
Implied Constraints for CP solvers

M. Andreína Francisco Pierre Flener Justin Pearson

Department of Information Technology

Uppsala University
Sweden

October 18, 2015



Background: Combinatorial optimisation

Combinatorial optimisation consists of finding an object from
a finite set of objects:
■ The set of feasible solutions is discrete or can be discretised.
■ The goal is to find a solution, or all solutions, or a best solution.
■ Examples:

■ the travelling tournament problem.
■ the nurse scheduling problem.

Constraint programming (CP) is a set of techniques and
tools for effectively modelling and efficiently solving hard
combinatorial problems.

CP solving = inference + search

2 of 26



Background: CP Modelling

Constraints form the vocabulary of a CP modelling language:
they allow a modeller to express commonly occurring substructures.

Example
The Distinct(x, y, z) constraint, over the variables x,y, and z

with domains x ∈ {1, 2}, y ∈ {1, 2}, and z ∈ {2, 3, 4, 5}

A constraint problem is a conjunction of constraints.

Example
Distinct(x, y, z) ∧ x + y < z

3 of 26



Background: CP Inference and Search
A constraint comes with a propagator, which removes impossible
values from the domains of its variables.
Example

Distinct(x, y, z) with x = {1, 2}, y = {1, 2}, and z = {�A2, 3, 4, 5}

After the propagators have removed the values they can, the solver
will begin a systematic search if need be:
■ Select a variable
■ Select a value (or a range of values)
■ Propagate again on the domain of the variables

Example
x = 1: Distinct(x, y, z), x = {1, �A2}, y = {�A1, 2}, and z = {3, 4, 5}
x ̸= 1: Distinct(x, y, z), x = {�A1, 2}, y = {1, �A2}, and z = {3, 4, 5}

4 of 26



Background: Implied Constraints

An implied constraint is a constraint that logically follows from
other constraints.

Implied constraints may improve propagation or running time, without
losing any solutions.

Example (Magic Square)

5 of 26



Background

Although modern CP solvers have many built-in constraints, often a
constraint that one is looking for is not there. In such cases, the
choices are:
■ to reformulate the model without the needed constraint.
■ to write one’s own propagator.

For example, deterministic finite automata (DFA)
augmented with accumulators can encode a constraint on a sequence
S of variables [BCP04].

6 of 26



Example: The Group Constraint
The Group(S,N,W) constraint holds if and only if there are N
contiguous subsequences of values from the given set W in the
sequence S of variables.

Group([♡,♡,♣,♢,♡,♠,♣,♢,♣], 3, {♡,♢})

♡ ♡ ♣ ♢ ♡ ♠ ♣ ♢ ♣

group 1 group 2 group 3

7 of 26



Example: The Group Constraint
The Group(S,N,W) constraint holds if and only if there are N
contiguous subsequences of values from the given set W in the
sequence S of variables.

Group([♡,♡,♣,♢,♡,♠,♣,♢,♣], 3, {♡,♢})

i 0 1 2 3 4 5 6 7 8 9
ci 0 1 1 1 2 2 2 2 3 3

return c0{c := 0} 1

Si ̸∈ W
Si ∈ W

{c := c + 1} Si ∈ W

Si ̸∈ W
7 of 26



Example: The Group Constraint
The Group(S,N,W) constraint holds if and only if there are N
contiguous subsequences of values from the given set W in the
sequence S of variables.

Group([♡,♡,♣,♢,♡,♠,♣,♢,♣], 3, {♡,♢})

i 0 1 2 3 4 5 6 7 8 9
ci 0 1 1 1 2 2 2 2 3 3

return c0{c := 0} 1

̸∈
∈

{c := c + 1} Si ∈ W

̸∈

7 of 26



Motivation

In general, it is hard to do perfect propagation efficiently for
constraints encoded via automata [BCP04].

Implied constraints on accumulators are a way to
improve propagation, as these may trigger extra propagation at each
node of the search tree [BCRT05, FFP13].

8 of 26



Our Objective

Generate implied constraints that improve propagation for
constraints encoded via automata with at least one accumulator.

■ The generation is specific to the given automaton A

■ The implied constraints are generated offline.

