Fundamenta Informaticae 107 (2011) 229-254 229
DOI 10.3233/FI-2011-401
I0S Press

An automaton Constraint for Local Search *

Jun Hef, Pierre Flener, Justin Pearson

Department of Information Technology

Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
{Jun.He; Pierre.Flener; Justin.Pearsp@it.uu.se

Abstract. We explore the idea of using automata to implement new caingsr for local search.
This is already a successful approach in constraint-baeddligsearch. We show how to maintain
the violations of a constraint and its variables via a deteistic finite automaton that describes a
ground checker for that constraint. We extend the approadounter automata, which are often
much more convenient than finite automata, if not more indéget of the constraint instance. We
establish the practicality of our approach on several liisatombinatorial problems.

Keywords: Automaton constraintCounter automatonLocal search

1. Introduction

When a high-level constraint programming (CP) language lacks a (hpgfibal) constraint that would
allow the formulation of a particular model of a combinatorial problem, then thesft@draditionally
has the choice of (1) switching to another CP language that has all thieegtgonstraints, (2) formu-
lating a different model that does not require the lacking constraint, Jon{lementing the lacking
constraint in the low-level implementation language of the chosen CP langiiagepaper addresses
the core question of facilitating the third option, and as a side effect ofteresrthle first two options
unnecessary.

The user-level extensibility of CP languages has been an important@oavdr a decade. In the
traditional global search approach to CP (hamely heuristic-based aeshdaterleaved with propaga-
tion), higher-level abstractions for describing new constraints inclutxioals [16]; (possibly enriched)

*This paper is an extension of [6], which was also presented at RCRA09
fAddress for correspondence: Department of Information Teolgwp Uppsala University, Box 337, SE-751 05 Uppsala,
Sweden

230 J. He et al./ AmutomatorConstraint for Local Search

Figure 1. An automaton for a simple work scheduling constrai

deterministic finite automata (DFAS) via theitomaton [2] and reqular [11] generic constraints; and
multi-valued decision diagrams (MDDs) via théld [4] generic constraint. Usually, a general but effi-
cient propagation algorithm achieves a suitable level of local consistnpyocessing the higher-level
description of the new constraint. In the more recent local searchagipto CP (called constraint-based
local search, CBLS, in [13]), higher-level abstractions for degugilmew constraints include invariants
[10]; a subset of first-order logic with arithmetic via combinators [15] aifférdntiable invariants [14];
and existential monadic second-order logic for constraints on set legifj. Usually, a general but
incremental algorithm maintains the constraint and variable violations by ssingethe higher-level
description of the new constraint.

Example 1.1. In Figure 1 we give our running example. It is a deterministic finite automat®i(D
see [7], for example) that describes a simple work scheduling constféiete are values for two work
shifts, namely dayd) and eveningd), as well as a value for enjoying a day off)(Work shifts are
subject to the following four conditions: one must take at least one ddetdie a change of work shift;
if one works on a day shift, then one must do so for exactly two consecdéys; one can work on at
most two consecutive evening shifts; and one cannot enjoy more thanotwgeautive days off. The
initial statel is marked by a transition entering from nowhere, while the final stgtds4, 5, and6 are
marked by double circles. Missing transitions, say from S2atpon reading value, are assumed to go
to an implicit failure state, with a self-looping transition for every value (sortbdinal state is reachable
from it). The set of strings accepted by the automaton defines the setepftable work shift sequences.

In this paper, we revisit the description of new constraints via automatadgliiccessfully tried
within the global search approach to CP [2, 11], and show that it cafbalsaccessfully used within the
local search approach to CP, as also argued by [12]. The signiéicdribis endeavour can be assessed
by noting that119 of the currently348 global constraints in th&lobal Constraint Catalogué3] are
described by DFAs that are possibly enriched with counters [2], saththiese constraints are instantly
made available in CBLS.

The automaton(X, A) generic constraint of this paper is satisfied when automat@ecepts the
sequenceX of variables (unknowns). The contributions and organisation of theinel®of this paper
are as follows:

e We present two new algorithms for maintaining the violation of dh&maton (X, A) constraint
(the automator is deterministic) and the violations of the variables of that constraint (Section 2

¢ \We extend the approach to counter automata, which save modelling time by bemgonmact if
not more generic, that is more independent of the instance of the dekcadbstraint. Our counter
automata generalise those in [2] (Section 3).

J. He et al./ AmutomatorConstraint for Local Search 231

e Our algorithm for unwinding a counter automaton (when it recognisesuaeiganguage) into a
counter-free automaton generalises many existing ad hoc constructam®ofata from instances
of a constraint (Section 3.2).

e We present experimental results establishing the practicality of our resisibsin comparison to
the prior CBLS results of [12] and to handcrafted constraints (Section 4)

e We propose violation algorithms for thé@retch_path and stretch_path_partition global con-
straints (Section 4.1).

Finally, in Section 5, we summarise this work and discuss related as well as fubuok.

2. Violation Maintenance with Counter-Free Automata

In CBLS [10, 13], constraints are used to describe and control leaath. Given an initial assignment of
values to all the variables, CBLS tries to find a better assignment that desréee amount of constraint
violation, by searching a neighbourhood of the current assignmentisthaget of assignments that do
not differ much from the current one. A solution with zero (or minimal) violai®ito be found. Meta-
heuristics are used to escape local minima. Search heuristics can be byitled related measures
of violation: for each constraint, a measurecohstraint violationand a measure ofariable violation
Constraint violation measures how close the constraint is to being satiséigdbM violation measures
for each variable in the constraint the variation of the constraint violatiarcthad be achieved if that
variable was suitably modified. Although these terms are not formally defiaes] i is possible for
a large number of constraints [13] to come up with heuristically useful defisitaf constraint and
variable violations. Three things are required to implement a constraint: a dhithoalculating the
violation of the constraint and each of its variables for the initial assignmamngthod for computing
the differences of these violations upon a candidate move to a neighbassignment; and a method
for incrementally maintaining these violations when an actual move is made. Sitamlrsearch the
constraint and variable violations might need to be calculated thousands efdovees to pick the best
move, the algorithms implementing these must be very efficient and, wheliblposeremental.

2.1. Violations of a Constraint

To define and compute the violations of a constraint described by an autgmagdirst introduce the
notion of a segmentation of an assignment:

Definition 2.1. (Segmentation) Given a sequenc& = (Xi,...,X,) of n variables assigned to the
sequencéds, . .., d,) of values, asegmentatiolis a possibly empty sequence of non-empty sub-strings
(referred to here asegmentsoy, ..., o, of the stringd; - - - d,, such that for allk > j and segments

oj =dy---dgandoy, = d, - - - d, we have that > gq.

For example, given the sequenaex, d, e, x, x) of values, a possible segmentatiouisz, d), (x,);
note that, in this segmentation, the fourth character of the assignment isthot @ay segment. In gen-
eral, an assignment has multiple possible segmentations. We are interestgthentsions that are
accepted by an automaton, in the following sense:

232 J. He et al./ AmutomatorConstraint for Local Search

Definition 2.2. (Acceptance)Given an automaton and a sequek¢ésg . . ., d,,) of values, a segmenta-
tionoy, ..., o0 isacceptedy the automaton if there exist strings, . . . , ay+1, where onlya; anday
may be empty, satisfying the following two conditions. First, the concatenaiad str

is accepted by the automaton. Second, for all segments d,, - - - d, and for allp < £ < ¢, we have
thate, = di. That s, the stringsy, ..., oy are of the correct length so that the new concatenated
stringe; - - - e,, has the segments, ..., o, inthe same place asif - - - d,,.

For example, given the automaton in Figure 1, the sequéngce d, e, z,) of values has a seg-
mentation(zx, z, d), (x,z) with £ = 2 segments, which is accepted by the automaton via the string
(x,z,d,d,x,z) with oy = a3 = e (the empty string) and., = (d).

Given an assignment, the constraint and variable violations are defilatided¢o a given segmenta-
tion.

Definition 2.3. (Violations) Given an automaton describing a constrairtnd given a segmentation
o1,...,00 Of asequencéd,, ..., d,) of values for a sequence ofvariables(Xy, ..., X,):

e Theconstraint violationof cisn — Z§:1 || (where|o| denotes the length of segment

e Thevariable violationof variableX; is 0 if there exists a segment; = d,, - - - d, such thap <
1 < q, and1 otherwise, in which case we say th&} is violated

Proposition 2.1. If the violation of a constraint with respect to a given segmentation is zego, ttie
current assignment is a satisfying assignment.

Proof: Let the violation of a constraint be zero, anddet- o1 - s - -+ - ay - 0y - 1 be an accepted
string. According to Definition 2.3; — Zle |oj| is zero, sary - 02 - - -+ - oy is Of lengthn and is an
accepted string. Based on Definition 2.2, the current assignment is gisatia$signment. O

In practice, in order to have a termination criterion, we want the violation anstcaint todecide
whether the current assignment is satisfying or not, that is we also wacotiverse of Proposition 2.1.
In Section 2.2, we show that this is the case for the segmentations computeddppooach.

