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1 Introduction

Optimisation problems— where appropriate values for
the variables of the problem have to be found, subject to
some constraints, such that some cost function on these
variables takes an optimal value — are ubiquitous in in-
dustry. Examples are production planning subject to de-
mand and resource availability so that profit is maximised,
air traffic control subject to safety protocols so that flight
times are minimised, transportation scheduling subject to
initial and final location of the goods and the transporta-
tion resources so that delivery time and fuel expenses are
minimised, etc. A particular case aredecision problems,
where there is no cost function that has to take an opti-
mal value. Many of these problems can be expressed as
constraint programs and then be solved using constraint
solvers.

However, effectiveconstraint programming(CP) [19]
is very difficult, even for application domain experts, and
hence time-consuming. Moreover, many of these prob-
lems are ill-behaved, in the sense that it can be shown
that solving them requires an amount of time that is worse
than polynomial in the size of the input data, hence mak-
ing solving times prohibitively long.

To address theprogramming time problem, ever more
expressive programming languages1 are being devel-
oped, providing traditional algebraic notations (such as
sums and products over indexed expressions) and useful
datatypes (such as sets, multi-sets, sequences, and enu-
merations) to enable a more natural expression of the con-
straints, freeing the programmer thus more and more from
traditional (and often low-level) computing obligations,
such as the writing of iterative/recursive code or the en-
coding of concepts as numbers. These languages are also
increasingly declarative.2 However, there is very little
work on methodologies on how to use such languages.

To address thesolving time problem, a search procedure
and redundant constraints can be added so as to accelerate
the default solution enumeration. Such optional (but of-
ten necessary) practice is however a concession that fully
declarative programming is still far away, and the question

1Programming languageA is more expressivethan programming
languageB if for a program inA of n words there is an equivalent
program inB of more thann words,equivalenceof two programs be-
ing achieved when they always compute the same results from the same
data.

2A programming language isdeclarative if its programs only de-
scribewhat the properties of solutions are, but without expressinghow
these solutions can be found.

whether these non-declarative statements can be automat-
ically added upon analysis of the declarative ones remains
essentially open. Concerns about the solving time also re-
quire trade-offs about expressiveness: the programming
language must after all be executable (though need not be
computationally complete) and its programs should ide-
ally execute quickly (and finitely). For instance, set con-
straint languages may well allow the formulation of con-
straints over sets, hence yielding enormous expressive-
ness, but, as of now, there are only quite restricted and
slow (academic) prototype languages, such asCLPS [1],
COJUNTO [11], andNP-SPEC [4], as well as the fastOZ

[26], which seems to be the only one to allow the for-
mulation of constraints on non-ground sets of unknown
(but finite) size [20]. To our knowledge, no set constraint
language currently allows the formulation of constraints
on possibly infinite sets or on sets whose elements are
drawn from an infinite domain. If expressive declarative
languages cannot be compiled into acceptably fast code,
then the advantage of decreased programming time is neu-
tralised by the disadvantage of increased solving time.

We call modellingthe usage of a CP language for ex-
pressing an optimisation/decision problem. This results in
a model, which thus has aconstraint partand an optional
search part.

We here report on our initial results regarding the com-
pilation of very expressive, purely declarative, typed, first-
order set constraint logic programs into clp(FD) programs
[6] (clp(FD) being a very fast constraint logic program-
ming solver over finite domains).

This paper is organised as follows. In Section 2, we
discuss our set constraint programming language as well
as (syntactic forms of programs of) the target language
clp(FD). Then, in Section 3, we introduce the semantic
notion of program schema, which captures entire families
of similar programs. We are then set to explain, in Sec-
tion 4, our notion of schema-guided compilation. Finally,
in Section 5, we conclude, compare with related work,
and discuss our directions of future work.

Disclaimer, Conventions, and Notation

For simplicity, we here only consider decision problems.
We also ask the reader to bear with us whenever there
are (often deliberate) simplifications, theoretical impreci-
sions, or vague terminology (set between single quotes),
as we wish to get some novel ideas across without get-
ting stuck in theoretical details and notational clutter, all
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of which rather belong to a thorough and much more vo-
luminous study.

