Solving Necklace Constraint Problems

PierreFlener and Justin Pearson !

Abstract. Some constraint problems have a combinatorial struc4n [3]. Necklaces occur in coding theory [7], genetics [7], and mu-
ture where the constraints allow the sequence of variables to be reic [6], while unlabelled necklaces occur in switching theory [6]. We
tated fecklace} if not also the domain values to be permuted-(study a real-life problem with (unlabelled) necklaces in scheduling,
labelled necklacgswithout getting an essentially different solution. different from the one in [8].

We bring together the fields of combinatorial enumeration, where ef- In this paper, we propose to bring together combinatorial enu-
ficient algorithms have been designed for (special cases of) some aofieration and constraint programming (CP). Very efficient combi-
these combinatorial objects, and constraint programming, where theatorial enumeration algorithms exist for some of the mentioned
requisite symmetry breaking has at best been done statically so farombinatorial objects, but not for unlabelled necklaces (except over
We design the first search procedure and identify the first symmetrytwo colours [2]). These algorithms can be used as CP search proce-
breaking constraints for the general case of unlabelled necklacedures for CSPs having those objects as combinatorial sub-structures,
Further, we compare dynamic and static symmetry breaking on reathereby breaking a lot of symmetry dynamically. This has also been

life scheduling problems featuring (unlabelled) necklaces. advocated in [13], say, where a generic CP search procedure-is pro
posed for an arbitrary symmetry group acting on the values; however,
1 INTRODUCTION except for [15] not much dynamic symmetry breaking seems to have

been done for groups acting on the variables. Conversely, CP princi-
In combinatorics, aecklaceof n beads ovek colours is the lexi- ples can be used for devising enumeration algorithms for the combi-
cographically smallest element in an equivalence class of the set ¢fatorial objects where efficient algorithms have remained elusive to
k-aryn-tuples under rotations; the underlying symmetry group is thedate. The contributions of this paper can be summarised as follows:
cyclic groupC,, acting on the indices. For example, the binary triple)))
001 is the representative necklace{®001, 010, 100}. Combinatorial * Designofan e_numeratlon algorithm, and hence a C.:P search proce-
objects are enumerated under some chosen total order. For example,dur‘:”_f_Or (_parually) unlabelleﬁ-ary necklaces_ (Sections 2 and 4).
under the lexicographic order, the binaipead necklaces af#0, e |dentification of symmetry-preak!ng cpns?ralnts for. (partially) un-
001,011, and111. If the values (colours) of a tuple are interchange- 'aPelled k-ary necklaces, including filtering algorithms for the
able, then we speak ahlabelled tuplegsymmetric grougb, acting |dent|f_|ed new global constraints (Sectlor_ls 3_ and 4).
on the values) andnlabelled necklaceroduct groupC,, x Si.). e Experiments on realiworld proplems valldgtlng thg usefulness of
For example, under the lexicographic order, the unlabelled binary the p_roposed dynamic and static symmetr.|c-break|ng methods for
3-tuples ared00, 001, 010, and011, while the unlabelled binarg- (partially unlabelled):-ary necklaces (Section 4).
bead necklaces af®0 (representing the necklaced0 and111) and
001 (representing the necklaceg8l and011). The generating func-
tions for counting (unlabelled) necklaces are given in [6], and the0
sequences of their counts (fbr< 6) can be found in [16].

A constraint satisfaction problerCSB is a triplet (X, D, C),
where X is a sequence of variables,D is a set ofk possible val-
ues for these variables and is called tidgimain andC' is the set of
constraints specifying which assignments of values to the variable2 DYNAMIC SYMMETRY BREAKING
are solutions. If the constraint sét allows the variable sequence
X to be rotated, then a necklace is a combinatorial sub-structure
the CSP and we say that the CSP haation variable symmetnyjf

Finally, in Section 5, we conclude and discuss future research.

