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Abstract

Breaking Symmetries in Matrix Models

Henrik Öhrman

A number of problems may be considered as constraint satisfaction
problems. Such a problem is basically a number of variables that are allowed
certain values subject to a number of constraints. An example from
real life is the Sudoku puzzles. This paper mainly focus on 
constraint satisfaction problems formulated with matrix models and how
to reduce symmetry in them by adding constraints. In particular a
special kind of constraints has been studied, namely lexicographic constraints
and a way of simplifying them has been developed. The fully simplified
lexicographical constraints for matrix models of size 2x3, 4x3 and 4x4
have been studied. Earlier only the fully simplified lexicographical
constraints for the 2x3 matrix had been studied. Minimized conjunctive
normal form and disjunctive normal form of the constraints has also
been examined. A method for finding a subset of the lexicographical
constraints which breaks a major part of the symmetry has also been
devised. The results in this paper mainly builds upon earlier research
by Flener and Pearson at the ASTRA research group, Uppsala University,
and Frich and Harvey at the University of York.
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Sammanfattning

Många riktiga problem inom datorvärlden g̊ar att betrakta som olika slags op-
timeringsproblem. Ett optimeringsproblem är som det l̊ater: man försöker opti-
mera n̊agot med hänsyn till n̊agot annat. Detta l̊ater kanske n̊agot abstrakt och
för att göra det mer konkret s̊a kan man tänka p̊a olika ”väghittar”-tjänster.
Dessa är oftast uppbyggda s̊a att givet en start- och en slutpunkt s̊a ska man
hitta en väg som är optimerad med avseende p̊a exempelvis sträckan som
den resande ska åka. Constraint satisfaction problems, villkorsproblem, är en
typ av optimeringsproblem. Det som skiljer dem åt är att specifikationen för
ett villkorsproblem gör det möjligt att använda sig av en del generella prob-
lemlösningsrutiner för att lösa problemet medan man i optimeringsproblem of-
tast måste använda problemspecifika lösningsmetoder.

För att f̊a en mer intuitiv bild av vad ett villkorsproblem är, s̊a kan man ta
ett klassiskt problem som brukar kallas för 8-damers problemet. Problemet g̊ar
ut p̊a att placera 8 stycken damer p̊a ett schackbräde. Detta l̊ater sig lätt göras,
nästan lite för lätt och det finns därför en del villkor som måste vara uppfyllda.
Dessa kan formuleras lite olika men g̊ar i princip ut p̊a att ingen dam f̊ar st̊a i
en position där den kan sl̊a en annan dam. Detta l̊ater sig inte lika lätt göras.

Ett annat exempel är olika sorter av kryptoaritmetiska pussel. Det här prob-

SEND
+ MORE

-------
MONEY

lemet bygger p̊a att varje bokstav skall anta ett heltalsvärde mellan 0 och 9 p̊a
s̊a sätt att ekvationen är uppfylld. För att göra det hela lite sv̊arare s̊a måste
alla bokstäverna ha olika värden, vilket gör att lösningen där alla bokstäver
antar värdet noll inte är giltig.

De ovan nämnda problemen skulle man med fördel kunna formulera som
villkorsproblem och använda en villkorsproblemlösare för att lösa. Det sista
problemets villkor skulle se ut ungefär som det följande: 1000 · (S + M) + 100 ·
(E + O) + 10 · (N + R) + (D + E) = 10000 ·M + 1000 ·O + 100 ·N + 10 ·E + Y .
Detta ihop med en specifikation av vilka värden som är möjliga för bokstäverna
som ing̊ar i uttrycket samt ett villkor som säger att alla bokstäverna skall anta
olika värden är allt som behöver anges för att villkorsproblemlösaren skall hitta
svaret till problemet.

Tr̊akigt nog är inte alla problem lika lättlösta som problemen ovan och det tar
ibland alltför l̊ang tid för villkorsproblemlösaren att hitta en lösning som upp-
fyller alla de givna villkoren. En av anledningarna till att det kan ta alltför l̊ang
tid är n̊agot som brukar kallas för symmetrier. Lösningar som är symmetriska
är i det här fallet att betrakta som likadana som n̊agon annan lösning, och om
man har hittat den ena lösningen s̊a vill man inte att villkorsproblemlösaren
skall tillbringa n̊agon tid med att utforska lösningar som man anser är likadana.
För att f̊a en bättre bild av varför man betraktar vissa lösningar som likadana
kan vi återg̊a till exemplet med damerna och schackbrädet. Det är ett problem
som har ett antal olika lösningar och ett antal symmetriska lösningar - första
g̊angen som man försöker lösa det s̊a känns det inte s̊a, utan man kan lätt inbilla



sig att det inte finns n̊agon lösning! L̊at oss anta att vi har hittat en lösning.
Om man d̊a vrider hela schackbrädet ett kvartsvarv till höger s̊a har man en ny
lösning som uppfyller alla villkoren. Denna lösning brukar man betrakta som
symmetrisk med den tidigare lösningen, det vill säga som i n̊agon mening samma
lösning.

Det som behandlas i det här arbetet är villkorsproblem representerade med
hjälp av matrismodeller. En matrismodell är i det här fallet ett villkorsproblem
som inneh̊aller en matris av beslutsvariabler. Beslutsvariabler skulle i exem-
plet med SEND+MORE=MONEY vara de ing̊aende bokstäverna som kan anta olika
värden. Den typen av symmetrier som har reducerats är olika kombinationer
av rad- och kolumnsymmetrier. En radsymmetri uppkommer när man l̊ater tv̊a
rader i matrisen byta plats med varandra och en kolumnsymmetri uppkommer
genom att l̊ata tv̊a kolumner byta plats med varandra. Dessa tv̊a sätt kan sedan
kombineras med varandra och ge en massa symmetrier. Ett sätt att reducera de
symmetrier som uppkommer är genom att till det ursprungliga problemet lägga
till extra villkor. Ett populärt s̊adant villkor är att de olika raderna och kolumn-
erna måste vara lexikografiskt ordnade. Med lexikografiskt ordnade menar man
att om raderna st̊att i en ordbok s̊a hade en lexikografiskt mindre rad st̊att före
de lexikografiskt större raderna. Det finns mer formella sätt att beskriva detta
men d̊a f̊ar man titta mer i arbetet. Problemet med rad- och kolumnsymmetrier
är tyvärr inte till fullo löst genom att man lägger till villkoren att de olika rader-
na och kolumnerna skall vara lexikografiskt ordnade. Detta för att det existerar
matriser som är symmetriska med varandra men änd̊a uppfyller villkoren.

[
0 0 1
1 1 0

] [
0 1 1
1 0 0

]

Den övre raden skulle, i en ordbok, st̊a före den undre raden i b̊ada dessa matris-
er och de är allts̊a lexikografiskt ordnade. P̊a samma sätt är även kolumnerna
ordnade fr̊an vänster till höger. Trots detta är matriserna faktiskt symmetriska.
Det kan man inse genom att utg̊a fr̊an matrisen till vänster, byta plats p̊a rader-
na och i den matris som man f̊ar d̊a byta plats p̊a första och sista kolumnen.

Arbetet behandlar vidare olika alternativa villkor, vilka har en nackdel i och
med att det krävs ett stort antal av dem för att bryta samtliga symmetrier.
Här behandlas ocks̊a hur man kan minska ner deras antal, göra dem kortare
och samtidigt bryta alla rad- och kolumnsymmetrier i matrismodellen. Metoder
som inte bryter samtliga symmetrier men dock fler än att ordna raderna och
kolumnerna lexikografiskt har ocks̊a studerats. Slutresultatet är i princip att de
metoder som inte bryter samtliga men änd̊a en stor del av matriserna är att
föredra. Detta d̊a det ger en god avvägning mellan antalet villkor som behöver
tillföras problemet och hur många symmetrier som bryts.
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Chapter 1

Introduction

Many of the real world problems of today can be considered as optimization
problems of some sort. They occur in a lot of different situations, such as
banking, logistics and scheduling. Constraint satisfaction problems are a kind of
optimization problems and have the possibility to use general heuristics instead
of problem specific heuristics for solving the problem. Advantages with using a
constraint satisfaction approach include that a fairly large number of problems
can be specified in an easy and intuitive way. Consider as an example the
simple cryptarithmetic-puzzle in Figure 1.1 in which each of the letters should

SEND
+ MORE

-------
MONEY

Figure 1.1: Simple Cryptarithmetic-Puzzle

be replaced with an integer from zero to nine but a different integer for each
different letter. That is, however, not all. The idea is that the numbers one gets
when replacing all the letters in SEND and MORE with digits should add up
to the number one gets when replacing all the letters in MONEY. This simple
problem, easy by hand, might still result in quite a complicated program in an
imperative language, such as C or Java. In order to solve this problem in a
constraint satisfaction solver, one instructs the program what variables are part
of the problem, in this case (in lexicographic order) D, E, M, N, O, R, S, Y,
and what values it is possible that they have, in this case any integer between
zero and nine. It is also necessary to add the different constraints in some way,
the constraints we have from the problem formulation are that all the letters
should be different and that SEND+MORE=MONEY. The later constraint is
easily expressed as 1000 · (S +M) + 100 · (E +O) + 10 · (N +R) + (D +E) =
10000 ·M + 1000 ·O+ 100 ·N + 10 ·E + Y , and most constraint solvers include
a built-in predicate for stating that a number of variables have to have different
values. The ease with which relatively complicated problems can be stated
makes it possible for the programmer to focus on how to solve the problem fast
and find out if the solution works.

7



8 CHAPTER 1. INTRODUCTION

1.1 Problem Area and Research Questions

Some of the problems that may be formulated as constraint satisfaction problems
still remains rather difficult to solve, with respect to limited time and memory.
One reason for this is that the problem has a lot of symmetric solutions. A
symmetric solution can somewhat simplified be said to be a solution which
essentially can be considered as equivalent with at least one other solution. The
reason that problems with a lot of symmetries may be harder to solve than
problems without are that there is a risk that the constraint solver spends to
much time exploring possible solutions which are essentially the same as an
already found solution. This problem may be resolved in a few different ways,
either by adding extra constraints which break the symmetries or by identifying
and removing the symmetries during search. Both of these approaches have
been studied, for the first approach see [11, 5, 9] and for the second [2, 6, 10, 12]

The research in this paper mostly builds uppon earlier research aimed at the
first of these two methods and obstacles and problems which has arisen there.

The questions that are studied include:

• Is it possible to find a polynomial subset of constraints which breaks most
of the symmetries? This question is of interest according to [9] and the
reason for this is that the set of constraints which breaks all of the sym-
metries are huge in the size of the matrix. A method to mechanize the
simplifications of the constraints are also needed since there yet is none,
see [9, 7, 11].

• Generate and study a set of lexicographical constraints for larger matrices
than the earlier studied largest matrix, which is M3×2. Motivation for this
research question is found in [11].

• Examine possible domain specific simplifications, both by removing lexi-
cograpic constraints which are redundant when the domain of the decision
variables are small and by simplify the logical expression which is equiva-
lent with the constraints.

Purpose

The aim of the paper is to develop more effective and faster ways to solve
problems which contain a lot of symmetries. This is not a new area of research
and the purpose will be achived by finding answers to some earlier questions that
has arisen in the area of constraint logic programming. The specific questions
that are considered are listed above. New questions that has arisen during the
resarch will be adressed or will be commented upon as possible future directions
for research.

1.2 Delimitations

This paper will only consider symmetries in matrix models, and of the possible
symmetries only row and column symmetries will be considered. This means
that for example rotational symmetries not will be treated. The reason for this
delimitation is lack of time and that most earlier research has been conducted
on row and column symmetries.
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Note that not all possible domains for the decision variables will be consid-
ered for all constraints. This is partly due to that domain two is quite much
easier to represent in tools used for logic minimization (such as Espresso). How-
ever, some tests for domain three will be conducted in order to find out how
sensitive the different constraints are for changes in the size of the domain.
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Chapter 2

Theory

In this chapter, the theory that is needed for the reader to understand the
problem in depth is developed. The discussed theory includes the definition of
constraint satisfaction problems, the definition of different kinds of symmetries,
some first order predicate logic, and how to minimize different kinds of logic
formulas. Most of the theories on how to simplify different kinds of constraints
include an example for the case of a 2×3-matrix. This matrix has been choosen
because it is the smallest matrix studied in this paper and is illustrative.

2.1 Constraint Satisfaction Problems

In order to reason about constraint satisfaction problems in a more precise way,
a formal definition of such problems is needed.

Definition 2.1.1. A Constraint Satisfaction Problem, from now on abbre-
viated as CSP, is a set S = {X1, X2, . . . , Xn} of variables and a set C =
{C1, C2, . . . , Cn} of constraints. Each of the variables Xi ∈ S is associated
with a non empty domain Di. A constraint Cj ∈ C specifies a number of vari-
ables, belonging to S, and allowable values for them [15]. The variables are
often called decision variables.

A state of a constraint satisfaction problem is an assignment of values to a
subset of the variables. A consistent assignment is an assignment which does not
violate any constraints. If all the variables in a constraint satisfaction problem
are assigned a value it is said to be a complete assignment. A complete and
consistent assignment is called a solution to the constraint satisfaction problem
[15].

One way to formulate a constraint satisfaction problem in an efficient man-
ner is to use a matrix model for it. A matrix model is a constraint program
that contains one or more matrices of decision variables [8]. Some constraint
satisfaction problems naturally lend them selves to such a formulation and oth-
ers are harder to formulate. It is easy to see that it is possible to rewrite every
constraint satisfaction problem to include a matrix model, for example by rep-
resenting the decision variables in the problem as 1×1-matrices, which of course
is not a very efficient formulation. However, a lot of the problems that are rel-
atively difficult to formulate as matrices of decision variables can be effectively

11



12 CHAPTER 2. THEORY

represented and solved as such [8]. An example of a class of problems that is
easy and natural to formulate with a matrice of decision variables are the round
robin tournaments (see problem 026 in CSPlib [4]). The problem is in short
to schedule a tournament with n teams over n − 1 weeks, where each week is
divided into n/2 periods and each period is divided into two slots. Every team
takes up one slot when playing. A tournament must satisfy the following three
constraints:

• Every team plays once a week.

• Every team plays at most twice in the same period over the tournament.

• Every team plays every other team.

When trying to find a solution to this problem with a naive approach a lot of
similar solutions are found. For example, consider the schedule in Table 2.1.
From this solution it is easy to find another solution simply by exchanging one

Table 2.1: Simple Round Robin Tournament for n=4

week 1 week 2 week 3
period 1 A-B A-C A-D
period 2 C-D B-D B-C

of the columns representing a week with another column representing a different
week. Similarly for the rows (periods), and for the two teams of a game. Those
solutions may in some sense be considered to be equal, and a program that does
not exclude such solutions may acctualy fail to find a correct answer in time.