In formulas, variable symbols start with an uppercase
letter, whereas (non-numeric) constant, function, relation,
and type symbols start with a lowercase letter. They are all
typeset initalics. Unquantified variables are assumed to
be universally quantified over the entire formula in which
they occur. Whenever types are not so important, we omit
them. When we wish to group (n) termst1; : : : ; tn into a
single term, called an (n-) tuple, we use angled brackets,
yielding ht1; : : : ; tni.
2 Programs

All programs, whether of the input or target language, are
here theories in some typed, first-order logic. The input
language, let us call itS until we have decided on a suit-
able name for it, is partially introduced below. The target
language here is clp(FD), but our compilation technique is
independent of that choice. We consider open (or: para-
metric) programs, together with the corresponding notion
of ‘open equivalence’ (or: parametric equivalence). We
consider the Horn-clausal notation for (open) (constraint)
logic programs to be syntactic sugar for their typed (open)
completions [17]. Hence the following definitions:

Definition 2.1 A relation symbolr occurring in a theoryT in a languageL is openin T if it is neither ‘defined’ inT , nor a primitive symbol inL.
A non-open symbol inT is aclosedsymbol inT .
A theory with at least one open symbol is called anopen
theory; otherwise it is aclosedtheory.

Definition 2.2 A program for a relationr is a possibly
open theory that ‘defines’r.
ProgramP , whether open or closed, is arefinementof
open programT underextension� if � is a set of programs
‘defining’ some of the open symbols ofT such thatP andT [ � are ‘open-equivalent.’

Finding extensions can be done through second-order
matching, which is decidable but NP-complete in gen-
eral, though linear for higher-order patterns [15], where
all predicate variables (or open relation symbols, here) ap-
ply to distinct variables only, which is the case here.

Note that closed programs thus do not have refine-
ments. We ask the reader to overlook the fact that in our
examples we use a much more general definition of re-
finements. Indeed, refinements do not necessarily have
the same ‘defined’ relation symbol as the open program,
refinements do not necessarily ‘declare’ their formal pa-
rameters in the same order as the open program, refine-
ments may have more or less formal parameters than the
open program, and the formal parameters of refinements
may be of ‘sub-types’ of the types in the open program.
Most of the considerations so far are illustrated in the fol-
lowing examples.

Example 2.1 Let us first look at our input languageS.
The chosen representation of sets inS, called theexternal
representation, is the classical one, with curly braces.

Programs inS areiff-programs, expressing that, under
input conditionir on inputX , a program for relationr
must succeed if and only if output conditionor onX and
outputY holds. Formally, this gives rise to the following
open program forr:8X : term : 8Y : term :ir(X)! (r(X;Y )$ or(X;Y )) (iff )

The only open symbols are relationsir and or. We
here only consider programs forsubset decision problems,
where a subsetS of a given finite setT (an integer set
here) has to be found, such thatS satisfies an (open) con-
straintg and an arbitrary two different elements ofS sat-
isfy an (open) constraintp. (Other problem families have
been and will be handled similarly, see Section 4.) Hence
the following open program:8T : set(int) : 8S : set(T ) :subset(T; S)$ g(S) ^8I; J : S : I 6= J ! p(I; J) (subsetdec)
The only open symbols are relationsg andp (assuming
that 6= is a primitive ofS, with the usual meaning). Note
how the type ofS ‘depends’ onT . The open programsubsetdec is a refinement of open programiff above. It
has itself as refinements programs for many problems,
such as finding a clique of a graph (see below), set cover-
ing, knapsack, etc. For instance, the closed program8hV;Ai : set(int)� set(V � V ) : 8C : set(V ) :clique(hV;Ai; C)$ sum(C; S) ^ S > 22 ^8M;N : C : M 6= N ! hM;Ni 2 A

(cliquedec)
is a refinement ofsubsetdec, under the extension8V : set(int) : 8C : set(V ) :g(C)$ sum(C; S) ^ S > 228hV;Ai : set(int)� set(V � V ) : 8C : set(V ) :8I; J : C : p(I; J)$ hI; Ji 2 A

(�)
assuming thatsum, >, and2 are primitives ofS, with
the obvious meanings. It is a program for a particular
case of theclique problem, namely finding a clique (or:
maximally connected component) of an undirected graph
(which is given through its integer-labeled vertex setV
and its arc setA), such that the sum of its integer labels
exceeds 22.