In the following, consider a CSEX, D, C) whereX is a sequence
fn > 2variables and is a set ot > 1 domain values. We assume
thatD = {0, ...,k — 1}; this also has the advantage that the order
is obvious whenever we requife to be totally ordered.

lilnlabelled Tuples. If the domain values oD are interchangeable,
Yhen we impose a total order dn, and the enumeration algorithm
of [5], say, can be used to generate all unlabelled tuples (modulo the

tmhzr::tzntsrtmrearllnvtv:eih?rs]aatl ?h%mg 'Sd; ;;;t,:mgi 'r;;i:(;?fn?(eiﬂﬁ]ele' full value symmetry). We present it as Algorithm 1 in the style of a
' >ay - ue sy ¥E ploiting search procedure in constraint programming (CP), so that it can in-
such symmetry is important in order to solve a CSP efficiently. For,

. . teract with any problem constraints. The initial calligple(1, —1).
exgggl:,v(\:liﬂwp;r:e (thrﬁ;f,g;ég)ngccﬁgggn;ssmaTiglriéiizignm S b/_At any time, j is the index of the next variable to be assigned (and
u) u ez = n + 1 when none remains) while is the largest value used
structure are not unusual. For example, Gusfield [9, page 12] stat€s

that “circular DNA i di tant | . S0 far (andu = —1 when none was used yet). The idea is to try
at cireuiar IS common and Importan ._[samp € organismS¢. aach variable all the values used so far plus one unused value,
omitted.] Consequently, tools for handling circular strings may

someday be of use in those oraanisms”. One such problem is studi s(i{lce all unused values are still interchangeable at that point. Upon
y 9) P %acktracking, thery all construct non-deterministically tries all the

1 Department of Information Technology, Uppsala UniversityxB37, SE— alternatives, in the given value order (line 6). Each alternative con-
751 05 Uppsala, Sweden. Email: Firstname.Surname@it.uu.se tains the assignment of the chosen valtethe chosen variabl¥ [;]

1: procedure utuple(j, u : integer) 1: procedure uneck(j, p, v : integer)
2: var i : integer 2: var 7 : integer
3: if 7 > nthen 3:if j > nthen
4 return true 4: return nmod p =10
5: else 5: else
6. tryali=0tomin(u+1,k—1)do 6. tryali=X[j—p]tomin(u+1,k—1)do
7: X[j] < 4 7: if probe(j,1,p) then
8: utuple(j + 1, max(i, u)) 8: X[j] < i
9: endtry 9: uneck(j+1,if i = X[j—p] then p else j, max(i, u))
10: end if 10: end if
Algorithm 1: Search procedure for unlabelled tuples [5] E engn|? try
13: function probe(j,i,p : integer) : boolean
1: procedure necklace(j, p : integer) 14: X[j] < 4;
2: var ¢ : integer 15: if j =n Anmod (if i« = X[j — p|] then p else j) = 0 then
3: if 7 > nthen 16: return A27" X[g,...,n,1,...,q — 1] >1ex X[1,...,7]
4 o return n mod p =0 17: elseif j < nthen
5. else . j—1 ; :
18: return o X[J—q+1,...,7] >1ex X[1, ...,
6: tryalli=X[j—p|tok—1do 19: dse =Xl = il [q]
7 X[j] < 4 :
8: necklace(j + 1,if ¢ = X[j — p] then p else j) 20: return false
o endtry 21: end if
10: end if Algorithm 3: Probing search procedure for unlabelled necklaces

Algorithm 2: Search procedure for necklaces [2]

the CP search procedutgieck in Algorithm 3. The initial call is
(line 7) and a recursive call for the next variable (line 8). Note thatX[0] < 0; uneck(1,1, —1), whereX|[0] is a dummy element.
we have fixed the variable order to be from left to right actssind We now gradually refine therobe(j,i,p) function (called in
the tuples are thus generated in lexicographic order; this is an unnetine 7), guarding the non-deterministic assignment of valtethe
essary restriction, but the reason for this choice will become clear iurrent variableX [;] followed by the continued enumeration.
a few lines. This algorithm takes constant amortised time and spacé,eaf Probing. If probe always returngrue, thenuneck will enu-
and the number of objects generated is actually equal to the numbenerate a superset of the unlabelled necklaces, as their symmetry
of unlabelled tuples. group is theproduct rather than just the union of the symmetry
Necklaces. If the variable sequenc¥ is circular, then the enumera- groups for necklaces and unlabelled tuples. For example, the binary
tion algorithm of [2], say, can be used to generate all necklaces (mod-necklace011 will erroneously be returned, even though it can be
ulo the rotation variable symmetry). We present it as a CP search praransformed into the unlabelled neckla@@l (by first rotating the
cedure in Algorithm 2. The initial call i [0] < 0; necklace(1, 1), second position of the circular sequeiidé into first position, giving
where X [0] is a dummy element. At any time, is the index of 110, and then minimally renaming its colours, gividg0 = 001);
the next variable to be assigned (ajjd= n + 1 when none re- however, the necklacel1 will correctly not be returned, since it is
mains) whilep is the period explained next. The idea is either to not an unlabelled tuple.

