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1 Introduction

One of the key issues for the design of constraint programming (CP) solvers with
global constraints is the dichotomy between on the one hand the wish to have a few
general-purpose constraints, and on the other hand the wish to adapt constraints
for specific situations in order to achieve concise models and the maximum amount
of propagation. There is a clear need to limit the amount of engineering required to
implement a standard set of constraints, and also to limit the number of concepts
that have to be learned by the users of such solvers. At the same time, it should
be easy to define and implement new constraints for a specific problem, without
excessive and repetitive development effort.

Developing CP solvers takes a lot of resources but cannot be avoided since
only solvers allow one to put CP into practice. Many pioneering CP solvers, such
as Alice [17] or Prolog IV [10], were done by outstanding academicians. But these
solvers have disappeared and it took a number of years to reconstruct parts thereof
in newer solvers. Some of their features can still not be found in most modern
CP solvers, such as computing the lower bound of a sum in the presence of an
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alldifferent constraint [17,3]. Since not much was published about their imple-
mentation, a lot of effort is lost.

A possible origin of the problem is that some people assume that since they
could come up with a new algorithm, method, or solver, they will have a com-
petitive advantage over others. In order to preserve this advantage, not all details
are revealed, also because standard publications are typically not the appropriate
place to do so. If we continue so, then we end up with many groups repeating
again and again work already done, while having to guess some obscure parts that
were not explained in the original papers.

In order for the CP community to continue to flourish, we consider a number
of proposals towards the sustainable development of CP solvers and their associ-
ated algorithms: the focus is put on simplifying the design and implementation of
propagators in solvers by promoting reuse. However, a key challenge that should
be considered by CP solver developers is:

Challenge 1 How can CP solver developers simplify the migration of the knowledge

embedded in their solver to next-generation solvers?

This issue inevitably pops up for every solver. In fact, it is the part of a solver
that one can migrate to a new solver that will be valuable, since the other part
will just be lost at some point. Good practice thus includes:

– Promote source code to be associated with submitted and published papers on
algorithms; see for instance [27, page 36].

– Promote open-source solvers, such as Choco, ECLiPSe, Gecode, JaCoP, and
Minion.

– Promote algorithms that can be implemented in more than one solver.
– Promote approaches that see an algorithm as the interpretation of a formula

or automaton, since formulae and automata can migrate between solvers. In
addition, unlike monolithic algorithms, formulae and automata can be verified,
composed, and used for different purposes.

– Promote standards for encoding knowledge that can be shared by different
solvers (ideally a solver should be limited to an abstract machine that can
interpret various types of combinatorial knowledge).

– Promote the creation of nested concepts of increasing abstraction [8] for hand-
ling larger classes of structured (conjunctions of) constraints.

We refine some of these ideas in Section 2. Rather than providing general chal-
lenges, we focus on a small set of concrete questions that we think are worth
investigating. This does not mean that other issues, such as integrating continu-
ous and discrete constraints, are not important, but we prefer to state focussed
challenges.

As a complement, in Section 3, we discuss the way CP interacts with other
computer science areas. We list some recurring difficulties that CP is facing, and
we indicate possible ways to deal with them.

2 Global Constraints and Propagators

The main idea is to use more compact ways to describe and implement con-
straints, by searching for concepts (and their combinations) that occur inside the
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propagators of many constraints. First, we focus on generic ways to represent
constraints and propagators, namely automata (Section 2.1) and indexicals or
invariants (Section 2.2). Next, we tackle various challenges recurring in the de-
velopment of propagators. Section 2.3 deals with the verification and synthesis of
propagators. Section 2.4 addresses the topics of visualisation and explanations.
The issue of scalability is treated in Section 2.5. We close the section by discussing
in Section 2.6 how to reconstruct the Global Constraint Catalogue [5].