The idea behind using a CSP-approach for solving such problems is that
one does not in detail have to program how different values are assigned to
variables, how to implement different constraints and similar things. This is
instead considered by a constraint logic program (clp) solver. As an example
consider the solver provided in SICStus prolog, and the simple cryptarithmetic-
puzzle in Figure 1.1.

Example The first row in the program is used for importing the clp for finite
domains into the Prolog session and have to be included if the program uses
this solver.

The programing of the cryptarithmetic-puzzle is carried out in three different
steps:

1. In this step the domain of the different decision variables is stated. In this
case all the variables have the same domain, that is {0, 1, . . . , 9}.

2. In the second step the different constraints are posted. The constraints
are: S and M have to be larger than 0;1 all of the variables have to be
different, and the predicate sum\1 is called. This predicate contains the
constraint that 1000·S+100·E+10·N+D+1000·M+100·O+10·R+E =
10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

1This constraint is somewhat consealed in the problem formulation. The reason for it is
because integers do not inlude initial zeros.
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3. The last step is concerned with what variables the clp solver is going to
try to find values for and in what way this is conducted. In SICStus a
number of different ways are available, see [3].

The complete program is described below:

:- use_module(library(clpfd)).

scrypt([S,E,N,D,M,O,R,Y], Type) :-
domain([S,E,N,D,M,O,R,Y], 0, 9), % step 1
S#>0, M#>0,
all_different([S,E,N,D,M,O,R,Y]), % step 2
sum(S,E,N,D,M,O,R,Y),
labeling(Type, [S,E,N,D,M,O,R,Y]). % step 3

sum(S, E, N, D, M, O, R, Y) :-
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

A CSP can also be considered as a standard search problem. Such a problem
consists of an initial state, a successor function, a goal test, and a path cost.
In the case of a CSP the initial state is when all the variables are unassigned,
the successor function is any variable assignment which does not conflict with
an earlier variable assignment, the goal test checks if the variable assignment is
complete and finally, the path cost is a constant. As earlier mentioned there is
different techniques for choosing what variable assignment to do. The default
in SICStus is leftmost, which means that the leftmost variable is choosen for
assignment. A common search strategy used for CSPs are depth first-search
algorithms. The reason for this is that if the problem involves n variables the
solution to the problem has to be found at depth n in the tree since a solution
has to be a complete assignment. For a more complete treatment of different
search strategies and methods for assigning values to variables see [15].

2.2 Logic

Constraints are logical formulas. A brief introduction to the area of first-order
predicate logic is therefore presented in this section.

This is only a brief introduction to predicate logic and the interested reader
is referenced to Nerode and Shore [13] for a more complete introduction. First,
the different kind of symbols which are allowed in a logic expression is defined.

Definition 2.2.1. A language L consists of the following sets of symbols:

1. Variables: x, y, z, v, x0, x1, . . . , y0, y1, . . .

2. Constants: c, d, c0, d0, . . .

3. Connectives: ∧,¬,∨,→,↔
4. Quantifiers: ∃, ∀
5. Predicate symbols: P,Q,R, P0, P1, . . . , R0, R1 . . .
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6. Function symbols: f, g, h, f0, f1, . . . , g0, . . . of different arities.

7. Punctation: the comma , and the left and right parantheses (, ).

Definition 2.2.2. A term is:

1. Every variable is a term

2. Every constant is a term

3. If f is an n-ary function symbol, n ∈ N, and t1, t2, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

Definition 2.2.3. An atomic formula is R(t1, t2, . . . , tn) where R is an n-ary
predicate symbol and t1, t2, . . . , tn are terms.

Definition 2.2.4. The following are formulas:

1. Every atomic formula is a formula.

2. If α and β are formulas then so are (α ∧ β), (¬α), (α ∨ β), (α → β) and
(α↔ β).

3. If v is a variable and α is a formula, then ((∃v)α) and ((∀v)α) are formulas.

Definition 2.2.5. Subformula and open formula.

1. If α is a formula and β is a consecutive sequence of symbols from α and
also a formula, then β is a subformula of α.

2. An occurence of a variable v in a formula ϕ is bound if there is a subformula
ψ of ϕ containing that occurence of v such that ψ begins with ((∀) or ((∃).
(This includes the v in ∀v and ∃v that are bound by this definition.) An
occurence of v in ϕ is free if it is not bound.

3. A variable v is said to occur free in ϕ if it has at least one free occurrence
there.

4. An open formula is a formula with no quantifiers2.

Theorem 2.2.6. Prenex Normal Form
For every formula α there exists an equivalent formula β with the same free
variables in which all quantifiers appear at the beginning. β is called a prenex
normal form of α.

Proof. Omitted, see [13], page 129.

Definition 2.2.7. A conjunctive normal form (CNF) of a formula Bα is a for-
mula B(α1,1∨α1,2∨. . .∨α1,n1)∧(α2,1∨α2,2∨. . .∨α2,n2)∧. . .∧(αk,1∨αk,2∨. . .∨
αk,nk

), where α1,1, α1,2, . . . , α1,n1 , α2,1, α2,2, . . . , α2,n2 , . . . , αk,1, αk,2, . . . , αk,nk
are

atomic formulas and B is the consecutive sequence of quantifiers in the prenex
normal form of Bα.

2Normally an open formula has at least one free variable but this definition is in accordance
with [13] and has therefore been used.
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Definition 2.2.8. A disjunctive normal form (DNF) of a formula Bα is a for-
mula B(α1,1∧α1,2∧. . .∧α1,n1)∨(α2,1∧α2,2∧. . .∧α2,n2)∨. . .∨(αk,1∧αk,2∧. . .∧
αk,nk

), where α1,1, α1,2, . . . , α1,n1 , α2,1, α2,2, . . . , α2,n2 , . . . , αk,1, αk,2, . . . , αk,nk
are

atomic formulas and B is the consecutive sequence of quantifiers in the prenex
normal form of Bα.

A litteral is in this context the same as an atomic formula or its negation.
In this paper only formulas without any quantifiers will be considered so B in
the above definitions will always be of length 0.

Definition 2.2.9. Let [x1, x2, . . . , xn] ≤lex [y1, y2, . . . , yn] be defined to be
(x1 < y1) ∧ (x1 = y1 → x2 ≤ y2) ∧ (x1 = y1 ∧ x2 = y2 → x3 ≤ y3) ∧ . . ..
An alternative recursive definition is: Let [x1, x2, . . . , xn] and [y1, y2, . . . , yn] be
two sequences of values. Then [x1, x2, . . . , xn] ≤lex [y1, y2, . . . , yn] is:

• For any two sequences [xi], [yi], of length 1, [xi] ≤lex [yi] if xi = yi or
xi < yi

• For any two sequences [x1, x2, . . . , xi], [y1, y2, . . . , yi], of length greater than
1, [x1, x2, . . . , xi] ≤lex [y1, y2, . . . , yi] if x1 < y1 or if both x1 = y1 and
[x2, . . . , xn] ≤lex [y2, . . . , yn] are true.

Definition 2.2.10. De Morgan’s Laws

1. ¬(α ∨ β) ↔ (¬α ∧ ¬β)

2. ¬(α ∧ β) ↔ (¬α ∨ ¬β)

De Morgan’s Laws also exist in a more generalised version.

Theorem 2.2.11. De Morgan’s Law, generalised version ¬(α1∨α2∨. . .∨αn) ↔
¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αn, where α1, α2, . . . , αn are atomic formulas.

Proof. By induction, base case: ¬(α1) ↔ ¬α1, obvious true. ¬(α1 ∨ α2) ↔
(¬α1 ∧ ¬α2) true by De Morgan’s Laws.Assumption for induction: (i) ¬(α1 ∨
α2 ∨ . . . ∨ αk) ↔ ¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αk, we want to show that (i) implies that
¬(α1 ∨α2 ∨ . . .∨αk+1) ↔ ¬α1 ∧¬α2 ∧ . . .∧¬αk+1. Let β be α1 ∨α2 ∨ . . .∨αk,
then is ¬(β ∨ αk+1) ↔ ¬β ∧ ¬αk+1, by De Morgan’s Laws. This, however,
equals ¬(α1 ∨α2 ∨ . . .∨αk)∧¬αk+1, which by the induction hypothesis equals
¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αk+1

Theorem 2.2.12. ¬(α1 ∧ α2 ∧ . . . ∧ αn) ↔ ¬α1 ∨ ¬α2 ∨ . . . ∨ ¬αn, where
α1, α2, . . . , αn are atomic formulas.

Proof. Almost identical with that of Theorem 2.2.11.

2.3 Symmetries

Symmetries are to a large extent to blame for making some problems almost
unsolvable in a practical sense, with limited time and memory. In this section
different kinds of symmetries, such as row and column symmetry in matrix
models, are defined. Symmetry in a more general context is also defined.

Row symmetry in a matrix can be thought of as allowing the rows to swap
place with each other. The matrix before the swap and the matrix after the
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swap are then said to be row-symmetric. If one instead allows two columns
to swap place it is called a column symmetry. A more formal definition is as
follows:

Definition 2.3.1. The following are different kinds of symmetries [9]:

• A symmetry is a bijection on the decision variables that preserves solutions
and non-solutions.

• A row symmetry of a 2-d matrix is a bijection between the variables of
two of its rows that preserves solutions and non-solutions.

• A column symmetry of a 2-d matrix is a bijection between the variables
of two of its columns that preserves solutions and non-solutions.

2.4 Breaking Symmetries

This section explains different approaches in order to break all, or most, of
the symmetries in CSP. It is, however, primarily concerned with methods and
theories for breaking symmetries in matrix models of constraint satisfaction
problems by adding constraints. It is also possible to break the symmetries by
modifying the search procedure used and by adding constraints during search,
see for example [2, 6], the global cut framework (GCF) [10] or the symmetry-
breaking during search framework (SBDS) [12].

2.4.1 Adding Constraints

Lexicographic constraints are a special kind of constraints that can be used for
breaking symmetries in matrix models. They are easy to use and have earned
a lot of interest, see for example [11, 5, 9].

The lex2-constraints –fails to remove all the symmetries

Flener et al. [7] has shown that one can consistently add the lexicographic
constraint that both the rows and the columns should be lexicographically or-
dered. This constraint is called lex2. It was also shown that even though the
constraint successfully removes a number of the symmetries it fails to remove
them all. This was also independently shown by Shlyakhter [16]. In order to
illustrate the use of these constraints consider the matrix consisting of two rows
and three columns in Figure 2.1. The constraint that the two rows should be

[
x1 x2 x3

x4 x5 x6

]

Figure 2.1: Matrix for the 2× 3-case

lexicographically ordered can be expressed as in formula 2.1:

[x1, x2, x3] ≤lex [x4, x5, x6] (2.1)



2.4. BREAKING SYMMETRIES 17

Table 2.2: Elements in the complete symmetry group for M2×3

Permutation Name Largest Cycle
() id 1

(1,2)(4,5) Pc12 2
(2,3)(5,6) Pc23 2

(1,4)(2,5)(3,6) Pr12 2
(1,6,2,4,3,5) Pδ 6
(1,5,3,4,2,6) Pσ 6

(1,4)(2,6)(3,5) Pα1 2
(1,5)(2,4)(3,6) Pα2 2
(1,6)(2,5)(3,4) Pα3 2

(1,3)(4,6) Pc13 2
(1,2,3)(4,5,6) Pc123 3
(1,3,2)(4,6,5) Pc132 3

The constraints that the three columns should be lexicographically ordered can
be expressed as two different constraints3, see formula 2.2.

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

(2.2)

In order to see that those constraints not are enough to break all the symmetries
for a 2×3-matrix it is sufficient to consider the following situation:

[
0 0 1
1 1 0

] [
0 1 1
1 0 0

]

None of these matrices contradicts the lex2-constraint. They are, however,
symmetric with each other as it is possible to get from the left matrix to the
right by first swapping the two rows, and then swapping the first column with
the last column. In order to break even more symmetries other methods are
thus needed.

The lex-constraints

A method for breaking all the symmetries in a matrix problem was developed in
[5]. The method uses some group theory and a short description of the method
follows.

Example Let M be the matrix in Figure 2.1. It can be represented as a vector
of length 6, (x1, x2, x3, x4, x5, x6). The different permutations of the elements
can in cycle notation be described as (1, 4)(2, 5)(3, 6), (1, 2)(4, 5) and (2, 3)(5, 6).
Those three generators generate the complete symmetry group for M , consisting
of 12 elements, including the identity permutation. The complete symmetry
group for M is described in Table 2.2.

3In SICStus Prolog it is possible to express them as a single constraint with the use of the
predicate lex chain/1
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[x1, x2, x3, x4, x5, x6] ≤lex [x2, x1, x3, x5, x4, x6] (c12)
[x1, x2, x3, x4, x5, x6] ≤lex [x1, x3, x2, x4, x6, x5] (c23)
[x1, x2, x3, x4, x5, x6] ≤lex [x4, x5, x6, x1, x2, x3] (r12)
[x1, x2, x3, x4, x5, x6] ≤lex [x6, x4, x5, x3, x1, x2] (δ)
[x1, x2, x3, x4, x5, x6] ≤lex [x5, x6, x4, x2, x3, x1] (σ)
[x1, x2, x3, x4, x5, x6] ≤lex [x4, x6, x5, x1, x3, x2] (α1)
[x1, x2, x3, x4, x5, x6] ≤lex [x5, x4, x6, x2, x1, x3] (α2)
[x1, x2, x3, x4, x5, x6] ≤lex [x6, x5, x4, x3, x2, x1] (α3)
[x1, x2, x3, x4, x5, x6] ≤lex [x3, x2, x1, x6, x5, x4] (c13)
[x1, x2, x3, x4, x5, x6] ≤lex [x2, x3, x1, x5, x6, x4] (c123)
[x1, x2, x3, x4, x5, x6] ≤lex [x3, x1, x2, x6, x4, x5] (c132)

Figure 2.2: Lex-constraints for M2×3

For a general Mm×n-matrix there are a lot of elements in the generated group,
actually the number is m! ·n! [9]. Those twelve elements in turn result in twelve
lexicographic constraints, one for each element in the group, see Figure 2.2. In
order of how to interpret the constraints see the definition of ≤lex on page 15.

The number of constraints generated in this way for a general Mm×n-matrix
is huge for larger matrices, actually the number is m! · n! − 1 if the constraint
from the identity permutation is not counted [9]. The reason why this constraint
ordinarily is not included is because it is always true. There is a GAP routine,
written by Justin Pearson, which generates the lexicographic constraints for a
matrix given n and m. Further on the actual construction of the lexicographic
constraints will not be treated.

