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1 Introduction whether these non-declarative statements can be automat-
ically added upon analysis of the declarative ones remains

Optimisation problems— where appropriate values foressentially open. Concerns about the solving time also re-
the variables of the problem have to be found, subjectdaire trade-offs about expressiveness: the programming
some constraints, such that some cost function on thggfyuage must after all be executable (though need not be
variables takes an optimal value — are ubiquitous in iBemputationally complete) and its programs should ide-
dustry. Examples are production planning subject to dgly execute quickly (and finitely). For instance, set con-
mand and resource availability so that profitis maximisestraint languages may well allow the formulation of con-
air traffic control subject to safety protocols so that flighttraints over sets, hence yielding enormous expressive-
times are minimised, transportation scheduling subjectrigss, but, as of now, there are only quite restricted and
initial and final location of the goods and the transportglow (academic) prototype languages, sucttess [1],
tion resources so that delivery time and fuel expenses atgjunTo[11], andNP-SPEC[4], as well as the fasbz
minimised, etc. A particular case adecision problems [26], which seems to be the only one to allow the for-
where there is no cost function that has to take an optiulation of constraints on non-ground sets of unknown
mal value. Many of these problems can be expressedias finite) size [20]. To our knowledge, no set constraint
constraint programs and then be solved using constraétiguage currently allows the formulation of constraints
solvers. on possibly infinite sets or on sets whose elements are

However, effectiveconstraint programmingCP) [19] drawn from an infinite domain. If expressive declarative
is very difficult, even for application domain experts, angnguages cannot be compiled into acceptably fast code,
hence time-consuming. Moreover, many of these praben the advantage of decreased programming time is neu-
lems are ill-behaved, in the sense that it can be showalised by the disadvantage of increased solving time.
that solving them requires an amount of time that is worsewe call modellingthe usage of a CP language for ex-
than polynomial in the size of the input data, hence majressing an optimisation/decision problem. This resalts i
ing solving times prohibitively long. amode) which thus has aonstraint partand an optional

To address th@rogramming time problepever more search part
expressive programming languagesre being devel- We here report on our initial results regarding the com-
oped, providing traditional algebraic notations (such @fiation of very expressive, purely declarative, typedstfir
sums and products over indexed expressions) and usefdler set constraint logic programs into clp(FD) programs
datatypes (such as sets, multi-sets, sequences, and B)Yclp(FD) being a very fast constraint logic program-
merations) to enable a more natural expression of the cgfing solver over finite domains).
straints, freeing the programmer thus more and more fromrhis paper is organised as follows. In Section 2, we
traditional (and often low-level) computing obligationsgiscuss our set constraint programming language as well
such as the writing of iterative/recursive code or the egs (syntactic forms of programs of) the target language
coding of concepts as numbers. These languages are @is@-D). Then, in Section 3, we introduce the semantic
increasingly declarativé. However, there is very little notion of program schema, which captures entire families
work on methodologies on how to use such languages of similar programs. We are then set to explain, in Sec-

To address thsolving time problerma search proceduretion 4, our notion of schema-guided compilation. Finally,

and redundant constraints can be added so as to accelgfiaction 5, we conclude, compare with related work,
the default solution enumeration. Such optional (but adnd discuss our directions of future work.
ten necessary) practice is however a concession that fully

declarative programming is still far away, and the ques“?ﬂsclaimer Conventions. and Notation

1Programming languagel is more expressivéhan programming . .. . ..
languageB if for a program in A of n words there is an equivalent For simplicity, we here only consider decision problems.

program inB of more thamn words, equivalenceof two programs be- We also ask the reader to bear with us whenever there
ing achieved when they always compute the same results frersame gre (often deliberate) simplifications, theoretical im;i)re
dat?' . . o sions, or vague terminology (set between single quotes),
A programming language ideclarativeif its programs only de- . . .
scribewhatthe properties of solutions are, but without expressing &S W€ Wish to get some novel ideas across without get-

these solutions can be found. ting stuck in theoretical details and notational cluttdlr, a




of which rather belong to a thorough and much more vo-Programs inS areiff-programs expressing that, under
luminous study. input conditioni,. on input X, a program for relation