2.1 Automata and Learning

Automata and multi-valued decision diagrams (MDDs) have become increasingly
popular in CP in order to encode some classes of constraints without needing
to provide ad-hoc propagators. Automaton constraints (such as regular [25] or
automaton [2]) are available in almost all constraint solvers. However, from a
global constraint perspective, automaton constraints have led to the following
paradox: If the actual automaton is specific to the instance of the problem, then
one needs an ad-hoc procedural algorithm in order to generate the actual auto-
maton for the constraint one wants to post (for example, see the counter-free auto-
mata of the pattern, increasing global cardinality, and smooth constraints
of [5]). This prevents the portability of constraint models between solvers (even
if automaton constraints are available in most solvers), as one needs to gener-
ate a new automaton for each instance of the problem. However, many automata
that are used in practice (say in timetabling) have a very regular structure, which
means that, even if they have a huge (say cubic) number of states or transitions,
their generator algorithms can be described in very concise ways (for example, see
the automata of the increasing nvalue constraint of [5, pages 1145–1146]). This
leads to the following challenge:

Challenge 2 Is there a declarative way for describing concisely a generator of auto-

mata (or MDDs) that have a very regular structure?

Since unfolding an automaton for a given sequence length can take a lot of
memory, we add:

Challenge 3 Is it possible to perform propagation directly on a description of a de-

clarative generator rather than on the automaton (or MDD)?

A subarea of machine learning deals with grammatical inference [15], such as
learning automata from positive and negative examples [23]. One goal is to learn
the smallest automaton (in terms of the number of states and transitions) that
covers all the positive examples but none of the negative examples. But, again,
this may be counterproductive for the automaton attached to a global constraint,
as it may have a huge number of states or transitions but a very concise generator.

Challenge 4 Are there learning algorithms that learn smallest automaton generators

rather than smallest automata?

A first step in this direction would be defining a language that allows the concise
description of automaton generators. One such language could extend automata
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by replacing states by classes of states. Those classes would be indexed by several
indices varying over finite integer sets with arithmetic constraints linking the in-
dices. Transitions would be defined between classes of states, or between subclasses
of states defined by additional constraints on the indices.

2.2 Beyond Classical Indexicals

At the time of their invention in the early 1990s, indexicals [34] have raised great
hope about the possibility of avoiding ad-hoc propagators. Indexicals are formulae
of the form x in σ, meaning that the domain of the variable x must be a subset of
the set σ, which can depend on the current domain of other variables. Indexicals
allow the encoding of constraint propagation by numerical expressions defining the
set of possible values of a variable. However, it turned out that indexicals could
not replace or encode the propagators associated to global constraints. After initial
work on the efficient compilation of indexicals (for instance [13]), very little work
was done in the spirit of indexicals, exceptions being [9,22]. On the one hand,
classical indexicals have a number of known limitations:

– Classical indexicals are low-level in the sense that one has to write a formula
for each variable to prune.

– Classical indexicals only address a limited class of numerical constraints1 but
not combinatorial constraints.

On the other hand, indexicals are attractive from the following points of view:

– Indexicals allow one to design rapidly variants of constraints that one encoun-
ters in practice.

– Indexicals separate the logical part expressing the pruning from its implement-
ation.

– Indexicals encoding propagation can be reused by all the solvers that handle
indexicals.

Hence the following generic challenge:

Challenge 5 Can we extend indexicals that manipulate sets of numerical values to

indexicals that deal with other combinatorial objects?

The key strength of propagators is that they take advantage of the problem
structure. Our idea is to provide this structure as formulae involving combinatorial

objects that can be interpreted by a dedicated abstract machine. Note that this quest
not only benefits CP but also local search, MIP (mixed integer programming),
SAT (Boolean satisfiability), and SMT (SAT modulo theories).

Hereafter we consider two specific cases where the structure could be made
apparent. As a first case, many propagators follow this pattern: first, the lower
bound of some formula is computed; then the propagator exploits this bound in
order to perform pruning by evaluating the regret of each variable-value pair 〈x, d〉.
The lower bound can usually be stated as a formula but the tedious part is the
computation of the regret. Unfortunately the information of how to compute the
regret is often hidden in the proof of the bound used in the first step, but not
available in a machine-usable way. Hence the following challenge:

1 Apparently, even solvers that handle indexicals do not use them for encoding the propaga-
tion of constraints such as div and mod, which are used in the MiniZinc Challenge.
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Challenge 6 Is it possible to characterise and describe with an appropriate dedicated

language an assignment associated with effectively reaching the bound?