In order to get a more manageable set of constraints there has been been a
lot of focus on possible ways to simplify them, see section 2.5 and 2.6.

The number of different matrices when both row and column symmetry are
considered is given by Polya’s theorem and any two matrices are considered to
be different if they are not symmetric with each other. This theorem is usefull
in veryfing that the correct number of solutions are found. Let D be a finite
set of elements, and let A be a set of permutations of the elements of D. Each
element in A can be written as a set of cycles since D is finite. Let v(a, i) be
the number of cycles with length i in a. Next consider the set of mappings from
D to a finite set R, and define an equivalence relation on F by: f1 ∼ f2 if and
only if for some a ∈ A we havef1 = f2 ◦ a. Let FA denote the set of equivalence
classes induced by this operation. Polya’s theorem states:

|FA| = 1
|A|

∑

a∈A

|D|∏

i=1

|R|v(a,i) (2.3)

In this case D is the set of atomic formulas, A the set of symmetries and R =
true, false. FA is then the set of different interpretations of the theory and the
cardinality of FA equals the number of distinct matrices. The cardinality of FA
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is then given by:

1
|A|

∑

a∈A

|D|∏

i=1

2v(a,i) (2.4)

For the 2×3-matrix, with domain size 2, this will give |FA| = 1
12
· (26 +22 · 22 +

22 · 22 + 23 + 2 + 2 + 23 + 23 + 23 + 22 · 22 + 22 + 22) = 13 different matrices.
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2.5 Simplifications — Domain Independent

2.5.1 Simplification of lex -constraints

Earlier research in the area of symmetry breaking has been conducted by Frisch
and Harvey, who used two rules in order to simplify the set of symmetry breaking
constraints in a 3× 2 matrix [11]. Slightly less powerful rules were discussed in
[9]. In this section a new rule which supersedes the rules devised by Frisch and
Harvey is presented. The presented rule is strictly stronger in the sense that it
simplifies lexicographical constraints which are not simplified by any of the rules
by Frisch and Harvey. It is, however, unclear if lexicographical constraints which
are not simplified by the Frisch and Harvey rules ever will appear in the set of
constraints for matrices of different sizes. The main motivation our (unique)
rule as a replacement for their (two) rules was its easier implementation. The
notation of the rules by Frisch and Harvey has been slightly modified in order
to increase the readability, for the original version see [11].

Rule 1. If we have a constraint C of the form αXβ ≤lex γY δ and α = γ
logically implies X = Y , then we may replace it with αβ ≤lex γδ.

Rule 1 is only considered with internal simplifications, which mean a sim-
plification of one constraint with no regard taken to other constraints.

Rule 2. If we have a set of constraints C of the form C ′ ∪{αβ ≤lex γδ}, where
C ′ is a set of constraints, and C ′ ∪ {α = γ} logically implies β ≤lex δ, then we
may replace C with C ′ ∪ {α ≤lex γ}.

α, β, δ and γ are in this context segments of the lexicographic constraints.
Two segments are equal if and only if any position in the first part of the
constraint is equal to the corresponding position in the second part of the con-
straint. Specifically, the segment [0, 1, 1] is not equal to [1, 1]. The segments are
also allowed to be of length zero. X and Y are variables and may be considered
as segments of length one. One significant difference between Rule 2 and Rule
1 is that Rule 2 takes all of the constraints into consideration. To see how Rule
1 works consider the following example:

Example Consider the first constraint in Figure 2.2. The constraint is
[x1, x2, x3, x4, x5, x6] ≤lex [x2, x1, x3, x5, x4, x6]. Apply rule 1 with α = [x1, x2],
γ = [x2, x1], X = x3 and Y = x3. It is trivially true that X = Y is
implied and the constraint can hence be simplified to [x1, x2, x4, x5, x6] ≤lex

[x2, x1, x5, x4, x6]. In the next step let α = [x1], γ = [x2], X = x2 and Y = [x1].
Let α = γ, which results in x1 = x2 and X = Y is thus implied. The re-
sulting constraint is then [x1, x4, x5, x6] ≤lex [x2, x5, x4, x6]. Let α = [x1, x4],
γ = [x2, x5], X = x5 and Y = x4. X = Y is implied because the assumption
that [x1, x4] = [x2, x5] implies that x4 = x5. The constraint can then by Rule
1 be simplified to [x1, x4, x6] ≤lex [x2, x5, x6]. x6 in the constraint can also be
removed by applying Rule 1 with α = [x2, x5], γ = [x1, x4]. This results in the
constraint [x1, x4] ≤lex [x2, x5], which not can be further simplified by use of
Rule 1. The result of simplifying all the constraints in Figure 2.2 is shown in
Figure 2.3.

As one can see the internal simplifications can result in quite significant reduc-
tions in the length of the different lexicographic constraints.
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[x1, x4] ≤lex [x2, x5] (c12)
[x2, x5] ≤lex [x3, x6] (c23)

[x1, x2, x3] ≤lex [x4, x5, x6] (r12)
[x1, x2, x3, x4, x5] ≤lex [x6, x4, x5, x3, x1] (δ)
[x1, x2, x3, x4, x5] ≤lex [x5, x6, x4, x2, x3] (σ)

[x1, x2, x3] ≤lex [x4, x6, x5] (α1)
[x1, x2, x3] ≤lex [x5, x4, x6] (α2)
[x1, x2, x3] ≤lex [x6, x5, x4] (α3)

[x1, x4] ≤lex [x3, x6] (c13)
[x1, x2, x4, x5] ≤lex [x2, x3, x5, x6] (c123)
[x1, x2, x4, x5] ≤lex [x3, x1, x6, x4] (c132)

Figure 2.3: Internal Simplified Constraints for M2×3

It is, however, possible to replace both Rule 1 and Rule 2 with a single
rule which is strictly stronger in the sense that it simplifies lexicographical con-
straints which are not simplified by any combination of Rule 1 and 2. The
stronger rule was discovered in the implementation of rules Rule 1, Rule 2 and
the rules in [9].

Rule 3. If we have a set of constraints C of the form C ′ ∪ {αXβ ≤lex γY δ},
where C ′ is a set of constraints, and C ′ ∪{α = γ} logically implies X = Y (or if
is the case that X ≤ Y is implied and β and δ is of size 0), then we may replace
C with C ′ ∪ {αβ ≤lex γδ}.

In this rule both β and δ are allowed to be of length zero. In order to show
that Rule 3 may replace both Rule 1 and 2 it is first shown that it supersedes
Rule 1.

Theorem 2.5.1. Let S be a set of constraints and let C1, C2 be constraints. If
S ∪{C1} can be simplified by Rule 1 into a different set of constraints S ∪{C2},
then S ∪ {C1} also be simplified by application of Rule 3 to S ∪ {C2}.
Proof. Consider a set of constraints S ∪ {C1} and let C1 = αXβ ≤lex γY δ.
Assume that C1 can be simplified into C2 = αβ ≤lex γδ by Rule 1. Clearly
S ∪ {C1} is equivalent to S ∪ {C2} since C1 is equivalent to C2. From the
assumption and Rule 3 it follows that S ∪ {αXβ ≤lex γY δ} can be simplified
into S ∪ {αβ ≤lex γδ}, which is exactly the same as S ∪ {C2}.

It remains to show that Rule 3 also supersedes Rule 2.

Theorem 2.5.2. Let S be a set of constraints and let C1, C2 be constraints. If
S ∪{C1} can be simplified by Rule 2 to a different set of constraints S ∪{C2} it
is also possible to simplify S ∪ {C1} to S ∪ {C2} by repeated application of Rule
3.

Proof. Consider a set of constraints S∪{αβ ≤lex γδ}. Assume that S∪{αβ ≤lex

γδ} can be simplified into S ∪ {α ≤lex γ} by Rule 2. From the assumption and
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Rule 2 it follows that β ≤lex δ. Since it never can be the case that it is logically
implied that any position in β is less than the corresponding position in δ it
suffices to consider when they are equal. If we let β = β1X and δ = δ1Y , then
X and Y can be dropped by use of Rule 3 and further on the next position to
the left and so on resulting in S ∪ {α ≤lex γ}.

The next step is to show that Rule 3 indeed is able to simplify constraints
which Rule 1 and Rule 2 are unable to simplify.

Theorem 2.5.3. Rule 3 is strictly stronger than any combination of Rule 1
and 2 in the sense that it simplifies a set of constraints which is not simplified
by any combination of Rule 1 and Rule 2.

Proof. Consider the set of constraints:

[A,B,C] ≤lex [D,E, F ] (2.5)

[B] ≤lex [E]

[E] ≤lex [B]

This set of constraints can be further simplified to:

[A,C] ≤lex [D,F ] (2.6)

[B] ≤lex [E]

[E] ≤lex [B]

because [B] ≤lex [E] and [E] ≤lex [B] implies that E = B. It is not possible
to simplify the set of constraints in 2.5 with Rule 1 or Rule 2 or any com-
bination of them. The reason for this is that Rule 2 only is able to remove
the end of a constraint and not an occurrence of a variable inside a constraint.
However, consider Rule 3 and let α = [A], β = [C], δ = [F ], γ = [D] and
S = {[B] ≤lex [E], [E] ≤lex [B]}. It is then possible to simplify the constraints
to S ∪ {[A,C] ≤lex [D,F ]}.

The use of Rule 3 on either the constraints in Figure 2.2 or Figure 2.3 results
in the same set of constraints.

Example This set of constraints represents the set of constraints after applying
Rule 1 and 2 on the constraints in Figure 2.2 or directly applying Rule 3 on the
constraints in Figure 2.2 or 2.3.

Table 2.3: Completely Simplified lex -constraints, M2×3

[x1, x2, x3] ≤lex [x4, x5, x6]
[x1, x2, x3] ≤lex [x6, x5, x4]
[x1, x2, x3] ≤lex [x6, x4, x5]
[x1, x2, x3] ≤lex [x5, x4, x6]

[x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]
[x1, x2, x3] ≤lex [x4, x6, x5]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]
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Frisch and Harvey [11] conjecture that there does not exist a set of symmetry
breaking constraints which is simpler (having fewer or shorter constraints) and
logically equivalent to the set of constraints generated by Rule 1 and Rule 2 in
the M2×3-case. Since thoose rules generate the same set of constraints in the
M2×3-case as is generated by Rule 3 it follows that if their conjecture is true also
Rule 3 generates a minimal set of lexicographic constraints. They also suggest
that it might be useful to study a larger matrix and the symmetry breaking
constraints for it. In order to simplify the constraints for matrices other than
the 2×3 it is preferable to use Rule 3 because it is not known whether constraints
that will not be simplified by Rule 1 and Rule 2 will appear.

A remaining question is how to decide if a set of constraints actually implies,
for example, X = Y in Rule 3 and how to implement it. How this may be done
will be considered in the next section.

Algorithm which Implements Rule 3

Let a lexicographic constraint be represented by a tuple, (α, β), where α is the
left side of the constraint and β is the right side of the constraint. Both α and β
are lists. Let all the constraints together be represented as a list of lexicographic
constraints. The method to simplify them will be as follows:

Select one of the constraints for simplification, presumably the first in the list
representing them. For each position in this constraint we will decide whether
the position will be included in the simplified constraint or not. If no position
will be included, the constraint is completely redundant and will be removed.

In order to decide if a position will be included all earlier positions in the
constraint to be simplified, from here on CS, will be assumed equal. For example
[A,B,C] ≤lex [D,E, F ] and the position under discourse is two, then A = D
and B = E will be assumed. If this results in that the variables at the position
which is under discussion are equal they can be removed, which is in accordance
with Rule 3. The reason for this is that it will only be relevant to look at this
position if all earlier variables are equal (in the sense examplified above), and if
the result of having all the variables equal always results in that the variables at
the position automatically are equal it will never be relevant to actually compare
them.

However, it is possible to remove this position even in other instances. It can
be removed if the assumption that all earlier positions in CS are equal together
with the other constraints in the set of constraints implies that the variables at
the position under discussion are equal. The reason for this is that each of the
constraints have to be satisfied in order for the set of constraints to be satisfied.
The relevant positions to consider in the different constraints depends on in
which position each constraint differ. If one of them differ at the first position it
is only relevant to consider this position for that particular constraint. Consider
as an example [A,B,C] ≤lex [D,E, F ] and A is less than D, then the constraint
is true irrelevant of the values of B and E. However, if A = D for some reason
then it is relevant to consider the next position in the constraint. One reason
that A should be equal to D is that we have the constraints [A] ≤lex [B] and
[B] ≤lex [A] which implies that A = B.

If the position under discussion can not be removed in any of the ways
above it exists at least one assignment which will make the constraint true at
the position under discussion and at least one assignment which will make the
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constraint false at the same position, under the assumption that the domain the
variables are sufficently large.

This idea will be implemented in the following way: Let SC be the set of
constraints under consideration and let α ≤lex β be the constraint which will be
simplified. Let in a constraint α ≤lex β, n, [αn ≤lex β

n] be the position under
consideration, and start with considering the last position. Then for each i,
i > 0, i < n, add the variables at αi ≤lex β

i as vertices to the directed graph
G, if they are not already added. The edges (αi, βi) and the edge (βi, αi) are
added to G for each i. This represents that βi equals αi for all positions to
the left of the position under consideration. For each of the other constraints
in SC add the variables at the first position as vertices to G. Also add the
first position on the left side and the first position on the right side as an edge.
Then compute the transitive closure, TC, of G. Check if (αn, βn) and (βn, αn)
belong to TC, if so the position can be removed. If not, (i) select one constraint
from SC, α1 ≤lex β1, but not the one under consideration. Let αk

1 ≤lex βk
1

be the first position from the left in the constraint where not αk
1 = βk

1 . Check
if (αk

1 , β
k
1 ) ∈ TC. If so, consider next constraint in TC. If (αk

1 , β
k
1 ) is not in

TC, then compute the transitive clousure from TC1 = TC ∪ {(αk
1 , β

k
1 )}. Check

if both (αn, βn) and (βn, αn) belongs to TC1 and if so the position may be
removed, otherwise repeat the action described in (i) but with TC1 instead.
When all positions in all constraints has been considered for simplification the
process is done.

The algorithm is not very fast, at least not my implementation of it. It did,
however, suffice to simplify the constraints from both the M4×3-matrix and the
M4×4-matrix, which are the largest matrixes studied in this paper. In the 4× 4
case it was necessary to first simplify the constraints individually, due to time
and space considerations. The simplified constraints for the 2 × 3-, 4 × 3- and
4× 4-case are to be found in Table A.1, A.6 and A.12.