In formulas, variable symbols start with an uppercaseust succeed if and only if output conditiopon X and
letter, whereas (non-numeric) constant, function, retgti outputY” holds. Formally, this gives rise to the following
and type symbols start with a lowercase letter. They are@flen program for:
typeset initalics. Unquantified variables are assumed to VX - term . VY : term
be universally quantified over the entire formula in which . : ) ) : (iff)
they occur. Whenever types are not so important, we omit in(X) = (r(X,Y) & 0r(X, )
them. When we wish to group) termst,, ... ¢, intoa The only open symbols are relations and o,. We
single term, called am() tuple, we use angled bracketshere only consider programs fembset decision problems
yielding (t1,...,t,). where a subse$ of a given finite sefl’ (an integer set
here) has to be found, such ttfasatisfies an (open) con-
straintg and an arbitrary two different elements.®fsat-
isfy an (open) constraint (Other problem families have
. been and will be handled similarly, see Section 4.) Hence
All programs, whether of the input or target language, atrtfe following open program:
here theories in some typed, first-order logic. The inpu '
language, let us call i until we have decided on a suit- VT : set(int) . VS : set(T).
able name for it, is partially introduced below. The target subset(T, S) < g(S) A (subsetgec)
language here is clp(FD), but our compilation technique is VI,J:S.I1#J—p(l,J)
independent of that choice. We consider open (or: para- . :
metric) programs, together with the corresponding noggcn e only open symbols are relatiopsandp (assuming

2 Programs

. - A : . at# is a primitive of S, with the usual meaning). Note
of ‘open equivalence’ (or: parametric equivalence). eow the type ofS ‘depends’ onT’. The open program

bsetg.. is a refinement of open prograiffi above. It
s itself as refinements programs for many problems,
such as finding a clique of a graph (see below), set cover-
Definition 2.1 A relation symbolr occurring in a theory ing, knapsack, etc. For instance, the closed program

T in a language is openin 7' if it is neither ‘defined’ in WV, A) : set(int) x set(V x V). ¥C : set(V).

T, nor a primitive symbol irC. .
A non-open symbol i is aclosedsymbol inT". Cllqgje\}(‘j\’f‘fl)écgwﬁ S?Vmic’j? QS >j2 A
A theory with at least one open symbol is calledapen VO M (M,N) € (cliqueacs)

theory; otherwise itis alosedtheory. is a refinement ofubset 4., under the extension
Definition 2.2 A programfor a relationr is a possibly YV : set(int) . VO : set(V)

open theory that ‘defines’. C b0 sell)
ProgramP, whether open or closed, israfinementof 9(C) ¢ sum(C, 5)

open prograri’ underextensior® if 6 is a set of programs VIV A : set(int HV X V). VO : set(V
‘defining’ some of the open symbols &fsuch thatP and V.<T (’] _>C; S;((Imjg :Sg(ﬂ Xe A) VO s set(V).
T U @ are ‘open-equivalent.’ T ’ ©)

Finding extensions can be done through second-or@&puming thasum, >, ande are primitives ofS, with
matching, which is decidable but NP-complete in geffl€ Obvious meanings. It is a program for a particular
eral, though linear for higher-order patterns [15], whef@se of theclique problem namely finding a clique (or:
all predicate variables (or open relation symbols, here) 4paximally connected component) of an undirected graph
ply to distinct variables only, which is the case here. ~ (which is given through its integer-labeled vertex et

Note that closed programs thus do not have refiri?d its arc set), such that the sum of its integer labels
ments. We ask the reader to overlook the fact that in dtifceeds 22.

examples we use a much more general definition of re-
mple 2.2 Let us now look at the target language,

finements. Indeed, refinements do not necessarily h v clo(ED) 161, A th ble f ¢

the same ‘defined’ relation symbol as the open prograﬂ‘?,mey ¢ pt(h ) [6]. tmoggl € manz)gpgjm eforms o

refinements do not necessarily ‘declare’ their formal p: rograms, there are trgio a s'e'ar.c}j[ , 24] programs.
re@y work as follows: after initialising a descriptdr to

rameters in the same order as the open program, refi e tina th £ all didat luti i
ments may have more or less formal parameters than fypie representing the space of all candidate Solutions o
blemX and possibly containing the empty partial so-

open program, and the formal parameters of refineme tQ o .

may be of ‘sub-types’ of the types in the open progra tion, an auxiliary progranrgs adds all the constraints
3 > . .