The hope is that if one can explicitly describe such an extremal object, then
the regret and the corresponding propagator can be obtained mechanically.

We now turn our attention to the case when the combinatorial structure is
a graph. The propagators of many constraints, such as alldifferent, gcc, or
nvalue, can be understood as the application of a few graph algorithms on a
graph that is derived from the arguments of the constraint. This is also true for
propagators attached to graph properties, as shown in [6], where a preliminary
effort was done to see a propagator as the interpretation of a graph formula.

While the derived graphs on which we apply standard graph algorithms are
often simple (for instance, variable-value bipartite graphs), the problem is that
this is done in an ad-hoc way for each constraint. The arising challenge is thus:

Challenge 7 Is there a concise and compositional way of denoting how to derive

graphs from the arguments of a constraint?

This would be the basis for a graph-based indexical language where one can
directly and fully encode graph formulae representing the desired propagator. Once
such a language is clearly defined, one can define dedicated abstract machines
to handle or compile such formulae efficiently. Key points in this process are the
ability to define compositional graph views (to avoid representing graphs explicitly)
and the automatic selection of the most efficient algorithms for the considered
graph class.

In addition, graph invariants (formulae relating different graph characteristics,
such as number of nodes or connected components) can be used to provide addi-
tional filtering [6]. Like for indexicals, those invariants are declarative and do not
require the development of new ad hoc propagators. However, so far they have
been discovered and proved manually and one-by-one. This leads to the following
challenge:

Challenge 8 Is there a way to discover in a systematic way new graph invariants?

To the best of our knowledge, this type of question is not addressed by any
community (CP, OR, graph theory). Our guess is that most people just focus on
solving one problem. However, it makes sense from a theoretical point of view,
since it would allow us to put in perspective and understand as a whole some
families of propagators.

2.3 Verification and Synthesis of Propagators

The existence of efficient propagators for many constraints is recognised as a key
strength of CP. The core of a solver is responsible for the cooperation and coordina-
tion of the propagators. For overall correctness and efficiency, a solver may require,
or take advantage of, different properties of propagators, such as their correctness,
monotonicity, idempotency, or achievement of a given level of consistency. Veri-
fying those properties for a given propagator is most of the time done manually.
Unfortunately, the intricacy of most propagators complicates this verification pro-
cess greatly. The failure to conform to some property can lead to very subtle errors



6 Nicolas Beldiceanu et al.

that show up only in specific situations, and debugging a constraint program at
this level is notoriously difficult. It is thus desirable to automate the verification
process of propagators, in order to certify that they fulfil the expectations of the
solver and user. The arising question is then:

Challenge 9 Can we adapt the techniques of formal verification in order to certify

(semi-)automatically the correctness and other properties of propagators?

While some properties are very specific to CP (for instance, the achievement of
a given level of consistency), the verification of the correctness of a propagator with
respect to the description of a constraint corresponds directly to the verification
of the correctness of an algorithm with respect to its specification.

Several formal verification methods for this problem have constructive coun-
terparts, which synthesise and verify algorithms at the same time. The synthesis
of propagators can save a lot of effort, at least when prototyping new constraints,
and has already been applied to specific classes of constraints; see [1,11,28,32] for
instance. This leads to the next challenge:

Challenge 10 Is it possible to use inductive or deductive synthesis to generate (semi)

automatically efficient propagators from the declarative description of some global con-

straints?

We stress that we do not expect to replace human creativity by a computer.
On the contrary we hope for a better collaboration between man and machine,
where the computer takes care of the repetitive and tedious parts of the design
and implementation, letting the human focus on the higher-level reasoning. Hence,
a related challenge can be:

Challenge 11 Are there higher-level abstractions (such as those of Section 2.2) that

recur in the manual synthesis of propagators for some global constraints, so that propag-

ators need not be designed from first principles each time?