Proposition 2.2. The violation of a constraint with respect to a given segmentation is the suhe of
violations of its variables.

Proof: Observe that for an accepted string- o1 - ag - -+ - oy - 0¢ - a1, @s in Definition 2.2, each
violated variable only corresponds to some The result then follows from the fact that

1+1 14

SIS wet
i=1 1=1

J. He et al./ AmutomatorConstraint for Local Search 233

The Hamming distance between the current assignment and a satisfyingaesigan assignment
whose string is accepted by the automaton) is the number of variables wdlass \ave to change in
order to satisfy the constraint described by the automaton. We have theifgloesult:

Proposition 2.3. The violation of a constraint with respect to a given segmentation is at leastitiimal
Hamming distance between the current assignment and any satisfyingnasstgn

Proof: Given a segmentatios, ..., o, of the current assignment, there exists an accepted stfing
o1-ag - -+ -y oy - apyt, as in Definition 2.2. The constraint violation with respect to the given
segmentation ia — Z§:1 |oj|, which is the Hamming distance between the current assignment and the
accepted string. Then, the constraint violation can never be smaller thamrtimeal Hamming distance

to any accepted string (satisfying assignment). O

In other words, a segmentation never underestimates the number of \atlaildave to change to
reach a solution, and usually overestimates. A more precise measure affertdefewer iterations to
find a solution; however if the computation of such a measure is costly, theréenaverall a loss of
time. As shown in our experimental results in Section 4, our simple measurs wargh better than a
precise but computationally expensive measure.

Our approach, described in the next two sub-sections, greedily greegmentation from left to right
relative to a satisfying assignment, and makes stochastic choices whgresgy growth is impossible.

2.2. Calculating the Violations

Our algorithms calculate the constraint and variable violations stochasticdlipdrinear in the number
n of variables. The first version of the algorithm unrolls the automaton intoexdaygraph, specific to
n, in order to ease computation, as in [11].

Definition 2.4. (Layered Graph) Given a finite automaton with» states, thdayered graphover a
given numbenm of variables is a graph with - (n + 1) nodes. Each of the + 1 vertical layers has a
node for each of the: states of the automaton. The node for the initial state of the automaton in layer 1
is called the start node. There is an arc labelleflom nodef in layeri to nodet in layeri + 1 if and

only if there is a transition labelled from f to ¢ in the automaton. A node in layer+ 1 is marked as a
success node if it corresponds to a final state in the automaton.

The layered graph is further processed by removing all nodes asdhatcdo not lead to a success
node. The resulting graph, seen as a DFA (or as an ordered MD&) nioebe minimised (or reduced)
for our approach (although this is a good idea for the global seardioagpes [2, 11], as argued in [8],
and would be a good idea for the local search approach of [12])easutmber of arcs of the graph does
not influence the time complexity of our algorithms below.

For instance, the unrolled version for = 6 variables of the automaton in Figure 1 is given in
Figure 2. Note that a satisfying assignment that the variables are assigtiedsequencély, .. ., d,)
of values corresponds to a path from the start node in layera success node in layer+ 1, such that
each arc from layerto layeri + 1 of this path is labelled,;.

The algorithms to calculate the violations require a number of data structumssughout this sec-
tion, letm denote the number of states in the given automaton anddenote the number of variables:

234 J. He et al./ AmutomatorConstraint for Local Search

Layer1l Layer2 Layer3 Layer4 Layer5 Layer6 Layer7

Figure 2. The unrolled automaton of Figure 1. The number loh e@de is the number of paths from that node
to a success node in the last layer.

e nbrPaths[1 < i <n,1 < j <m]records the number of paths from nodim layeri to a success
node in the last layer, counted in the same way as in [20]; for example, seaithbers by each
node in Figure 2;

£ is the number of segments in the current segmentation;
e 01,...,0y are the segments of the current segmentation;
e Violation[l < i < n] records the current violation of variahkg;

The nbrPaths matrix can be computed straightforwardly by dynamic programming. The othes th
data structures are initialised (when the starting positiongs1) and maintained (when variablé; is
changed, wits > 1) by the calcSegment(s) procedure of Algorithm 1. Via some initialisations (lines 2
and 3), it (re)visits only the variables,, . . ., X,, (line 4). If the value of the currently visited variablg
triggers the extension of the currently last segment or the creation of aemwent (lines 6 to 8), then
its violation is0O (line 9). Otherwise, its violation i$ and a successor node is picked with a probability
weighted according to the number of paths from the current node to assioode (lines 12 to 13).
Toward this, we maintain the nodes of the picked path (line 14). Picking &ssarcdeterministically
(say always the first successor) is much less efficient and requéiresdinch space to be highly connected.
The time complexity of Algorithm 1 is linear in the numberof variables, because only one path
(from layers to layern+1) is explored, with a constant-time effort at each node. Once the poegsing
is done, the time complexity of Algorithm 1 gependenon the depth of the unrolled automaton and is
independenbf the number of arcs of the unrolled automaton. Hence the minimisation (cctrealuof
the unrolled automaton would be merely for space savings (and for themiemee of human reading) as
well as for accelerating the pre-processing computation otth&aths matrix. In our experiments (not
reported here for space reasons), these space and time savings &egranted by the amount of time

J. He et al./ AmutomatorConstraint for Local Search 235

Algorithm 1 Initialisation and update of the segmentation from position
1: procedure calcSegment(s)

2: let ¢ be the number of segments picked {df, ..., V;_1) at the previous run; assunie= 0 at the
first run

3: node[l] < 1; inSegment < true

4: forall i — ston do

5. if the current value, say, of V; is the label of an arc fromode/[i] to ¢ then
6: if not inSegment then

7: — {4+ 1; 00 < € inSegment — true {create a new segment

8: Oy« 0p-Q

o: Violation[i] < 0
10: else
11 inSegment «— false
12: Violation[i] — 1

. : R o nbr Paths[i+1,t]

13: pick a successarof node[i] with probabllltym

14: nodeli + 1] —t

required for minimisation (or reduction), and minimisation here never redteesepth of the unrolled
automaton.

Proposition 2.4. If the current assignment is a satisfying assignment, then the constrdatianowith
respect to the segmentation computed by Algorithm 1 is zero.

Proof: Let a sequencéXy,..., X,) of n variables be assigned to a sequettg...,d,) of values,

and let the string/; - - - d,, be accepted by the automaton. According to Definition 2.4, there exists a path
node[l] — --- — node[n + 1] in the layered graph, wherevde[1] is the start node andode[n + 1] is

a success node, such that there exists an arc labelled withdahetweemode[i] andnodeli + 1] for

any1 <1 < n. The condition on line 5 of Algorithm 1 is always satisfied under the cuassignment,

and a segmentation with one segment= (di,...,d,) is computed. The constraint violation is zero
with respect to the segmentation. O

Example 2.1. In Figure 2, with the initial assignment that all variables are assigned to theesee
(x,e,d,e,xz,x) of values and a first call to Algorithm 1 with = 1, the first segment iéx, e) (the first
dashed path). Next, the assignmént:= d triggers a violation ofl for variable X5 because there is no
arc labelledi that connects the current node 4 in layer 3 with any nodes in layer 4. \Wowede 4 in
layer 3 has two out-going (dotted) arcs, namely to nodes 3 and 5 in layedaydr 4, there ar& paths
from node 3 to the last layer, comparediteuch paths from node 5, so node 3 is picked with probability
1—71 and node 5 is picked with probabilit& (where thet, 7, and11 are the numbers by those nodes), and
we assume that node 3 in layer 4 is picked. From there, we get the sesgmerst(e, x,) (the second
dashed path), which stops at success rbdethe last layer. The violation of the constraint is tHys
because the value of one variable does not participate in any segment.

Assume now that variabl¥s is changed to value, and hence we call Algorithm 1 with= 3. Only
¢ = 1 segment can be kept from the previous segmentation pickedkfarXs), namely(z, e) (the first

236 J. He et al./ AmutomatorConstraint for Local Search

dashed path). Since there is an arc labetldcbm the current node 4 in layer 3, namely to node 5 in
layer 4, segment; is extended (line 8) tdx, e,). However, with variableX, still having valuee, this
segment cannot be extended further, since there is no arc labdlech node 5 in layer 4, and hence
X, is violated. The sole successor node 3 in layer 5 is chosen; as thereris labelledx from the
current node to node 6 in layer 6, a new segment () is created. However, variablg; is violated,
and segment, cannot be extended further. Because the values of two variablestdmartizipate

in any segment, the violation of the constrain®is It is larger than the minimal Hamming distance
between the current assignment and any satisfying assignment, asxiséseesatisfying assignment,
that the variables are assigned(tg e, x, e, , z), and the Hamming distance betwe@ne, e, e, z, x)
and(x,e,z,e,x,z) is 1. Hence changing variablé; from valued to valuee would not be considered

a good move, as the constraint violation increases fram2. Changing variables to valuez instead
would be a much better move, as the first segnient) is then extended to the entire current assignment,
that the variables are assigned(tge, z, e, z, x), without detecting any violated variables, so that the
violation of the constraint is thehy meaning that a satisfying assignment was found.