2.6 Simplifications — Domain Dependent

2.6.1 Logic Minimization

As we could see in section 2.2 all predicate logical formulas can be expressed in
either conjunctive normal form (CNF) or in disjunctive normal form (DNF).
This section briefly describes different approaches in order to minimize such
formulas. Experiments in order to find out if the minimized form of the formulas
are faster will then be conducted. A definition of minimal form for a formula
on both disjunctive and conjunctive normal form is included.

Minimizing a Formula, DNF

In order to understand how to minimize a DNF formula we first need to under-
stand what the size of a DNF formula is. It is common to define the size of a
DNF formula as the number of disjuncts that constitutes the formula. Those
disjuncts are built up from conjunctions of literals.

Definition 2.6.1. The size of a formula α in DNF is the number of disjuncts
that constitutes the formula.
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Example Consider the formula (α1 ∧ α2) ∨ (α3 ∧ α4 ∧ α5) ∨ (α6 ∧ α7). This
formula is in disjunctive normal form and the size of it is 3.

One way to find a DNF representation of a formula α is to first construct its
truth table. When this has been constructed it is possible to read a DNF
representation from the trut table by checking for which values the formula is
true. For each of the true entries form a conjunction of the atomic formulas,
and then form a disjunction of those formulas.

Example Consider the truth table of α1 ∧ (α2 ∨ α3) shown in table 2.4. This

Table 2.4: Truth table for α1 ∧ (α2 ∨ α3)

α1 α2 α3 α1 ∧ (α2 ∨ α3)
true true true true
true true false true
true false true true
true false false false
false true true false
false true false false
false false true false
false false false false

gives the disjunctive normal form (α1∧α2∧α3)∨(α1∧α2∧¬α3)∨(α1∧¬α2∧α3)
of α1 ∧ (α2 ∨ α3), with size 3.

In order to get a minimized version of a formula it is possible to use a
number of different programs that has been developed for that purpose. One
such program is Espresso [14]. The program is in this work considered as a black-
box, that is, one gives the program some input and it returns some output,
how the output is derived from the input is not considered. It is possible to
specify the input to Espresso as a list of the input variables, a list of the output
variables, and a truth table for the function to be minimized and the number of
lines in the truth table. It is not necessary to specify the complete truth table
but only when it exists an output variable which is true. If it then is specified
that Espresso should use exact minimization the program returns a minimized
formula in disjunctive normal form.

In order to find the minimized disjunctive normal form of the constraints
for the M2×3-matrix its truth table, with only the true rows included, was first
constructed. This truth table was then converted to tt-format, which is the
format that Espresso uses. The tt-format includes some information about the
names of the input and output variables, and also how many of them there are.
For a more complete treatment of the different commands available in Espresso
see [14]. In Figure A.3 the minimized DNF of lex-constraints for M2×3, for a
domain of size 2 is shown. The different xi:s in this figure are then used in the
SICStus constraint solver for finite domains represented as different equality
constraints. For example consider ¬x1 ∧ ¬x3 ∧ x4 ∧ x5, this constraint will be
represented as:

#\ X1#=1 #/\ #\ X2#=1 #/\ X5#=1
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where the domain of X1, X2 and X3 is {0, 1} and 0 represents false and 1 true.
Another alternative way to post the constraints to the constraint solver is by
replacing the “#\ X1#=1” with “X1#=0”. The representation used in this paper
is the first one.

(¬x1 ∧ ¬x3 ∧ x4 ∧ x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x6) ∨

(¬x1 ∧ ¬x3 ∧ x4 ∧ x6) ∨
(¬x1 ∧ x4 ∧ x5 ∧ x6) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∨
(¬x1 ∧ x2 ∧ x3 ∧ x5 ∧ x6) ∨

(x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6)

Figure 2.4: Minimized DNF of lex-constraints for M2×3, domain 2

Minimizing a Formula, CNF

As earlier mentioned it is possible to express all predicate logical formulas in
either DNF or CNF. In order to find out if a minimized version of CNF is faster
than a non-minimized it necessary to know how to get a minimized version of a
CNF formula.

The size of a formula in CNF is defined in a similar way as in the DNF case.

Definition 2.6.2. The size of a formula α in CNF is the number of conjuncts
that constitutes the formula.

In order to obtain the minimal conjunctive normal form of a formula one
can not directly use Espresso. The reason for this is that Espresso only returns
the minimal disjunctive normal form of a formula. This can be solved in the
following way: consider the problem of obtaining the minimal conjunctive form
of the formula α. Then construct the truth table of ¬α and minimize this with
Espresso. Let the result of this be β, a minimized disjunctive normal form of
¬α. Then use De Morgan’s Laws to find ¬β in a conjunctive normal form. This
form is also a minimal conjunctive form, see Theorem 2.6.3, and equivalent to
α, since ¬(¬α) ↔ α.

Theorem 2.6.3. Let α be a formula in minimal disjunctive normal form. It
is then possible to use De Morgan’s Laws in order to find a formula β which is
equivalent with ¬α and is in minimal conjunctive normal form.

Proof. Let α be a formula in minimal disjunctive normal form. It is trivial to
apply De Morgan’s Law in order to get ¬α in conjunctive normal form. For the
sake of contradiction assume that this form is not minimal. It does then exist a
shorter form of ¬α, let it be β. Then apply De Morgan’s Laws on β which will
result in ¬β in disjunctive minimal form. This formula is equivalent with α and
shorter, which contradicts that α is a formula in minimal disjunctive form.
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(x1 ∧ ¬x2) ∨
(x1 ∧ ¬x3) ∨
(x1 ∧ ¬x4) ∨
(x3 ∧ ¬x5) ∨
(x3 ∧ ¬x6) ∨

(¬x2 ∧ x3 ∧ ¬x4) ∨
(x2 ∧ ¬x3 ∧ ¬x4) ∨
(¬x4 ∧ x5 ∧ ¬x6) ∨

(x4 ∧ ¬x5 ∧ ¬x6)

Figure 2.5: Minimal DNF of ¬α

Let α be the conjunction of the lexicographical constraints in Figure 2.2. In
order to find the minimized disjunctive normal form of α, the truth table for
¬α is first constructed. This table is then used with Espresso in order to get
a minimal DNF of ¬α, see Figure 2.6.1. This formula is then transformed by
De Morgan’s Laws, for the result see Figure 2.6.1. The problem of obtaining

(¬x1 ∨ x2) ∧
(¬x1 ∨ x3) ∧
(¬x1 ∨ x4) ∧
(¬x3 ∨ x5) ∧
(¬x3 ∨ x6) ∧

(x2 ∨ ¬x3 ∨ x4) ∧
(¬x2 ∨ x3 ∨ x4) ∧
(x4 ∨ ¬x5 ∨ x6) ∧

(¬x4 ∨ x5 ∨ x6)

Figure 2.6: Minimal CNF of α

a CNF (DNF) representation from a DNF (CNF) representation is in general
NP-complete. The term NP-complete refer to the hardest problems in the class
NP. A problem belongs to NP if it exists an algorithm which can guess a solution
and then verify if the solution is correct or not in polynomial time, for a more
detailed treatment of NP-completeness see [15].

It has been discovered that it is possible to simplify the number of lexico-
graphic constraints necessary for breaking all of the symmetries if the domain
of the decision variables in the matrix model is small [9]. The meaning of small
in this context is that the domain of the decision variables at least has to be
less than the number of decision variables

For example consider M2×3-matrix. If the domain of the decision variable
is two it has been shown that it is possible to break all the symmetries in the
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matrix by using the lexicographic constraints generated from the symmetries of
cycle length two [9]. The set of constraints generated from permutations of cycle
length two are enough for breaking all the symmetries in this case. Not even
all of them are necessary for breaking all the symmetries, but only a subset. In
order to see if there is another set of constraints which also breaks the same
symmetries, but contains a constraint generated by permutation of a different
cycle length than two, consider the following. In order to find a minimal set
of lexicographic constraints which break all the symmetries in a matrix it is
possible to first generate a set of constraints which is minimal for any domain,
let this set be A. Then select a subset B ⊆ A, which is of size zero. If this set
does not break all the symmetries, which it obviously in this case will not, select
a new subset with the size increased by one. If no set of this size break all the
symmetries select one with the size increased with one, and so on. Since the
subset eventually will include all of the constraints in A it is guaranteed that a
minimal set of lexicographic constraints eventually will be found. It has to be
added that this method is not efficient, which is an understatement. The reason
for this is that the number of sets that will have to be tested in worst case are
|A||A|, which for a set of twelve elements gives 1212 = 8916100448256 elements.

Example Consider the matrix in Figure 2.1. A set of which fully break all the
symmetries, independent of domain size, are given in Figure 2.3. The two sub-
sets of this set, which breaks all the constraints for domain size two is presented
in Table 2.5.

Table 2.5: Completely Simplified lex -constraints, M2×3, domain 2

The First set
[x1, x2, x3] ≤lex [x5, x4, x6]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

The Second Set
[x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

An heuristic method for finding a set of constraints which breaks a number of
constrints is as follows. Start with a set, A, of constraints, which is guaranteed
to remove all of the symmetries for a matrix independent of domain size of the
decision variables, and another initially empty setB. Then fix a domain size, two
for example. Then remove one constraint, β, from the set A. Check if the new
set of constraints still breaks all of the symmetries. If not so add β to B, such
a constraint is said to be non-redundant. Then remove one element from A− β
and check if the result in union with B still breaks all of the symmetries, if not
add the constraint removed from A− β to B. If no constraint can be removed
with the result that not all symmetries still remain, increase the number of
constraints removed at a time with one. Repeat this process until B contains a
set of symmetry breaking predicates which breaks all symmetries for a specific
domain size. In practice this process may be considered finished when when for
example all subsets up until a fixed size, lets say n, has been considered. The
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reason for this is because the number of subsets to consider grows quite fast,(|K|
i

)
, where |K| is the number of elements in the set from which elements are

removed and i is the number of elements removed.

Example Consider the matrix in Figure 2.1. A set of which fully break all the
symmetries are given in Figure 2.2. Finding all the non-redundant constraints
of size one results in the following set.

Table 2.6: Non-redundant, size 1
[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

The set of constraints in Table 2.6 leaves 20 possible solutions and do not break
all the symmetries, since it should have left only 13 distinct solutions in that
case. No sets of size two or three breaks any additional symmetries. However,
there is four sets of size four which breaks additional symmetries. This leaves
two sets of size four which are redundant if one keeps the remaining constraints.
The sets are the same as in Table 2.5. This process is unfortunately not practical
for finding a minimal set in the 4×3-case, since the number of decision variables
are to great.
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Chapter 3

Methodology

This chapter will explain the methodology choosen in order to answer the re-
search questions. Litterature studies have been conducted. Relevant articles
were provided by my supervisor, head of the ASTRA research group. AS-
TRA stands for “Analysis, Synthesis, and Transformation / Reformulation of
Algorithms”. Other interesting articles, mostly found by checking the references
in the recommended articles has also been used.

The different constraints have been studied in the absence of any constraint
satisfaction problem, which would have provided more problem specific con-
straints. The reason for this is that it is easier to show the impact of the
lexicographic constraints by themselves if no other constraints are present. It
should, however, be noted that additional constraints might provide a substan-
tial speed-up factor. The clean, constraint satisfaction problems that have been
choosen are the one with variables from matrix modells of different sizes. The
sizes choosen are 3×2, 4×3 and 4×4. Of those only the 3×2-matrix has earlier
been studied to any greater extent. The variables of the matrix have been flat-
tened so that the 3×2-matrix is represented as a list of variables with the same
names as in Figure 2.1, on page 16. These variables are then allowed to obtain
values from a chosen domain, in most of the experiments of size 2, {0, 1}. In
none of the experiments has any additional constraints been used other than
the constraints specified by the particular theory under consideration.

3.1 Used Programs

3.1.1 Prolog, SICStus

SICStus was choosen for the experiments for a number of reasons. It provides
constraint solving over finite domains and it also implements lex chain, which
saves a great deal of time because it is not necessary to implement it by hand.
Another reason for choosing Prolog is my familiarity and knowledge in the
language, which also reduces time needed for development.

3.1.2 GAP – Groups, Algorithms, and Programming

GAP is a system for computional discrete algebra, with particular emphasis
on computional group theory. GAP provides a programming language, a huge
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library of functions implementing algebraic written in the GAP language as well
as large data libraies of algebraic objects. The system is distributed freely. In
this papper GAP has mainly been used to obtain the lexicographic constraints
which later have been considered for simplification. An interface to GAP was
provided from start by Justin Pearson, and was after some slight modifications
used.

3.1.3 Espresso

Espresso is a program for minimizing locical exprssions. It takes as input a
two-level representation of a two-valued (or multiple-valued) Boolean function,
and produces a minimal equivalent representation. The minimized version is
in DNF and minimized with regard to the number of disjuncts. For further
information see [14].

3.2 Hardware

• Processor: Pentium 1400 MHz

• Memory: 256 MB ram

• Operating system: Gentoo, Linux distribution

• Prolog: SICstus, version 3.1.11



Chapter 4

Experiments

In this chapter various results concerning matrices of different sizes are pre-
sented. For each of the matrices the result of applying domain independent
simplifications and the result of trying to find an approxmative min set as de-
scribed in section 2.6 is presented. The minimal DNF and CNF form of the
constraints is also presented. The different constraints are then compared in a
number of different ways.

An explanation to the different tables follows. The domain independent sim-
plifications are presented in one table, with both internal and external simplifica-
tions conducted. Those tables are named Completely Simplified lex-constraints,
Mm×n. The complete symmetry groups are excluded because of the number of
constraints they include. The ≤lex operator used in the tables is as definied in
the definition 2.2.9 on page 15. The domain dependent simplifications include
an approximate minimal set of lexicographic constraints for the different sizes
of matrices considered. What n has been used in the algorithm for obtaining
them is specified in each table. In the domain dependent section the minimal
DNF form of the constraints as well as the minimal CNF representation of the
constraints are displayed. In this table the symbols specified for and, or and
negation are in accordance with the symbols used in section 2.2.

The comparison between the different constraints brings up a number of diffi-
culties. For example is the size of the different constraints a problem. Meauring
the size of either the CNF or DNF form of a constraint is fairly straight forward,
and uses definition 2.6.2 and 2.6.1. The size of a lexicographic constraint is a
little bit more complicated. If one considers each lexicographic constraint as an
atomic formula, the result is that the size of the constraint will be the same as
the total number of lexicographic constraints included in the set. However, if
one first chooses to translate the lexicographic constraints to a logic formula,
with the help of definition 2.2.9, not involving special predicates like lex chain
it results in a quadratic representation in the number of variables in the con-
straint. Even this encoding is unfair since it is possible to use yet another
encoding, which is linear in the size of literals of a constraint. This encoding is
described in [1], and has a total size of 14n literals, where n is the number of
different variables in the constraint. It is this encoding that has been used for
calculating the size of the lexicograpical constraints because it is at the moment
best known encoding of a single constraint.

