which are new inequalities inferred from the original
set of constraints. The cutting plane cut of part of the search space but does not
eliminate any solution to the original problem. They strengthen the relaxation
in order to get better bound on the optimal value when the relaxation is solved.

Example 4.2 Suppose we have two variables X and Y each having domain
{0,1} and our problem is to maximize 2X + 2Y < 1 then some cutting planes
are X +Y <1/3and X +Y <0.

The Chvatal-Gomory procedure is a complete inference system, for integer linear
constraints which generate cutting planes. The cutting planes are nothing but
implied constraints from the original set of constraints.

Resolution Method

For propositional logical formulae in conjunctive normal form (CNF), the reso-
lution rule of inference is a complete inference method. The rule is as follows:

YV

YV ¢y (15)

D1V P2
Furthermore, for any constraint that includes only binary variables there exists
an equivalent CNF formula. The values of the variables are interpreted as True
and False. In [19], it is pointed out that for any constraint set in binary variables,
a generalized version of resolution [20] can generate all valid inequality cuts.

NB-Resolution [15, 19]

Resolution can be extended to the logic of discrete variables. NB-clauses involve
variables whose domains have arbitrary size and have the following form:

Xil/Sil V...VXin/Sin (16)

10

The resolution rule of inference can be extended to NB-resolution for NB-clauses:

Xi/S1V ¢
Xi/S2V ¢

(17)

Xi/Sk V 6
OV P2 V...V

where the premises are a minimal set of clauses such that S;N...NS, =0. In
[19], it is shown that k-resolution achieves k-consistency and another restriction
of resolution achieves adaptive consistency [9)].

Constraint Handling Rules (CHR)

CHR is a committed-choice language consisting of guarded rules with multiple
head atoms. Some of the rules define simplification of constraints. Other rules
define propagation over constraints, which add implied constraints in a similar
manner to the consistency methods.

Solvers Extensions

SoLeX [26] is a generic scheme, which consists of a set of symbolic rule-based
transformations that extend constraint solvers so that they handle constraints
involving new function symbols called alien constraints. SoLeX handles three
classes of alien constraints:

1. introducing a name to an extensional definition of a function. For example,
3.z% can be named p(z) and hence 3.y? will be named p(y).

2. functions that are not handled by the solver such as sin for some of the
arithmetic solvers.

3. functions with no defined meaning in the solver’s domain.

SoLeX has four phases. First, the reduction phase adds semantic and syntactical
information carried by the alien function. Second, implied valid constraints
from the alien functions are added by the expansion phase. Third, the solving
phase actually solves the constraints, after abstracting the remaining of the
alien functions. Finally, the contraction phase undo the effect of abstraction
and removes redundancies introduced by the expansion phase.

Solvers Collaborations

Collaboration of solvers can also be viewed as a way of generating implied
constraints. For example, one can combine the ILP approach with constraint
solvers of finite domain such as the work presented in [31]. These two solvers can

11

exchange information, in terms of implied constraints, and collaborate to solve
the problem. In [28], collaboration of solvers has been employed to solve non-
linear polynomial constraints and a general scheme BALI [27] that allows for the
integration, re-usability and collaboration of solvers in a domain independent
way has been proposed.

Redundant Modeling

In [2], the authors present a way of collaboration between redundant models
for the same problem, through what they called channeling constraints. The
information exchanged through the channeling constraints is nothing but im-
plied constraints, which help achieve more pruning very similar to the effect of
adding redundant constraints.

5 Generation of Implied Constraints

5.1 Classification of Implied Constraints
We propose the following the classifications of implied constraints:

1. Simplified implied constraint (or variable elimination): given a constraint
C constraining n variables (V = {Vi,...,V,,}), and a set S of other con-
straints among the n variables. We try to derive Cj,)p such that {C}US —
Cimp, and Cypp constrains n — 1 variables or less. Here is an example:

C=X+Y+7Z=12
V ={X,Y,Z}
S={Y > 7}
CUS 5 Cimp=X+2xY >12

(18)

We call this class C.

2. Specialized implied constraint: we try to derive a specialized implied con-
straint (global constraint), for which there exists an efficient implementa-
tion. Here is an example which derives the alldifferent constraint:

C={X#AYNXAZWANXAQNX#ZNZ#Y NQ #Y}

C — alldif ferent(X,Y, Z) (19)

We call this class C.