try and keep replicating the values at the previpysositions, or to Consider the left half of Table 1, giving the numbers of vari-
try all larger values with a new period gf At any time, the pre- ous combinatorial objects of length over 3 colours: column 7
fix X[1,...,7] is apre-necklacethat is a prefix of some necklace, counts the unlabelled tuples (sequence A124302 in [16]); column 6

which may however be longer than The variable order is necessar- counts the necklaces (fewer than the unlabelled tuples for 7;

ily from left to right acrossX, due to the role op, and the necklaces sequence A1867); column 5 counts the necklaces that are unla-
are thus generated in lexicographic order. This algorithm takes corbelled tuples, that is the number of pre-necklaces wherbe al-

stant amortised time and space, and the number of objects generatedys returnsrue; and column 2 counts the unlabelled necklaces
is proportional by a constant factor (tending dowrikg(k —1))*>as (sequence A2076). The difference between columns 5 and 6 (or 7)
n — oo) to the number of necklaces: note that onlyuples where shows the gain obtained so far for free by Algorithm 3 over Algo-
the periodp dividesn actually are necklaces (line 4). In other words, rithm 2 (or Algorithm 1), but the difference between columns 5 and 2
not all symmetry is broken at every node of the search tree, and songhows the amount of pruning that leaf probing has to do.
backtracking is forced (by a constant-time tespponly at leaf level; The least thingorobe(j, i, p) should thus do is to make sure only

at present, loopless necklace enumeration remains elusive. unlabelled necklaces are enumerated. This is at the latest done when
Unlabelled Necklaces. If the variable sequenc¥ is circularandthe trying to assign the last variable (whgn= n) of the CSP: at that
domain values o) are interchangeable, then a constant-amortisedmoment, the entire circular sequenkds known, soprobe must re-

time enumeration algorithm [2] only exists for generatingodtlary ~ turn true if X cannot be transformed (by position rotation and col
(k = 2) unlabelled necklaces (modulo the symmetries). We do nobr renaming) into an object that has already been tried in the enu-
present it here, but instead construct a novel enumeration algorithmeration. Since objects are enumerated in lexicographic order (as an
for any amount of colours. Noting that unlabelled necklaces are anherited feature of the two underlying algorithms), this can be done
subset of the necklaces (Algorithm 2) that are unlabelled tuples (Alby checking whether the minimal renaming of every (non-unit) rota-
gorithm 1), and observing that the control flows of those two al-tion of X is lexicographically larger than or equal . Computing
gorithms match line by line, the skeleton of an enumeration algothe minimal renamind” of ann-tupleY takes®(n) time, and can be
rithm for unlabelled necklaces can be obtained simply by “intersectmerged into the (n)-time lexicographic comparison; at mast- 1

ing” those two algorithms, which yields all but lines 7 and 10 of such renamings and comparisons are done, hence this probing takes