2.3. Depth-First Search

Algorithm 1 requires that the automaton be unrolled, and further the ungisgah has to have all paths
removed that do not lead to a success node. The size of the unrolled &utdmaroportional to the
product of the number of variables and the number of states of the autarifdtwre is a large number
of variables, then the unrolled automaton could be very large. Using diepttsearch (DFS), the graph
can be dynamically unrolled.

This can be done by simply modifying Algorithm 1 so that whenever a suocessle is checked,
we perform a DFS to check for each outgoing arc if there is a path of threatdength to a success
node. The extra worst-case cost of DFS can be amortised by cacliieg (@ferred to as memaorisation)
the results of previous DFSs. A further simplification is made to line 13, whidts@icsuccessor using a
weighted random choice based on the number of paths to a successadde:layered graph contains
nodes and arcs that do not lead to a success node, we cannot atedaplste dynamically the number
of paths to a success node as in Section 2.2, and we here simply pick arandoessor node among
all the successor nodes that have been shown via DFS to have a patictesassnode.

2.4. Related Work

The only related work we are aware of is a CBLS implementation [12]dmET [13] of the regular
constraint [11], based on the ideas for the (global search) prapaghthe soft_regular constraint
[17]. The difference is that, upon a candidate move, they estimate the viotdteorge compared to
the nearestsatisfying assignment (in terms of Hamming distance from the current assighmbereas
we estimate it compared t@ randomly picked satisfying assignment. In our terminology (although
it is not implemented that way in [12]), they find a segmentation such that aptsctstring for the
automaton has the minimal Hamming distance to the current assignment.

It is always possible to state a new global constraint using the differémtinbariants [14] of
CoMET: it suffices to encode all the paths from the start node to a successohdtiue (ideally min-
imised) unrolled automaton for that constraint by usirgMET’s conjunction and disjunction combina-
tors. However, as the automaton or the number of variables to unroll fetayger, this expression can

J. He et al./ AmutomatorConstraint for Local Search 237

become too large to post, and even when it can be posted, our experimantsported here for space
reasons) show that our approach is much more efficient for largegbnowolled automata.

3. Violation Maintenance with Counter Automata

In Section 3.1, we propose the concept of counter automaton (cDFAnaseaconvenient and generic
way of describing a new global constraint than a deterministic finite autombeA)(We show that
cDFAs accept also non-regular languages. In practice, we ar@hlrinterested in finite languages (of
words of a given length), so we will not exploit this additional expressass. There are two ways of
using counter automata in local search. In Section 3.2, we show how to dimwéDFA (accepting a
regular language) into a DFA in an off-line pre-processing step, sdtibatethods in Section 2 can be
re-used and that the cDFA itself is purely for the convenience of modellirngection 3.3, we generalise
the DFS-based violation algorithm for DFAs of Section 2.3 to work directly DRAS.

3.1. Counter Automata

A counter automaton (cDFA) is defined just like a deterministic finite automatoA),D#xcept that
the transitions can include assignment statements to counter variables atine tliahsitions and final
states can be guarded by conditions on these counters. The “transitibwe”itdtial state has unguarded
initialisations of the counters. Given the transition functigra guarded transition(q, a, o, 5) = t,
whose graphical representation is an arc annotated wiffa“— (}” from stateq to statet, means that
if symbola is read and guard holds at statg, then state is reached, upon also executing the counter
assignment statements In principle, a guardr can be any decidable logical expression of comparison
and membership atoms among counters and parameters of the constraint. Siatiauiyter assignment
statementi can be any computable sequential or conditional composition of arithmetiataper on the
counters, or a no-operation (denotegp). The guards of transitions on the same symbol from the same
state must be mutually exclusive to make the counter automaton deterministic. dedudaral state
(¢,), whose graphical representation is:“«” within a double ellipsis, means that statés final only
if guarda holds. As usual, we sometimes abbreviate the graphical representatevendlsarcs between
the same pair of states by a single arc annotated with the set of symbols oatbeserovided they have
the same guards and counter statements.

Counter automata provide a powerful tool for modelling. Indeed, a DFAftencspecific to an
instance of that constraint, as seen in the following example:

Example 3.1. Reconsider the work scheduling constraint in Example 1.1: if we changerjagparam-
eter of that constraint, say that one cannot work for fewer than two oe than four consecutive days
on the day shift, instead of exactly two days, then the DFA in Figure 1 neduks ¢hanged. Although
the only difference of these two instances of the work constraint is jusigéesparameter, their DFAs
have many differences. It will require a lot of modelling work if every straint instance needs a differ-
ent automaton. However, cDFAs are often independent of constraiainices. Figure 3 gives a cDFA
for all instances of the work constraint requiring that one cannot i@rkewer thand or more than

d consecutive days on the day shift; that one cannot work for fewerdtta more thare consecutive
days on the evening shift; and that between any change of work shitgnast enjoy at least and at
mostz consecutive days off. The countemaintains the number of consecutive days on the same shift.

238 J. He et al./ AmutomatorConstraint for Local Search

d {C<E*>CZ:C+1}

e {c<e—ci=c+1}

Figure 3. A counter automaton for the work scheduling camstiin Figure 1.

StatesD, F, and X are guarded final states: for exampliejs a final state only it: > d. The guarded
transitiond {c < d — c¢:= ¢+ 1} from D to itself means that the transition on symbdires ifc < d

and incrementg by one. The unguarded transitidn{c := 1} from statel to D means that the transition
ond always fires and initialisesto 1. In Section 3.2, we give a general algorithm that can automatically
unwind this cDFA for parameterd, d, e, e, z,7) = (2,2,1,2,1,2) into the DFA of Figure 1.

Many more cDFAs, and their unwound DFAs, are given in the experimér@saiion 4, which thus
also aims at showing the great modelling convenience of counter automata.

Every DFA is also a cDFA, namely a cDFA without counters and guardsiyMkssical algorithms
for DFAs, such as product (see [7], for example), straightforlyagdneralise to cDFAs, as the guards
and counter assignments can be just carried along as annotations. rtGauoteata are more expressive
than DFAs, which can only recognise regular languages. Indeed, dsisitge to design cDFAs to
recognise the languagéb™, which is context-free but not regular, and the langua® ¢, which is
not even context-free. Note that our abbreviation “cDFA’ thus just mgis that a DFA was annotated
by counters, but not that only regular languages are recognised.

Our counter automata are more general than those @litieal Constraint Catalogug, 3], where
it is the counter assignments that are guarded (rather than the transitidnshare the transition on a
given symbol from a given state is unique and fires unconditionally.

3.2. Unwinding a Counter Automaton

We propose Algorithm 2 for unwinding a cDFA’ into a counter-free DFAD in an off-line pre-
processing step, so that the violation algorithms in Section 2 can be re-Ui$edqueue) of pairs
made of a state af’ and corresponding tuple of counter values that still need to be unwoinitiatised
in line 2 to be empty. Lines 3 and 4 enqueue the initial stated initial counter valuesof C into Q. A
partial mapm is maintained to map pairs of states and counter valuéstofstates inD: the pair(s, c)
is mapped to the initial stateof D in lines 5 and 6. The current numberof states ofD is initialised
tolinline 7. Inlines 8 to 20, each time an element can be dequeued@amewly encountered states
and counter values are enqueued for future unwinding, while new statesransitions are added to

J. He et al./ AmutomatorConstraint for Local Search 239

Algorithm 2 Unwinding a counter automatari into a DFA D.
1: procedure unwinder(C, D)
2 Q]
3: (s, c) < the initial state and counter values@©f
4: Q.enqueue((s,c))
5. m(s,c) «— 1
6
7
8
9

. create staté as the initial state oD
n—1
- while @ # [] do
(s,c) «— Q.dequeue()
10: if states is a final state of” and its guard holds for counter valuethen

11: markm(s, c) as a final state ab

12: for all outgoing transitions from states in C do

13: if the guard of holds for counter valuesthen

14: s’ « the target state afin C

15: ¢ «+ the values ot after executing the counter assignments of
16: if m(s’,c) is still undefinedhen

17: n«—n+1

18: m(s',d)—n

19: Q.enqueue({s’, c'))

20: add a transition fromn (s, ¢) to m(s’, ¢’) on the symbol of to D

D. Line 10 checks whether the dequeued state with its counter values is stéiteabfC; if yes, then
the corresponding state is marked as a final stat® of line 11. Lines 12 to 20 examine all outgoing
transitions from the dequeued state: if a guarded transition can fifetimen its counterpart is added to
D after enqueuing the corresponding target state if it has not beenrdeced yet, as in lines 16 to 19.

Example 3.2. Take the cDFA of Figure 3 where the paramet@ts/, e, €, z,) are settd2,2,1,2,1, 2).

