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1 Introduction

Constraint Satisfaction Problems (CSPs) — where
appropriate values for the variables of the problem
have to be found, subject to some constraints — rep-
resent many real life problems. Examples are pro-
duction planning subject to demand and resource
availability, air traffic control subject to safety proto-
cols, transportation scheduling subject to initial and
final location of the goods and the transportation
resources, etc. Many of these problems can be ex-
pressed as constraint programs and then be solved
using constraint solvers.

Most of the available constraint solvers (clp(FD)
[1], oPL [13], etc) are equipped with constraint prop-
agation algorithms based on consistency techniques
such as node and arc consistency, plus a search algo-
rithm such as forward-checking, and a labeling heuris-
tics, one of which is the default. To enhance the
performance of a constraint program, a lot of re-
search has been made in recent years to develop new
heuristics concerning the choice of the next variable
to branch on during the search and the choice of the
value to be assigned to that variable, giving rise to
variable and value ordering (VVO) heuristics. These
heuristics significantly reduce the search space [9].
However, little is said about the application domain
of these heuristics, so programmers find it difficult to
decide when to apply a particular heuristic and when
not.

The difficulty of mapping the right heuristic to a
given problem is mainly due to two reasons. First,
as mentioned by Tsang et al. [10], there is no uni-
versally best heuristic for all problems. Thus, we are
only able to learn that a particular heuristic is best
for the particular benchmarks used by researchers to
carry out their experiments. Second, as noticed by
Minton [8], the performance of heuristics is instance-
dependent, i.e., for a given problem a heuristic can
perform well for some distributions on the instances,
but very poorly on other distributions.

To understand our terminology, note that the
phrase problem class here refers to a whole set of
related problems, while the term problem designates
a particular problem (within a class), and the word
instance is about a particular occurrence of a prob-
lem. For example, planning is a problem class, trav-
eling salesperson is a problem within that class, and

visiting all nodes of the ERCIM Working Group on
Constraints is an instance of that problem. Much of
(constraint) programming research is about pushing
results from the instance level to the problem level if
not to the problem-class level, so as to get reusable
generic approaches.

We here use constraint solvers as blackboxes, thus
fixing the propagation and search algorithms, while
trying to find an appropriate VVO (meta-)heuristic
that performs at least better than the default one.
To illustrate our approach, we focus on a particular
problem class, namely subset decision problems. As-
suming that we have an initial set  of VVO heuris-
tics (including the default one), we take an empiri-
cal approach to find a meta-heuristic that can decide
which heuristic in A best suits the instance to be
solved. Such a meta-heuristic can then be integrated
within the constraint solver.

This paper is organised as follows. In Section 2,
we discuss the class of subset decision problems and
show the generic clp(FD) constraint store that results
from such problems. Then, in Section 3, we present
our empirical approach, show our results, and explain
the usage of our meta-heuristic for subset decision
problems. Finally, in Section 4, we conclude, com-
pare with related work, and discuss our directions for
future research.

2 Subset Decision Problems

We assume that CSP models are initially written in a
very expressive, purely declarative, typed, first-order
set constraint logic programming language, such as
our proposal in [3], here called ESRA, which is being
designed to be higher-level than even opL [13]. Using
program synthesis techniques such as those in [11, 8,
2], we can automatically compile ESRA programs into
lower-level languages such as clp(FD) or opL. The
purpose of this paper is not to discuss how this can
be done, nor the syntax and semantics of ESRA.

In the class of subset decision problems, a subset S
of a given finite set T has to be found, such that S
satisfies an (open) condition g, and an arbitrary two
different elements of S satisfy an (open) condition
p. In ESRA, we model this as the following (open)



program:

VT, S : set(int) .
subset(T,S) «++ S CT Ag(S) A
VI, J:int. 1€ SANJeSANI#J—p(l,J)

(subset)

The only open symbols are relations g and p (assum-

ing that C, €, and # are primitives of ESRA, with the

usual meanings). This program has as refinements

programs for many problems, such as finding a clique

of a graph (see below), set covering, knapsack, etc.