seq. probing seq. seq. necklaces unlabelled necklaces
A2076: internal + leaf leafonly | A1867: | A124302: | Algo.2 | Cons. (3) Algo. 3 Algo. 3 [Cons. (1) and (4)
n | unecks | nmodp =0 leaves leaves necks utuples time time | time (leaf) | time (all) time fails
1 1 1 1 1 3 1 0.00 0.00 0.00 0.00 0.00 0
2 2 2 2 2 6 2 0.00 0.00 0.00 0.00 0.00 0
3 3 4 5 5 11 5 0.00 0.00 0.00 0.00 0.00 0
4 6 8 10 13 24 14 0.00 0.00 0.00 0.00 0.01 2
5 9 15 22 36 51 41 0.00 0.00 0.00 0.00 0.01 6
6 26 34 48 97 130 122 0.00 0.00 0.00 0.00 0.03 9
7 53 80 121 268 315 365 0.01 0.01 0.00 0.01 0.07 29
8 146 196 293 732 834 1094 0.01 0.02 0.02 0.02 0.18 69
9 369 490 744 2017 2195 3281 0.04 0.04 0.06 0.06 0.50 181
10 1002 1267 1920 5552 5934 9842 0.11 0.11 0.20 0.16 1.48 469
11 2685 3357 5104 15371 | 16107 29525 0.24 0.30 0.63 0.49 4.54 1240
12 7434 8996 | 13635 42624 | 44368 88574 0.78 0.81 1.95 158 | 13.33| 3298
13 20441 24403 | 37030 | 118731 | 122643 265721 212 2.22 6.06 465 | 41.04| 8919
14 | 57046 66886 | 101354 | 331664 | 341802 797162 5.91 6.24 18.82 14.50 | 122.46 | 24328
15 | 159451 184770 | 279895 | 929883 | 956635 | 2391485 16.54 17.25 58.56 44.89 | 374.12 | 66865

Tablel. Numbers of objects of length over3 colours, and their enumeration times (in seconds) via dynansita&ic (constraint-based) symmetry breaking

O(n?) time at worst. Note that a successful probe incurs the highest To assess the impact of internal probing, consider again the left
cost. The algorithmic details are trivial, so we just write a specifica-half of Table 1: column 4 gives the new numbers of pre-necklaces
tion into line 16. Lazy evaluation of the conjunction should be made (much lower than in column 5), and column 3 counts the pre-
returningfalse as soon as one conjunct is false. Also, experimentsnecklaces that are accepted by the test on the ppridle difference
have revealed that failure is detected earlier on the average if thetween columns 3 and 2 is the amount of pruning that leaf probing
starting positions of the rotations recede from right to left acfdss how has to do, and the difference between columns 4 and 3 is the
An improvement of this leaf probing comes from observing whatamount of pruning done by the period test. Note that the constant-
happens when the lowest value, namalyj — p], is tried for X [j] time period test prunes much more than the quadratic-time probing.
whenj = n: the recursive call (line 9) then igneck(n + 1, p, u) Incremental Internal Probing. Empirically, on average, the inter-
and everything hinges on whethemod p = 0 or not. But the latter ~ nal probing just proposed is much more efficient than(ig:”)
check can already be domeforeprobing (inO(n?) time, recall) ~ worst time suggests, due to the nature of unlabelled necklaces. We
whetherX [j — p] actually is a suitable value fo¥ [n]. For any other ~ now optimise this internal probing into an algorithm takien)
tried valuei > X[j — p] for X[n], the recursive call (line 9) is time at worst, leading to an enumeration that is systematically faster
uneck(n + 1,n, max(i,u)) and we then know that mod n = 0. by a constantfactor (namely17% faster in our implementation).
Hence the test in line 15, as well as lines 19 and 20. The idea is to trade time for space and make the comparisons in-
Internal Probing. The leaf probing discussed so far assumes thacremental. Continuing our previous example, having so far con-
line 18 is replaced byeturn true. This is unsatisfactory, as no structed the pre-neckla®d02 of a ternary6-bead unlabelled neck-
pruning (other than via thp andu parameters) takes place at the lace,probe(5, 1,5) is eventually called at the next iteration to check
internal nodes of the search tree, so that many more leaves are getihether at positiog = 5 < 6 = n the variableX 5] can be assigned
erated than necessary (recall the difference between columns 5 andle valuei = 1 under periodp = 5, so the following comparisons
in Table 1). In the spirit of constraint programming, we ought to per-must be made:
form more pruning whep < n. The idea is the same as for leaves