Its initial state is state 1 with counteihaving value): the term(1, 0) is enqueued into the empty queue,
and state 1, 0) is set to be the initial state of the result DFA. Next, tefim0) is dequeued, making the
gueue empty again: all the three unguarded transitions from state 1 candireach new states, &

X, andE are enqueued with counter valteyielding [(D, 1), (X, 1), (E, 1)], and three statedD, 1),
(X,1), and(F, 1) are added to the result DFA with transitions frdin 0) on d, =, ande respectively.
Next, D with counter valuel is dequeued: only the guarded transit'ri)n[c <d—ci=c+ 1} from

D can fire (because = 1 < 2 = d) and reach a new state, £ with counter value2 is enqueued,
yielding [(X,1),(FE,1),(D,2)], and stateg(D, 2) is added to the result DFA with a transition from
(D,1) ond. Next, X with counter valuel is dequeued: all the three guarded transitions ffénsan
fire, but only stateX with counter value€ has not been encountered before and is enqueued, yielding
[(E,1),(D,2),(X,2)], and stat€ X, 2) is added to the result DFA with a transition fro, 1) on z,

as well as a transition frorlX, 1) ond to (D, 1) and a transition fron.X, 1) one to (F,1). Next, E
with counter valud is dequeued: both the two guarded transitions fioian fire, but only stat& with
counter value has not been encountered before and is enqueued, yi¢ldng) , (X, 2), (E,2)], and
state(F, 2) is added to the result DFA with a transition froff, 1) on e, as well as a transition from

240 J. He et al./ AmutomatorConstraint for Local Search

(E,1)onz to (X,1). Next, D, X, andE with counter value are dequeued one by one, but none of
them lead to any unencountered states, and the queue becomes empgnditibtis from(D, 2) and
(E,2)onz to (X,1) as well as from X, 2) ond to (D, 1) and from(X,2) one to (E, 1) are added.
The stateg1,0), (D,2), (X,1), (X,2), (E,1), and(FE,2) are marked as final states. If we minimise
the resulting DFA, then statd9, 2) and (£, 2) are found to be equivalent and are thus merged: the
resulting DFA is the one of Figure 1, with statels 0), (D,1), (X,1), (E,1), (D,2) = (£,2), and

(X, 2) corresponding respectively to state, 3, 4, 5, and6.

As each possible combination of states and counter values in the cDFA isuatat most once, the
worst-case number of states of the resulting DFA is the maximum number of catiolis of states and
counter values in the cDFA. If the cDFA hasstates and counters, and if- is the number of different
values reachable by the counters, then the worst-case number of $taeesasulting DFA iO(m - 7).

In the cDFA of Figure 3, the value ofcan be determined by inspection tothex(d, e,) + 1 = 3.

3.3. DFS on Counter Automata

The process of unwinding and unrolling can be done dynamically on denaanich Section 2.3, for
a given number of variables. We modify Algorithm 2 and combine it with AlgorithmWe again
incrementally maintain a partial map that maps pairs of states and counter values to already explored
unwound states. The goal, as in Algorithm 1, is to build a segmentation of thentwassignment.
Remember that in Algorithm 1 there are two possible choices for each valiahlih valued; in the
current assignment. Either there is a corresponding transition in the maveatiomaton labelled witd;
or there is no corresponding transition and a random transition is picketh &onsidered transition has
to be checked if there is a path to a success state of the automaton. To ctiexk iE a path from the
current node to a success state, a DFS is performed, again updatingghe steas not to reexamine
needlessly already unwound states.

In the worst case, this algorithm will unwind the whole automaton, as in Algoritfamd for a given
number of variables, but the cost will be amortised over many calls to thethigor

4. Experiments

We now investigate the practicality of the proposedomaton constraint by comparing the designed
violation algorithms to each other as well as to the ones ofrthelar constraint [12] for CBLS and
handcrafted special-purpose global constraints. Note that the okjeétbur experiments is thuwt to
beat the state of the art of the considered benchmarks. Indeed, sncemypare our general-purpose
violation algorithms with hand-crafted special-purpose ones, our paipds show that (expensive) hu-
man modelling time can be decreased drastically when a missing global coristr&etied, or when one
wants to study the impact of conjoining several global constraints thahabtsame variables, without
getting too high an overhead in (cheap) computer solving time. If extra soéffiggency is required
after figuring out a good model and search procedure that use thglakal constraint, say because the
cost of hand-crafting special-purpose violation algorithms can be ansbdiss many runs, then one
can always hand-craft those algorithms. Our main objective with this waheisapid prototyping of
new global constraints.

J. He et al./ AmutomatorConstraint for Local Search 241

The choice of the heuristic and meta-heuristic for a search proceduneeigtiselyorthogonalissue
to our concern for the constraint model of a combinatorial problem anth&violation algorithms of
its constraints. Hence, in our experiments, we often do not spend muchaeifdesigning a particularly
good search procedure, since fanesearch procedure will be applied to all ways of implementing the
constraints. One could even argue that a poorly designed searadpregives a better approximation
of the worst-case overhead of using aurtomaton generic constraint instead of a hand-crafted special-
purpose constraint, as there will be an unusually high number of moveaticaisi and executions.

The experiments are also intended to highlight the modelling conveniencearhata, especially
of the more compact and generic counter-automata. In particular, the saimpaf several global
constraints (even built-in ones) often becomes straightforward (cgritrdne composition of violation
algorithms) and often yields better performance than when using the individinstraints. This is
especially useful when new constraints are added to a problem.

We have implemented all our algorithms and modelsdamET [13], which is an object-oriented con-
straint programming language with a constraint-based local searclebddevailable aiynadec . com).
We have re-implemented thegular constraint of [12], as its source code is reportedly not available.

All experiments were run underdMEeT (version 2.0-1) and Mac OS X 10.6.2 on a 2.8 GHz Intel
Core 2 Duo with a 4GB RAM. All runs in Sections 4.1 and 4.2 were allocate@PU seconds, and
the runs in Section 4.3 were allocaté@d CPU seconds. The average performance was recorded for
each instance oveé5 runs, starting from the same initial assignments for all the ways of posting the
global constraints of a model. In each result table, each row first sgeeaif{possibly singleton) set of
known satisfiable instances, and then gives the performance of egd p@sting the global constraints,
namely the average percentage of instances solved without timing outtédemp %S), the average
runtime in seconds (denoted by Sec), and the average number of itefdioased by Iter).

The experiments were made for the construction of rotating scheduleSgstens 4.1), nurse roster-
ing (see Section 4.2), and car sequencing (see Section 4.3). All disbgisbal constraints are described
in the Global Constraint Catalogugg], where references to their origins can be found.

4.1. Rotating Nurse Schedules

Many industries and services need to function around the clock. Rotatfmagisles such as the one in
Table 1 (a real-life example taken from [9]) are a popular way of guaeamg a maximum of equity tb
work teams (see [9]). There are dal,(evening €), and night §) shifts of work, as well as days off}.
Each team works maximum one shift per day. The scheduling horizonshrasuay weeks as there are
teams. In the first week, teais assigned to the schedule in rewFor any next week, each team moves
down to the next row, while the team on the last row moves up to the first rote ihow this gives almost
full equity to the teams, except, for instance, that tdamsoes not enjoy the six consecutive days off that
the other teams have, but rather three consecutive days off at thenimgpaf weekl and another three
at the end of week. The daily workload may be uniform: for instance, in Table 1, each dagkxastly
one team on-duty for each work shift, and two teams off-duty; we denisteniform daily workload by
(1d, 1e, 1n, 2x); assuming the work shifts averagle, each employee will work - 3 - 8 = 168h over the
five-week-cycle, o83.6h per week.

242 J. He et al./ AmutomatorConstraint for Local Search

Mon Tue Wed Thu Fri Sat Sun

1 x T T d d d d
2 T T e e e

3 d d d T e e
4 e e T x n n n
5 n n n n T T T

Table 1. Five-week rotating schedule with uniform daily ioad (1d, 1e, 1n, 2z)

41.1. The Model

Daily workload, whether uniform or not, can be enforced by globatdicality (gcc) constraints on the
columns; however, our model does not include thgaeconstraints, because of the search procedure
(discussed below). In our problem instances, any number of caseawrkdays must be between two
and seven, and any transition in work shift can only occur after two tersdays off. The shift transi-
tion constraint can be enforced bypattern(X, {(d, z), (e, x), (n, z), (z,d), (z,e), (z,n)}) constraint
(where a stretch of valuémust be followed by a stretch of valaesimilarly for stretches of valueor n;

a stretch of value: can be followed by a stretch of valdee, or n) on the table flattened row-wise into a
sequence&[1, ..., 7-t] of variables, together with the constraiifl] = X [7-t|]VX[l] = 2V X|[7-t] = z,
which enforces that the transition between the last and first elemenisisflegal. The shift length
constraint can be modelled bys&retch_circular(X,[d, e, n, x],[2,2,2,2],[7,7,7,7]) constraint (say-
ing that any stretch must have at ledsind at most elements), withX seen as a circular array. As
we will need the relatedtretch_path constraint also in Section 4.2, we omit modelling the required
stretch_circular constraint and approximate it bysaretch_path constraint (with the same arguments)
together with the symmetry-breaking constraifitl] # X7 - t] enforcing that the first and last stretches
are over different values.