Example 2.2 Let us now look at the target language,
namely clp(FD) [6]. Among the many possible forms of
programs, there are theglobal search[23, 24] programs.
They work as follows: after initialising a descriptorD to
a tuple representing the space of all candidate solutions to
problemX and possibly containing the empty partial so-
lution, an auxiliary programrgs adds all the constraints
on a representationY 0 of the solution to the constraint
store, and a solutionY to X is then generated from the
constraint store andY 0; wherergs works by incremen-
tally splitting the descriptorD by adding a solution ele-
ment� to its partial solution, yieldingD0, and constrain-
ing � to achieve consistency with the partial solution so
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far, until no split is possible and a variablised represen-
tationY 0 of the solution toX can be extracted fromD.
Formally, this dataflow and control-flow can be captured
in the following open clp(FD) program forr [8]:r(X;Y )  initialise(X;D);rgs(X;D; Y 0);generate(Y 0; Y;X)rgs(X;D; Y 0)  extract(X;D; Y 0)rgs(X;D; Y 0)  split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y 0) (gsdec)
The only open symbols are relationsinitialise,generate, extract, split, and constrain. Note thatconstrain just postsconstraints on the search space, the
actual solutions beingenumeratedby generate onceall
constraints have been posted, because we use a constraint
language.

The gsdec program can be refined for subset decision
problems, yielding the following (still) open program:r(X;Y )  initialise(X;D);rgs(X;D; Y 0);generate(Y 0; Y;X)rgs(X;D; Y 0)  extract(X;D; Y 0)rgs(X;D; Y 0)  split(D;X;D0; �);constrain(�;D;X);rgs(X;D0; Y 0)initialise(X;D)  D = hX; [ ]; [ ]iextract( ; D; Y 0)  D = hfg; V;W i;Y 0 = hV;W i;g(Y 0)split(D;X;D0; �)  D = hfAjTg; V;W i;B in 0::1;� = hA;Bi;D0 = hT; [AjV ]; [BjW ]iconstrain( ; D; )  D = h ; [ ]; [ ]iconstrain(�;D;X)  � = hA;Bi;D = h ; [EjV ]; [F jW ]i;B # ^ F ! p(A;E);constrain(�; h ; V;W i; X)generate(Y 0; Y; )  Y 0 = h ;W i;labeling([ ];W );int2ext(Y 0; Y )int2ext(Si; fg)  Si = h[ ]; [ ]iint2ext(Si; fAjSeg)  Si = h[AjV ]; [1jW ]i;int2ext(hV;W i; Se)int2ext(Si; Se)  Si = h[AjV ]; [0jW ]i;int2ext(hV;W i; Se)E 2 S  :::sum(S;N)  ::::::  :::

(gssubsetdec )
where in, #^, and labeling are primitives of clp(FD)
(with the obvious meanings). The implication! in the
second clause forconstrain actually needs to be rewrit-
ten in a way more suitable for clp(FD), but explaining this
goes beyond the scope of this paper, so we give this intu-
itive shorthand notation instead.

Descriptors take the formhU; V;W i, whereU is the
subset (in external representation) of the given setT for
whose elements it has not been decided yet whether they
belong to the subsetS or not, andhV;W i is the inter-
nal representation of the partially computed subset. The
chosen representation in clp(FD), called theinternal rep-
resentation, of the subsetS of the given finite setT (ofn elements) is a mapping fromT into Boolean values,
that is we maintainn coupleshTi; Bii where the (initially
non-ground) BooleanBi expresses whether the (initially
ground)ith elementTi of T is a member ofS or not. The
lists V andW in descriptors always contain a prefix of
the n elementsTi and BooleansBi, respectively. Note
that we are thus restricted to finite sets. Also, the setT
should not be too large, because the search space forS
has sizeO(2n), whatever the size ofS. Given this rep-
resentation choice, it is easy to writeconstraint-posting
clp(FD) programs for2, sum, int2ext (which converts
between the internal and external representations), and all
other classical set operations. An alternative representa-
tion of the subsetS, namely as a sequence ofk (� n) vari-
ables constrained to be different elements ofT , has two
disadvantages compared to ours: first, the search space
for S then is much worse, namelyO(n!), and second, an
explicit loop fork ranging from 0 ton has to be wrapped
around the code.