For example, the (closed) program:

VYV, C : set(int) . VE : set(int x int) .
clique20({(V, E),C) + C CV Asize(C,20) A
VI,J:int. I€eCANJeCANI#J—(,J)eE

(clique20)
is a refinement of subset, under the substitution:

VC : set(int) . g(C) < size(C,20)
VE : set(int X int). (o)
VI, J :int.p(I,J) < (I,J) € E

assuming that size is another primitive of ESRA, with
the obvious meaning. It is a program for a particular
case of the clique problem, namely finding a clique (or:
a maximally connected component) of an undirected
graph (which is given through its vertex set V' and
its edge set E), such that the size of the clique is 20.

At a lower level of expressiveness, subset decision
problems can be compiled into clp(FD) constraint
programs, say. The chosen representation of a subset
S of a given finite set T (of n elements) is a map-
ping from 7T into Boolean values (domain variables
in {0, 1}), that is we conceptually maintain n couples
(I, Br) where the (initially non-ground) Boolean By
expresses whether the (initially ground) element I of
T is a member of S or not:!

VIi:int. IeT - (B 1€S5) (1)
This Boolean representation of sets consumes more
memory than the set interval representation of CON-
JUNTO [6] and 0z, but both have been shown to create
the same search space [6]; moreover, the set interval
representation does not allow the definition of some
(to us) desirable high-level primitives, such as univer-
sal quantification over elements of non-ground sets.
(Another alternative representation of the subset S,
namely as a sequence of k (< n) variables constrained
to be different elements of 7', has two disadvantages
compared to ours: first, the search space for S then
is much worse, namely O(n!), and second, an explicit
loop for k ranging from 0 to n has to be wrapped
around the code.)

Given this Boolean representation choice for sets,
the formula for the open relation g of subset can eas-
ily be re-stated in terms of constraints on Boolean
variables. As shown in [3], it is indeed easy to write

LIn formulas, we use atom Bj as an abbreviation for B; = 1.

constraint-posting clp(FD) programs for €, C, size,
and all other classical set operations. We here pay
special attention to the case where g (also) constrains
the size of the subset to be a constant, say k. This
can be written as the following constraint:

Zn:Bi —k
i=1

Let us now look at the remaining part of subset,
which expresses that any two different elements of
the subset S of T" must satisfy a condition p:

(2)

SCTAVI,J :int.T€ SANJESAT #J— p(I,J)

This statement can be refined as follows:

VI,J:int. IETAJET A
T€SANTESANT#J —p(I,J)

which is equivalent to:

VI,J:int. I€e TANJeTANI#JAN=p(I,J)
= ~(IeSAJeS)

By (1), this can be rewritten as:

VI, J:int. I€TAJETAT#JAp(,J)
— _l(BI/\BJ)

Thus, for every two distinct elements I and J of T,
with corresponding Boolean variables By and By, if
p(I,J) does not hold, we just need to post the con-
straint ~(B; A By).

Note that the posted clp(FD) constraints are thus
not in terms of p, hence p can be any ESRA formula
and our approach works for the whole class of subset
decision problems. Indeed, the reasoning above was
made for the (open) subset program rather than for
a particular (closed) refinement such as cligue20.

Therefore, the clp(FD) constraint store for any
subset decision problem is over a set of Boolean vari-
ables and contains an instance-dependent number of
binary constraints of the form —(Bj A By) (if p is not
true) as well as an optional summation constraint
(2) (if g also uses size). All other constraints in g are
(currently) ignored in our quest for a meta-heuristic.

3 A Meta-Heuristic for
Subset Decision Problems

We now present our approach for devising a meta-
heuristic for the entire class of subset decision prob-
lems. On the one hand, as shown in the previous sec-
tion, we are able to map all subset decision problems
into a generic clp(FD) constraint store, depending
on the number n of Boolean variables involved (i.e.,
the size of the given set), the optional subset size
k, and the number of binary constraints . On the
other hand, an ever increasing set H of VVO heuris-
tics for CSPs is being proposed. Our approach now is



to first measure the run-time of each heuristic, for a
fixed clp(FD) solver, on a large number of instances
with different values for n, k, and b. Then we try
and determine the range (in terms of n, k, and b) for
every heuristic in which it performs best, so as to im-
plement a meta-heuristic that always picks the best
heuristic in H for any instance.