4.1.2. The Global Constraints

CoMET does not have thgattern andstretch_path global constraints as built-ins. Figure 4 gives a DFA
for the mentionedattern(X, {(d,x), (e, z), (n,x), (z,d), (x,e), (z,n)}) constraint. Figure 5 gives a
cDFA for anypattern(X, P) constraint, where a stretch of valuean be followed by a stretch of value
wif (v, w) € P, whereP contains all the allowed patterns; it describes the same constraint as ie Bigur
when given paramete? = {(d, z), (e, z), (n,x), (z,d), (z,e), (z,n)}. A guarded arc annotated with
“v~ € ¥ {a — B}"in Figure 5 is just a convenience for drawing the counter DFA, it denotekiple
guarded arcs where each arc has a symbol from the alphaketh the same guard. and counter
assignmeng. Figure 6 gives a DFA for thetretch_path(X, [d, e, n, z],[2,2,2,2],[7,7,7,7]) constraint.
Figure 7 gives a cDFA for anytretch_path (X, 0, O, O) constraint: it is much more compa s 29
states) and generic (the lower bounds need not ail,lmnd the upper bounds need not allf)ghan
the DFA of Figure 6, so preferable if the bounds are likely to changedddunwinding the cDFA over
Y = {d,e,n,z} for (0,0,0) = ([d,e,n,7],[2,2,2,2],[7,7,7,7]) with Algorithm 2 and minimising
the result gives the DFA in Figure 6. Alternatively, one can constrda [BFA directly from the given
instance of thetretch_path constraint and minimise it; the resulting DFA is the same as the minimised
unwound one, but our unwinding is not specific to tieetch_path constraint and thus more general.
When usingautomaton, our model uses the minimised product of thetern and stretch_path
(counter) automata, accepting the intersection of their two language®dnitiés has been determined

J. He et al./ AmutomatorConstraint for Local Search 243

Figure 4. An automaton for theattern(X, {(d, x), (e, x), (n,x), (x,d), (z,e), (z,n)}) constraint over four-
letter alphabe{d, e, n, 2} in the chosen instances for rotating nurse scheduling.

VyeX {y#LA(L,y)EP — L:=17}

{£:= X[1)}

VyeX {y={¢ — nop}

Figure 5. A counter automaton for apyttern(X, P) constraint, where a stretch of valuean be followed by
a stretch of valuev if (v,w) € P, whereP contains all the allowed patterns. The courteecords the value of
the current stretch, and is initialised to the value of VagaX[1].

by our experiments (not reported here) to be much more efficient thag t&riwo automata individu-
ally, no matter which implementation of theitomaton constraint we deploy. Figure 8 gives the min-
imised product of the cDFA of Figure 5 and the cDFA of Figure 7: this cDRgrégerable since unwind-
ing itfor (0,0,0, P) = ([d,e,n,x],[2,2,2,2],[7,7,7,7),{(d, x), (e,), (n, x), (x,d), (z,e), (x,n)})
with Algorithm 2 and minimising the result gives the minimised product of the DFAsgares 4 and 6.

When not usingrutomaton, our model uses the handcrafte@itern and stretch_path constraints
discussed below, though without combining their violation algorithms, as therently is no calculus
for doing that.

A handcrafted violation algorithm for the presenttern(X, [d, e, n, x|, [{z}, {z}, {z}, {d,e,n}])
constraint instance was quickly designed using the differentiable invaufia#] of ComeT, which lift
logical expressions into constraints. Indeed, the following formula captiis instance:

Vie[2. .., 7t : X[i-1]£X[|VX[i—1] =2V X[i] =2

4.1.3. Interlude: A Handcrafted stretch_path Constraint

A handcrafted violation algorithm for anytretch_path constraint instance was designed much more
laboriously, after several hours of thinking and experimentation with alties.

Consider atretch_path constraint fom variablesX; overm valuesd; with lower boundg)[d;] and
upper bound®[d;] on the lengths of stretches. In the proposed Algorithm 3, the local vasiallede

244 J. He et al./ AmutomatorConstraint for Local Search

Figure 6. An automaton for the&retch_path(X, [d, e, n, 2], [2,2,2,2],[7,7,7,7]) constraint over four-letter al-
phabet{d, e, n, x} in the chosen instances for rotating nurse scheduling.

Vye€X -0 {nop} Vye O {7=€/\c<5['y]ﬂc:=c+1}

e

VyeX -0 {c>0[f] — nop} VyeO {y#LAc>0[f] - £:=v,c:=1}

Figure 7. A counter automaton for angretch_path(X, O, O, O) constraint, each stretch of valuec O being

of a length between lower bourd[v] and upper bound[v]; the counter/ records the value of the current
stretch; the countermaintains the length of the current stretch; most transitiand one final state are guarded by
comparisons betweenand the length bounds on the current stretch.

respectively record the indices of the first and last variables of the maosit stretch, whose value and
length the local variablegd and/ record. Line 2 initialises andd for the first variable. Lines 3 and 4
respectively initialise the violation of the constraint and its variables (includiimymy variables{, and
Xn+1) t00. Lines 5 to 17 scan the remaining variables from left to right: each time a seetsh(when
the test in line 6 succeeds), lines 7 and 8 first updated/, and then a case analysis is performed:

e The violation of the constraint is updated in lines 10 and 16 according to Hogviog formula,
when there are stretches of length& and valuesl; in the current assignment:

Violation = Z max(¢; — O[d;],0) + max(OJd;] — ¢;,0)
=1
A too long (line 9) or too short (line 13) stretch contributes the length of itsflove (line 10) or
underflow (line 16) to the constraint violation.

e The violations of the variables cannot easily be captured in such angatignee formula. If a
stretch is too long (line 9), then its first and last variables are considetes vwlated and have

J. He et al./ AmutomatorConstraint for Local Search 245

VyeX -0 {y=LV({,y)eP — (=~} VyeO {y#LAN{Ly)€EPANc>0] — L:=r,c:=1}
0:=X]1 VyeX {{:=v,c:=1
(0= X1} AL Ve {mme=1)

w\//
VY ES -0 {y#£LA(lA)EPAC> O[] — £:=~} V€0 {y=LlNc<O] — ci=c+1}

Figure 8. (Conjunctive) product of theittern andstretch_path counter automata of Figures 5 and 7.

their violations incremented by one (lines 11 and 12), so that the next mové chighge one of
those variables and thus possibly decrease the length of the stretch;ksy sinetch overflowing
by more than one value can thus be trimmed to a suitable size in several movegrsety, if a

stretch is strictly shorter than allowed (line 13), then its preceding and edicgevariables (which
are possibly the dummy variables created in line 4) are considered to be dialadehave their
violations incremented by one (line 14), so that the next move might chamrgef timose variables
and thus possibly increase the length of the stretch by one; a stretcHlowidey by more than

one value can thus be extended to a suitable size in several moves.

We argue that it is not a good idea only to increase the length of too shettlss, as we can also
decrease their length to eliminate them (that is, to add line 15 in Algorithm 3, malénfiyshand last
variables of a too short stretch violated). Considetratch_path constraint oveb = {d, e, =} with pa-
rameterO, O, 0) = ([d, e, z],[2,2,2],[3,3,3]), and valuedd, d, e, v, z) for a sequencéXy, ..., X5)
of 5 variables. It has three stretches: = (d, d), s = (e), andss = (z,x). AS sz is the only stretch
that makes the constraint violated and as it is a too short stretch of &alhe only way to enlarge,
is to change variabl&s to e, or to changeX}, to e. If the moveX, := e is chosen, ther; = (d) is
too short. In order to enlargg then, variableX, may be changed back th andss = (¢) becomes too
short again. Under this situation, enlarging a too short stretch will alweake another stretch too short.
However, instead of enlarging, eliminating it by changingXs to d or x (since stretches; andss are
shorter than allowed) will make the constraint satisfied.

In practice, we use an incremental version of this algorithm, maintaining thesvaly, ¢, d, and/
for every stretch.

Example 4.1. Consider thestretch_path([X1, ..., X10], [d, e, z],[2,2,4],[3, 4, 5]) constraint oved: =
{d,e,z}. Under the sequence, d, d, z, e, e,d, d, d, d) of values, the violations of the constraint and all
variables are initialised t0. The first stretch, of valug, is of maximal length, so it does not affect any
violations. The singleton stretch of valués too short, so it increases the constraint violatiom;tas is

it is shorter than allowed, the violations of its neighbour variallfigsand X5 are increased to; as its
first and last variables are the same (variallg, so the violation ofX, are increased tD. The stretch
of valuee is of allowed length, so it does not affect the constraint violation. Thestastch, of valuel,

is too long, so it increases the constraint violatior2 tand it increases the violations of its first and last
variablesX; and X1 to 1. In summary, the constraint has violatidrand the most violated variable is
X, with also violation2. The moveX, := e will decrease the constraint violation tabecause of the
still too long stretch ofi), decrease the violations &f3, X4 and X5 to 0.