The only open symbols now are relationsg andp. Note
that they here operate on the internal representation of the
subset, whereas they operate on the external one in the
inputS program. This assumes that eachS primitive on
sets has a corresponding clp(FD) program with thesame
name and parameters.

A constraint program for the considered particular case
of the clique problem is a refinement ofgssubsetdec under
the extension� of Example 2.1. It is subject to obvious
optimisations through partial evaluation, and should thus
first be run through a partial evaluator, e.g.,MIXTUS [21].

3 Program Schemas

We can now define program schemas, which are intended
to represent entire families of similar programs. Con-
trary to programs, which are syntactic entities, program
schemas are semantic entities, as we also need a semantic
notion of what it means for a program to be a refinement
of a program schema. Therefore, a program schema con-
sists of an open programanda set of axioms, whose role
is to prevent some programs from being undesired refine-
ments of that open program.

Definition 3.1 A program schemais a couplehT;Ai,
wheretemplateT is an open program, andaxiomsA are
open formulas constraining the refinements ofT .
ProgramP is a refinementof program schemahT;Ai ifP is a refinement ofT under some extension�, provided
the ‘definitions’ inP ‘satisfy’ the axiomsA.

A template captures the problem-independent data-
flow and control-flow of an entire family of programs,
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whereas some refinement thereof (such that the axioms
are ‘satisfied’) captures the problem-dependent computa-
tions of a member of that family.

Example 3.1 Let Iff = h iff ; ;i denote theS program
schema obtained from templateiff (of Example 2.1) and
the empty set of axioms, as we do not wish to impose any
conditions on the (open) relationsir andor.

Example 3.2 Let Subsetdec = hsubsetdec; ;i denote
theS program schema obtained from templatesubsetdec
(also of Example 2.1) and the empty set of axioms, as we
also do not wish to impose any conditions on the (open)
relationsg andp.

Example 3.3 According to our informal description of
how global search programs work, the open relation sym-
bolsinitialise, generate, extract, split, andconstrain
of gsdec can be informally specified as follows:� initialise(X;D) iff D is the descriptor of the initial

space of candidate solutions to problemX ;� extract(X;D; Y 0) iff the variablised internal repre-
sentationY 0 of a solution to problemX is directly
extracted from descriptorD;� split(D;X;D0; �) iff descriptorD0 describes a sub-
space ofD wrt problemX , such thatD0 is obtained
by adding� to descriptorD;� constrain(�;D;X) iff adding � to descriptorD
leads to a descriptor defining a sub-space ofD that
may contain correct solutions to problemX ;� generate(Y 0; Y;X) iff correct solutionY to prob-
lemX corresponds to the internal representationY 0
of a solution that is generated from the constraint
store, which is an implicit parameter representingX .

It can be shown that their ‘definitions’ in refinementgssubsetdec (of Example 2.2) indeed ‘satisfy’ these specifi-
cations.

Formalising these specifications is done through ax-
ioms. LetY 0 be the type of internal representations of so-
lutions,D be the type of search space descriptors, and�
be the type of the elements of the partial solutions stored
in descriptors. A first axiom expresses thatgenerate andr are equivalent when the constraint store is set up:r(X;Y )$ 9Y 0 : Y 0 : generate(Y 0; Y;X) (A0)

The next axiom expresses that all correct solutionsY to
problemX are contained in the initial space forX :r(X;Y )! 9D : D : 9Y 0 : Y 0 :initialise(X;D)^ int2ext(Y 0; Y ) ^ satisfies(Y 0; D)

