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Background: Combinatorial optimisation

Combinatorial optimisation consists of finding an object from
a finite set of objects:
■ The set of feasible solutions is discrete or can be discretised.
■ The goal is to find a solution, or all solutions, or a best solution.
■ Examples:

■ the travelling tournament problem.
■ the nurse scheduling problem.

Constraint programming (CP) is a set of techniques and
tools for effectively modelling and efficiently solving hard
combinatorial problems.

CP solving = inference + search
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Background: CP Modelling

Constraints form the vocabulary of a CP modelling language:
they allow a modeller to express commonly occurring substructures.

Example
The Distinct(x, y, z) constraint, over the variables x,y, and z

with domains x ∈ {1, 2}, y ∈ {1, 2}, and z ∈ {2, 3, 4, 5}

A constraint problem is a conjunction of constraints.

Example
Distinct(x, y, z) ∧ x + y < z

3 of 26



Background: CP Inference and Search
A constraint comes with a propagator, which removes impossible
values from the domains of its variables.
Example

Distinct(x, y, z) with x = {1, 2}, y = {1, 2}, and z = {�A2, 3, 4, 5}

After the propagators have removed the values they can, the solver
will begin a systematic search if need be:
■ Select a variable
■ Select a value (or a range of values)
■ Propagate again on the domain of the variables

Example
x = 1: Distinct(x, y, z), x = {1, �A2}, y = {�A1, 2}, and z = {3, 4, 5}
x ̸= 1: Distinct(x, y, z), x = {�A1, 2}, y = {1, �A2}, and z = {3, 4, 5}
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Background: Implied Constraints

An implied constraint is a constraint that logically follows from
other constraints.

Implied constraints may improve propagation or running time, without
losing any solutions.

Example (Magic Square)
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Background

Although modern CP solvers have many built-in constraints, often a
constraint that one is looking for is not there. In such cases, the
choices are:
■ to reformulate the model without the needed constraint.
■ to write one’s own propagator.

For example, deterministic finite automata (DFA)
augmented with accumulators can encode a constraint on a sequence
S of variables [BCP04].
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Example: The Group Constraint
The Group(S,N,W) constraint holds if and only if there are N
contiguous subsequences of values from the given set W in the
sequence S of variables.

Group([♡,♡,♣,♢,♡,♠,♣,♢,♣], 3, {♡,♢})

♡ ♡ ♣ ♢ ♡ ♠ ♣ ♢ ♣

group 1 group 2 group 3
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Example: The Group Constraint
The Group(S,N,W) constraint holds if and only if there are N
contiguous subsequences of values from the given set W in the
sequence S of variables.

Group([♡,♡,♣,♢,♡,♠,♣,♢,♣], 3, {♡,♢})

i 0 1 2 3 4 5 6 7 8 9
ci 0 1 1 1 2 2 2 2 3 3

return c0{c := 0} 1

Si ̸∈ W
Si ∈ W

{c := c + 1} Si ∈ W

Si ̸∈ W
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Motivation

In general, it is hard to do perfect propagation efficiently for
constraints encoded via automata [BCP04].

Implied constraints on accumulators are a way to
improve propagation, as these may trigger extra propagation at each
node of the search tree [BCRT05, FFP13].
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Our Objective

Generate implied constraints that improve propagation for
constraints encoded via automata with at least one accumulator.

■ The generation is specific to the given automaton A

■ The implied constraints are generated offline.

■ The implied constraints are of the form:

α1y1 + · · ·+ αkyk + β ≥ 0

where the yi are the accumulators of A and the weights αi and β
are to be found.
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Our Work

We developed a tool based on Farkas’ Lemma.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

Options
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Farkas' Lemma
A set of e linear inequalities over real-valued variables yi has another
linear inequality over the same variables as a logical consequence if
the latter is equal to a linear combination of the former.

λ1 a11y1 + · · ·+ a1kyk + b1 ≥ 0
... ... ... ... ...
λe ae1y1 + · · ·+ aekyk + be ≥ 0

α1y1 + · · ·+ αkyk + β ≥ 0

That is, we need to find values to the αj, β, and λi such that:
■ αj =

∑e
i=1 λiaij for 1 ≤ j ≤ k

■ β ≥
∑e

i=1 λibi
■ λi ≥ 0, except if the i-th linear constraint is an equality
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Using Farkas' Lemma (example)

Consider implied constraints of the template αc + β ≥ 0 and the
Group DFA:

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈
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Using Farkas' Lemma (example)

Initialisation:

λ0 c = 0

αc + β ≥ 0

λ0 = α
β ≥ 0

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈
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Using Farkas' Lemma (example)
Transition 0 → 1:

λ1 αc + β ≥ 0

α(c + 1) + β ≥ 0

All the other transitions:

λ2 αc + β ≥ 0

αc + β ≥ 0

subject to λ1 ≥ 0 and λ2 ≥ 0.