246 J. He et al./ AmutomatorConstraint for Local Search

Algorithm 3 Handcrafted violation algorithm for th&retch_path constraint
. procedure calc Violations(stretch_path([X1, . .., X,], 0,0, 0))

[EEY

2: s 1;d— X3

3: Violation «— 0

4: forall i = 0ton+ 1 doViolation|X;] < 0 end for

5: forall ¢ =2tondo

6. if X; # dthen

7: e+—1i—1

8: l—e—s+1

9: if £ > Old] then

10: Violation « Violation + (¢ — O[d])

11: Violation|[X| < Violation[X] + 1

12: Violation[X.]| < Violation[X.] + 1

13: else if¢ < O|d] then

14: Violation[Xs_1] < Violation[Xs_1] + 1; Violation[Xe4+1] < Violation[Xcy1] + 1
15: Violation[X] < Violation[Xs] + 1; Violation[X.] < Violation[X.] + 1
16: Violation — Violation + (O[d] — ¢)

17: s < i; d — X, {start a new stretgh

4.1.4. The Search Procedure

A gcce constraint can be maintained by a neighbourhood containing only assitgtheh swap the
values of two of its variables. It is often much more efficient to enforegm@constraint with such
a neighbourhood than to post it as a constraint in the model, using a builtigtramt, a DFA, or a
cDFA. This is the case here (comparisons are not given here foe spasons), so we omit thg:c
constraints from the model. Recall that Algorithm 1 greedily computes a sdgtimenunder random
choices when greedy segment growth is impossible. Hence it might giwadiff segmentations when
probing a swap and when actually performing that swap. Thereforee@eed the segmentation of each
swap probe, and at the actual swap, we just apply its recorded segimentdpon uniform workload,
we can deterministically construct a suitable initial assignment, which experifneptsted in [6]) have
shown to be much better than random initial assignments. For example, the Bstgiment of instance
(164, 8¢, 8n, 16x) consists oR vertically stacked copies of the initial assignment in Table 2 for instance
(2d, 1e, 1n, 2x), which itself was systematically obtained by satisfying gheconstraint in each column
and thestretch_path constraint in each row. We apply min-conflict on the most violated variabkgise
this works well with the meta-heuristic discussed next.

Our chosen meta-heuristic is tabu search with restarts. At each iteratiaeaiah procedure selects
a violated variable: (recall that the violation of a variable is here at mosand another variablg of
distinct value in the same column so that their swap gives the greatest violatoge The length of
the tabu list is the maximum betweémnd the sum of the violations of all constraints. The best solution
so far is maintained. Restarting is done evryX | iterations. The expressions for the length of the tabu
list and the restart criterion were experimentally determined.

J. He et al./ AmutomatorConstraint for Local Search 247

Mon Tue Wed Thu Fri Sat Sun
1 d d d d d d d
2 e e e e e e e
3 n n n n n n n
4 T x T x x x x
5 d d d d d d d
6 T T T T T T x

Table 2. Non-random initial assignment for the rotating seurschedule with uniform daily workload
(2d, 1e, 1n, 2x)

4.1.5. Results

We ran experiments over the eight satisfiable instances with uniform daiklaeok(1d, 1e, 1n, 1) un-

til (8, 8e, 8n, 8x), the latter being denoted yd, 1e, 1n, 1x) -8, and over the eight satisfiable instances
with uniform daily workload(2d, le, 1n, 2z) - 1 until (2d, le, 1n, 2z) - 8. Table 3 compares the discussed
five ways of implementing thgattern andstretch_path constraints. We observe that all thetomaton
implementations can solve the instan¢es, le, 1n, 1x)-1to (1d, 1e, 1n, 1z) -8 more efficiently than the
handcraftecbattern andstretch_path constraints; for instancégd, le, 1n,2x)-1to (2d, le, 1n, 2z) -8,

the regular constraint [12] is less efficient than the other four implementations, whieé siailar run-
times. This shows the possibility that a generic constraint can even beafallyadesigned handcrafted
constraint. This is because it combines thétern andstretch_path constraints into one constraint, and
gives a better estimate of violations. Our thkegomaton implementations have close runtimes, and
there is no clear winner. Compared witkyular [12], our methods tend to have a higher number of
iterations, as they are more stochastic; however, our runtimes are l@savauy @ost of one iteration is
much smaller (linear in the number of variables, instead of linear in the numlaec®bf the unrolled
automaton).

4.2. The Nurse Scheduling Problem

NSPIlib [19] is a very large repository of (artificially generated) instamfése nurse scheduling problem
(NSP), which is about constructing a duty roster for nursing staff\Lée the number of nurses) the
number of days of the scheduling horizon, athe number of shifts. The objective is to construct an
N x D matrix of values in the integer intervfl, . . ., S], with valueS representing the off-duty “shift”.

4.2.1. The Model

In instance filesthere are hardoverage constraintand soft preference constraints; we only use the for-
mer here (as optimisation is orthogonal to our modelling concerns, so thaamidmkeep the instances
solvable within a short amount of time): they give for each degnd shifts the lower bound on the
number of nurses that must be assigned to shift dayd, and can be modelled byt Least constraints
on the columns. There are instance filesfor< 7 rosters withV € {25, 50, 75,100}, and forN x 28
rosters withV € {30, 60}.

In case filesthere are hard constraints on the rows. For eachshtiere are lower and upper bounds
on the number of occurrences©in any row (the daily assignment of some nurse): this can be modelled
by gcc constraints on the rows. There are even lower and upper bounds carthdative number of

248 J. He et al./ AmutomatorConstraint for Local Search

Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Handcrafted
Instance %S Sec | lter %S Sec | lter %S Sec | lter %S Sec | lter %S Sec Iter
(1d,1e,1n,12)-1 | 100 | 0.004 25 || 100 | 0.004 26 || 100 | 0.003 22 | 100 0.03 23 || 100 | 0.018 174
(1d,1e,1n,12)-2 | 100 | 0.008 19 || 100 | 0.005 18 || 100 | 0.005 20 | 100 | 0.051 17 || 100 | 0.061 504
(1d,1e,1n,12)-3 | 100 | 0.014 34 || 100 | 0.014 49 | 100 | 0.011 31 || 100 | 0.176 47 || 100 | 0.130 925
(1d,1e,1n,12)-4 | 100 | 0.019 48 || 100 | 0.027 73 || 100 0.02 47 | 100 | 0.215 43 || 100 | 0.338 | 2113
(1d,1e,1n,12)-5 | 100 | 0.027 66 | 100 | 0.033 61 | 100 | 0.033 65 || 100 | 0.303 50 || 100 | 0.494 | 2636
(1d,1e,1n,12)-6 | 100 | 0.037 76 || 100 | 0.049 85 || 100 | 0.048 79 || 100 | 0.481 67 || 100 | 0.988 | 4704
(1d,1e,1n,12)-7 | 100 | 0.049 | 130 | 100 | 0.061 90 || 100 | 0.068 99 || 100 | 0.625 77 || 100 | 1.605 | 6812
(1d,1e,1n,12)-8 | 100 | 0.062 | 110 | 100 | 0.126 | 175 | 100 | 0.116 | 155 | 100 | 0.830 | 100 0 | 1481 | 5691
(1d, 1e, 1n, 1z) 100 | 0.028 64 || 100 | 0.040 72 || 100 | 0.038 65 | 100 | 0.339 52 || 100 | 0.639 | 2945
(2d,1e,1n,22)-1 | 100 | 0.005 8 100 | 0.001 9 100 | 0.003 13 | 100 | 0.031 9 100 | 0.010 42
(2d,1e,1n,22)-2 | 100 | 0.019 21 || 100 | 0.009 24 || 100 | 0.011 31 | 100 | 0.091 22 || 100 | 0.026 108
(2d,1e,1n,22) -3 | 100 | 0.029 41 | 100 | 0.029 63 || 100 | 0.024 50 || 100 | 0.223 38 || 100 | 0.041 100
(2d,1e,1n,22) -4 | 100 | 0.033 78 || 100 | 0.055 96 || 100 | 0.036 56 | 100 | 0.426 57 || 100 | 0.074 128
(2d,1e,1n,22) -5 | 100 | 0.064 | 142 | 100 | 0.082 | 107 | 100 | 0.073 96 | 100 | 0.714 80 || 100 | 0.088 167
(2d,1e,1n,22)-6 | 100 | 0.076 | 126 | 100 | 0.119 | 136 | 100 | 0.104 | 112 || 100 | 1.051 | 100 || 100 | 0.128 214
(2d,1e,1n,22)-7 | 100 | 0.096 | 156 || 100 | 0.205 | 211 || 100 0.19 | 185 | 100 | 1.449 | 119 || 100 | 0.128 222
(2d,1e,1n,22)-8 | 100 | 0.134 | 235 || 100 | 0.208 | 178 | 100 | 0.307 | 270 || 100 | 2.157 | 157 | 100 | 0.182 280
(2d, 1e, 1n, 2z) 100 | 0.057 | 101 || 100 | 0.089 | 103 | 100 | 0.094 | 102 || 100 | 0.768 73 || 100 | 0.085 158

Table 3. Benchmark results on rotating nurse schedules

occurrences of the working shifts. .., S — 1 in any row: this can be modelled lgyc constraints on the
off-duty valueS and always gives tighter occurrence boundsSaihan in the previougcc constraints.