(A1)
wheresatisfies(Y 0; D) means that the internal represen-
tationY 0 of a solution is in the space described by descrip-
torD, which is the case ifY 0 can be extracted after a finite

number of applications ofsplit toD. Formally:satisfies(Y 0; D)$ 9k : int : 9D0 : D : 9� : � :splitk(D;X;D0; �) ^ extract(X;D0; Y 0)where :split0(D;X;D0; �)$ D = D0and; for all k : int :splitk+1(D;X;D0; �)$ 9D00 : D : 9�0 : � :split(D;X;D00; �0) ^ splitk(D00; X;D0; �)
(A2)

Finally, we use constraint satisfaction to prune off
branches of the search tree that cannot yield solutions.
Given a space described byD and a (possibly still vari-
ablised) solutionY to problemX , if splitting D into D0
makesD0 contain the solutionY , thenconstrain must
succeed. Formally:r(X;Y ) ^ int2ext(Y 0; Y ) ^ split(D;X;D0; �)^ satisfies(Y 0; D0)! constrain(�;D;X)

(A3)
Conversely, the contrapositive ofA3 shows that ifconstrain fails, then the new space described byD0
(which is D plus �) does not contain any solution toX . CP languages contain theSAT decision procedure,
checking whether a constraint store is satisfiable [19].

This last axiom sets up a necessary condition thatconstrain must establish. Given the left-hand side of the
implication, such a condition can be derived using auto-
mated theorem proving (ATP), as shown in [22, 23]. Of
course, we are not interested in too weak such a con-
dition, such as the trivial solutiontrue, but rather in a
stronger one. However, deriving the absolutely strongest
one (which establishes equivalence rather than implica-
tion) is impractical, because finding it may take too much
time or may even turn out to be beyond current ATP pos-
sibilities, and because such a perfectconstrain would
be too expensive to evaluate (since it would eliminate all
backtracking in the solution generation). So we should
(automatically, if possible) derive the strongest “possible
and reasonable” condition, the criteria for these qualities
being rather subjective. Fortunately, for many families of
search problems, it turns out that this condition can be eas-
ily manually pre-computed at schema-design time, so that
ATP technology is then unnecessary at compilation time.
The refinementgssubsetdec (of Example 2.2) shows how we
did this for the family of subset decision problems.

Let GSdec = hgsdec; fA0; A1; A2; A3gi denote the
clp(FD) program schema obtained from templategsdec
(of Example 2.2) and the axioms above.

Let GSsubsetdec = hgssubsetdec ; ;i denote the clp(FD) pro-
gram schema obtained from templategssubsetdec (also of Ex-
ample 2.2) and the empty set of axioms, as we do not wish
to impose any conditions on the (open) relationsg andp.

4 Schema-Guided Compilation

We now introduce the notion of programming schemas,
which are useful for guiding our compilations.
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Definition 4.1 A programming schemais a triplehD1; E;D2i, whereD1 andD2 are program schemas, and
open formulaE is the condition under which any refine-
ment ofD2 under some extension� is ‘open-equivalent’
to the corresponding refinement ofD1 under�.

Note that programming schemas are thus also seman-
tic entities. Indeed, there are two (semantic) program
schemasD1 andD2 in each programming schema, and
there is a (semantic) conditionE in it that ensures that
passing from a refinement ofD1 to a refinement ofD2 under the same extension is an ‘open-equivalence’-
preserving operation. (In this paper, no programming
schema is shown whereE 6= true; for examples thereof,
see [9]. This feature is heavily used in schema-guided
optimisation [3], which is similar to schema-guided com-
pilation.)

Example 4.1 The triple h Iff; true;GSdeci is a pro-
gramming schema, capturing the compilation into global
search clp(FD) programs of iff-programs inS. Note that
the open symbols in its input and target program schemas
are different.

Example 4.2 The triple hSubsetdec; true;GSsubsetdec i is
a programming schema, capturing the compilation into
global search clp(FD) programs of subset decision pro-
grams inS. Note that the open symbols in its input and
target program schemas are the same, namelyg andp.