: . : _ 1 = 0 >ix O (5")
(wherej = n) except that only a strict prefiX[1,..., j] of the 291 — 01 > 01 (4
circular sequence is known, so that we can only check whether 021 — 012 ;lex 010 (3)
the minimal renaming of every suffix of[1, .. ., j] is lexicographi- 1021 = 0120 ;T‘x 0102 (2)
cally larger than or equal t& [1, . . ., j]. For example, when search- 01021 = 01021 glex 01021 (1)

ing for a ternarys-bead unlabelled necklace, assume we have already
constructed the pre-neckla@&0 andprobe(4, 2,4) is now called to
check whether at position= 4 < 6 = n the variableX[4] can be
assigned the (so far unused) value- 2 = v + 1 = k — 1 under
periodp = 4, so the following comparisons must be made:

Note that the last four comparisons correspond to the ones given ear-
lier, that the considered suffixes &f[1, . . ., j] got longer at thend

by the new (boldfaced) value= 1, and that the minimal renamings

of the (non-boldfaced) prefixes remained g@me In other words,

only the scalar comparisons of the (boldfacetfst values matter,

2 = 0 >1ex O 4 . . X
02 = 01 ;1 01 E3§ since the lexicographiz .. comparisons of the (non-boldfaced) pre-
102 — 012 ;T‘x 010 (2) fixes have already been made until the previous iteration. If the lex-
0102 = 0102 > 0102 (1) icographic comparison until the previous iteratiordgy, as in for-

mulas(1), (3), and(4), then the scalar comparison operatobisit
The first and last comparisons will always succeed and can be omithe current iteration; if the lexicographic comparison until the previ-
ted. Exactlyj —2 such renamings and comparisons of tuples of lengthous iteration is>ex, as in formula(2), thenno scalar comparison
O(j — 1) are thus to be done, hence this internal probing also takeseed be made at the current iteration. We incrementally maintain a
O(n?) time at worst, sincg = O(n). The algorithmic details are global k x n matrix m, wheremli, j] gives the minimal renaming
trivial, so we just write a specification into line 18. Again, lazy eval- of valuei if the renaming starts at positigh We also incrementally
uation of the conjunction should be made. Also, experiments havenaintain locally to every search-tree noderatuple c of Booleans,
revealed that failure is detected earlier on the average if the startingherec[j] = true if the lexicographic comparison from positign
positions of the suffixes recede from right to left acrégd, . . ., j], until the previous iteration is=.x, that is if the comparison fromj
as in the top-down order of the sample comparisons above. is to continue at the current iteration. For example, since the scalar

comparison in formuld3’) gives2 > 0, we setc[3] « false for designing a more efficient filtering algorithm for the conjunction of

the next iteration. Using these incremental data structures, the intethese global lexicographic constraints.

nal probing in line 18 can be replaced by the following specificationUnlabelled Necklaces. The conjunction of the constraints (1) and (3)

(the algorithmic details, including the incremental maintenance of accepts all necklaces that are unlabelled tuples (just like Algorithm 3

andm, are omitted for space reasons): without probing). In fact, the rotation variable symmetry and full
value symmetry can be broken by the constraints (1) together with

=71 the probing tests in line 16 of Algorithm 3 seen as constraints:

return /\ (if c[q] then m[i,q] > X[j + 1 — ¢] else true)
2

/\X[q,...,n,l,...,q—l}ZlexX[l,...,n] (4)
At mostj — 2 scalar comparisons are to be done, hence this incre- =2
mental internal probing take(n) time at worst, sincg = O(n)
and the incremental maintenancecff . . . j] andm[i, 1... j] takes
O(n) time at worst. Lazy evaluation of the conjunction should be
made. Failure is detected earlier on the average if the starting po

tlonhs of the suffixes recfectie from rllght o Ieft acrosdl, .. ., j, as filtering algorithm using thezutomaton global constraint [1]. The

|n_t € tc_)p-down orclier_o tf t;samp e_co(rjnparlsc;ns_ abofvel. ith idea is to augment the classical DFA for.x [1] with variables rep-
Plscusson. An analysis o the amortised complexity of Algorit m 3 esenting the smallest value used so far and the minimal-renaming
is beyond the scope of this paper. Its correctness follows from line 16 .. ction onD (encoded by andiDifferent constraint).