For each shifts, there are also lower and upper bounds on the length of any stretchuefsvan any

row: this can be modelled bytretch_path constraints on the rows. Finally, there are lower and upper
bounds on the length of any stretch of the working sHifts ., S — 1 in any row: this can be modelled

by stretch_path_partition constraints on the rows. We stress that the constraints on any two rows are
thesame There are’ case files for théV x 7 rosters, and anoth&rcase files for théV x 28 rosters.

4.2.2. The Global Constraints

CoMET does not have théretch_path andstretch_path_partition global constraints as built-ins. (Counter)
automata forstretch_path were discussed in Section 4.1. A DFA for tk&etch_path_partition(X,
[{d,e,n}],[2],[4]) constraint of NSPIlib Case 8 is given in Figure 9. A cDFA (not given lierspace
reasons) for anytretch_path_partition(X, [{d,e,n}], [¢], [u]) constraint over an alphabet containing
{d, e, n} trivially generalises the cDFA of Figure 7 fetretch_path. A handcrafted violation algorithm
(not given here for space reasons) for tfwetch_path_partition constraint was designed by trivial gen-
eralisation of our handcrafted Algorithm 3 for th&etch_path constraint.

CoMET does not have a built-igec constraint, but it can be simulated, without loss of efficiency
compared to a handcrafted implementation, by conjoiningatiieast and atMost built-in constraints
of COMET. We have constructed DFAs (not given here for space reasoti®\ag/ould be huge) for the
case-specific instances of thec constraint. We have also designed a cDFA (not given here for space
reasons)for any instance of thec constraint. Unwinding this cDFA for any instance with Algorithm 2
and minimising the result gives the same DFA as our specific constructiorafangtance.

Our model uses thetLeast built-in constraint of @MET on the columns of the duty roster.

J. He et al./ AmutomatorConstraint for Local Search 249

d,e,n} {d,e,n}

{d,e,n} {d,e,n}
aD @ @ un)

T

Figure 9. An automaton for theretch_path_partition((X, [{d, e, n}], [2], [4])) constraint of Case 8 of NSPlib.

When usingzutomaton, our model actually uses the minimised unwound product ofthech _path,
stretch_path_partition, andgcc cDFAS, accepting the intersection of their three languages. Indeed, this
has been determined by our experiments (not reported here) to be rficienethan using the three
automata individually, no matter which implementation of theomaton constraint we deploy.

When not usingiutomaton, our model uses our handcraftegetch_path andstretch_path_partition
constraints as well as the built-fizc constraints on the rows of the duty roster, though without combining
their violation algorithms, as there currently is no calculus for doing that.

4.2.3. The Search Procedure

Our chosen heuristic is min-conflict on the most violated variable, startimg &oandom initial assign-
ment. As modifying the assignment of the most violated variable often helps ta fiedter solution,
and as only a small neighbourhood is searched in each iteration, thik $earistic is often successful.
This is the case here. We only consider assignment moves. Our choseheugtdic is tabu search with
restarts, under the same settings as in Section 4.3.

4.2.4. Results

For each case and nurse cout we used thdirst 10 instances for each configuration of the NSPlib
coverage complexity indicators, that is instante370 for the N x 7 rosters and—120 for the N x

28 rosters. We restricted ourselves to the instances shown to be satisfiahlébypagation-based)
constraint program within one CPU minute on the same hardware.

Table 4 compares the discussed five ways of implementing the row constraithis chosen satisfi-
able NSPIib instances of Cases 7 and 8 only (for space reasons).séfelhat the handcrafted built-in
constraints are more efficient than theomaton implementations thereof, but not by a wide margin on
Cases.

4.3. Car Sequencing

The car sequencing problem consists of sequencing the productioren$ of the same basic model, but
with possibly different options (air-conditioning, sun-roof, etc) instalkmthat the capacity constraints

of the stations on the assembly line are never exceeded. These capasttpics are of the form/q,
meaning that at most out of anyg successive cars can have a particular option installed at some station.
All the considered problem instances have the same capacity constramtslyn /2, 2/3,1/3, 2/5, and

1/5 for five options; the instances differ in the demand constraints, that is tinéerms of cars of each
configuration of the five options that are to be assembled.

250 J. He et al./ AmutomatorConstraint for Local Search

Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Handcrafted
Case N | %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter
7 25 73 9.298 | 154418 55 | 15.023 | 141283 55 | 15.013 | 129571 56 | 15.863 | 64987 88 | 4.206 | 44140
50 47 | 17.111 | 155676 37 | 19.943 | 122096 37 | 20.052 | 115776 11 | 28.099 | 87053 81 | 6.432 | 43548
75 32 | 21.207 | 152183 26 | 22.915 | 121479 26 | 22.991 | 111138 1 | 29.900 | 91029 77 | 8.150 | 46027
100 36 | 20.433 | 107148 33 | 21.316 84683 33 | 21.457 84521 0 | 30.044 | 75893 75 | 8.869 | 39479
25 95 2.001 31377 67 | 12.690 | 102612 65 | 13.197 95384 92 3.906 | 15307 91 | 3.412 | 33074
50 78 7.224 66941 55 | 14.427 | 106321 53 | 15.521 98974 71 | 11.415| 36073 79 | 6.957 | 47984
75 80 7.173 52538 27 | 22.958 | 120967 24 | 23.766 75559 57 | 17.786 | 56597 81 | 6.648 | 39160
100 73 9.347 48841 24 | 24.093 94171 23 | 24.212 86653 19 | 26.959 | 73021 76 | 8.181 | 35905

W 0 00 00 N N N

Table 4. Benchmark results on NSPlib instances

Figure 10. An automaton for thequence(X, 0, 2, 3, S) constraint used in instances of the car sequencing prob-
lem, whereX: is the alphabet.

4.3.1. The Model

This problem can be modelled by an art&yof n variables, with fivesequence(X, ¢, u, ¢, S) constraints,

meaning that betweehandwu of any ¢ successive variables ik take a value in the s&t (here a set of

options), with0 < ¢/ < u < gandl < ¢ < n. Each of the fivesequence constraints is weighted by
a factor indicating how heavily utilised the corresponding option is (seeffit3]etails). The demand
constraints can be enforced by one global cardinalitg)(constraint onX'; however, our model does
not include thaycc constraint, because of the search procedure (discussed below).

4.3.2. The Global Constraints

CoMET does have a built-izequence constraint, which actually omits the lower bouAdalways0
here); its violation algorithm is fully described in [13].

A DFA for the 2/3 capacity constraint, that is thequence(X,0,2,3,.5) constraint, is given in
Figure 10. A cDFA for anysequence(X, ¢, u,q,S) constraint is given in Figure 11. Unwinding this
cDFA for (¢,u,q) = (0,2, 3) with Algorithm 2 and minimising the result gives the DFA in Figure 10.
Alternatively, but only in cas& = {1} andX = {0, 1}, one can construct [18] a DFA directly from
an instance of theequence constraint and minimise it: the resulting DFA is the same as our minimised
unwound one, but our unwinding is not specific to theuence constraint and thus more general.

4.3.3. The Search Procedure

We use the very efficient heuristic (min-conflict on the most violated varjaideting from a random
permutation that satisfies the demand constraints, and maintaining thoseiotsgtasswap moves) and
meta-heuristic (tabu search with intensification, diversification, and testaven in [13].

J. He et al./ AmutomatorConstraint for Local Search 251

cU := (cU mod 2q_1) 241
cL = (cL mod 2‘1*1) -241
if cU < 297! then cwU := cwU + 1 endif
if ¢cL < 297! then cwlL := cwL + 1 endif

S {eU>207"1v ewlU <u —

cU :=0,cwlU :=0
cL:=21—1,cwl :=gq

@

cU := (cU mod 24_1) -2
cL := (cL mod 2q*1) -2
if cU > 2971 then cwU := cwU — 1 endif
if ¢L > 2971 then cwL := cwL — 1 endif

Y-8 {ceL <27 Vewl >0 —

Figure 11. A counter automaton for thequence(X, ¢, u, ¢, S) constraint, wher& is the alphabet. The binary
representation of countet/, denoted byUs, gives the content of the current window of lengtthat we slide
acrossX: bit i of cUs is 1 if and only if symboli in the current window is an element 8f Further,cwU records
the number of symbols of in the current window. The guard/ > 29! vV cwU < u tests whether another
symbol of S can be read under any of the following two situations: (1)ftts& symbol of the current window
belongs toS; (2) the number of symbols of in the current window is smaller than The counter operation
cU := (cU mod 2971) -2 + 1 updates:U for the next window; similarlywU is updated. In initialisation, both of
cU andcwL are0 , which corresponds to an initial dummy window to the leffdivith no symbols of5S. However,
this initial window does not satisfy the lower-bound reguaient of the constraint, so another two countérand
cwL are used for the lower boundl is initialised t02¢ — 1, andcwL is initialised togq, which corresponds to
another initial dummy window, with only symbols 8f They have a similar guarded transitiondé andcwU .