3. linear implied constraints inferred from linear and nonlinear constraints:
we try to imply a linear constraint provided a set of linear and nonlinear
constraints. such as the case in the following example:

A2 =1mod 2 — A=1mod?2 (20)

We call this class C3.

12

4. Abstract implied constraint (Variable introduction): we try to abstract
some relationship between some variables of the initial problem by intro-
ducing extra variables and try to infer implied constraints on the newly
introduced variables. Here is an example:

V={X,Y,Z,W}
C={X+Y #£2W — 32} (21)
CoP=X+YAQ=2W—-3ZAP#£Q

We call this class Cy.

5. Abstraction of problems into different constraint systems: given a problem
formulation in a particular domain (integer, set, list, etc), we will try to
derive some implied constraints on a different domain from the original
domain. For instance, suppose X,Y,.S and T are sets and in [17] one can
state the constraints SUT = X ASNT =Y. However, one can infer the
constraints | S | + | T |>] X | A| Y |> 0 which are in integer domain. We
call this class Cj.

6. Implied constraint over a new subset of variables: given a set of constraints
over a set of variables, we would like to infer a constraint over a subset of
variable for which there exists no constraint among them.

V:{X7Y7Z7W7M7N}
C={X=Y+ZAW=M-NAY +Z=3.(M~-N)} (22)
C— X=3W

We call this class Cs.

Assuming that we are able to generate such implied constraints, we should
identify how to use them. We here present how to use each class.

1. Class C1

5.2 The PRESS System

Overview

PRESS (PRolog Equation Solving System) [38] is a system which automatically
solves symbolic equations in one or more variables. It is modular, with different
kinds of equation-solving activity defined by azioms of the domain, and special-
purpose problem-solving procedures called methods, and has in the past been
tested on ’A’ level examination questions, which it can mostly solve quite well,
an overall 86.8 per cent success rate. The system generally tries to simplify
the (set of) (in)equations it has been asked to solve until it has a solution.
PRESS works in the domain of R-elementary equations, i.e., equations involving
polynomials, and exponential, logarithmic, trigonometric, hyperbolic, inverse
trigonometric and inverse hyperbolic functions over real numbers. PRESS has
six major methods:

13

e Isolation is a method for solving equations involving only a single occur-
rence of an unknown. It achieves this by applying some isolation rewrite
rules. Examples of such rewrite rules are:

log,V=W =V =U%" (23)

U-V=W=U=V+W

e Polysolve is a collection of polynomial methods thar are tried in turn de-
pending on the characteristics of the polynomial such as being symmetric
or ant-symmetric. For example, z! — 4.22 + 3 = 0 is identified to be
quadratic in 2% and the solution z2 = lorz? = 3 is found.

e Collection is a method to reduce the number of occurrences of the un-
known. Example of such rewrite rule is (U + V).(U = V) — U? — V2.

e Attraction is a method for bringing the occurrences of the unknown closer.
For instance the rule log,V + log,W — log,(V.W) is an attraction rule.

e Homogenization parses the equation and collects the terms which contain
the unknown that are non algebraic in the unknown. Then it tries to
replace such terms by some algebraic function of some single term. For
instance, (e%)® —4.e® + 3/e® = 0 can be changed to y* — 4.y + 3/y where
y is substituted for e”.

e Function swapping is a collection of methods that transform an equation
according to preference. For instance, \/x + y = 2 is transformed to (z +
y)? =4

Since PRESS is modular, it seemed like a good candidate for our initial experi-
ments in deriving implied constraints.

Improvements to the Press System

We modified PRESS is several ways in order to better suit our purposes:!

1. (Trivially) we updated the system to run on current versions of Prolog
(sicstus version 3).

2. We extensively modified the system to allow it to solve inequalities. Rather
than extending the existing inequality module, which is rather minimal,
we chose to generalise the equation-solving procedures, for example finding
roots of polynomials, to deal with inequalities. A key component of this
solution was to extend the notion of substitution from the preexisting
substitution using equalities — z = B F ¢ — ¢[B/z] — to inequalities.
Care must be taken over the direction of the inequalities, and the sign of

IThe following files were changed, from the distribution version: ./pressdir/toplevel/sim,
./pressdir/toplevel/simeq, ./pressdir/pressjunk/filin, ./pressdir/toplevel/solve, ./press-
dir/axioms/ineqis.ax, ./pressdir/methods/poly, ./util/struct.pl.