The different set of constraints are then compared in a number of ways. The
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tables summarizing theese comparisons are named Comparision of Constraints,
Mm×n, domain i and uses the following:

• Nr of const In the CNF- and DNF-case this is in accordance with 2.6.2
and 2.6.1. In the lexicographical constraints it is the number of different
lexicograpical constraints.

• Nr of sol This is the total amount of distinct matrices found when the
constraints are applied.

• Nr of lit This is in the CNF and DNF case the number of variables in the
respective forms.

• Speed 1 This is the time in milliseconds to the first solution, measured
by taking the avrage of 100 tries. It uses the walltime, which includes
memory management and such.

• Speed 2 This is the time in milliseconds to find all solutions, measured
by taking the average of 100 tries. It uses the walltime, which includes
memory management and such.

4.1 Conclusions and Future Directions

This section will discuss the different results from the experiments and how the
results relate to the different research questions.

• Is it possible to find a polynomial subset of constraints which
breaks most of the symmetries?
It is difficult to say anything about this in the general case. The results
for domain two seem to indicate that it is possible to break almost all
symmetries with relatively few lexicographic constraints, see the approxi-
mated min set in Table A.5, A.10 and A.16. However, if the used subset of
lexicographical constraints is polynomial in size or not is still unanswered.
A method for simplifying different lexicographic constraints has been de-
veloped and implemented. The method is sufficient for simplifications of
matrices up to size 4×4, for larger matrices some further refinement of the
method might be needed.

• Generate and study sets of constraints for larger matrices than
the earlier studied largest matrice.
Matrices that have been studied are 2×3, 4×3 and 4×4. Data for the dif-
ferent matrices have been included, both data about the different simpli-
fications, both domain independent and domain dependent. Conclusions
that might be drawn from this data include that it seems possible to break
a large extent of the symmetries by using a relatively small subset of the
lexicographic constraints. How large the subset of constraints has to be in
order to break most of the symmetries has not been answered and more
research is needed for finding the answer of this question. The problem
would probably benefit from being attacked from the angle of group the-
ory and then in particular from someone with knowledge in permutation
groups.
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• Examine possible domain specific simplifications.
The conducted examinations of domain dependent simplifications has re-
sulted in a minimal set of logical constraints for domain size two in the
2×3-, 4×3- and 4×4-case. One problem with this approach is that the
input to the program used for minimizing the logical formulas, Espresso,
expects its input in a quite extensive format. This may result in problems
with larger matrices. A few interesting things has been discovered with
the minimal set of logical constraints. In the 2×3-case and the 4×3-case it
has been shown that the set of lexicographic constraints with all domain
independendent simplifications carried out results in a faster average time
for finding all solutions. In the 4×4-case the opposite is true, and the min-
imized set of logical formulas are about twice as fast. (When discussing
the minimized set of logical formulas, it is the set in CNF and not in DNF
that is considered. The CNF form has been shown to be faster for finding
all solutions, independent of the size of the matrix, see Table A.5, A.10
and A.16.) The interesting part is that the minimized set of logical formu-
las not are faster even for the smaller matrices, the reason why one could
expect that so should be the case is that those set are fully simplified with
consideration taken to that the domain is of size two.

For the matrix sizes where a minimal set of lexicograhic constraints, which
breaks all of the symmetries, has been found it has been shown that the
found set is faster than the minimized set of logical formulas in CNF
form, at least twice as fast in average for finding all the solutions and
average time to first solution, see Table A.5. One possible way to increase
the speed for the minimized set of logical formulas could be to encode
\# X#=1 as X#=0, but no experiments to decide what effects this would
have on the speed have been conducted. In the cases where no minimal set
of lexicographic constraints has been found and instead an approximative
set has been constructed, it has been shown that this set is substantially
faster than the corresponding set of logical formulas in CNF. In the 4×3-
case about three times as fast and in the 4×4-case about five times as fast
for finding all the solutions in average.

Comparisons between the approximate minimal set of lexicographic con-
straints and the commonly used lex2-constraint shows that they are ap-
proximately even in the 2×3-case, and that lex2 is somewhat faster in
the 4×3-case, with domain two, in finding all solutions in average, and
substantially faster in finding the first solution. This is not suprising since
there are fewer constraints to satisfy in the lex2-case and hence fewer con-
straints for the constraint solver to satisfy. When the domain is of size
three the approximative minimal set is somewhat faster, the reason for
this is that this set breaks much more of the symmetries compared to the
set of lex2-constraints, see Table A.11. The gap between the approximate
minimal set and the lex2-set of constraints for finding all solutions will
probably increase even more with a larger domain size.

4.2 Original Work

In this section the orginal results for this papper is considered
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• A rule which can be used for simplifying lexicographical expressions has
been deviced. This rule supercedes the earlier rules deviced in [11]. Proof
that this rule is correct and strictly stronger is also given.

• An algorithm which mechanize the simplifications of lexicographical con-
straints has been constructed. Such an agortihm has not earlier existed.

• Logical simplifications of M4×3 and M4×4 matrices have been conducted,
resulting in a minimal set of lexicographical constraints for thoose matri-
ces. Lexicographical constraints for thoose matrices has not earlier been
fully simplified.

• A method for breaking symmetries in matrice models (with the domain
sixe 2) by minimized logical formulas in DNF and CNF form has been
examined and compared with breaking the same symmetries with lexico-
graphic constraints. This has not earlier been done.

• A method for finding an approximated minimal set of lexicographical con-
straints, for a specific domain size, which experimentaly has been shown
to break most of the symmetries for the considered matrices has been
deviced.



Appendix A

Tables for Different
Matrices

A.1 2×3-Matrix Models

Table A.1: Completely Simplified lex -constraints, M2×3

[x1, x2, x3] ≤lex [x4, x5, x6]
[x1, x2, x3] ≤lex [x6, x5, x4]
[x1, x2, x3] ≤lex [x6, x4, x5]
[x1, x2, x3] ≤lex [x5, x4, x6]

[x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]
[x1, x2, x3] ≤lex [x4, x6, x5]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

Table A.2: Completely Simplified lex -constraints, M2×3, domain 2

The First set
[x1, x2, x3] ≤lex [x5, x4, x6]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]

The Second Set
[x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]

[x1, x4] ≤lex [x2, x5]
[x2, x5] ≤lex [x3, x6]
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Table A.3: Minimized DNF of lex-constraints for M2×3, domain 2

(¬x1 ∧ ¬x3 ∧ x4 ∧ x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x6) ∨

(¬x1 ∧ ¬x3 ∧ x4 ∧ x6) ∨
(¬x1 ∧ x4 ∧ x5 ∧ x6) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∨
(¬x1 ∧ x2 ∧ x3 ∧ x5 ∧ x6) ∨

(x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6)

Table A.4: Minimized CNF of lex-constraints for M2×3, domain 2

(¬x1 ∨ x2) ∧
(¬x1 ∨ x3) ∧
(¬x1 ∨ x4) ∧
(¬x3 ∨ x5) ∧
(¬x3 ∨ x6) ∧

(x2 ∨ ¬x3 ∨ x4) ∧
(¬x2 ∨ x3 ∨ x4) ∧
(x4 ∨ ¬x5 ∨ x6) ∧

(¬x4 ∨ x5 ∨ x6)

Table A.5: Comparision of Constraints, M2×3, domain 2
Nr of const Nr of sol Nr of lit Speed Speed

Espresso - exact CNF 9 13 22 4.10 4.80
Espresso - exact DNF 7 13 31 5.40 9.60
Lex, entire symmetry group 12 13 1008 4.30 5.20
Lex, after simplifications 8 13 322 2.20 2.90
Lex, approximated min set, 1 3 13 98 1.30 1.90
Lex, approximated min set, 2 3 13 112 1.30 2.00
Lex, row-col 3 14 98 1.2 1.90
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A.2 4x3-Matrix Models

Table A.6: Completely Simplified lex -constraints, M4×3

[x1, x2, x3, x4, x7] ≤lex [x12, x11, x10, x6, x9]
[x1, x4, x5, x6, x10] ≤lex [x3, x9, x8, x7, x12]
[x1, x2, x3, x4, x7] ≤lex [x11, x10, x12, x5, x8]

[x1, x4, x5, x6, x10] ≤lex [x2, x8, x7, x9, x11]
[x1, x2, x3, x5, x8] ≤lex [x10, x12, x11, x6, x9]

[x1, x2, x3, x4, x10] ≤lex [x9, x8, x7, x6, x12]
[x1, x4, x5, x6, x7] ≤lex [x3, x12, x11, x10, x9]

[x1, x2, x3, x4, x10] ≤lex [x8, x7, x9, x5, x11]
[x1, x4, x5, x6, x7] ≤lex [x2, x11, x10, x12, x8]

[x1, x2, x3, x5, x11] ≤lex [x7, x9, x8, x6, x12]
[x2, x4, x5, x6, x8] ≤lex [x3, x10, x12, x11, x9]

[x1, x2, x3, x4, x5, x6] ≤lex [x9, x8, x7, x12, x11, x10]
[x1, x2, x3, x7, x10] ≤lex [x6, x5, x4, x9, x12]

[x1, x2, x3, x4, x5, x6] ≤lex [x12, x11, x10, x9, x8, x7]
[x1, x4, x7, x8, x9] ≤lex [x3, x6, x12, x11, x10]

[x1, x2, x3, x4, x5, x6] ≤lex [x8, x7, x9, x11, x10, x12]
[x1, x2, x3, x7, x10] ≤lex [x5, x4, x6, x8, x11]

[x1, x2, x3, x4, x5, x6] ≤lex [x11, x10, x12, x8, x7, x9]
[x1, x4, x7, x8, x9] ≤lex [x2, x5, x11, x10, x12]

[x1, x2, x3, x4, x5, x6] ≤lex [x7, x9, x8, x10, x12, x11]
[x1, x2, x3, x5, x6] ≤lex [x10, x12, x11, x9, x8]
[x2, x5, x7, x8, x9] ≤lex [x3, x6, x10, x12, x11]

[x1, x2, x3, x7, x8, x9] ≤lex [x6, x5, x4, x12, x11, x10]
[x1, x2, x3, x7, x8, x9] ≤lex [x5, x4, x6, x11, x10, x12]
[x1, x2, x3, x7, x8, x9] ≤lex [x4, x6, x5, x10, x12, x11]

[x2, x5, x8, x11] ≤lex [x3, x6, x9, x12]
[x1, x2, x3, x4, x5, x7, x8] ≤lex [x12, x10, x11, x6, x4, x9, x7]

[x1, x2, x3, x4, x5, x6] ≤lex [x8, x9, x7, x2, x3, x1]
[x1, x2, x3, x4, x5, x7, x8, x10] ≤lex [x11, x12, x10, x5, x6, x8, x9, x2]

[x1, x2, x4, x5, x6, x7] ≤lex [x2, x3, x8, x9, x7, x5]
[x1, x2, x3] ≤lex [x4, x5, x6]
[x4, x5, x6] ≤lex [x7, x8, x9]

[x1, x4, x5, x6, x7, x8] ≤lex [x3, x12, x10, x11, x9, x7]
[x1, x2, x3, x4, x5, x7] ≤lex [x8, x9, x7, x5, x6, x2]
[x1, x2, x3, x4, x5, x6] ≤lex [x11, x12, x10, x2, x3, x1]

[x1, x2, x4, x5, x6, x7, x8, x10] ≤lex [x2, x3, x11, x12, x10, x8, x9, x5]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x9, x7, x8, x12, x10, x11, x6, x4]

[x1, x4, x7, x8, x9] ≤lex [x3, x6, x12, x10, x11]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x8, x9, x7, x11, x12, x10, x5]

[x1, x2, x3, x4] ≤lex [x5, x6, x4, x2]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x11, x12, x10, x8, x9, x7, x2]

[x1, x2, x4, x5, x7, x8, x9, x10] ≤lex [x2, x3, x5, x6, x11, x12, x10, x8]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x6, x4, x5, x12, x10, x11, x9, x7]

[x1, x4, x5, x6, x7, x8] ≤lex [x3, x9, x7, x8, x12, x10]
[x1, x2, x3, x4, x5, x10] ≤lex [x8, x9, x7, x2, x3, x11]

Table A.6 – Continued on next page
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Table A.6 – continued from previous page
[x1, x2, x3, x4, x5, x7, x8, x9] ≤lex [x11, x12, x10, x5, x6, x2, x3, x1]

[x1, x2, x3, x4, x5, x7, x8] ≤lex [x9, x7, x8, x6, x4, x12, x10]
[x1, x2, x3, x4, x5, x6, x10, x11] ≤lex [x6, x4, x5, x9, x7, x8, x12, x10]

[x1, x2, x3, x4, x5, x7] ≤lex [x11, x12, x10, x2, x3, x8]
[x1, x2, x4, x5, x6, x7, x8, x9] ≤lex [x2, x3, x11, x12, x10, x5, x6, x4]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x9, x7, x8, x12, x10, x11, x3, x1]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x12, x10, x11, x9, x7, x8, x6, x4]

[x1, x2, x3, x4, x5, x6, x7] ≤lex [x8, x9, x7, x11, x12, x10, x2]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x11, x12, x10, x8, x9, x7, x5]

[x2, x4, x5, x6, x11] ≤lex [x3, x7, x9, x8, x12]
[x1, x2, x3, x8, x11] ≤lex [x4, x6, x5, x9, x12]

[x1, x4, x7, x10] ≤lex [x2, x5, x8, x11]
[x7, x8, x9] ≤lex [x10, x11, x12]

Table A.7: Approximate minimal set of lex -constraints, M4×3, domain 2

[x7, x8, x9] ≤lex [x10, x11, x12]
[x1, x4, x7, x10] ≤lex [x2, x5, x8, x11]

[x1, x2, x3, x8, x11] ≤lex [x4, x6, x5, x9, x12]
[x2, x4, x5, x6, x11] ≤lex [x3, x7, x9, x8, x12]

[x4, x5, x6] ≤lex [x7, x8, x9]
[x2, x5, x8, x11] ≤lex [x3, x6, x9, x12]

[x1, x4, x7, x8, x9] ≤lex [x2, x5, x11, x10, x12]
[x1, x2, x4, x5, x6, x7, x8, x9] ≤lex [x2, x3, x11, x12, x10, x5, x6, x4]