In theory, one could use programming schemas withGSdec as target schema (such as the one in Example 4.1)
in a way analogous to the way a programming schema
with a divide-and-conquer target schema was used in
[22, 7] to guide compilation. This means following a
strategyof (a) reusing, from a component base, clp(FD)
programs forsomeof the open relations of the clp(FD)
templategsdec (‘satisfying’ the axioms of course), (b)
propagating their correspondingS programs across the
axiomsA0 � A3 to set upS programs for the remaining
open relations, (c) calling a (schema-guided) compiler to
generate clp(FD) programs from these newS programs,
and (d) assembling the overall compiled clp(FD) program
by concatenating the reused clp(FD) template, the reused
clp(FD) programs, and the recursively compiled clp(FD)
programs.

In practice, however, this puts heavy demands on ATP
technology, and in particular this turns out much more dif-
ficult for theGSdec target schema than for the divide-and-
conquer one [23]. Fortunately, a very large percentage of
global search programs falls into one of seven families
identified by Smith [23], each being a refinement of thegsdec template where programs forall its open relations
are chosen in advance so as to ‘satisfy’ axiomsA0 � A3.
These refinements are then still open, though no longer in
the problem-independent relations of the targetgsdec tem-
plate, but now in the problem-dependent relations of the
inputS template (such as in Example 4.2). We here inves-
tigate the family of subset decision problems. Elsewhere,
we have already discussed how to do this for the families

of assignment problems (where a mapping between two
given sets has to be found, subject to some constraints)
and permutation problems (where a sequence represent-
ing a permutation of a given set has to be found, subject
to some constraints) [8], and binary split problems (where
an integer has to be found within an ordered sequence,
subject to some constraints) [14]. The remaining family
identified by Smith (two of his seven families actually are
particular cases of other ones), namely finding sequences
(of given or bounded size) over a given set, has already
been tackled. We have also discovered a useful generali-
sation of the family discussed in this paper, namely find-
ing k subsets of a given set [13].

A particular case of schema-guided compilation is thus
apparent now: given a programP in S and a program-
ming schemahD1; E;D2i where the open symbols inD1
andD2 are the same, find an extension� under whichP
refinesD1, verify the equivalence condition (i.e., whether� ` E), and return the refinementD2 [ �, which is in
clp(FD). In other words,schema-guided compilation then
simply amounts to replacing the template part of a re-
finement by another template, if the equivalence condi-
tion holds. Figure 1 gives a representation of this pro-
cess. We call thisschema-guided compilation through
pre-computationbecause the compilation act is carefully
pre-computed, by hand and off-line, for the problem-
independent part of an entire family of programs. Notice
the (superficial) analogy with the Tetris game: to compile
(win), it suffices to find for each arriving program (block)
a program schema (shape) of which it is a refinement un-
der some extension (into which it fits upon some rotation);
the corresponding compiled program then is a refinement
of the ‘open-equivalent’ program schema under the same
extension (by applying the same rotation to that shape),
but the analogy has already ended here. Also note that
this technique is indeed independent of the chosen target
language clp(FD).

Obviously, the resulting program can be fed into a
schema-guided optimiser [3] (a tool that transforms a pro-
gram into some other program of thesamelanguage, but
that is more efficient, in space or time), yielding an itera-
tive programming process that stops whenever no suitable
programming schema can be found to continue. There is
thus a smooth unification, and hence integration, of pro-
gram compilation and program optimisation.

5 Conclusion

In this progress report on our research, we have intro-
duced a novel approach to the compilation of very expres-
sive, purely declarative, typed, first-order set constraint
logic programs. While awaiting (more) efficient set con-
straint solvers, we have decided to exploit the well-known
efficiency of finite-domain solvers and to compile (or: re-
formulate) set constraints into finite-domain constraints.
Our approach is independent of the target language and
will resist the trial of time, as we just have to rewrite the
refinements in upcoming better target languages, as long
as there is space for improvement along the declarative-
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Figure 1: Schema-guided compilation through pre-computation for program schemas

ness and expressiveness axes.
We are ready to sacrifice any general-purpose nature

of our input language, by just developing programming
schemas for some problem families, if this is what it takes
to facilitate (and speed up) constraint program develop-
ment and to speed up the compiled programs. This phi-
losophy is in line with the current trend of domain-specific
tools, such as the PLAN WARE [2] system for planning
problems, or the domain-specific primitives ofOPL (Opti-
misation Programming Language) [28] for scheduling and
resource allocation problems.