Most of the considerations so far are illustrated in the fdf:! & representatlgﬁ of thg solution to the constraint

lowing examples. store, and a solutiol” to X is then generated from the
constraint store anf”’; wherergs works by incremen-

Example 2.1 Let us first look at our input languag®. tally splitting the descriptoD by adding a solution ele-
The chosen representation of setsSircalled theexternal mentd to its partial solution, yieldingd)’, and constrain-

representationis the classical one, with curly braces. ing ¢ to achieve consistency with the partial solution so

consider the Horn-clausal notation for (open) (constjai
logic programs to be syntactic sugar for their typed (opeﬁ
completions [17]. Hence the following definitions:



far, until no split is possible and a variablised represen-Descriptors take the forniU, V, W), whereU is the
tation Y’ of the solution toX can be extracted fromv. subset (in external representation) of the given7séor
Formally, this dataflow and control-flow can be capturadhose elements it has not been decided yet whether they

in the following open clp(FD) program for[8]: belong to the subsef or not, and(V, W) is the inter-
nal representation of the partially computed subset. The
r(X,Y) <« initialise(X, D), chosen representation in clp(FD), called thiernal rep-
rgs(X,D,Y"), resentation of the subset of the given finite sefl” (of
generate(Y',Y, X) n elements) is a mapping froffi into Boolean values,
rgs(X,D,Y") <« extract(X,D,Y") (954ec) that is we maintaim couples(T;, B;) where the (initially
rgs(X,D,Y") <« split(D,X,D',4), non-ground) Boolea3; expresses whether the (initially
constrain(d, D, X), ground)i*® elementT; of T is a member of or not. The
rgs(X, D", Y") lists V and W in descriptors always contain a prefix of

the n elementsl; and Booleans3;, respectively. Note
The only open symbols are relationgitialise, that we are thus restricted to finite sets. Also, theTset
generate, extract, split, and constrain. Note that should not be too large, because the search spac$ for
constrain just postsconstraints on the search space, thfs sizeD(2"), whatever the size af. Given this rep-
actual solutions beingnumeratedy generate onceall resentation choice, it is easy to writenstraint-posting
constraints have been posted, because we use a constg(itD) programs fore, sum, int2ext (which converts
language. between the internal and external representations), &nd al

The gsq.. program can be refined for subset decisiasther classical set operations. An alternative representa

problems, yielding the following (still) open program:  tion of the subse$, namely as a sequencelof< n) vari-

ables constrained to be different elementd’othas two

r(X,Y) <« nitialise(X, D), disadvantages compared to ours: first, the search space
rgs(X,D,Y"), for S then is much worse, namety(n!), and second, an
generate(Y',Y, X) explicit loop fork ranging from 0 ton has to be wrapped