[x1, x4, x5, x6, x10] ≤lex [x2, x8, x7, x9, x11]
[x1, x2, x3, x4, x5, x10] ≤lex [x8, x9, x7, x2, x3, x11]
[x1, x2, x3, x4, x5, x6] ≤lex [x11, x12, x10, x2, x3, x1]
[x1, x2, x3, x4, x5, x6] ≤lex [x8, x9, x7, x2, x3, x1]
[x1, x2, x3, x7, x8, x9] ≤lex [x5, x4, x6, x11, x10, x12]

[x1, x4, x5, x6, x7] ≤lex [x2, x11, x10, x12, x8]
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Table A.8: Minimized DNF of lex-constraints for M4×3, domain 2

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x7 ∧ ¬x8 ∧ x9 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ ¬x8 ∧ x9 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x9 ∧ x10 ∧ x11) ∨

(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x12) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x7 ∧ x9 ∧ x11 ∧ x12) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x11) ∨

(¬x1 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11) ∨

(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x12) ∨
(¬x1 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ ¬x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ ¬x8 ∧ x9 ∧ ¬x10 ∧ x12) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x11 ∧ x12) ∨
(¬x1 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12) ∨
(¬x1 ∧ ¬x2 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11) ∨
(¬x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x12) ∨
(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ x10 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ x10 ∧ x11 ∧ x12) ∨
(x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x7 ∧ ¬x8 ∧ x9 ∧ ¬x10 ∧ x12) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x6 ∧ x7 ∧ x8 ∧ x10 ∧ x11 ∧ x12) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12) ∨
(¬x1 ∧ x3 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12)
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Table A.9: Minimized CNF of lex-constraints for M4×3, domain 2

(¬x2 ∨ ¬x5 ∨ x9) ∧
(¬x7 ∨ x9 ∨ x11) ∧

(x3 ∨ ¬x5 ∨ ¬x8 ∨ x12) ∧
(¬x4 ∨ ¬x5 ∨ ¬x6 ∨ x9) ∧
(x8 ∨ ¬x10 ∨ x11 ∨ x12) ∧
(x5 ∨ ¬x9 ∨ x11 ∨ x12) ∧
(x2 ∨ ¬x6 ∨ ¬x7 ∨ x11) ∧

(x6 ∨ ¬x8 ∨ ¬x9 ∨ ¬x11 ∨ x12) ∧
(x7 ∨ x8 ∨ ¬x10 ∨ x11) ∧

(¬x2 ∨ ¬x8 ∨ x12) ∧
(x8 ∨ x9 ∨ ¬x10 ∨ x12) ∧

(¬x6 ∨ ¬x9 ∨ x11 ∨ x12) ∧
(¬x3 ∨ x5 ∨ x6) ∧
(¬x5 ∨ x7 ∨ x8) ∧
(x5 ∨ ¬x7 ∨ x8) ∧
(¬x5 ∨ x7 ∨ x9) ∧

(¬x7 ∨ ¬x8 ∨ ¬x9 ∨ x12) ∧
(x3 ∨ ¬x5 ∨ x6) ∧

(¬x7 ∨ x10) ∧
(¬x6 ∨ x8 ∨ x9) ∧

(¬x4 ∨ x7) ∧
(¬x7 ∨ ¬x8 ∨ x11) ∧

(¬x8 ∨ ¬x9 ∨ x10 ∨ x12) ∧
(¬x1 ∨ x4) ∧

(x3 ∨ ¬x5 ∨ x9) ∧
(¬x2 ∨ x4 ∨ x5) ∧
(x2 ∨ ¬x4 ∨ x5) ∧

(¬x2 ∨ x3) ∧
(¬x8 ∨ x10 ∨ x11) ∧

(x3 ∨ x7 ∨ x9 ∨ ¬x11 ∨ x12) ∧
(x4 ∨ x6 ∨ ¬x8 ∨ x9) ∧

(¬x2 ∨ x6) ∧
(¬x4 ∨ x8) ∧
(¬x1 ∨ x2) ∧

(¬x1 ∨ x5)
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Table A.10: Comparision of Constraints, M4×3, Domain 2
Nr of const Nr of sol Nr of lit Speed Speed

Espresso - exact CNF 35 87 112 17.80 31.00
Espresso - exact DNF 35 87 363 28.90 84.80
Lex, entire symmetry group 144 87 24192 88.60 124.20
Lex, after simplifications 58 87 4746 18.20 29.20
Lex, approximated min seta 14 89 994 4.60 10.40
Lex, row-col 5 130 238 1.80 7.70

aThe largest n used in the approximated minimal set is 2

Table A.11: Comparision of Constraints, M4×3, domain 3
Nr of const Nr of sol Nr of lit Speed Speed

Lex, entire symmetry group 144 5053 24192 88.70 650.90
Lex, after simplifications 58 5053 4746 18.10 291.90
Lex, approximated min seta 14 5719 994 4.70 223.10
Lex, row-col 5 10020 238 1.80 333,30

aThe largest n used in the approximated minimal set is 2
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A.3 4x4-Matrix Models

Table A.12: Completely Simplified lex -constraints

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x7, x5, x8, x6, x15, x13, x16, x14, x3, x1, x4, x2]
[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11] ≤lex [x15, x13, x16, x14, x7, x5, x8, x11, x9, x12]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11] ≤lex [x10, x12, x9, x11, x2, x4, x1, x3, x14, x16, x13]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x6, x8, x5, x7, x14, x16, x13]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x13] ≤lex [x14, x16, x13, x15, x6, x8, x5, x10, x12, x9, x2]
[x1, x2, x5, x6, x7, x8, x9] ≤lex [x2, x4, x10, x12, x9, x11, x6]

[x1, x2, x3, x4, x5, x9] ≤lex [x16, x14, x15, x13, x8, x12]
[x1, x5, x6, x7, x8, x13] ≤lex [x4, x12, x10, x11, x9, x16]
[x1, x2, x3, x4, x6, x10] ≤lex [x13, x15, x14, x16, x7, x11]
[x2, x5, x6, x7, x8, x14] ≤lex [x3, x9, x11, x10, x12, x15]

[x1, x3, x5, x6, x7, x8, x9, x10, x11] ≤lex [x3, x4, x15, x13, x16, x14, x11, x9, x12]
[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x10, x12, x9, x11, x6, x8, x5, x2]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x14, x16, x13, x15, x2, x4, x1, x3]

[x1, x2, x5, x6, x7, x8, x9, x10, x11, x13] ≤lex [x2, x4, x14, x16, x13, x15, x10, x12, x9, x6]
[x1, x2, x3, x4, x5, x13] ≤lex [x12, x10, x11, x9, x8, x16]
[x1, x5, x6, x7, x8, x9] ≤lex [x4, x16, x14, x15, x13, x12]

[x1, x2, x3, x4, x6, x14] ≤lex [x9, x11, x10, x12, x7, x15]
[x2, x5, x6, x7, x8, x10] ≤lex [x3, x13, x15, x14, x16, x11]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x11, x9, x12, x10, x15, x13, x16, x14, x7, x5]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x15, x13, x16, x14, x11, x9, x12, x10, x3, x1]

[x1, x3, x5, x7, x9, x10, x11, x12] ≤lex [x3, x4, x7, x8, x15, x13, x16, x14]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x12, x9, x11, x14, x16, x13, x15, x6]

[x1, x2, x3, x4, x5] ≤lex [x6, x8, x5, x7, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x16, x13, x15, x10, x12, x9, x11, x2]

[x1, x2, x5, x6, x9, x10, x11, x12, x13] ≤lex [x2, x4, x6, x8, x14, x16, x13, x15, x10]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x12, x10, x11, x9, x16, x14, x15, x13]

[x1, x2, x3, x4, x9, x13] ≤lex [x8, x6, x7, x5, x12, x16]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x16, x14, x15, x13, x12, x10, x11, x9]

[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x14, x15, x13]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x9, x11, x10, x12, x13, x15, x14, x16]

[x1, x2, x3, x4, x10, x14] ≤lex [x5, x7, x6, x8, x11, x15]
[x1, x2, x3, x4, x6, x7, x8] ≤lex [x13, x15, x14, x16, x11, x10, x12]
[x2, x6, x9, x10, x11, x12] ≤lex [x3, x7, x13, x15, x14, x16]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x13, x14] ≤lex [x7, x5, x8, x6, x15, x13, x16, x14, x11, x9, x12, x3, x1]
[x1, x3, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14] ≤lex [x3, x4, x11, x9, x12, x10, x15, x13, x16, x14, x7, x5]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x12] ≤lex [x14, x16, x13, x15, x6, x8, x5, x2, x4, x1, x3]
[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x12, x13, x14] ≤lex [x11, x9, x12, x10, x7, x5, x8, x15, x13, x16, x14, x3, x1]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x7, x5, x8, x6, x11, x9, x12, x10, x3, x1]
[x1, x2, x3, x4, x5, x6, x9, x10, x11] ≤lex [x14, x16, x13, x15, x2, x4, x10, x12, x9]

[x1, x2, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x2, x4, x14, x16, x13, x15, x6, x8, x5, x7]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x11, x9, x12, x10, x15, x13, x16, x14, x3, x1]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x15, x13, x16, x14, x11, x9, x12, x10, x7, x5]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x12, x9, x11, x14, x16, x13, x15, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x13] ≤lex [x14, x16, x13, x15, x10, x12, x9, x11, x6, x8, x2]

[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x8, x6, x7, x5, x16, x14, x15, x13]
Table A.12 – Continued on next page
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Table A.12 – continued from previous page
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x5, x7, x6, x8, x13, x15, x14, x16]

[x2, x6, x10, x14] ≤lex [x3, x7, x11, x15]
[x1, x2, x3, x4, x5, x9] ≤lex [x15, x14, x13, x16, x7, x11]

[x1, x5, x6, x7, x8, x13] ≤lex [x3, x11, x10, x9, x12, x15]
[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x13] ≤lex [x14, x15, x16, x13, x6, x7, x8, x10, x11, x12, x2]

[x1, x2, x3, x5, x6, x7, x8, x9] ≤lex [x2, x3, x4, x10, x11, x12, x9, x6]
[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11] ≤lex [x16, x13, x14, x15, x8, x5, x6, x12, x9, x10]

[x1, x2, x3, x4, x6, x10] ≤lex [x13, x16, x15, x14, x8, x12]
[x2, x5, x6, x7, x8, x14] ≤lex [x4, x9, x12, x11, x10, x16]
[x1, x2, x3, x4, x5, x13] ≤lex [x11, x10, x9, x12, x7, x15]
[x1, x5, x6, x7, x8, x9] ≤lex [x3, x15, x14, x13, x16, x11]

[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x10, x11, x12, x9, x6, x7, x8, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x14, x15, x16, x13, x2, x3, x4, x1, x6, x7, x8, x5]

[x1, x2, x3, x5, x6, x7, x8, x9, x10, x11, x13] ≤lex [x2, x3, x4, x14, x15, x16, x13, x10, x11, x12, x6]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x8, x5, x6, x7, x12, x9, x10, x11, x16, x13]

[x1, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x16, x13, x14, x15, x12, x9, x10]
[x1, x2, x3, x4, x6, x14] ≤lex [x9, x12, x11, x10, x8, x16]
[x2, x5, x6, x7, x8, x10] ≤lex [x4, x13, x16, x15, x14, x12]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x11, x10, x9, x12, x15, x14, x13, x16]
[x1, x2, x3, x4, x9, x13] ≤lex [x7, x6, x5, x8, x11, x15]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x15, x14, x13, x16, x11, x10, x9, x12]
[x1, x5, x9, x10, x11, x12] ≤lex [x3, x7, x15, x14, x13, x16]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x11, x12, x9, x14, x15, x16, x13, x6]
[x1, x2, x3, x4, x5] ≤lex [x6, x7, x8, x5, x2]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x15, x16, x13, x10, x11, x12, x9, x2]
[x1, x2, x3, x5, x6, x7, x9, x10, x11, x12, x13] ≤lex [x2, x3, x4, x6, x7, x8, x14, x15, x16, x13, x10]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x12, x9, x10, x11, x16, x13, x14, x15, x8, x5]
[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x13, x14, x15]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x9, x12, x11, x10, x13, x16, x15, x14]
[x1, x2, x3, x4, x10, x14] ≤lex [x5, x8, x7, x6, x12, x16]

[x1, x2, x3, x4, x6, x7, x8] ≤lex [x13, x16, x15, x14, x12, x11, x10]
[x2, x6, x9, x10, x11, x12] ≤lex [x4, x8, x13, x16, x15, x14]

[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x10, x11, x12, x9, x2, x3, x4, x6]
[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x12, x13] ≤lex [x14, x15, x16, x13, x6, x7, x8, x2, x3, x4, x1, x10]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11] ≤lex [x8, x5, x6, x7, x16, x13, x14, x15, x12, x9, x10]
[x1, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x12, x9, x10, x11, x16, x13, x14]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x13] ≤lex [x14, x15, x16, x13, x2, x3, x4, x10, x11, x12, x6]
[x1, x2, x3, x5, x6, x7, x8, x9, x10, x11, x12, x13] ≤lex [x2, x3, x4, x14, x15, x16, x13, x6, x7, x8, x5, x10]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11] ≤lex [x12, x9, x10, x11, x8, x5, x6, x16, x13, x14]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x7, x6, x5, x8, x15, x14, x13, x16]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x11, x12, x9, x14, x15, x16, x13, x2]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x13] ≤lex [x14, x15, x16, x13, x10, x11, x12, x9, x6, x7, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x12, x9, x10, x11, x16, x13, x14, x15, x4, x1]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x16, x13, x14, x15, x12, x9, x10, x11, x8, x5]

[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x5, x8, x7, x6, x13, x16, x15, x14]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x11, x12, x10, x9, x3, x4, x2]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11, x13] ≤lex [x15, x16, x14, x13, x7, x8, x6, x11, x12, x10, x3]
[x1, x2, x5, x6, x7, x8, x9] ≤lex [x3, x4, x11, x12, x10, x9, x7]
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[x1, x2, x3, x4, x5, x9] ≤lex [x14, x13, x15, x16, x6, x10]

[x1, x5, x6, x7, x8, x13] ≤lex [x2, x10, x9, x11, x12, x14]
[x1, x2, x3, x4, x5, x6] ≤lex [x8, x7, x5, x6, x16, x15]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11] ≤lex [x16, x15, x13, x14, x8, x7, x5, x12, x11, x9]
[x1, x2, x3, x4, x7, x11] ≤lex [x13, x14, x16, x15, x8, x12]
[x3, x5, x6, x7, x8, x15] ≤lex [x4, x9, x10, x12, x11, x16]