To illustrate the idea, let us assume that we have
two heuristics, H; and Hs say. If we keep n and
b constant, we can measure the run-times of both
heuristics for all values of k. The plot in Figure 1
suggests the following meta-heuristic:

if £ € 1..3 then choose H;
if £ € 3..5 then choose H,
if £ € 5..n then choose H;

However, in our case, the problem is more difficult
because we have 3 varying dimensions rather than
just 1, namely n, k, and b.

2000 T

HL <-—
H2 —+--

1800 |-

1600

1400 |

1200

1000 |-

run-time

800 |
600
iy N

200

Figure 1: Run-time in terms of k& for 2 heuristics.

We now introduce our experimental setting and re-
sults, and then show how to use those results to devise
a meta-heuristic for subset decision problems.

3.1 Experimental Setting and Results

For the purposes of this paper, we focused on 3 VVO
heuristics only, as we would first like to show that
the principle works. More VVO heuristics can easily
be added to the experiments, if given more time. We
also generated random instances in a coarse way (by
not considering all possible combinations of n, k, and
b); again, given more time, instances generated in a
more fine-grained way could be used instead and help
make our results more precise.
We used the following 3 VVO heuristics:

e The default VVO heuristic labels the leftmost
variable in the sequence of variables provided,
and the domain of the chosen variable is explored
in ascending order.

e The static VVO heuristic pre-orders the vari-
ables in ascending order, according to the num-
ber of constraints in which a variable is involved,
and then labels the variables according to that
order by assigning the value 1 first (recall that we
need only consider the Boolean domain {0,1}).

e The dynamic VVO heuristic is based on the one
described by Geelen [4]; however, the variable is
here chosen in a way that maximises the sum
of the promises of its values, and it is labeled
with the least promising value. Although this
max-min heuristic is the opposite of the min-max
heuristic advocated by Geelen [4], our experi-
ments showed that it performed best for subset
decision problems, among all the 4 alternatives
for variable and value ordering.

The default VVO heuristic does not introduce any
extra overhead. The static one has a pre-processing
overhead, while the dynamic one is the most costly
one, as it incorporates calculations at each labeling
step. We tested the effect of these heuristics by using
the same propagation and search algorithms, namely
the ones of SICSTUS CLP(FD).

Instance Generation

As described in Section 2, the clp(FD) constraint
store for any subset decision problem is over a
set of Boolean variables and contains an instance-
dependent number of binary constraints as well as
an optional summation constraint. For binary CSPs,
instances are characterised by a tuple (n,m,pi,p2)
[10], where n is the number of variables, m is the
(constant) domain size for all variables, p; is the con-
straint density,? and p. is the tightness of the indi-
vidual constraints.

In our experiments, the domain size m is fixed to 2
as we need only consider the Boolean domain {0,1}
in subset decision problems. The number n of vari-
ables ranged over the interval 10..200, by increments
of 10. We varied the values of p; over the interval
0.1..1, by increments of 0.1. Since the considered bi-
nary constraints are of the form —(B; A By), their
tightness is always equal to 3/4 and they can thus
be ignored in the computation of ps. Therefore, only
the summation constraint determines po; its tight-
ness, and therefore the tightness of all the considered
constraints, is:

(x)

= 2—n
Instead of varying the values of py, we varied the
values of k, over the interval 1..|n/2], by increments

D2

2Note that p; = m.



of 1, as this also leads to an interval of p, values, since
n ranges over an interval. (In any case, varying ps
by a constant increment over the interval 0..1 would
have missed out on a lot of values for k. Indeed,
when k ranges over the integer interval above, the
corresponding values of ps do not exhibit a constant
increment within 0..1.) The chosen upper bound of
the interval for k is sufficiently big because of the
symmetric nature of combinations.