Positive results have already been achieved on some families of propagators
(e.g., [26,21]). More general results are to be expected but will require thorough
inspection of existing propagators to discover and factor out recurring abstractions.

2.4 Visualisation and Explanation

One of the major challenges for global constraints is providing a conceptual model
of their execution for the application programmer, without requiring a detailed
understanding of the propagators. Visualisation [12,14] and explanation [16] can
be very helpful in providing this information to the user. Special visualisers for
some specific global constraints were already defined in [30], but even the more
generic CP-Viz tool [31] requires hard-coded extensions for each global constraint.
For some uses it may be sufficient to visualise just the state of the decision variables
of the constraint. A more detailed view of the internal state of the constraint
requires some interface to the propagators. This leads to the following challenge:

Challenge 12 Is there a mechanism that generates a visualiser of a global constraint

based on a declarative description of the constraint? Or, at least, can we define a toolkit

to visualise classes of global constraints without tedious and error-prone adaptation for

each constraint?
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The same questions can be asked for explanations.

Challenge 13 Can explanations for global constraints be derived automatically from

a declarative description of the constraint or from a high-level description of a propag-

ator? What is required to generate automatically also explanations when synthesising

propagators for global constraints? Can explanations be provided in a form that is un-

derstandable without describing details of the propagators?

Those two challenges extend the ones of Section 2.3. Keeping the same spirit,
we aim at an automation of the tedious parts of the development of visualisation
and explanations, while keeping important design decisions in the hands of the
human developer. This can be done for instance by extending the handling of the
higher-level abstractions of Section 2.2 to those two use cases.

2.5 Scalability and Big Data

Scalability was one of the challenges identified in the 2011 Panel on the Future of

CP [24]. Scalability is becoming increasingly important for some industrial applic-
ations, such as cloud computing.

– On the one hand, CP provides an opportunity to scale well in terms of memory,
because global constraints allow the implicit representation of large sets of sim-
ilar constraints. This is not the case in SAT/SMT or MIP, where all constraints
need to be stated explicitly in order to be actively taken into account by the
solver.

– On the other hand, CP suffers from the following problems:
1. In the context of non determinism, memory management is a weak point

of CP solvers, no matter whether copying or trailing or a combination of
the two is used for implementing backtracking. The price to pay to be able
to backtrack at any point and to maintain incremental data structures is
simply too high for large industrial problems.

2. The convergence to a fixpoint for a conjunction of constraints can be very
slow due to a mutual waking-up of high-complexity filtering algorithms.

A popular way to overcome the scalability issue is to use local search [33], which
does not have any memory problem with backtracking. Large neighbourhood
search [29] was introduced in order to keep the advantage of constraint propaga-
tion for small parts of a problem. There are indications that a constraint solver
adapted for large neighbourhood search can perform quite well on large problem
instances [20] compared to other solution techniques. Also, greedy propagators
were introduced for packing [4] and scheduling [18] constraints that handle up to
a few million items within a single constraint, using a standard CP solver.

This leads to the following challenge:

Challenge 14 Are there, for some large classes of conjunctions of constraints, (greedy)

propagators that address both the memory consumption problem and the slow conver-

gence issue?
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2.6 A Systematic Reconstruction of the Global Constraint Catalog

The current version of the Global Constraint Catalogue [5] contains around 400
individual constraints. Even with software support to find relevant constraints from
examples [7], it is nearly impossible to remember all the alternatives and select
the best constraints for a new application. Constraints were added as they were
introduced in the literature, so there is very little structure beyond the description
of each constraint on its own. Variants and extensions of known constraints are
always added with their own entries, leading to a confusing multitude of related,
but not clearly structured, entries.

A systematic reconstruction of the catalogue may be required to provide a
framework for classifying constraints and their variants. This should identify core
concepts (for example, alldifferent), specialisations (permutation,alldifferent
consecutive values) and generalisations (lex alldifferent, k alldifferent)

of constraints, as well as variants of constraints like open (open alldifferent)
and soft (soft alldifferent var, soft alldifferent ctr) versions, and the use
of escape values (alldifferent except 0).