■ The implied constraints are of the form:

α1y1 + · · ·+ αkyk + β ≥ 0

where the yi are the accumulators of A and the weights αi and β
are to be found.

9 of 26



Our Work

We developed a tool based on Farkas’ Lemma.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

Options

10 of 26



Farkas' Lemma
A set of e linear inequalities over real-valued variables yi has another
linear inequality over the same variables as a logical consequence if
the latter is equal to a linear combination of the former.

λ1 a11y1 + · · ·+ a1kyk + b1 ≥ 0
... ... ... ... ...
λe ae1y1 + · · ·+ aekyk + be ≥ 0

α1y1 + · · ·+ αkyk + β ≥ 0

That is, we need to find values to the αj, β, and λi such that:
■ αj =

∑e
i=1 λiaij for 1 ≤ j ≤ k

■ β ≥
∑e

i=1 λibi
■ λi ≥ 0, except if the i-th linear constraint is an equality
11 of 26



Using Farkas' Lemma (example)

Consider implied constraints of the template αc + β ≥ 0 and the
Group DFA:

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

12 of 26



Using Farkas' Lemma (example)

Initialisation:

λ0 c = 0

αc + β ≥ 0

λ0 = α
β ≥ 0

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

13 of 26



Using Farkas' Lemma (example)
Transition 0 → 1:

λ1 αc + β ≥ 0

α(c + 1) + β ≥ 0

All the other transitions:

λ2 αc + β ≥ 0

αc + β ≥ 0

subject to λ1 ≥ 0 and λ2 ≥ 0.

For example, the solution
α = 1 ∧ β = 0, corresponds
to the implied constraint
c ≥ 0.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈
The implied constraints can then be added to the model in order to
improve propagation.

14 of 26



Our Work

We developed a tool based on Farkas’ Lemma.

return c0{c := 0} 1

̸∈
∈

{c := c + 1} ∈

̸∈

Options

15 of 26



Option 1: History Accumulators

The tool can add h accumulators ci to the DFA in order to store the
previous h values of each accumulator c.

return c0


c2 := 0
c1 := 0
c := 0

 1

̸∈

∈
c2 := c1
c1 := c

c := c + 1

 ∈

̸∈
c2 := c1
c1 := c
c := c



Consider h = 2.

The template now is
αc + α1c1 + α2c2 + β ≥ 0.

For example, we now find the
implied constraints c1 ≤ c and
c ≤ c2 + 1 (the latter also requires
Options 2 and 3).

16 of 26



Option 2: State Variable

The tool can add a term ρq for the current state q to the template
α1y1 + ...+ αkyk + ρq + β ≥ 0.

For example, for a history of
length h ≥ 1, the tool now
finds the implied constraint:

c − c1 ≤ q

return c0

{
c1 := 0
c := 0

}
1

̸∈

∈{
c1 := c

c := c + 1

}
∈

̸∈{
c1 := c
c := c

}

17 of 26



Option 3: Number of linear systems
(or turns)

The tool cannot generate the previously mentioned implied constraint
c ≤ c2 + 1 after solving the first linear system.

Generating the implied
constraint c ≤ c2 + 1 requires
the prior implied constraints
c − c1 ≤ q and c2 ≤ c1.
Inferring the latter also requires
the prior implied constraint
c1 ≤ c.

return c0


c2 := 0
c1 := 0
c := 0

 1

̸∈

∈
c2 := c1
c1 := c

c := c + 1

 ∈

̸∈
c2 := c1
c1 := c
c := c



18 of 26



Experiments

■ Constraints in isolation:
■ Randomly generated instances.
■ Instances are divided into satisfiable and unsatisfiable ones.

■ Entire constraint problems:
■ Randomly generated instances.
■ Designed to be hard problem instances.
■ Half of the constraints in the problem instance are all of the same

kind, and it corresponds to the constraint being tested.

All experiments were run in SICStus Prolog 4.2.