[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x11, x12, x10, x9, x7, x8, x6, x3]
[x1, x2, x3, x4, x5, x6, x7] ≤lex [x15, x16, x14, x13, x3, x4, x2]

[x1, x2, x5, x6, x7, x8, x9, x10, x11, x13] ≤lex [x3, x4, x15, x16, x14, x13, x11, x12, x10, x7]
[x1, x2, x3, x4, x5, x13] ≤lex [x10, x9, x11, x12, x6, x14]
[x1, x5, x6, x7, x8, x9] ≤lex [x2, x14, x13, x15, x16, x10]
[x1, x2, x3, x4, x5, x6] ≤lex [x8, x7, x5, x6, x12, x11]

[x1, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x16, x15, x13, x14, x12, x11, x9]
[x1, x2, x3, x4, x7, x15] ≤lex [x9, x10, x12, x11, x8, x16]
[x3, x5, x6, x7, x8, x11] ≤lex [x4, x13, x14, x16, x15, x12]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x11, x12, x10, x9, x15, x16, x14, x13, x7]
[x1, x2, x3, x4, x5] ≤lex [x7, x8, x6, x5, x3]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x15, x16, x14, x13, x11, x12, x10, x9, x3, x4, x2, x1]
[x1, x2, x5, x6, x9, x10, x11, x12, x13] ≤lex [x3, x4, x7, x8, x15, x16, x14, x13, x11]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x10, x9, x11, x12, x14, x13, x15, x16]
[x1, x2, x3, x4, x9, x13] ≤lex [x6, x5, x7, x8, x10, x14]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x14, x13, x15, x16, x10, x9, x11, x12]
[x1, x5, x9, x10, x11, x12] ≤lex [x2, x6, x14, x13, x15, x16]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11] ≤lex [x12, x11, x9, x10, x16, x15, x13, x14, x8, x7, x5]
[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x15, x13, x14]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x9, x10, x12, x11, x13, x14, x16, x15]
[x1, x2, x3, x4, x11, x15] ≤lex [x5, x6, x8, x7, x12, x16]

[x1, x2, x3, x4, x7, x8] ≤lex [x13, x14, x16, x15, x12, x11]
[x3, x7, x9, x10, x11, x12] ≤lex [x4, x8, x13, x14, x16, x15]

[x1, x2, x3, x4, x5, x6, x7, x9, x10, x11] ≤lex [x15, x16, x14, x13, x7, x8, x6, x3, x4, x2]
[x1, x5, x6, x7, x8, x9, x10] ≤lex [x4, x12, x11, x9, x10, x16, x15]

[x1, x2, x5, x6, x7, x8, x9, x10, x11] ≤lex [x3, x4, x15, x16, x14, x13, x7, x8, x6]
[x1, x2, x3, x4, x5, x6, x7, x9, x10] ≤lex [x12, x11, x9, x10, x8, x7, x5, x16, x15]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11, x13] ≤lex [x11, x12, x10, x9, x15, x16, x14, x13, x3, x2, x7]
[x1, x2, x3, x4, x7, x9, x10, x11, x12, x13] ≤lex [x7, x8, x6, x5, x2, x15, x16, x14, x13, x11]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11, x13] ≤lex [x15, x16, x14, x13, x11, x12, x10, x9, x7, x6, x3]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x6, x5, x7, x8, x14, x13, x15, x16]

[x1, x5, x9, x13] ≤lex [x2, x6, x10, x14]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11] ≤lex [x12, x11, x9, x10, x16, x15, x13, x14, x4, x1]

[x1, x2, x3, x4, x5, x9, x10, x11, x12] ≤lex [x8, x7, x5, x6, x4, x16, x15, x13, x14]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11] ≤lex [x16, x15, x13, x14, x12, x11, x9, x10, x8, x5]

[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x5, x6, x8, x7, x13, x14, x16, x15]
[x3, x7, x11, x15] ≤lex [x4, x8, x12, x16]

[x1, x2, x3, x4, x5, x6, x9, x10] ≤lex [x15, x13, x14, x16, x7, x5, x11, x9]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x10, x12, x11, x9, x2, x4, x3, x1]

[x1, x2, x3, x4, x5, x6, x9, x10, x13] ≤lex [x14, x16, x15, x13, x6, x8, x10, x12, x2]
[x1, x2, x5, x6, x7, x8, x9] ≤lex [x2, x4, x10, x12, x11, x9, x6]

[x1, x2, x3, x4, x5, x7, x9, x11] ≤lex [x16, x14, x13, x15, x8, x5, x12, x9]
Table A.12 – Continued on next page



A.3. 4X4-MATRIX MODELS 47

Table A.12 – continued from previous page
[x1, x2, x3, x4, x6, x7, x8] ≤lex [x9, x11, x12, x10, x3, x4, x2]

[x1, x2, x3, x4, x6, x7, x10, x11, x14] ≤lex [x13, x15, x16, x14, x7, x8, x11, x12, x3]
[x2, x3, x5, x6, x7, x8, x10] ≤lex [x3, x4, x9, x11, x12, x10, x7]
[x1, x5, x6, x7, x8, x9, x10] ≤lex [x3, x15, x13, x14, x16, x11, x9]
[x1, x2, x3, x4, x5, x6, x9] ≤lex [x10, x12, x11, x9, x6, x8, x2]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x14, x16, x15, x13, x2, x4, x3, x1]
[x1, x2, x5, x6, x7, x8, x9, x10, x13] ≤lex [x2, x4, x14, x16, x15, x13, x10, x12, x6]

[x1, x5, x6, x7, x8, x9, x11] ≤lex [x4, x16, x14, x13, x15, x12, x9]
[x1, x2, x3, x4, x6, x7, x10] ≤lex [x9, x11, x12, x10, x7, x8, x3]
[x1, x2, x3, x4, x6, x7, x8] ≤lex [x13, x15, x16, x14, x3, x4, x2]

[x2, x3, x5, x6, x7, x8, x10, x11, x14] ≤lex [x3, x4, x13, x15, x16, x14, x11, x12, x7]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x11, x9, x10, x12, x15, x13, x14, x16, x7, x5]

[x1, x5, x9, x10, x11, x12] ≤lex [x3, x7, x15, x13, x14, x16]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x12, x11, x9, x14, x16, x15, x13, x6]

[x1, x2, x3, x4, x5] ≤lex [x6, x8, x7, x5, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x16, x15, x13, x10, x12, x11, x9, x2]

[x1, x2, x5, x6, x9, x10, x11, x12, x13] ≤lex [x2, x4, x6, x8, x14, x16, x15, x13, x10]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11] ≤lex [x12, x10, x9, x11, x16, x14, x13, x15, x8, x6, x5]

[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x14, x13, x15]
[x1, x2, x3, x4, x5, x6, x7, x8, x10] ≤lex [x9, x11, x12, x10, x13, x15, x16, x14, x7]

[x1, x2, x3, x4, x6] ≤lex [x5, x7, x8, x6, x3]
[x1, x2, x3, x4, x6, x7, x8, x10] ≤lex [x13, x15, x16, x14, x11, x12, x10, x3]

[x2, x3, x6, x7, x9, x10, x11, x12, x14] ≤lex [x3, x4, x7, x8, x13, x15, x16, x14, x11]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x7, x5, x6, x8, x15, x13, x14, x16, x11, x9]

[x1, x5, x6, x7, x8, x9, x10] ≤lex [x3, x11, x9, x10, x12, x15, x13]
[x1, x2, x3, x4, x5, x6, x7, x13] ≤lex [x10, x12, x11, x9, x2, x4, x3, x14]

[x1, x2, x3, x4, x5, x6, x9, x10, x11, x12] ≤lex [x14, x16, x15, x13, x6, x8, x2, x4, x3, x1]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11] ≤lex [x8, x6, x5, x7, x16, x14, x13, x15, x12, x9]

[x1, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x12, x10, x9, x11, x16, x14, x13]
[x1, x2, x3, x4, x6, x7, x14] ≤lex [x9, x11, x12, x10, x3, x4, x15]

[x1, x2, x3, x4, x6, x7, x10, x11, x12] ≤lex [x13, x15, x16, x14, x7, x8, x3, x4, x2]
[x1, x2, x3, x4, x5, x6, x9, x10] ≤lex [x11, x9, x10, x12, x7, x5, x15, x13]

[x1, x2, x3, x4, x5, x6, x7, x8, x13, x14] ≤lex [x7, x5, x6, x8, x11, x9, x10, x12, x15, x13]
[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x14, x16, x15, x13, x2, x4, x3, x10]

[x1, x2, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x2, x4, x14, x16, x15, x13, x6, x8, x7, x5]
[x1, x2, x3, x4, x5, x7, x9, x10, x11] ≤lex [x12, x10, x9, x11, x8, x5, x16, x14, x13]

[x1, x2, x3, x4, x5, x6, x7, x8, x13, x15] ≤lex [x8, x6, x5, x7, x12, x10, x9, x11, x16, x13]
[x1, x2, x3, x4, x6, x7, x10] ≤lex [x13, x15, x16, x14, x3, x4, x11]

[x2, x3, x5, x6, x7, x8, x10, x11, x12] ≤lex [x3, x4, x13, x15, x16, x14, x7, x8, x6]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x11, x9, x10, x12, x15, x13, x14, x16, x3, x1]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x15, x13, x14, x16, x11, x9, x10, x12, x7, x5]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x12, x11, x9, x14, x16, x15, x13, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x16, x15, x13, x10, x12, x11, x9, x6]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11] ≤lex [x12, x10, x9, x11, x16, x14, x13, x15, x4, x1]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x11] ≤lex [x16, x14, x13, x15, x12, x10, x9, x11, x8, x5]

[x1, x2, x3, x4, x5, x6, x7, x8, x10] ≤lex [x9, x11, x12, x10, x13, x15, x16, x14, x3]
[x1, x2, x3, x4, x6, x7, x8, x10] ≤lex [x13, x15, x16, x14, x11, x12, x10, x7]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x11, x10, x12, x9, x3, x2, x4, x1]
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[x1, x2, x3, x4, x5, x7, x9, x11, x13] ≤lex [x15, x14, x16, x13, x7, x8, x11, x12, x3]

[x1, x3, x5, x6, x7, x8, x9] ≤lex [x3, x4, x11, x10, x12, x9, x7]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x10, x11, x9, x12, x2, x3, x1, x4]

[x1, x2, x3, x4, x5, x6, x9, x10, x13] ≤lex [x14, x15, x13, x16, x6, x7, x10, x11, x2]
[x1, x2, x5, x6, x7, x8, x9] ≤lex [x2, x3, x10, x11, x9, x12, x6]

[x1, x2, x3, x4, x5, x6, x9, x10] ≤lex [x16, x13, x15, x14, x8, x5, x12, x9]
[x1, x2, x3, x4, x6, x7, x10, x11] ≤lex [x13, x16, x14, x15, x8, x6, x12, x10]

[x1, x2, x3, x4, x5, x7, x9] ≤lex [x11, x10, x12, x9, x7, x8, x3]
[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x15, x14, x16, x13, x3, x2, x4, x1]

[x1, x3, x5, x6, x7, x8, x9, x11, x13] ≤lex [x3, x4, x15, x14, x16, x13, x11, x12, x7]
[x1, x2, x3, x4, x5, x6, x9] ≤lex [x10, x11, x9, x12, x6, x7, x2]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x14, x15, x13, x16, x2, x3, x1, x4]
[x1, x2, x5, x6, x7, x8, x9, x10, x13] ≤lex [x2, x3, x14, x15, x13, x16, x10, x11, x6]

[x1, x5, x6, x7, x8, x9, x10] ≤lex [x4, x16, x13, x15, x14, x12, x9]
[x2, x5, x6, x7, x8, x10, x11] ≤lex [x4, x13, x16, x14, x15, x12, x10]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x11, x10, x12, x9, x15, x14, x16, x13, x7, x6]
[x1, x2, x3, x4, x5] ≤lex [x7, x6, x8, x5, x3]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x15, x14, x16, x13, x11, x10, x12, x9, x3, x2]
[x1, x3, x5, x7, x9, x10, x11, x12, x13] ≤lex [x3, x4, x7, x8, x15, x14, x16, x13, x11]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x11, x9, x12, x14, x15, x13, x16, x6]
[x1, x2, x3, x4, x5] ≤lex [x6, x7, x5, x8, x2]

[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x15, x13, x16, x10, x11, x9, x12, x2]
[x1, x2, x5, x6, x9, x10, x11, x12, x13] ≤lex [x2, x3, x6, x7, x14, x15, x13, x16, x10]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x12, x9, x11, x10, x16, x13, x15, x14, x8, x5]

[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x13, x15, x14]
[x1, x2, x3, x4, x5, x6, x7, x8, x10, x11] ≤lex [x9, x12, x10, x11, x13, x16, x14, x15, x8, x6]

[x2, x6, x9, x10, x11, x12] ≤lex [x4, x8, x13, x16, x14, x15]
[x1, x2, x3, x4, x5, x6, x7, x13] ≤lex [x11, x10, x12, x9, x3, x2, x4, x15]

[x1, x2, x3, x4, x5, x7, x9, x10, x11, x12] ≤lex [x15, x14, x16, x13, x7, x8, x3, x2, x4, x1]
[x1, x2, x3, x4, x5, x6, x13] ≤lex [x10, x11, x9, x12, x2, x3, x14]

[x1, x2, x3, x4, x5, x6, x9, x10, x11, x12] ≤lex [x14, x15, x13, x16, x6, x7, x2, x3, x1, x4]
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x8, x5, x7, x6, x16, x13, x15, x14, x12, x9]

[x1, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x12, x9, x11, x10, x16, x13, x15]
[x1, x2, x3, x4, x5, x6, x7, x8, x10, x11] ≤lex [x5, x8, x6, x7, x13, x16, x14, x15, x12, x10]

[x2, x5, x6, x7, x8, x9, x10, x11] ≤lex [x4, x9, x12, x10, x11, x13, x16, x14]
[x1, x2, x3, x4, x5, x6, x7, x9] ≤lex [x15, x14, x16, x13, x3, x2, x4, x11]

[x1, x3, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x3, x4, x15, x14, x16, x13, x7, x6, x8, x5]
[x1, x2, x3, x4, x5, x6, x9] ≤lex [x14, x15, x13, x16, x2, x3, x10]

[x1, x2, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x2, x3, x14, x15, x13, x16, x6, x7, x5, x8]
[x1, x2, x3, x4, x5, x6, x9, x10, x11] ≤lex [x12, x9, x11, x10, x8, x5, x16, x13, x15]