rgs(X,D,Y') « eatract(X,D,Y") around the code.
rgs(X,D,Y") <« split(D,X,D',d), The only open symbols now are relatignandp. Note
constrain(d, D, X), that they here operate on the internal representation of the
rgs(X,D",Y’) subset, whereas they operate on the external one in the
initialise(X, D) «+ D =(X,[],[]) input S program. This assumes that eagprimitive on
extract(.,D,Y") «+ D ={},V,W), sets has a corresponding clp(FD) program withsame
Y'i=(V,W), name and parameters.
g(Y") A constraint program for the considered particular case
split(D, X, D',0) « D= ({A|T},V,W), of the clique problem is a refinement g5 >t under
Bin0..1, the extensionr of Example 2.1. It is subject to obvious
6 =(4,B), optimisations through partial evaluation, and should thus
D" = (T, [A|V],[BIW]) first be run through a partial evaluator, exgixTus [21].
constrain(_, D, —) <~ D= <—7 [ ]a [ ]>
constrain(6, D, X) <« ¢ =(A,B),
D = (, [E|V],[FIW)),
B#A F — p(A, E), 3 Program Schemas
constrain(d, (., V,W), X)
generate(Y',Y,)) « Y'=( W), We can now define program schemas, which are intended
labeling([], W), to represent entire families of similar programs. Con-
int2ext(Y',Y) trary to programs, which are syntactic entities, program
int2ext(S;, {}) <« Si={(LI[]) schemas are semantic entities, as we also need a semantic
int2ext(S;, {A|S.}) « Si= ([A|V],[1|W]), notion of what it means for a program to be a refinement
int2ext((V, W), S,) of a program schema. Therefore, a program schema con-
int2ext(S;, S.) — Si = ([A|V],[0|]W]), sists of an open prograanda set of axioms, whose role
int2ext((V, W), S.) is to prevent some programs from being undesired refine-
EeS « ments of that open program.
sum(S5, N) : Definition 3.1 A program schemds a couple(T, A),

subset wheretemplatel” is an open program, arakiomsA are
. . . (955ce open formulas constraining the refinementdof
wherein, #A, andlabeling are primitives of clp(FD) ProgramP is arefinemendf program schemér, A) if

(with the obvious meanings). The implicatien in the. P is a refinement of” under some extensidh provided
second clause fatonstrain actually needs to be rewrit-i o «definitions’ in P ‘satisfy’ the axiomsA.

ten in a way more suitable for clp(FD), but explaining this
goes beyond the scope of this paper, so we give this intuA template captures the problem-independent data-
itive shorthand notation instead. flow and control-flow of an entire family of programs,



whereas some refinement thereof (such that the axiomsnber of applications ofplit to D. Formally:
are ‘satisfied’) captures the problem-dependent computa-
tions of a member of that family. satisfies(Y', D) <» 3k :int.3D' : D .36 : A.
split*(D, X, D', 6) A extract(X,D',Y")
Example 3.1 Let Iff = ( iff ,0) denote theS program where :
schema obtained from templafé (of Example 2.1) and split’(D, X, D',8) <+ D = D'
the empty set of axioms, as we do not wish to impose any and, for all & : int :
conditions on the (open) relationsando,.. split**1(D, X, D',8) +»3D" : D. 35" : A.
split(D, X, D",8'") A split*(D", X, D', §)
Example 3.2 Let Subsetge. = (subsetqec,()) denote ) ] ) (42)
the S program schema obtained from templaigset o, Finally, we use constraint satisfaction tg prune 'off
(also of Example 2.1) and the empty set of axioms, as Reanches of the search tree that cannot yield solutions.

also do not wish to impose any conditions on the (opeffjven @ space described iy and a (possibly still vari-
relationsg andp. ablised) solutiort” to problemX, if splitting D into D’

makesD’ contain the solutiort”, thenconstrain must

Example 3.3 According to our informal description ofSUCCEEd' Formally:

how global search programs work, the open relation sym- r(X,Y) Aint2ext(Y',Y) A split(D, X, D', 6)
bolsinitialise, generate, extract, split, andconstrain A ;atisfies(Y’ D) ’_> constrain(,& l,? X,)
of gs4e. can be informally specified as follows: ’ T (43)