Experiments and Results

Having thus chosen the intervals (and increments)
for the parameters describing the characteristics of
instances of subset decision problems, we randomly
generated many different instances and then used the
3 chosen heuristics in order to solve them. Note
that not every instance has a solution. Also, some
of the instances were obviously too difficult to solve
within a reasonable amount of time. Consequently,
to save time in our experiments, we used a time-
out on the CPU time; hence, our meta-heuristic can
currently not select the best heuristic for a given
instance characterisation when all 3 heuristics were
timed out on it. The obtained results are tabulated
as (n,p1, k,t1,ta,t3) tuples, where ¢; is the CPU time
for heuristic ¢:

[ nl o] k] W] ] ]
100: 02 6 4(; 97(; 203(;
11(; 02 22: time out' 20 188(;
130: 03 15; time out 10250: 515(;

We can see that indeed no heuristic outperforms
all other heuristics, or is outperformed by all other
heuristics. Moreover, the collected run-times look
very unpredictable and have many outlyers. This
confirms Minton’s and Tsang et al.’s results and also
shows that human intuition breaks down here (espe-
cially when dealing with blackbox solvers).

In order to analyse the effects of each heuristic on
different instances, we drew various charts, for exam-
ple by keeping n and p; constant and plotting the
run-times for each k. Figure 2 shows an example of
the behaviours of the 3 heuristics on the instances
where n = 110 and p; = 0.4.

3.2 Usage of the Results

Using the obtained table as a lookup table, it is
straightforward to devise a (static) meta-heuristic
that first measures the parameters (n,p;, k) of the
given instance, and then uses the (nearest) cor-
responding entry in the table to determine which
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Figure 2: Run-time in terms of k for the 3 heuristics
on n =110 and p; = 0.4.

heuristic to actually run on this instance. Consid-
ering the simplicity of these measures, the (constant)
run-time overhead is negligible, especially that it
nearly always pays off anyway. The meta-heuristic
(including the table) and the code of all involved
heuristics thus become part of the generated instance-
independent program, but it is guaranteed to make
the program run, for any instance, (almost exactly)
as fast as the fastest heuristic for that instance.

From the results of the empirical study, we can
also conclude the following, regarding subset decision
problems:

e As instances get less constrained [5], the default
VVO heuristic almost always performs best.

e As instances get more constrained, the perfor-
mance of the default VVO heuristic degenerates
(see Figure 3).

e As instances get more constrained, the static
and dynamic VVO heuristics behave much more
gracefully, rather than seeing their run-times de-
generate (see Figure 3).

e Even though it is very costly to calculate the dy-
namic VVO heuristic, it sometimes outperforms
the other two heuristics.

e For some of the instances, all the heuristics failed
to find a solution within a reasonable amount of
time.

4 Conclusion

We have shown how to map an entire class of
CSPs, namely subset decision problems, to a generic
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Figure 3: Run-time in terms of k for the 3 heuristics
for n = 100 and p; = 0.4.

clp(FD) constraint store, and we have devised a class-
specific but problem-independent meta-heuristic that
chooses an instance-specific heuristic that is guaran-
teed to perform as well as the best considered heuris-
tic, for any instance. This work is thus a continua-
tion of Tsang et al.’s research [10] on mapping heuris-
tics to application domains, and an incorporation of
Minton’s and Tsang et al.’s findings about the sensi-
tivity of heuristics to instance distributions. The key
insight is to analyse and exploit the form (and num-
ber) of the actually posted constraints for a problem
class, rather than considering the constraint store a
black box and looking for optimisation opportunities
elsewhere.