19 of 26



Constraints in Isolation (satisfiable)
Seconds (top) and backtracks (bottom) to find all solutions to
satisfiable instances of Group, FullGroupNval, and Inflexion:

0 0.2 0.4 0.6
0

0.2

0.4

0.6

equal time

30% faster

0 0.5 1
0

0.5

1

equal time

30% faster

0 5 10 15 20
0

5

10

15

20

equal time

30% faster

0 5,000 10,000
0

5,000

10,000

equal backtracks

50% fewer backtracks

0 5,000 10,000
0

5,000

10,000

equal backtracks

50% fewer backtracks

0 2.5 · 105 5 · 105
0

2.5 · 105

5 · 105

equal backtracks

90% fewer backtracks

20 of 26



Constraints in Isolation (unsatisfiable)
Seconds (top) and backtracks (bottom) to show unsatisfiability on
instances of Group, FullGroupNval, and Inflexion:

0 0.1

0

0.1

equal time

40% faster

0 0.1 0.2 0.3
0

0.1

0.2

0.3

equal time

30% faster

0 0.01 0.02 0.03

0

0.01

0.02

0.03

equal time

0 200 400 600
0

200

400

600

equal backtracks

80% fewer backtracks

0 5,000 10,000
0

5,000

10,000

equal backtracks

30% fewer backtracks

0 1 2

0

1

2

equal backtracks

21 of 26



Entire Constraint Problems
Seconds (top) and backtracks (bottom) to maximise a sum in problem
instances involving Group, FullGroupNval, and Inflexion:

0 50 100 150
0

50

100

150

equal time

30% faster

0 20 40
0

20

40

equal time

70% faster

0 100 200 300 400
0

100

200

300

400

equal time

20% faster

0 2.5 · 106 5 · 106
0

5 · 106

equal backtracks

50% fewer backtracks

0 1 · 106 2 · 106 3 · 106
0

1 · 106

2 · 106

3 · 106

equal backtracks

70% fewer backtracks

0 4 · 106 8 · 106 1.2 · 107
0

4 · 106

8 · 106

1.2 · 107

equal backtracks

20% fewer backtracks

22 of 26



Conclusion

■ We developed a fully automated parametric tool that suggests, in
an offline process, a set of linear constraints that are implied by an
automaton with accumulators.

■ We showed that a suitable choice, by the user, among the
suggested implied constraints can considerably improve solving
time.

■ The generated implied constraints have also been very successfully
used in the context of integer programming [Ara15].

23 of 26



Related Work

■ In [BCF+14], we generate implied constraints for automata where
the returned value is the same whether the automaton consumes
the sequence of variables or its reverse.
■ Like here, the implied constraints are on the accumulator variables

and state variables
■ Unlike here, the generation is limited to the indicated particular case

and is manual in most sub-cases.

■ In [BCRT05], graph invariants are used to generate implied
constraints.
■ Our approach does not require a database of precomputed invariants.

24 of 26



Future Work

■ Use a richer template for implied constraints:
■ Disjunction;

a motivating example is in [FFP13].
■ Non-linear templates, for instance, multiplication of accumulators;

a motivating example is in [BCRT05].

■ Add other options to the tool:
■ Adding a term ρi for the index variable i to the template
α1y1 + · · ·+ αkyk + ρi + β ≥ 0.

25 of 26





Ekaterina Arafailova.
Reformulation of automata for time series constraints as linear
programs.
Master’s thesis, Mines Nantes, France, 2015.
Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, María Andreína
Francisco Rodríguez, and Justin Pearson.
Linking prefixes and suffixes for constraints encoded using
automata with accumulators.
In Barry O’Sullivan, editor, CP 2014, volume 8656 of LNCS,
pages 142–157. Springer, 2014.
Nicolas Beldiceanu, Mats Carlsson, and Thierry Petit.
Deriving filtering algorithms from constraint checkers.
In Mark Wallace, editor, CP 2004, volume 3258 of LNCS, pages
107–122. Springer, 2004.
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, and
Charlotte Truchet.
Graph invariants as necessary conditions for global constraints.

26 of 26



In Peter van Beek, editor, CP 2005, volume 3709 of LNCS, pages
92–106. Springer, 2005.
María Andreína Francisco, Pierre Flener, and Justin Pearson.
Generation of implied constraints for automaton-induced
decompositions.
In Alexander Brodsky, Éric Grégoire, and Bertrand Mazure,
editors, ICTAI 2013, pages 1076–1083. IEEE Computer Society,
2013.

26 of 26