4.3.4. Results

Table 5 compares the discussed five ways of implementingethence constraint on the instance of [5],
as well as on the tef0—z instances and the first four satisfiabl¢y instances atSPlib.org. We
observe that the built-inequence constraint is much more efficient and successful tharuthiematon
implementations thereof. On the hard instances atltermaton implementations fail to find a solution
for most of the25 runs; on the easy instances, the runtimes are close, though. All this igrpossg
because the handcrafted violation algorithm [13] (for the upper-bpanidof the)sequence constraint
is very natural but is not approximated in any sense by the generabgmirpolation algorithm of our
automaton constraint. We included this benchmark as an indicator that the gap betererality and
specificity can be very large.

5. Conclusion

In summary, we have shown that the idea of describing novel constrainfsolinter) automata can
be successfully imported from classical (propagation-based globettgeconstraint programming to
constraint-based local search (CBLS). Our violation algorithms take time lindhe number of vari-
ables, whereas the propagation algorithms take amortised time linear in the rafmitwsrof the unrolled
automaton [2, 11]. We have experimentally shown that our approach isatiirgwith the prior CBLS
approach of [12].

252 J. He et al./ AmutomatorConstraint for Local Search

Unrolled DFA DFS on DFA DFS on cDFA [12] on DFA Built-in Sequence
Instance | %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter %S Sec Iter
[5] | 100 | 0.015 37 || 100 | 0.036 34 || 100 | 0.048 39 || 100 | 0.099 109 || 100 0.010 32
60-01...10| 100 | 0.859 130 | 100 | 2.646 120 || 100 | 2.638 109 | 100 | 2.484 126 || 100 0.204 62
4172 32 494 | 145434 4 583 | 51849 8 566 | 45860 16 571 | 57450 | 100 | 18.147 133473
16/81 0 600 | 174299 0 600 | 52979 4 591 | 46353 0 600 | 59400 80 153 | 1090803
41/66 60 295 94918 28 465 | 42973 60 316 | 27069 24 470 | 49219 || 100 3.014 23860
28/82 40 475 | 144873 20 565 | 51169 20 539 | 44958 16 551 | 56874 | 100 1.862 13113

Table 5. Benchmark results on car sequencing

There is of course a trade-off between using a (counter) automatosdalea constraint and using
a handcrafted implementation of that constraint. On the one hand, a hiteddnaplementation of a
constraint is normally more efficient, because properties of the constiainbe exploited, but it may
take a lot of time to implement and verify it. On the other hand, the (violation orggaipon) algorithm
processing a automaton is implemented and verified once and for all, andsoumation is that it takes
a lot less time to describe and verify a new constraint by an automaton than tevienland verify its
algorithm. We see thus opportunities for rapid prototyping with constraintgibes by automata: once
a sufficiently efficient model and search procedure have beenimgrgally determined with its help,
some extra efficiency may be achieved, if necessary, by handcraftimgnraptations of any constraints
described by automata.

As witnessed by our experiments, constraint composition (by conjunctioegsg to experiment
with under the automaton approach, as there exist standard and efiigjerithms for composing and
minimising automata, but there is no known systematic way of composing violatigorgpagation)
algorithms when decomposition is believed to obstruct efficiency.

In the global search approach to CP, the common modelling device of reificzdio be used to
shrink the size of DFAs describing constraints [2]. For instance, centi@element([x1, . .., Ty],1,v)
constraint, which holds if and only if; = v. Upon reifying the variables, ..., z,, into new Boolean
(0/1) variable9, . .., b, such thaty; = v < b; = 1, it suffices to pose theutomaton([by, ..., by, A)
constraint, where automatot corresponds to the regular expressitn (0 + 1)*, meaning that there
must be at least onkin the sequence of thig variables. However, such explicit reification constraints
are not necessary in constraint-based local search, as a totalnaseigof values to all variables is
maintained at all times: instead of processingvhkiesof the variables when computing the segments,
one can process thegified values

Future work includes investigating an extension to push-down automataentortiandle context-
free languages in a manner different from the counter automata of thés. p&p also want to investigate
a violation measure for theutomaton constraint that is not based on Hamming distance (which only
allows assignment and swap moves) but, say, on Levenshtein distarick,algo allows insertion and
deletion moves.

Acknowledgements

The authors are supported by grant 2007-6445 of the SwedishiRegaauncil (VR), and Jun He is also
supported by grant 2008-611010 of China Scholarship Council anbl&tional University of Defence
Technology of China. Many thanks to Magniigren (SICS) for some useful discussions on this work,

J. He et al./ AmutomatorConstraint for Local Search 253

and to the anonymous referees of LSCS’09, of the Doctoral Prograrh@e’'09, of RCRAQ9, and of
this version of the paper.

References
[1] ,&gren, M., Flener, P., Pearson, J.: Generic incrementatifgns for local searchConstraints12(3), Septem-
ber 2007, 293-324.

[2] Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filitgg algorithms from constraint checkeioceedings of
CP’04 (M. Wallace, Ed.), LNCS 3258, Springer-Verlag, 2004, 1721

[3] Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global sto@int catalogue: Past, present, and fututen-
straints 12(1), March 2007, 21-62, The catalogue i®atp://wuw.emnn.fr/x-info/sdemasse/gccat.

[4] Cheng, K. C. K., Yap, R. H. C.: Maintaining generalized aonsistency on ad hacary constraints,Pro-
ceedings of CP’08P. J. Stuckey, Ed.), LNCS 5202, Springer-Verlag, 2008-523.

[5] Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving ttar-sequencing problem in constraint logic pro-
gramming,Proceedings of ECAI'88Y. Kodratoff, Ed.), Pitman, 1988, 290-295.

[6] He, J., Flener, P., Pearson, J.: Towardaattomatonconstraint for local searchProceedings of LSCS’09,
the 6th International Workshop on Local Search Technign&3anstraint Satisfactio(ly. Deville, C. Solnon,
Eds.), Electronic Proceedings in Theoretical Computeer8m 5, 2009, 13-25.

[7] Hopcroft, J. E., Motwani, R., Ullman, J. Dintroduction to Automata Theory, Languages, and Computati
3rd edition, Addison-Wesley, 2007.

[8] Lagerkvist, M. Z.: Techniques for Efficient Constraint PropagatioKTH — Royal Institute of Technology,
Stockholm, Sweden, November 2008, Licentiate Thesis.

[9] Laporte, G.: The art and science of designing rotatirgegales Journal of the Operational Research Socjety
50(10), October 1999, 1011-1017.

[10] Michel, L., Van Hentenryck, P.: Localizer: A modelingrguage for local searctroceedings of CP’'97
(G. Smolka, Ed.), LNCS 1330, Springer-Verlag, 1997, 23225

[11] Pesant, G.: A regular language membership constrainfiriite sequences of variable®2roceedings of
CP’04 (M. Wallace, Ed.), LNCS 3258, Springer-Verlag, 2004, 48254

[12] Pralong, B.:Implementation de la contraintBegularen Comet Master ThesisEcole Polytechnique de
Montréal, Canada, 2007.

[13] Van Hentenryck, P., Michel, L Constraint-Based Local Searcfihe MIT Press, 2005.

[14] Van Hentenryck, P., Michel, L.: Differentiable invarits, Proceedings of CP’06F. Benhamou, Ed.), LNCS
4204, Springer-Verlag, 2006, 604-619.

[15] Van Hentenryck, P., Michel, L., Liu, L.: Constraintdmd combinators for local searctRroceedings of
CP’04 (M. Wallace, Ed.), LNCS 3258, Springer-Verlag, 2004, 47—61

[16] Van Hentenryck, P., Saraswat, V., Deville, YDesign, implementation, and evaluation of the constraint
language cc(FD) Technical Report CS-93-02, Brown University, Providend8A, January 1993.

[17] Van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On dlalaaming: Flow-based soft global constraints,
Journal of Heuristics12(4-5), September 2006, 347-373.

[18] Van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., SatdlaAv. Revisiting thesequenceonstraint,Proceed-
ings of CP’'06(F. Benhamou, Ed.), LNCS 4204, Springer-Verlag, 2006, 63@-

254 J. He et al./ AmutomatorConstraint for Local Search

[19] Vanhoucke, M., Maenhout, B.: On the characterizatiom @eneration of nurse scheduling problem
instances, European Journal of Operational Reseaych962), 2009, 457-467, NSPLib is atww.
projectmanagement.ugent.be/nsp.php.

[20] Zanarini, A., Pesant, G.: Solution counting algorithfar constraint-centered search heuristi€enstraints
14(3), 2009, 392-413.