14

any coefficients multiplying the substituted variable. The following table
describes which substitutions using inequalities can be made, and how the
principal connective is effected.

L>R

h
\Y,
=
h
Il

=

Expression | L < R
Substitution
A< B
A<B
A>B
A>B
A=B

h
IANPAIA] X X IN
=

AN PAY AN R B
VIX|X|V]|V
V| X[X[IV|V
[HIANIAIVV

The table shows the main connective when an occurrence of A in the left
hand side of the formula has been replaced with B. An X in a cell means
that that substitution cannot be made. Substitution on the right hand
side is defined in terms of substitution on the left hand side.

As when rewriting under implication and negation, each position in the
expression has a polarity. The polarities of the subterms of B in A — B
is the opposite of the polarities of the subterms of B in A + B. Likewise
for A — 2B compared to A + 2B. Substitution of terms which are in a
position of negative polarity reverses the inequality of the substituting
term. A notion of unification on relations is defined to ensure that the
principal connective in a substituting formula is compatible with the main
connective in the expression on which the substitution is operating, and
what the resulting connective should be.

We plan the following improvements in the very near future:

1. Provide PRESS with relevant theory for whatever constraint domain we
are tackling.

2. PRESS tries to solve (in)equations. If it cannot find a solution, considers
that it has failed, and backtracks to the most recent choice point. In fact,
although the result of its manipulations may not constitute a “solution”
to the problem, they may be very useful implied constraints. We will
therefore modify the system with acceptance criteria, which are predicates
applied at the leaves of its derivation tree? to determine if the derived
formula should be kept as a candidate implied constraint. If it is accepted
in this way, then it is recorded in Prolog’s internal database and retrieved
when PRESS has finished its attempt to find a solution.

3. PRESS is heavily biased to finding a solution. The guidance may be too
tight and thereby miss some implied constraints. We may have to weaken
this guidance.

2We can represent an attempted derivation as a tree. Each choice point creates a branch.
The leaves are the formulae reached during deduction to which it could do no more and hence
backtracked.

15

4. Allow PRESS, in tightly-controlled circumstances, to make external calls
to a theorem prover (e.g. Clam, Otter) or a computer algebra system (e.g.
Maple) in order to further simplify or prune some constraints.

Experiments with the Press system

The following table shows a collection of examples. Some of the examples have
been encountred in [35, 32, 37]. The first column shows the class of the im-
plied constraints, the second the set of constraints and the last is the implied

constraints.
Class | Constraints Implied Constraints
A+B+C=12
Cq NA<B C>4NA<4
ANB<LC
Cs XAYANY #AZNX #£7Z alldif ferent([X,Y, Z])

A2+ B2+ (C?=12

Cs AA>0 (C>2VC<-2)A(A<2VA>-2)
AA<BAB<C
XxY*xZ=8AY<Z

Cs ANZ<? X>2

C, |A+B#C+D X=A+BAY=C+DAX£Y

Cs SUY =X [S|+|T|> X |
X=N-MAY=P—-N

Cs NZ—P_M Z=X+Y
X=A+BAY=C+D _

Co AA+C=1AB+D=3 | XY =4

s X=A+BAY =C+D X £Y

ANA+B#C+D

Our task is to check how much of these implied constraints can PRESS
produce. Here are the results:

Class Constraints Pressresults
Cy A+B+C=12ANA<BAB<LC yes
Cs XAEYANY #AZNX#£2Z no
Cs A2+ B2+ C?’=12ANA>0NA<BAB<C yes
Cs XxYxZ=8ANY<ZANZ<L2 yes
Cy A+B#C+D no
Cs SUuY =X no
Cs X=N-MANY=P-NANZ=P-M no
Ce | X=A+BANY=C+DANA+C=1NB+D=3 no
Cs X=A+BANY=C+DANA+B#C+D no

In addition to being modular and easy to update the PRESS system has the
following advantages:

16

e The PRESS system handles linear and nonlinear arithmetic constraints.

e The substitution mechanism of the PRESS system and its isolation, col-
lection and attraction rules allow it to handle very complex nonlinear con-
straints in a very nice way.

e PRESS can generate some implied constraints in classes C; and C

e The PRESS system can be easily updated to handle constraints over other
domains, such as set domain by adding the appropriate set axioms coded
as rewrite rules.

However, the PRESS system suffers from the following problems:

e PRESS is heavily biased to finding a solution. The guidance may be too
tight and thereby miss some implied constraints in the classes C; and Cs.

e PRESS can’t handle classes Cs, Cy, Cs, and Cj.