5.1 Related Work

This work is inspired by D.R. Smith’s research on synthe-
sising global search programs (inRefine) from first-order
logic specifications (also inRefine) with KIDS [23, 24]
and its successor DESIGNWARE [25]. Our work concen-
trates on generating constraint programs instead. We thus
only have to generate code that (incrementally)poststhe
constraints, because the actual constraint propagation and
pruning are performed by the CP system. We have thus
detached the problem-specific model (constraint part +
search part) from the problem-independent solver. This
allows us to generate only the model and to re-use the
solver, whereas DESIGNWARE synthesises both. This
required a significant re-engineering [8] of the original
global search schema, so that it reflects aconstrain-and-
generateprogramming methodology.

Tests [8] have shown that at least one order of mag-
nitude is gained in efficiency (before optimisation) by
switching from an “ordinary” symbolic language, such
asRefine, to a constraint one. In addition, our generated
clp(FD) programs behave much more gracefully when the
problem size increases, rather than seeing their run-times
degenerate with problem size. These tests also showed
that our automatically generated clp(FD) programs are
only 3 to 5 times slower than carefully hand-crafted, pub-
lished clp(FD) programs, which is encouraging since no
optimisations are performed yet on our programs. Since

our compilation is fully automatic, starting from short and
elegant programs, our approach seems viable.

The other novelty compared to the DESIGNWARE ap-
proach is that we advocate that program schemas can be
of (much) lower granularity than those of Smith (i.e., our
templates can be refinements of his templates), so that the
selection of the most appropriate programming schema,
via the notion of refinement, can be done through rather
trivial theorem proving, such as by performing match-
ings. Moreover, our differentiation between several pro-
gram schemas where Smith only considers a single one
allows the manual, off-line pre-computation, at schema
design time, of more details of the corresponding equiva-
lent program schema (such as the filters of global search),
which can otherwise only be found, at compilation time,
through sophisticated theorem proving. Hence we facili-
tated (and speeded up) compilation and could even further
speed up the synthesised programs.

We thus try to cross-fertilise the results of the best
two, but unfortunately so far orthogonal, approaches to
optimisation problems, namely CP on the programming
languages side and DESIGNWARE/PLAN WARE on the
program synthesis & transformation side. This cross-
fertilisation should unite these approaches into a coherent
whole, and reveal beneficial to both of them. Indeed, CP
can benefit from the schemas plus theorem-proving ap-
proach of DESIGNWARE so as to make even higher-level
languages possible, and DESIGNWARE can benefit from
the re-use of a constraint solver rather than having to first
synthesise a solver and then transform it (in user-guided
fashion).

Other than inherently being a computationally incom-
plete language (by being limited to a finite set of prob-
lem families), our input language compares as follows to
other languages. Compared to theCLPS [1], COJUNTO

[11], andNP-SPEC[4] set constraint languages, our input
language is more expressive (by not being limited to sets
of initially known size), and by design much faster. The
OZ [26] language also allows sets of a priori unknown size
[20], and is faster than ours, but it is less expressive and
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less declarative. TheOPL [28] constraint language sets
new standards in expressiveness, but is currently limited
to membership constraints with ground sets (of known
size). The DESIGNWARE system [25] maybe allows the
formulation of constraints on possibly infinite sets and on
sets whose elements are drawn from an infinite domain,
but its fully automated synthesis sub-system can only gen-
erate very slow programs (though its user-guided transfor-
mation sub-system can optimise them into extremely fast
code; see below for more on this topic).

Our work can also be seen as being of methodologi-
cal nature. Indeed, the identification of problem families
and of efficient corresponding programming schemas is
a contribution to constraint programming methodology.
This is not unlike what is advocated withdesign patterns
[10] (except that we aim at full formalisation and au-
tomation, whereas patterns are mostly informal) andcase-
based reasoning(CBR) [18]. Moreover, unlike the top-
down decomposition methodology, for instance, which is
solution-centered, our methodology is problem-centered
and thus quite useful.