Conversely, the contrapositive ofl; shows that if
constrain fails, then the new space described by
(which is D plus é) does not contain any solution to
e extract(X, D,Y") iff the variablised internal repre-X - CP languages contain tifd7" decision procedure,
sentationy” of a solution to problen¥ is directly checking whether a constraint store is satisfiable [19].
extracted from descriptdd; This last axiom sets up a necessary condition that
constrain must establish. Given the left-hand side of the
e split(D, X, D', ) iff descriptorD’ describes a sub-implication, such a condition can be derived using auto-
space ofD wrt problem.X, such thatD' is obtained mated theorem proving (ATP), as shown in [22, 23]. Of
by addingd to descriptoD; course, we are not interested in too weak such a con-
dition, such as the trivial solutiotrue, but rather in a
e constrain(d, D, X) iff adding ¢ to descriptorD stronger one. However, deriving the absolutely strongest
leads to a descriptor defining a sub-spacéathat one (which establishes equivalence rather than implica-
may contain correct solutions to problexn tion) is impractical, because finding it may take too much
. ) time or may even turn out to be beyond current ATP pos-
o generate(Y',Y, X) iff correct solutionY” to prob-  gjhijities and because such a perfeatstrain would
lem X' corresponds to the internal representalion e 10 expensive to evaluate (since it would eliminate all
of a solution that is generated from the constraiphckiracking in the solution generation). So we should
store, which is an implicit parameter representg 5 romatically, if possible) derive the strongest “pokesib
t can be shoun hat i dettons’ i renererf SSS0TEL conlon, e creraor e dusite
subset i ‘ H ’ i . ’
9s3c."" (of Example 2.2) indeed 'satisfy” these Specméearch problems, it turns out that this condition can be eas-

cations. ; S
manually pre-computed at schema-design time, so that

- P . il
. Formallslng these spec!flcatlons is done through a,gi'P technology is then unnecessary at compilation time.
ioms. Let)’ be the type of internal representations of SGhe refinemengs ==t (of Example 2.2) shows how we
ec )

o e e e o et s st T e o
yp P et GSuee = (g5aee {Ao, A1, As, A3}) denote the

in descriptors. A first axiom expresses thaterate and )
r are equivalent when the constraint store is set up: clp(FD) program schema o-btamed from templatg..
(of Example 2.2) and the axioms above.

r(X,Y) « 3Y': Y. generate(Y',Y, X) (Ao) Let GSjubset = (gsub*et, ) denote the clp(FD) pro-
gram schema obtained from templat&“4s¢! (also of Ex-
The next axiom expresses that all correct solutibnto ample 2.2) and the empty set of axioms, as we do not wish
problemX are contained in the initial space faf: to impose any conditions on the (open) relatigrendp.

e initialise(X, D) iff D is the descriptor of the initial
space of candidate solutions to probl&m

r(X,Y)—=3D:D.3Y": Y.
initialise(X, D) A int2ext(Y',Y) A satis fies(Y', D) . L
(41) 4 Schema-Guided Compilation
wheresatis fies(Y', D) means that the internal represen-
tationY”’ of a solution is in the space described by descride now introduce the notion of programming schemas,
tor D, which is the case i¥"' can be extracted after a finitewhich are useful for guiding our compilations.