5.3 the clp(q,r) solver
Overview

The clp(q,r) solver [22, 23] of Sicstus Prolog [21] solves linear equations over
rational or real valued variables, employs a decision algorithm for linear in-
equalities which derives implied constraints, handles linear dis-equations, and
uses the lazy treatment for nonlinear equations, i.e. it collects them hoping that
with the addition of further linear constraints they might get simple enough to
solve.

Experiments with the clp(q,r) solver

The clp(q,r) as the PRESS system try to actually solve the set of constraints
provided, however what we were interested in is the implied constraints gener-
ated rather than the solutions. We carried out the same experiments as with
the PRESS system and here are the results:

Class Constraints Pressresults
C A+B+C=12NA<BAB<C(C no
Co X#AYANY #AZINX#Z no
Cs A2+ B> +C?>=12ANA>0NA<BAB<C no
Cs XxYxZ=8ANY<ZANZ<L2 no
Cy A+B#C+D no
Cs SuY =X no
Ce X=N-MANY=P-NANZ=P-M yes
Ce | X=A+BANY=C+DANA+C=1AB+D=3 yes
Cs X=A+BANY=C+DANA+B#C+D yes

As it can be seen from the experiments, the clp(q,r) solver has a great potential
to handle class C's. However, it cannot handle classes C', Cs, C3, Cy, and Cs.

17

5.4 The Otter system

Otter (I need refs) is an automated deduction system. Resolution and paramod-
ulation are the basis of its inference rules. The theorem to be proven by Otter
should be stated in first-order logic with equality.

Overview

Experiments with the Otter System

6 Evaluation of Implied Constraints

It is important to know when to add implied constraints and when not as such
implied constraints do not always save the search effort. If the set of constraints
are linear and the domains of variables are real, then there exist effective meth-
ods that can solve that, and any generation of implied constraints will not be
useful. If the constraints are linear and nonlinear and the problem is supposed to
be solved by MIP methods, then generating constraints of the classes C3 and Cy
will be beneficial. If we have solvers over different domains cooperating to solve
a hybrid CSP, then generating implied constraints of class C5, may help. Our
major focus, though, is on finite domain CSPs —where consistency techniques
and search are used to solve them — for which all classes (C4, Cs,C3, Cy, Cs and
Cs) of implied constraints can be generated and may or may not be useful in
the sense that adding implied constraints to the original problem may or may
not improve the efficiency. In order to evaluate the implied constraints the do-
mains of the variables should be provided in addition to the set of variables
and the set of constraints. Thus, making the evaluation a runtime process, and
hence effective methods should be developed. We will first show that evaluation
of implied constraints is dependent on the instance data. The domains of the
variables should be known in order to judge if an implied constraint will lead to
more pruning or not. Since adding implied constraints to the original problem
changes the topology of the constraint hyper-graph/(primal and dual) graph, we
will study the change to the properties of the constraint hyper-graph and their
relationship to local consistency and backtrack-free search. We will also try to
understand the effect of adding implied constraints to the original problem and
the level of local consistency, i.e., we will try to investigate the following ques-
tion: Given a problem P; and adding implied constraints to P; will yield a new
problem P». Now assume we maintain a certain level of consistency for problem
P,. What certain level of consistency is achieved for P;? Is it a stronger level
of consistency? Is it the same level of consistency? What are the conditions
and how to predict them beforehand? The exploration of this question will be
carried out for each class of implied constraints seperately.

6.1 Why is the Evaluation Instance Data Dependent?

Assume we have an original CSP involving the set of variables V', the set of
constraints C' and the set of domains D is not yet known. Suppose further that

18

CF R,ie., Ris aredundant constraint. Assume further that we are trying to
maintain a certain level of consistency by algorithm L. Now, if there exists a
method M that takes as input V', C, R, and L and returns yes if the redundant
constraint will lead to more pruning and no otherwise. We can always construct
D in a way that contradicts the answer returned by M in the following manner;
if the answer returned by M is yes then we simply choose the domains D in a
way so that it is inherently consistent according to L and thus R won'’t lead to
any further pruning. If the answer returned by M is no, then we simply choose
the domains D in a way so that it is inherently inconsistent according to L and
thus R will lead to some further pruning. Therefore, such an M does not exist
and the domains of the variables should be used as a parameter if we wish to
find such an M.