[x1, x2, x3, x4, x5, x6, x7, x8, x13, x14] ≤lex [x8, x5, x7, x6, x12, x9, x11, x10, x16, x13]
[x1, x2, x3, x4, x6, x7, x9, x10, x11] ≤lex [x9, x12, x10, x11, x8, x6, x13, x16, x14]

[x1, x2, x3, x4, x5, x6, x7, x8, x14, x15] ≤lex [x5, x8, x6, x7, x9, x12, x10, x11, x16, x14]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x11, x10, x12, x9, x15, x14, x16, x13, x3]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x15, x14, x16, x13, x11, x10, x12, x9, x7]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x10, x11, x9, x12, x14, x15, x13, x16, x2]
[x1, x2, x3, x4, x5, x6, x7, x8, x9] ≤lex [x14, x15, x13, x16, x10, x11, x9, x12, x6]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x12, x9, x11, x10, x16, x13, x15, x14, x4, x1]
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Table A.12 – continued from previous page
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x16, x13, x15, x14, x12, x9, x11, x10, x8, x5]

[x1, x2, x3, x4, x5, x6, x7, x8, x10, x11] ≤lex [x9, x12, x10, x11, x13, x16, x14, x15, x4, x2]
[x1, x2, x3, x4, x6, x7, x8, x10, x11] ≤lex [x13, x16, x14, x15, x12, x10, x11, x8, x6]

[x1, x2, x3, x4, x5, x6, x9, x10] ≤lex [x15, x16, x13, x14, x7, x8, x11, x12]
[x1, x2, x5, x6, x7, x8, x13, x14] ≤lex [x3, x4, x11, x12, x9, x10, x15, x16]
[x1, x2, x3, x4, x5, x7, x9, x11] ≤lex [x14, x13, x16, x15, x6, x8, x10, x12]

[x1, x3, x5, x6, x7, x8, x13, x15] ≤lex [x2, x4, x10, x9, x12, x11, x14, x16]
[x1, x2, x3, x4, x5, x6, x9, x10] ≤lex [x16, x15, x14, x13, x8, x7, x12, x11]

[x1, x5, x6, x7, x8, x13, x14] ≤lex [x4, x12, x11, x10, x9, x16, x15]
[x1, x2, x3, x4] ≤lex [x5, x6, x7, x8]
[x5, x6, x7, x8] ≤lex [x9, x10, x11, x12]

[x1, x2, x3, x4, x5, x6, x13, x14] ≤lex [x11, x12, x9, x10, x7, x8, x15, x16]
[x1, x2, x5, x6, x7, x8, x9, x10] ≤lex [x3, x4, x15, x16, x13, x14, x11, x12]

[x1, x2, x3, x4, x5, x7, x13, x15] ≤lex [x10, x9, x12, x11, x6, x8, x14, x16]
[x1, x3, x5, x6, x7, x8, x9, x11] ≤lex [x2, x4, x14, x13, x16, x15, x10, x12]

[x1, x2, x3, x4, x5, x6, x13, x14] ≤lex [x12, x11, x10, x9, x8, x7, x16, x15]
[x1, x5, x6, x7, x8, x9, x10] ≤lex [x4, x16, x15, x14, x13, x12, x11]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x11, x12, x9, x10, x15, x16, x13, x14]
[x1, x2, x3, x4, x9, x10, x13, x14] ≤lex [x7, x8, x5, x6, x11, x12, x15, x16]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x15, x16, x13, x14, x11, x12, x9, x10]
[x1, x2, x5, x6, x9, x10, x11, x12] ≤lex [x3, x4, x7, x8, x15, x16, x13, x14]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x10, x9, x12, x11, x14, x13, x16, x15]
[x1, x2, x3, x4, x9, x11, x13, x15] ≤lex [x6, x5, x8, x7, x10, x12, x14, x16]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x14, x13, x16, x15, x10, x9, x12, x11]
[x1, x3, x5, x7, x9, x10, x11, x12] ≤lex [x2, x4, x6, x8, x14, x13, x16, x15]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x12, x11, x10, x9, x16, x15, x14, x13]
[x1, x2, x3, x4, x9, x10, x13, x14] ≤lex [x8, x7, x6, x5, x12, x11, x16, x15]

[x1, x2, x3, x4, x5, x6, x7, x8] ≤lex [x16, x15, x14, x13, x12, x11, x10, x9]
[x1, x5, x9, x10, x11, x12] ≤lex [x4, x8, x16, x15, x14, x13]

[x9, x10, x11, x12] ≤lex [x13, x14, x15, x16]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x7, x8, x5, x6, x15, x16, x13, x14]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x6, x5, x8, x7, x14, x13, x16, x15]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x8, x7, x6, x5, x16, x15, x14, x13]

Table A.13: Approximate minimal set of lex -constraints, M4×4, domain 2

[x9, x10, x11, x12] ≤lex [x13, x14, x15, x16]
[x1, x3, x5, x6, x7, x8, x13, x15] ≤lex [x2, x4, x10, x9, x12, x11, x14, x16]

[x3, x7, x11, x15] ≤lex [x4, x8, x12, x16]
[x1, x5, x9, x13] ≤lex [x2, x6, x10, x14]

[x1, x2, x3, x4, x11, x15] ≤lex [x5, x6, x8, x7, x12, x16]
[x1, x5, x9, x10, x11, x12] ≤lex [x2, x6, x14, x13, x15, x16]

[x3, x5, x6, x7, x8, x15] ≤lex [x4, x9, x10, x12, x11, x16]
[x1, x5, x6, x7, x8, x13] ≤lex [x2, x10, x9, x11, x12, x14]

[x2, x6, x10, x14] ≤lex [x3, x7, x11, x15]
[x2, x6, x9, x10, x11, x12] ≤lex [x3, x7, x13, x15, x14, x16]
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Table A.13 – continued from previous page
[x1, x2, x3, x4, x10, x14] ≤lex [x5, x7, x6, x8, x11, x15]
[x2, x5, x6, x7, x8, x14] ≤lex [x3, x9, x11, x10, x12, x15]

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] ≤lex [x7, x5, x8, x6, x15, x13, x16, x14, x3, x1, x4, x2]
[x1, x2, x3, x4, x9, x10, x11, x12] ≤lex [x5, x7, x6, x8, x13, x15, x14, x16]

Table A.14: Minimized DNF of lex-constraints for M4×4, domain 2

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x13 ∧ x14) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x13 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ x12 ∧ ¬x13 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ x12 ∧ ¬x13 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ ¬x12 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x13 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ ¬x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ ¬x10 ∧ x12 ∧ ¬x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ ¬x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ ¬x12 ∧ ¬x13 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨
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Table A.14 – continued from previous page
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x9 ∧ x10 ∧ ¬x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x16) ∨

(¬x1 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x13 ∧ ¬x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ ¬x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ x12 ∧ ¬x13 ∧ ¬x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ ¬x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ ¬x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ ¬x12 ∧ x13 ∧ ¬x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ ¬x12 ∧ ¬x13 ∧ ¬x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ x14 ∧ x16) ∨

(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ ¬x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨

(x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x11 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ ¬x10 ∧ x11 ∧ x13 ∧ x14) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x9 ∧ x10 ∧ ¬x11 ∧ x13 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x9 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨
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(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x5 ∧ ¬x6 ∧ x8 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ ¬x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ ¬x12 ∧ x13 ∧ x14 ∧ x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ x12 ∧ x13 ∧ x14 ∧ ¬x15) ∨
(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x13 ∧ x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7 ∧ x9 ∧ ¬x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x13 ∧ ¬x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ x8 ∧ ¬x9 ∧ x10 ∧ ¬x11 ∧ x12 ∧ x13 ∧ ¬x14 ∧ x16) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 ∧ ¬x9 ∧ ¬x10 ∧ ¬x11 ∧ ¬x13 ∧ ¬x14 ∧ x16) ∨

(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ x6 ∧ x7 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨
(¬x1 ∧ x3 ∧ x4 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16) ∨

(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11 ∧ x12 ∧ x13 ∧ x14 ∧ x15 ∧ x16)

Table A.15: Minimized CNF of lex-constraints for M4×4, domain 2

(¬x1 ∨ x2) ∧
(¬x2 ∨ x3) ∧
(¬x3 ∨ x4) ∧
(¬x1 ∨ x5) ∧
(¬x1 ∨ x6) ∧
(¬x2 ∨ x7) ∧
(¬x5 ∨ x9) ∧

(¬x5 ∨ x10) ∧
(¬x9 ∨ x13) ∧

(x2 ∨ ¬x5 ∨ x6) ∧
(¬x2 ∨ x5 ∨ x6) ∧
(x3 ∨ ¬x6 ∨ x7) ∧
(¬x3 ∨ x6 ∨ x7) ∧

(¬x3 ∨ ¬x7 ∨ x8) ∧
(x4 ∨ ¬x7 ∨ x8) ∧

(x6 ∨ ¬x9 ∨ x10) ∧
(¬x6 ∨ x9 ∨ x10) ∧
(x3 ∨ ¬x6 ∨ x11) ∧
(¬x6 ∨ x9 ∨ x11) ∧

(¬x7 ∨ x10 ∨ x11) ∧
(¬x9 ∨ ¬x10 ∨ x14) ∧
(¬x10 ∨ x13 ∨ x14) ∧

(x5 ∨ x7 ∨ ¬x10 ∨ x11) ∧
(¬x3 ∨ ¬x7 ∨ ¬x11 ∨ x12) ∧

(x4 ∨ ¬x7 ∨ ¬x11 ∨ x12) ∧
(x6 ∨ x8 ∨ ¬x11 ∨ x12) ∧
(¬x8 ∨ x9 ∨ x11 ∨ x12) ∧
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(¬x9 ∨ ¬x10 ∨ ¬x11 ∨ x15) ∧
(¬x10 ∨ ¬x11 ∨ x13 ∨ x15) ∧

(¬x12 ∨ x14 ∨ x15 ∨ x16) ∧
(¬x10 ∨ ¬x11 ∨ ¬x12 ∨ x13 ∨ x16) ∧

(x4 ∨ ¬x7 ∨ ¬x11 ∨ ¬x15 ∨ x16) ∧
(x6 ∨ x8 ∨ ¬x11 ∨ ¬x15 ∨ x16) ∧
(x4 ∨ x10 ∨ x12 ∨ ¬x15 ∨ x16) ∧

(x3 ∨ ¬x8 ∨ x9 ∨ x11 ∨ ¬x14 ∨ x15) ∧
(¬x2 ∨ ¬x6 ∨ x11) ∧

(¬x2 ∨ ¬x10 ∨ x15) ∧
(¬x2 ∨ ¬x11 ∨ x16) ∧

(¬x4 ∨ x5 ∨ x7 ∨ x8) ∧
(¬x5 ∨ ¬x6 ∨ ¬x7 ∨ x11) ∧

(x7 ∨ x8 ∨ ¬x10 ∨ x11) ∧
(¬x5 ∨ ¬x7 ∨ ¬x8 ∨ x12) ∧
(¬x7 ∨ ¬x8 ∨ x10 ∨ x12) ∧

(x7 ∨ x8 ∨ ¬x11 ∨ x12) ∧
(x7 ∨ ¬x9 ∨ x11 ∨ x12) ∧

(x9 ∨ x10 ∨ ¬x13 ∨ x14) ∧
(x10 ∨ x11 ∨ ¬x13 ∨ x14) ∧
(x10 ∨ x12 ∨ ¬x13 ∨ x14) ∧
(x3 ∨ ¬x6 ∨ ¬x10 ∨ x15) ∧
(x6 ∨ ¬x11 ∨ x14 ∨ x15) ∧

(¬x7 ∨ ¬x11 ∨ x14 ∨ x15) ∧
(x10 ∨ ¬x11 ∨ x14 ∨ x15) ∧

(¬x5 ∨ ¬x8 ∨ ¬x11 ∨ x16) ∧
(¬x6 ∨ ¬x7 ∨ ¬x8 ∨ x9 ∨ x12) ∧

(x7 ∨ ¬x10 ∨ ¬x11 ∨ ¬x14 ∨ x15) ∧
(x5 ∨ x7 ∨ x11 ∨ ¬x14 ∨ x15) ∧

(x4 ∨ x11 ∨ x12 ∨ ¬x14 ∨ x15) ∧
(x9 ∨ x11 ∨ x12 ∨ ¬x14 ∨ x15) ∧

(¬x9 ∨ ¬x10 ∨ ¬x11 ∨ ¬x12 ∨ x16) ∧
(¬x6 ∨ ¬x8 ∨ x9 ∨ x12 ∨ x16) ∧

(x10 ∨ ¬x11 ∨ ¬x12 ∨ x14 ∨ x16) ∧
(¬x3 ∨ ¬x7 ∨ ¬x11 ∨ ¬x15 ∨ x16) ∧

(¬x3 ∨ x11 ∨ x12 ∨ ¬x15 ∨ x16) ∧
(x4 ∨ x11 ∨ x12 ∨ ¬x15 ∨ x16) ∧
(x8 ∨ x11 ∨ x12 ∨ ¬x15 ∨ x16) ∧
(¬x6 ∨ x7 ∨ ¬x12 ∨ x15 ∨ x16) ∧
(x3 ∨ ¬x9 ∨ ¬x12 ∨ x15 ∨ x16) ∧

(¬x9 ∨ x11 ∨ ¬x12 ∨ x15 ∨ x16) ∧
(¬x6 ∨ ¬x10 ∨ x12 ∨ x15 ∨ x16) ∧

(x7 ∨ ¬x12 ∨ x13 ∨ x15 ∨ x16) ∧
(¬x8 ∨ ¬x12 ∨ x13 ∨ x15 ∨ x16) ∧
(x11 ∨ x13 ∨ ¬x14 ∨ x15 ∨ x16) ∧

(x2 ∨ ¬x7 ∨ ¬x8 ∨ x10 ∨ ¬x13 ∨ x14) ∧
(x3 ∨ ¬x8 ∨ ¬x11 ∨ ¬x12 ∨ x14 ∨ x16) ∧
Table A.15 – Continued on next page
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(¬x8 ∨ ¬x9 ∨ x10 ∨ x12 ∨ ¬x15 ∨ x16)

Table A.16: Comparision of Constraints, M4×4, domain 2
Nr of const Nr of sol Nr of lit Speed Speed

Espresso - exact CNF 75 317 297 45.50 133.50
Espresso - exact DNF 105 317 1435 229.9 904.6
Lex, entire symmetry group 576 317 129024 533.30 1050.90
Lex, after simplifications 270 317 30926 118.60 257.50
Lex, approximated min seta 14 364 1204 5.50 26.20
Lex, row-col 6 650 336 2.40 28.5

aThe largest n used in the approximated minimal set is 2
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