. i
captu_rlng the essence of unlabelled negklac_es and the C0rrecmesslﬁlllfgcussion. The proof of correctness and completeness of the intro-
Algorithms 1 and 2. To assess the runtime impact of internal prob-

. . . . d d try-breaki traints i itted f .
ing, consider the right half of Table 1: the fourth-last and thlrd-las;:t{uce symmetry-breaking constrainis 1S omitted fof Space reasons

The difference with (2) and (3) lies in the minimal renaming of the
left-hand sides. The logic minimisation of (2) into (3) does not apply
to (4). A checker for the required > B global constraint can

be specified as a DFA (omitted for space reasons), so that we get a

| ve th tion ti : ds) if there | v 0 assess the runtimes (in seconds) of dynamic and static symmetry
columns give the enumeration times (in seconds) if there is only le reaking, consider the right half of Table 1. Unmentioned numbers

f backtracks are zero. For necklaces, columns 8 and 9 reveaha slig
dvantage of Algorithm 2 over constraints (3). For unlabelled neck-
laces, the last three columns reveal a huge advantage of Algorithm 3
over constraints (1) and (4). However, these runtimes were obtained
3 STATIC SYMMETRY BREAKING in the absence of any problem-specific constraints, and static symme-
try breaking usually performs better than dynamic symmetry break-
ing in the presence of problem-specific constraints. We address this
Yssue in the next section.

probing and also internal probing, respectively. (All experiments in
this paper were performed under SICStus Prolog v4.0.2 on a 2.5§
GHz Pentium 4 machine with 512 MB running Linux 2.6.20.)

Unlabelled Tuples. To break full value symmetry, it suffices to order
the positions of the first occurrences, if any, of each value. Lettin
firstPos(i) denote the first position, if any, of value < i < k

in X under the current assignment, andt+ 1 + 4 otherwise, the
following & — 1 binary constraints break full value symmetry [11]: 4 EXPERIMENTS

firstPos(0) < firstPos(1) < --- < firstPos(k —1). Amore effi- - \ye now experimentally compare the proposed dynamic and static

cient flltgrlng glgorlthm can be deS|gneq for the conjunction of theses.ymmetry-breaking (SB) methods on real-life scheduling problems

constraints, giving a new global constraint, called containing an (unlabelled) necklace as a combinatorial sub-structure.
orderedFirstOccurrences(X, D)) Example: Rotating Schedules. Many industries and services need

to function 24/7. Rotating schedules, such as the one in Figure 1 (a
A checker for this global constraint can be specified as a determin:eal-life example taken from [10]) are a popular way of guaranteeing
istic finite automaton (DFA) (omitted for space reasons), so that weét maximum of equity to the involved work teams. In our example,
get a filtering algorithm using theutomaton global constraint [1]. there are dayd), evening), and night) shifts of work, as well
Necklaces. To break rotation variable symmetry, we apply the so-as days off £). Each team works maximum one shift per day. The
calledlex-leaderscheme [4], which says that any variant of a wanted scheduling horizon has as many weeks as there are teams. In the first
solution under all the symmetries of the considered symmetry group/eek, teami is assigned to the schedule in rewFor any next week,

must be lexicographically larger than or equal to that solution. Foreach team moves down to the next row, while the team on the last

necklaces, this means that all the rotations of the sequ&norist ~ FOW moves up o the first row. Note how this gives almost full eq-
be lexicographically larger than or equalXbitself: uity to the teams, except, for instance, that tladoes not enjoy the

six consecutive days off that the other teams have, but rather three
" consecutive days off at the beginning of weesind another three at
A Xlgon1g = 1] e X[,) the end of weeks. We here assume that the daily workload is uni-
=2 form. In our example, each day has exactly one team on-duty for
Thesen — 1 constraints over sequencesaxactlyn elements have each work shift, and hence two teams entirely off-duty; assuming the
been logically minimised in [8] to the following — 1 constraints ~ work shifts averag&h, each employee will work - 3 - 8 = 168h
over sequences aft mostn — 1 elements: over the five-week-cycle, @3.6h per week. Daily workload can be
enforced by global cardinality¢c) constraints on the columns. Fur-
ther, any number of consecutive workdays must be between two and
seven, and any change in work shift can only occur after two to seven
days off. This can be enforced Byretch constraints [12] on the ta-
Reading from right to left, this constrains the first- 1 elements ble flattened row-wise into a sequence. (A filtering algorithm for the
of X to be lexicographically smaller than or equal to the cyclically stretch constraint, which is not a built-in of SICStus Prolog, was au-
nextq — 1 elements ofX, for 2 < ¢ < n. Future work includes tomatically obtained from a DFA model of a constraint checker using