6.2 Graph-related Concepts

Hyper-graphs are a generalization of graphs. In a hyper-graph, each hyper-arc
may connect more than two nodes. Every CSP, with the set of variables V' and
the set of constraints C, can be associated with a constraint hyper-graph where
V' will be the set of nodes and for every constraint ¢ in C', there is an associated
hyper-arc (drawn as a region) among the variables constrained by c¢. When
the constraints are binary, the CSP will be represented by a graph. A primal-
constraint graph represents variables by nodes and associates an arc with any
two nodes involved in the same constraint. A dual-constraint graph represents
the variables involved in a constraint by a node and associates a labeled arc with
any two nodes who share some variables. The arcs are labeled with the shared
variables. The dual graph transforms a non-binary CSP into a special type of
binary CSP where the variables involved in a constraint in the non-binary CSP
are represented by a variable in the binary CSP with their domains ranging
over all combinations permitted by the corresponding constraint, and any two
adjacent nodes in the dual graph, their shared variables should have the same
value. In [6], the author surveys some of the methods that relate the level of
local consistency and backtrack-free search based on the topological features of
the primal constraint graph. For a binary CSP, if the constraint graph is a tree
then it can be solved in a linear time ([11, 29, 7].)

6.3 Class ()

6.4 Class ()

6.5 Class C

19

6.6 Class ()

Given an initial C'S P involving the set of variables V' and the set of constraints
C, the implied constraints of class Cy will introduce a new set of variables V.
and new set of constraints Cje, to the original CSP. Thus our new problem
C'S Py will be involving the set of variables V' UV,,.,, and the set of constraints
C U CCpew. Solving CSP,e, and projecting the answer on the set of variables
V is in fact a solution to the C'SP. The set of variables V., is redundant in
the sense that the removal of V)¢, together with all the constraints connecting
them C),¢,, does not change the set of solutions to the original problem C'SP.
In [33], Vyew is called the set of hidden variables while V' is the set of visible
variables. Furthermore, in [33], sufficient conditions for hidden variables are
explored. We will try to use the results found there ...

6.7 Class C;

6.8 Class Cg

7 Work Plan

The following is a proposed timetable of the tasks that need to be done for next
year.

e Carry out the same experiments with the otter system. Should be done
by September the 15th, 2000 .

e carry out a deep study about the evaluation of implied constraints in
general. Should be done by October 30th, 2000.

e Study the evaluation of two class of implied constraints (to be chosen
later). Should be done by April 2001.

e Propose a hybrid system (which may have ATP components as well as
other 0 components) that has the capabilities of generating implied con-
straints of the chosen two classes. Should be done by June 15th, 2001.

e Implement a prototype system. Should be done by August, 30th, 2001. .

e Selecting the fast techniques to be used if the generation is at run-time.
Should be done by October the 15th, 2001.

20

8 Conclusion

In this report, we tried to define the issues related to the automatic generation
and evaluation of implied constraints. After defining compile-time versus run-
time generation of implied constraints, we presented a classification of implied
constraints and experimented with some of ATP technologies to see how much
of these classes can they handle. We then defined the problem of evaluating
implied and pointed out to some possible future directions.

References

[1]

2]

(8]

[9]

[10]

[11]

[12]

E. Balas, S. Ceria, G. Cornuejols, and N.R. Natraj. Gomory cuts revis-
ited. Operations Research Letters, 19, 1996.

B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing
constraint propagation by redundant modeling: an expertise report. xxx.

M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,
41:89-95, 1989.

M. Carlson, G. Ottosson and B. Carlson. An open-ended finite domain
constraint solver. Proc. Programming Languages: Implementations, Log-
ics, and Programs, 1997.

Ph. Codognet and D. Diaz. Compiling constraints in clp(FD). J. of Logic
Programming 27(3):185-226, 1996.

R. Dechter. Constraint Networks. In Encyclopedia of Artificial Intelli-
gence, 2nd edition, 1992, John Wiley & Sons, Inc., pp. 276-285.

R. Dechter and J. Pearl. Network-based heuristics for constraint satis-
faction problems. Artificial Intelligence, Vol. 38, No. 1, pp. 1-38, 1987.

R. Dechter and J. Pearl. Network-based heuristics for constraint satis-
faction problems. Artificial Intelligence, 34:1-38, 1988.