Definition 4.1 A programming schemais a triple of assignment problems (where a mapping between two
(D1, E, D), whereD, andD- are program schemas, andjiven sets has to be found, subject to some constraints)
open formulak is the condition under which any refineand permutation problems (where a sequence represent-
ment of D, under some extensicghis ‘open-equivalent’ ing a permutation of a given set has to be found, subject
to the corresponding refinementBf underd. to some constraints) [8], and binary split problems (where
an integer has to be found within an ordered sequence,
Note that programming schemas are thus also semeiibject to some constraints) [14]. The remaining family
tic entities. Indeed, there are two (semantic) progragentified by Smith (two of his seven families actually are
schemasD; and D in each programming schema, angarticular cases of other ones), namely finding sequences
there is a (semantic) conditiofd in it that ensures that (of given or bounded size) over a given set, has already
passing from a refinement ab, to a refinement of pbeen tackled. We have also discovered a useful generali-
D, under the same extension is an ‘open-equivalenceation of the family discussed in this paper, namely find-
preserving operation. (In this paper, no programmingg i subsets of a given set [13].
schema is shown whet€ # true; for examples thereof, A particular case of schema-guided compilation is thus
see [9]. This feature is heavily used in schema-guidggparent now: given a prograf in S and a program-
optimisation [3], which is similar to schema-guided conming schemdD; , E, D,) where the open symbols it
pilation.) and D, are the same, find an extensidrunder whichP
refinesD,, verify the equivalence condition (i.e., whether
Example 4.1 The triple ( Iff,true,GSqcc) is @ pro- ¢ - gy and return the refineme, U 6, which is in
gramming schema, capturing the compilation into globgjy(FD). In other wordsschema-guided compilation then
search clp(FD) programs of iff-programséh Note that gimply amounts to replacing the template part of a re-
the open symbols in its input and target program schemggment by another template, if the equivalence condi-
are different. tion holds Figure 1 gives a representation of this pro-
cess. We call thischema-guided compilation through
Example 4.2 The triple (Subset ge., true, GS342°°") i pre-computatiorbecause the compilation act is carefully
a programming schema, capturing the compilation ingpe-computed, by hand and off-line, for the problem-
global search clp(FD) programs of subset decision piidependent part of an entire family of programs. Notice
grams inS. Note that the open symbols in its input anghe (superficial) analogy with the Tetris game: to compile
target program schemas are the same, namatydp. (win), it suffices to find for each arriving program (block)
a program schema (shape) of which it is a refinement un-
In theory, one could use programming schemas wiiler some extension (into which it fits upon some rotation);
G Se. as target schema (such as the one in Example 4Hg corresponding compiled program then is a refinement
in a way analogous to the way a programming schegthe ‘open-equivalent’ program schema under the same
with a divide-and-conquer target schema was usedeftension (by applying the same rotation to that shape),
[22, 7] to guide compilation. This means following &ut the analogy has already ended here. Also note that
strategyof (a) reusing, from a component base, clp(FRhis technique is indeed independent of the chosen target
programs forsomeof the open relations of the clp(FD)language clp(FD).
templategsq.. (‘satisfying’ the axioms of course), (b) Obviously, the resulting program can be fed into a
propagating their correspondin§ programs across theschema-guided optimiser [3] (a tool that transforms a pro-
axiomsAy — A3 to set upS programs for the remaininggram into some other program of teamelanguage, but
open relations, (c) calling a (schema-guided) compilerfigat is more efficient, in space or time), yielding an itera-
generate clp(FD) programs from these nvprograms, tive programming process that stops whenever no suitable
and (d) assembling the overall compiled clp(FD) prograplogramming schema can be found to continue. There is
by concatenating the reused clp(FD) template, the reusig@s a smooth unification, and hence integration, of pro-
clp(FD) programs, and the recursively compiled clp(FIgram compilation and program optimisation.
programs.
In practice, however, this puts heavy demands on ATP
technology, and in particular this turns out muchmored6  Conclusion
ficult for theG.Sy.. target schema than for the divide-and-
conquer one [23]. Fortunately, a very large percentagelofthis progress report on our research, we have intro-
global search programs falls into one of seven familidsiced a novel approach to the compilation of very expres-
identified by Smith [23], each being a refinement of theve, purely declarative, typed, first-order set constrain
gsqec template where programs fail its open relations logic programs. While awaiting (more) efficient set con-
are chosen in advance so as to ‘satisfy’ axiofigs— A3. straint solvers, we have decided to exploit the well-known
These refinements are then still open, though no longekeificiency of finite-domain solvers and to compile (or: re-
the problem-independentrelations of the takggt. tem- formulate) set constraints into finite-domain constraints
plate, but now in the problem-dependent relations of tur approach is independent of the target language and
inputS template (such as in Example 4.2). We here invesill resist the trial of time, as we just have to rewrite the
tigate the family of subset decision problems. Elsewherefinements in upcoming better target languages, as long
we have already discussed how to do this for the familias there is space for improvement along the declarative-
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Figure 1: Schema-guided compilation through pre-compmrtdibr program schemas