N\ Xlg,-..,(2¢ = 3) mod n + 1] Z1ex X[1,...,g—=1] (3)
q=2

Week | Mon Tue Wed Thu Fri Sat Sun unique Algorithm 3 Cons. (5) and ()
1 T T T d d d d instance sol's | time fails time fails
2 T T e e e T T 1d, 1e, 1n,2x 402 13 35969 205 2964
3 d d d T T e e 2d, 2e, 2n, 2z 274 703 1380876 31193 313587
4 ¢ ¢ x x noon n Figure3. Comparison on partially unlabelled necklace schedules
5 n n n n T T T
Figurel. A five-week rotating schedule with uniform workload 5 CONCLUSIONS
unique Algorithm 2 Constraints (3) | noSB By bringing together the fields of combinatorial enumeration and
instance 2zol’s time 225?3233 time gfailg tin21€ constraint programming, we have extended existing results for dy-
1d, 1e, 1n, 2z 74 7 4 14 1 B : : ; :
9 le 1n. 2z 4115 50 959970| 26 69704 158 namically a_nd statically breaking the_rotatlon variable §ymmetry Qf
2d,2e.1n,2¢ 4950 | 199 2922846 147 408669 751 Necklaces into new symmetry-breaking methods dealing also with
2d,2e,2n,2c 3444 | 603 7526564 558 1587889| 2581 the additional full value symmetry of unlabelled necklaces. On an

Figure2. Performance comparison on necklace schedules

the (built-in) automaton global constraint [1].) We assume that soft a
constraints, such as full weekends off as numerous and well-spaceD
as possible, are enforced by manual selection among schedules g
isfying the hard constraints. In our example, there are two full week-
ends off, in the optimally spaced ro@sand5.

Necklaces. Under the given assumption (uniform workload) and con-
straints gec and stretch), any rotating schedule has the symme-
tries of necklaces, when we view it flattened row-wise into a se-
quence. In addition to the classical instance in Figure 1, here d
noted1d, le, 1n, 2z, we ran experiments over other instances. For
example, instanced, 2¢, 1n, 22 has the uniform daily workload of

2 teams each on the day and evening shifteam on the night shift,
and?2 teams off-duty. Figure 2 gives the obtained runtimes (in sec-
onds) and numbers of backtracks (fails) oa#rsolutions. The time
ratio to all solutions between SB and no-SB is a good indicator of
that time ratio to thdirst optimalsolution (say, with the maximum
number of full weekends off), as branch-and-bound essentially iter

breaking the symmetries statically, the default variable ordering (try-
ing the leftmost variable) is better than first-fail (trying the leftmost

example, we have also shown how to specialise these methods when
the value symmetry of unlabelled necklaces is only partial. In the
sence of problem-specific constraints, the dynamic symmetry-
eaking methods outperform the static ones, narrowly for necklaces
ut largely for unlabelled necklaces. On a real-life scheduling prob-
lem we have shown that, in the presence of problem-specific con-
straints, the static method becomes faster for necklaces, but not for
partially unlabelled necklaces.

One should be aware of existing enumeration algorithms for spe-
cial cases, such as the constant-amortised-time algorithms for unla-
SPelled binary necklaces [2], or for necklaces with fixed content [14].
For instance, under the given assumption (uniform workload) and
constraints, rotating schedules are necklaces with fixed content, so
the algorithm of [14] should be tried instead of Algorithm 2.

Future work includes the quest for a constant-amortised-time enu-
meration algorithm for unlabelleltary necklaces.