R. Dechter and J. Pearl. Network-based heuristics for constraint sat-
isfaction problems. In Kanal and Kumar, editors, Search in Artificial
Intelligence. Springer-Verlag, 1988.

G.B. Dantzig. Linear programming and extensions. Princeton University
Press, Princeton, N.J., 1963.

E.C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, Vol. 92, No. 1, pp., 24-32, 1982.

E.C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958-
966, 1978.

21

[13] E.C. Freuder. A sufficient condition for backtrack-bounded search. J.
ACM, 32:755-761, 1985.

[14] E. C. Freuder. Backtrack-free and backtrck-bounded search. In Kanal
and Kumar, editors, Search in Artificial Intelligence. Springer-Verlag,
1988.

[15] A.M. Frisch. Solving constraint satisfaction problems with NB-resolution.
In S. Muggleton, D. Michie and Luc De Raedt, editors, Machine Intelli-
gence 16, 2000. Electronic Transactions in Artificial Intelligence.

[16] R.S. Garnfield and D.S. Nemhauser. Integer programming. Jhon Wiley
and Sons, New York, 1972.

[17] C. Gervet. Interval propagation to reason about sets: Definition and
implementation of a practical language. Constraints 1(3):191-244, 1997.

[18] L. Getoor, G. Ottosson, M. Fromherz and B. Carlson. Effective redun-
dant constraints for online scheduling. In Proceedings of AAAI’97, 1997.

[19] J.N. Hooker. Constraint satisfaction methods for generating valid cuts.
XXX.

[20] J.N. Hooker. Generalized resolution for 0-1 inequalities. Annals of Math-
ematics and Artificial Intelligence, 6, 271-286, 1992. xxx.

[21] C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research
Institute for Artificial Intelligence, Vienna, TR-95-09, 1995.

[22] C. Holzbaur. A High-Level approach to the realization of CLP languages,
in Proceedings of the JICSLP92 Post-Conference Workshop on Con-
straint Logic Programming Systems, Washington D.C., 1992.

[23] C. Holzbaur. A Specialized, incremental solved form algorithm for sys-
tems of linear inequalities, Austrian Research Institute for Artificial In-
telligence, Vienna, TR-94-07, 1994.

[24] J. Jaffar, M. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503-582, May/July 1994.

[25] U. Montari. Networks of constraints: Fundamental properties and appli-
cations to picture processing. inform. Sci., 7:95-132, 1974.

[26] E. Monfroy and C. Ringeissen. An open automated framework for con-
straint solver extension: the SoLeX approach. Fundamenta Informaticae
34, 1-20, IOS Press, 1999.

[27] E. Monfroy. The constraint solver collaboration language of BALI. xxx.
[28] E. Monfroy, M. Rusinowitch, and R. Schott. Implementing non-linear

constraints with cooperative solvers. xxx.

22

[29] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Ar-
tificial Intelligence, Vol. 25, No. 1, 1984.

[30] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99-118, 1977.

[31] G. Ottosson. Integration of constraint programming and integer pro-
gramming for combinatorial optimization. Uppsala Theses in Computing
Science 33. 143 pp. Uppsala. ISSN 0283-359X, ISBN 91-506-1396-0.

[32] L. Proll and B.M. Smith. ILP and constraint programming approaches
to a template design problem. University of Leeds, TR-97.16

[33] F. Rossi. Redundant hidden variables in finite domain constraint prob-
lems, in Constraint Processing, M. Meyer ed., Springer-Verlag, LNCS
923, 1995.

[34] F. Rossi. Existential variables and local consistency in finite domain con-
straint problems, in Proc. CP96, Springer Verlag, LNCS 1118, 1996.

[35] B.M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb ruler
problem. In Proceedings of the IJCAI99 Workshop on Non-Binary Con-
straints. International Joint Conference on Artificial Intelligence, 1999.

[36] G. Smolka. The Oz programming model. In Jan Van Leeuwen, editor,
Computer Science Today LNCS, No. 1000, Springer Verlag, 1995.

[37] K. Stergiou and T. Walsh. The difference all-different makes. xxxx

[38] L. Sterling, A. Bundy, L. Byrd, R. O’keefe, and B. Silver. Solving sym-
bolic equations with PRESS. J. Symbolic Computation, 7, 71-84, 1989.

[39] E.P.K. Tsang. Foundation of constraint satisfaction. Academic Press,
1993.

[40] P. Van Hentenryck. The oPL Optimization programming language. The
MIT Press, 1999.

23