ness and expressiveness axes. our compilation is fully automatic, starting from short and
We are ready to sacrifice any general-purpose natetegant programs, our approach seems viable.
of our input language, by just developing programming The other novelty compared to theeEBIGNWARE ap-
schemas for some problem families, if this is what it tak@soach is that we advocate that program schemas can be
to facilitate (and speed up) constraint program develagf-(much) lower granularity than those of Smith (i.e., our
ment and to speed up the compiled programs. This ptemplates can be refinements of his templates), so that the
losophy is in line with the current trend of domain-specifigelection of the most appropriate programming schema,
tools, such as the RNWARE [2] system for planning via the notion of refinement, can be done through rather
problems, or the domain-specific primitivesa#L (Opti- trivial theorem proving, such as by performing match-
misation Programming Language) [28] for scheduling aimthys. Moreover, our differentiation between several pro-

resource allocation problems. gram schemas where Smith only considers a single one
allows the manual, off-line pre-computation, at schema

ign time, of mor tails of th rr ndin iva-

51 Related Work desig e, of more details of the corresponding equiva

lent program schema (such as the filters of global search),

This work is inspired by D.R. Smith’s research on synthihich can otherwise only be found, at compilation time,
sising global search programs (Refing from first-order through sophisticated theorem proving. Hence we facili-
logic specifications (also ifiRefing with kiDs [23, 24] tated (and speeded up) compilation and could even further
and its successor E5IGNWARE [25]. Our work concen- speed up the synthesised programs.
trates on generating constraint programs instead. We thu¥/e thus try to cross-fertilise the results of the best
only have to generate code that (incrementgily$tsthe two, but unfortunately so far orthogonal, approaches to
constraints, because the actual constraint propagatn aptimisation problems, namely CP on the programming
pruning are performed by the CP system. We have tHasguages side and H3IGNWARE/PLANWARE on the
detached the problem-specific model (constraint partpfogram synthesis & transformation side. This cross-
search part) from the problem-independent solver. Tliggtilisation should unite these approaches into a cofteren
allows us to generate only the model and to re-use tbole, and reveal beneficial to both of them. Indeed, CP
solver, whereas BSIGNWARE synthesises both. Thiscan benefit from the schemas plus theorem-proving ap-
required a significant re-engineering [8] of the origingiroach of DESIGNWARE so as to make even higher-level
global search schema, so that it reflectoastrain-and- languages possible, ancEBIGNWARE can benefit from
generateprogramming methodology. the re-use of a constraint solver rather than having to first

Tests [8] have shown that at least one order of magynthesise a solver and then transform it (in user-guided
nitude is gained in efficiency (before optimisation) bfashion).
switching from an “ordinary” symbolic language, such Other than inherently being a computationally incom-
asRefing to a constraint one. In addition, our generatqaete language (by being limited to a finite set of prob-
clp(FD) programs behave much more gracefully when theam families), our input language compares as follows to
problem size increases, rather than seeing their run-tinoéiser languages. Compared to thers [1], COJUNTO
degenerate with problem size. These tests also shoykEl, andNnpP-SPEC[4] set constraint languages, our input
that our automatically generated clp(FD) programs deaguage is more expressive (by not being limited to sets
only 3 to 5 times slower than carefully hand-crafted, pubf initially known size), and by design much faster. The
lished clp(FD) programs, which is encouraging since mx [26] language also allows sets of a priori unknown size
optimisations are performed yet on our programs. Sin@®], and is faster than ours, but it is less expressive and



less declarative. ThepL [28] constraint language setgprograms, as opposed to the impressive results with more
new standards in expressiveness, but is currently limiteghventional declarative languages. Indeed, the style of
to membership constraints with ground sets (of knowhe code of current solvers can probably not be changed,
size). The [ESIGNWARE system [25] maybe allows thebut this style is (currently) hardly amenable to specialisa
formulation of constraints on possibly infinite sets and dion.