The importance and contribution of this work is to
have shown that some form of heuristic, even if “only”
a meta-heuristic, and a brute-force one at that, can
be devised for an entire problem class, without re-
gard to its problems or their instances. Considering
the availability and automatic selection by a solver of
such a (meta-)heuristic, programmers can be encour-
aged to model CSPs as subset problems rather than
in a different way (if the possibility arises at all). In-
deed, they then do not have to worry about which
heuristic to choose, nor do they have to implement
it, nor do they have to document the resulting pro-
gram with a disclaimer stating for which distribution
of instances it will run best. All these non-declarative
decisions can thus be taken care of by the solver, leav-
ing only the declarative issue of modeling the CSP to
the programmers, thus extending the range and size
of CSPs that they can handle properly. Further ad-
vances along these lines will bring us another step
closer to the holy grail of programming (for CSPs).

4.1 Related Work

This work follows the call of Tsang et al. for map-
ping combinations of algorithms and heuristics to ap-
plication domains [10]. However, we here focused on
just one application domain (or: class of problems),
as well as on just the effect of VVO heuristics while
keeping the algorithm constant.

Also closely related to our work is Minton’s MULTI-
TAC system [8], which automatically synthesises
an instance-distribution-specific program (i.e., algo-
rithm and heuristic) for solving a CSP, given a high-
level description thereof and a set of training in-
stances (or an instance generator). His motivation
also was that heuristics depend on the distribution of
instances. However, we differ from his approach in
various ways:

e While the performance of MuLTI-TAC’s synthe-
sised programs is highly dependent on the distri-
bution of the given training instances, we advo-
cate the off-line brute-force approach of generat-
ing all possible distributions for given problem
classes and analysing them towards the identifi-
cation of suitable meta-heuristics.

e While MULTI-TAC uses a synthesis-time brute-
force approach to generate candidate problem-
and-instance-distribution-specific heuristics, we
only choose our heuristics from already pub-
lished ones.

e While it is the responsibility of a MuLTI-TAC
user to also provide training instances (or an
instance generator plus the desired distribution
parameters) in order to synthesise an instance-
distribution-specific program, our meta-heuristic
can be pre-computed once and for all, in a
problem-independent way for an entire class of
problems, and the user thus need not provide
more than a high-level problem description.

Finally, the work of Smith ef al. on the KIDS
program synthesiser and its successors [11, 12] has
some influence on ours. Their semi-automatic sys-
tems excel at generating (sometimes novel) programs
for CSPs, though without any explicit recourse to
constraint programming technology. Indeed, they
synthesise ad hoc code given a high-level description
of a CSP and a formal domain theory. By replacing
their target language with clp(FD), we have been able
to considerably reduce the need for their (computer-
assisted) optimisation of the thus synthesised pro-
grams [2].

4.2 Future Work

Our plans for future work include investigating the
possibility of devising a dynamic meta-heuristic that
chooses a (possibly different) heuristic after each la-
beling iteration, based on the current sub-problem,
rather than sticking to the same initially chosen static



heuristic all the way. The hope is that the perfor-
mance would increase even more, but this intuitively
looks unlikely, as many heuristics look deeply ahead
and thus only pick up speed after some slow first it-
erations, so that it would be counter-productive to
then switch to another heuristic that starts all over.
However, we have some ideas how to go at this.

We will furthermore try to derive an evaluation
function (by regression analysis) instead of using the
full look-up table. This would not speed up the re-
sulting programs, but their size would shrink dra-
matically, as the look-up table would not have to be
trailed around.

Of course, we should also produce instances in a
more fine-grained way (over all (n,p;, k) triples until
some n) and involve more known heuristics, so as to
further improve our meta-heuristic. This is just a
matter of having the (CPU) time to do so.

The here studied class of subset decision problems
can be generalised into the class of k-subset deci-
sion problems (where k subsets of a given set have to
be found, subject to some constraints) [7]. Another
extension is the coverage of (k-)subset optimisation
problems. We expect to address these issues.

Finally, we are planning to investigate other classes
of problems, namely assignment problems (where a
mapping between two given sets has to be found,
subject to some constraints) [2], permutation prob-
lemns (where a sequence representing a permutation
of a given set has to be found, subject to some
constraints) [2], and sequencing problems (where se-
quences of (given or bounded) size over the elements
of a given set have to be found, subject to some con-
straints).
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