Very few works deal with the (manual or assisted) de-
velopment of constraint programs. A manual method-
ology for developing constraint programs from infor-
mal specifications is given in [5]. In [16], the possi-
bility of generating steadfast constraint programs is dis-
cussed, without exhibiting a method, though. The proba-
bly first work on automatically generating constraint pro-
grams from higher-level descriptions is [12], regarding
the family of assignment problems. In [27], a language-
independent computer-assisted constraint programming
architecture is proposed, very much in line with our ob-
jectives, but no technical details on the compilation tech-
nique are given.

5.2 Future Work

Our plan now is to complete our investigation on adapt-
ing Smith’s work to the CP paradigm, and then to port the
results to the very recentOPL [28], which is much more
expressive, but not (significantly) faster or more declara-
tive than clp(FD). We have already detected expressive-
ness and declarativeness gaps inOPL, so we can continue
to deploy our approach.

Our improvements on compilation over DESIGNWARE

have not obliterated the need foroptimisationof our com-
piled programs, as they are less efficient than the opti-
mised ones thatcan result from user-guidedDESIGN-
WARE optimisations. However, we wish to achieveau-
tomatedoptimisation of the compiled program. There are
at least four approaches to the optimisation of (our com-
piled) constraint programs.

First, constraint programs (i.e., models) use the solver
of the underlying CP language like a black box. One could
thus specialise that solver for each particular model, for
instance through partial evaluation. Specialisation can of-
ten be performed automatically and could then be linked
back-to-back with the compiler. This avenue may fail,
as current specialisation technology might not be power-
ful enough to achieve significant speed-ups of constraint

programs, as opposed to the impressive results with more
conventional declarative languages. Indeed, the style of
the code of current solvers can probably not be changed,
but this style is (currently) hardly amenable to specialisa-
tion.

However, it is interesting to note that DESIGNWARE

optimisationsdoachieve a (user-guided) specialisation of
the (synthesised) solver for the (synthesised) model. That
specialisation is feasible because the synthesised solver
really is a very high-level one compared to the ones we
re-use. That high level is the key to the feasibility of
such optimisation through specialisation, and the key to
the possibility that such optimisation yields a more ef-
ficient (problem-specific) solver than a re-used (general-
purpose) one. This is why the DESIGNWARE team does
not want to re-use standard solvers. The “price” to pay
is that their optimisations are user-guided and thusnot
guaranteed to lead to solvers that are as fast as re-used
ones (unless domain-specific synthesisers, such as PLAN -
WARE, are developed, but this is already a concession that
some form of re-use is inevitable).

Second, so far, we only generate the constraint part of
the model, but we leave the search part empty, hence re-
lying on the default search procedure. One way to op-
timise the model thus is thegeneration of a problem-
specific search part, such that the underlying (re-used)
solver is better exploited than by the default search proce-
dure. This is a virtually unexplored research area, at least
as far as machine support is concerned. We plan to de-
ploy DESIGNWARE-style compilation techniques towards
this, using schemas and setting up lightweight theorem-
proving obligations in order to reduce and organise the
programming search space. We believe that this approach
has the highest potential, eclipsing any possible speed-ups
through specialisation of the solver, whether it is re-used
or generated.

Third, adding redundant constraintsoften accelerates
the solver. Such redundant constraints usually express
properties of the problem that follow from the other con-
straints but that the solver cannot infer by itself and hence
cannot use. This is again a little-explored field, at least
as far as machine support is concerned, and we hope to
innovate here as well.

Fourth, it has been noted that successful optimisation
processes often follow some standard pattern [24]. Hence
the idea that such processes can be precompiled into one-
step macroscopic optimisation methods, also represented
by programming schemas, hence providing a seamless in-
tegration of schema-guided compilation and optimisation.
We have already exploited this idea for the optimisation of
divide-and-conquer programs [3] and now plan to extend
it to (the constraint and search parts of) constraint pro-
grams.
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