sets whose elements are drawn from an infinite domainHowever, it is interesting to note thatEB3IGNWARE

butits fully automated synthesis sub-system can only g&jptimisationsdo achieve a (user-guided) specialisation of
erate very slow programs (though its user-guided transfgfe (synthesised) solver for the (synthesised) model. That
mation sub-system can optimise them into extremely fagecialisation is feasible because the synthesised solver
code; see below for more on this topic). really is a very high-level one compared to the ones we
Our work can also be seen as being of methodologi-use. That high level is the key to the feasibility of
cal nature. Indeed, the identification of problem familieg,ch optimisation through specialisation, and the key to
and of efficient corresponding programming schemastiife possibility that such optimisation yields a more ef-
a contribution to constraint programming methodologfieient (problem-specific) solver than a re-used (general-
This is not unlike what is advocated witlesign patterns purpose) one. This is why theE3IGNWARE team does
[10] (except that we aim at full formalisation and aunot want to re-use standard solvers. The “price” to pay
tomation, whereas patterns are mostly informal)eage- s that their optimisations are user-guided and thas
based reasoningCBR) [18]. Moreover, unlike the top-guaranteed to lead to solvers that are as fast as re-used
down decomposition methodology, for instance, which ¢es (unless domain-specific synthesisers, suchas P
solution-centered, our methodology is problem-centergghre, are developed, but this is already a concession that
and thus quite useful. . some form of re-use is inevitable).
Very few works deal with the (manual or assisted) de- 5econd, so far, we only generate the constraint part of

velopment of constraint programs. A manual methofie madel, but we leave the search part empty, hence re-
ology for developing constraint programs from 'nforrying on the default search procedure. One way to op-
mal specifications is given in [5]. i

' . In [16], the posSigmise the model thus is thgeneration of a problem-
bility of generating steadfast constraint programs is dLanJecific search pastsuch that the underlying (re-used)

cussed, without exhibiting a method, though. The prohg;er js petter exploited than by the default search proce-
bly first work on automatically generating constraint Progre This is a virtually unexplored research area, at least
grams from higher-level descriptions is [12], regarding tar a5 machine support is concerned. We plan to de-
the family of assignment problems. In [27], a languaggy,y pesiGNWARE-style compilation techniques towards

independent computer-assisted constraint programmmg, using schemas and setting up lightweight theorem-

architecture is proposed, very much in line with our oling obligations in order to reduce and organise the
jectives, but no technical details on the compilation tec

, ) rogramming search space. We believe that this approach
nique are given. has the highest potential, eclipsing any possible spesd-up
through specialisation of the solver, whether it is re-used
5.2 Future Work or generated.

Our plan now is to complete our investigation on adapt- | rd: @dding redundant constrainisften accelerates

ing Smith’s work to the CP paradigm, and then to port tfike solyer. Such redundant constraints usually express
results to the very recempL [28], which is much more propertles of the problem that follgw from'the other con-
expressive, but not (significantly) faster or more declardiraints but that th solve_r can_not infer by |tse_lf and hence
tive than clp(FD). We have already detected expressi\(f‘@-nnm Use. Th|s 'S again a litle-explored field, at least
ness and declarativeness gapsin, so we can continue 25 far as machine support is concerned, and we hope to
to deploy our approach. innovate here as well.

Our improvements on compilation oveEBIGNWARE Fourth, it has been noted that successful optimisation
have not obliterated the need faptimisationof our com- Processes often follow some standard pattern [24]. Hence
piled programs, as they are less efficient than the Oﬁhe idea that such processes can be precompiled into one-
mised ones thatan result fromuser-guidedDESIGN-  St€P macroscopic optimisation methods, also represented
WARE optimisations. However, we wish to achiesa- PY Programming schemakence providing a seamless in-
tomatedoptimisation of the compiled program. There ar€gration of schema-guided compilation and optimisation.
at least four approaches to the optimisation of (our coie have already exploited this idea for the optimisation of
piled) constraint programs. divide-and-conquer programs [3] and now plan to extend

First, constraint programs (i.e., models) use the solfef0 (the constraint and search parts of) constraint pro-
of the underlying CP language like a black box. One coudams.
thus specialise that solver for each particular model, for
instance through partial evaluation. Specialisation dan o
ten be performed automatically and could then be linkgstknowledgements
back-to-back with the compiler. This avenue may fall,
as current specialisation technology might not be powé&¥e thank Hamza Zidoum (UAE University), for insight-
ful enough to achieve significant speed-ups of constrafatideas during the incubation time for this research.
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