Acknowledgements. We are supported by grant IG2001-67 of the
Swedish Foundation for International Cooperation in Research and
eHigher Education, and by grant 70644501 of the Swedish Research
Council. We thank J. Sawada and V. Vajnovszki for discussions.

variable with the smallest domain) and most-constrained (trying thd(REFERENCES

leftmost variable with the smallest domain that has the most con-jy
straints suspended), with the default bottom-up value ordering, hence
the runtimes for static symmetry-breaking are given for the default[2]
orderings. Static symmetry-breaking, in the presence of the problem-
specific constraints, is now faster than dynamic symmetry-breaking.[3]
Partially Unlabelled Necklaces. Under the uniform workload as-
sumption,somerotating schedules even have many of the symme- [4]
tries ofunlabellednecklaces. In our instances foand8 weeks, the

constraints do not distinguish between the, n work shifts, so that 5]

those values are interchangeable. To break gachal value sym- 6]
metry dynamically, it suffices to replace line 6 of Algorithm 3 by

[7]

tryalli € {X[j —p],...,min(u+1,k—2)}U{k -1} -

and to make the minimal renaminds in lines 16 and 18 respect (9]

the subsetd), C D of interchangeable values; in our caBe = 10]

[
{d,e,n} U {z}. We denote the resulting search procedure by Algo-
rithm 3. To break this partial value symmetry statically, it suffices to[11]
post oneorderedFirstOccurrences(X, Dy) for each subseb,: [12]

firstPos(d) < firstPos(e) < firstPos(n) (5)
Together with an adaptation, denote) (4f constraints (4) wherg [14]
respects thé,, we have a static symmetry-breaking method for such
partially unlabelled necklaces. Figure 3 gives the obtained runtimed5]
(in seconds) and numbers of backtracks (fails) aa#rsolutions. 16]
Static symmetry breaking, in the presence of the problem-specifi%
constraints, is still a lot slower than dynamic symmetry breaking.

[13]

N. Beldiceanu, M. Carlsson, and T. Petit, ‘Deriving filteg algorithms
from constraint checkersCP’04, LNCS3258:107—-122. Springer.

K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Mi€ast algo-
rithms to generate necklaces, unlabeled necklaces, addait#e poly-
nomials overGF(2)’, Journal of Algorithms37(2):267-282, (2000).
W. Y. C. Chen and J. D. Louck, ‘Necklaces, MSS sequenaas DNA
sequencesAdvances in Applied Mathematit8(1):18-32, (1997).

J. M. Crawfordet al,, ‘Symmetry-breaking predicates for search prob-
lems’,KR'96, pp. 148-159. Morgan Kaufmann, (1996).

M. C. Er, ‘A fast algorithm for generating set partitiocnghe Computer
Journal 31(3):283-284, (1988).

E. N. Gilbert and J. Riordan, ‘Symmetry types of periodigsences’,
lllinois Journal of Mathematic®:657—665, (1961).

S. W. Golomb, B. Gordon, and L. R. Welch, ‘Comma-free codes’,
Canadian Journal of Mathematid®)(5):202—209, (1958).

A. Grayland, I. Miguel, and C. Roney-Dougal, ‘Minimal adng con-
straints for some families of variable symmetriesymCon’07(2007).
D. Gusfield,Algorithms on Strings, Trees, and Sequen€’sP, 1997.
G. Laporte, ‘The art and science of designing rotatictgesiules’ Jour-
nal of the Operational Research Soci&(10):1011-1017, (1999).
Y. C. Law and J. Lee, ‘Symmetry breaking constraints fdugaymme-
tries in constraint satisfactionGonstraints11(2-3):221-267, (2006).
G. Pesant, ‘A filtering algorithm for the stretch corsnt’, CP'01,
LNCS2239:183-195. Springer, (2001).

C. M. Roney-Dougakt al, ‘Tractable symmetry breaking using re-
stricted search tree€ECAI'04, pp. 211-215. (2004).

J. Sawada, ‘A fast algorithm to generate necklaces fistid content’,
Theoretical Computer Scien801(1-3):477-489, (2003).

M. Sellmann and P. Van Hentenryck, ‘Structural symmetmalzing’,
IJCAI'05, pp. 298-303. IJCAI, (2005).

N. Sloane. The on-line encyclopedia of integer seqasnétht t p:
/I ww. r esear ch. att. conf ~nj as/ sequences/, 2008.