For example, the solution
α = 1 ∧ β = 0, corresponds
to the implied constraint
c ≥ 0.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈
The implied constraints can then be added to the model in order to
improve propagation.
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Our Work

We developed a tool based on Farkas’ Lemma.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

Options
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Option 1: History Accumulators

The tool can add h accumulators ci to the DFA in order to store the
previous h values of each accumulator c.

return c0


c2 := 0
c1 := 0
c := 0

 1

̸∈

∈
c2 := c1
c1 := c

c := c + 1

 ∈

̸∈
c2 := c1
c1 := c
c := c



Consider h = 2.

The template now is
αc + α1c1 + α2c2 + β ≥ 0.

For example, we now find the
implied constraints c1 ≤ c and
c ≤ c2 + 1 (the latter also requires
Options 2 and 3).
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Option 2: State Variable

The tool can add a term ρq for the current state q to the template
α1y1 + ...+ αkyk + ρq + β ≥ 0.

For example, for a history of
length h ≥ 1, the tool now
finds the implied constraint:

c − c1 ≤ q

return c0

{
c1 := 0
c := 0

}
1

̸∈

∈{
c1 := c

c := c + 1

}
∈

̸∈{
c1 := c
c := c

}
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Option 3: Number of linear systems
(or turns)

The tool cannot generate the previously mentioned implied constraint
c ≤ c2 + 1 after solving the first linear system.

Generating the implied
constraint c ≤ c2 + 1 requires
the prior implied constraints
c − c1 ≤ q and c2 ≤ c1.
Inferring the latter also requires
the prior implied constraint
c1 ≤ c.

return c0


c2 := 0
c1 := 0
c := 0

 1

̸∈

∈
c2 := c1
c1 := c

c := c + 1

 ∈

̸∈
c2 := c1
c1 := c
c := c
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Experiments

■ Constraints in isolation:
■ Randomly generated instances.
■ Instances are divided into satisfiable and unsatisfiable ones.

■ Entire constraint problems:
■ Randomly generated instances.
■ Designed to be hard problem instances.
■ Half of the constraints in the problem instance are all of the same

kind, and it corresponds to the constraint being tested.

All experiments were run in SICStus Prolog 4.2.
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Constraints in Isolation (satisfiable)
Seconds (top) and backtracks (bottom) to find all solutions to
satisfiable instances of Group, FullGroupNval, and Inflexion:
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Constraints in Isolation (unsatisfiable)
Seconds (top) and backtracks (bottom) to show unsatisfiability on
instances of Group, FullGroupNval, and Inflexion:
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Entire Constraint Problems
Seconds (top) and backtracks (bottom) to maximise a sum in problem
instances involving Group, FullGroupNval, and Inflexion:
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Conclusion

■ We developed a fully automated parametric tool that suggests, in
an offline process, a set of linear constraints that are implied by an
automaton with accumulators.

■ We showed that a suitable choice, by the user, among the
suggested implied constraints can considerably improve solving
time.

■ The generated implied constraints have also been very successfully
used in the context of integer programming [Ara15].
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Related Work

■ In [BCF+14], we generate implied constraints for automata where
the returned value is the same whether the automaton consumes
the sequence of variables or its reverse.
■ Like here, the implied constraints are on the accumulator variables

and state variables
■ Unlike here, the generation is limited to the indicated particular case

and is manual in most sub-cases.

■ In [BCRT05], graph invariants are used to generate implied
constraints.
■ Our approach does not require a database of precomputed invariants.

24 of 26



Future Work

■ Use a richer template for implied constraints:
■ Disjunction;

a motivating example is in [FFP13].
■ Non-linear templates, for instance, multiplication of accumulators;

a motivating example is in [BCRT05].

■ Add other options to the tool:
■ Adding a term ρi for the index variable i to the template
α1y1 + · · ·+ αkyk + ρi + β ≥ 0.
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