At the same time, the argument structure and the naming of the constraints
should be reconsidered to become more uniform. To have a real impact, this should
not just be done for the constraint catalogue, but for as many implementations
as possible, creating a more uniform view of global constraints throughout the
community.

The aim of this restructuring is also to leverage the big amount of data and
metadata already present in the catalogue to allow a better automated processing.
Tools using this data, like the Constraint Seeker [7], will certainly become more
common in the future and it is important to make it available in a more structured
way.

3 Interface of CP with Other Computer Science Areas

Not only real-world application areas and other sciences but also many research
areas of computer science (CS) have sub-problems that are NP-hard constraint
problems. Such areas include machine learning and data mining (ML/DM), computer-
aided verification (CAV), software synthesis, computational linguistics, etc. Even
here, with fellow computer scientists, communication problems occur, so the CP
community has begun to reach out to some of these areas, witness the Dagstuhl
seminar CP meets ML/DM,2 as well as our CP meets CAV.3 CP researchers have
been invited to strategic events of other CS areas, witness some of us at the Dag-
stuhl seminar Software Synthesis.4

The overwhelming impression from these three recent events is that CP is
widely misunderstood, as discussed in the next five paragraphs.

First, the standard reflex in other CS areas is to address the occurring NP-
hard constraint problems using SAT/SMT or MIP solvers. If researchers of other
CS areas have even heard of CP, then they often either think that the term ‘con-
straint programming’ is a synonym of ‘constraint solving’ (and thus that SAT,

2 http://www.dagstuhl.de/11201
3 http://www.it.uu.se/research/group/astra/CPmeetsCAV
4 http://www.dagstuhl.de/12152

http://www.dagstuhl.de/11201
http://www.it.uu.se/research/group/astra/CPmeetsCAV
http://www.dagstuhl.de/12152
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SMT, and MIP solvers are also CP solvers and not just constraint solvers, with
CP solvers not offering anything distinct), or that the term ‘constraint program-
ming’ is still synonymous with ‘constraint logic programming’ (CLP), the latter
being thought still synonymous with CLP over rational numbers, CLP(Q), or real
numbers, CLP(R).

Second, CP tutorials given at such events have revealed huge conceptual and
vocabulary gaps, indicating that the CP community still has trouble communic-
ating what it is doing and what distinguishes it from other approaches to the
solving of constraint problems. Especially the beauty of the ‘P’ (programming) of
‘CP’ and its difference from the ‘P’ of ‘MIP’, say, seem hard to communicate (see
e.g., [19]).

Third, deterrents to using CP include the prejudices that there are still no
black-box CP solvers (hence that search procedures always have to be customised,
possibly through lengthy experiments) and that CP solvers are almost never faster,
as well as the valid objection that there is no standard interface to CP solvers. SAT,
SMT, and MIP solvers offer these advantages, as well as their own disadvantages,
which however tend to be ignored. Nevertheless, it seems presumptuous to believe
that one approach (say SAT, SMT, or MIP) is always good enough. We have heard
SAT and SMT users say that if their model is not fast enough then they just wait
for a year in order to benefit, without effort of their own, from a solver twice as
fast.

Fourth, due to the reflex reliance in other CS areas on SAT, SMT, or MIP
solvers, it is also very hard to understand the constraint problems of other CS
areas, because the problem descriptions tend to be in terms of the capabilities of
the lower-level modelling languages they use.

Fifth, wheels tend to be reinvented if CP is not better known. For instance, the
programming language community aims to integrate constraints into programming
languages (sometimes upon solving all constraints using a SAT solver), blissfully
unaware that this has been the essence of CP since the late 1980s and a distin-
guishing feature with other constraint solving approaches.

In conclusion, we raise the following challenge:

Challenge 15 How can we, as a community, promote a better understanding of CP

by other computer scientists?

As part of the answer, we advocate the following measures:

– Organise more out-reach meetings with experts of other CS areas.
– Develop (on-line) material explaining CP to CS experts.
– Maintain (together with at least the SAT/SMT and MIP communities) a show-

case of significant benchmarks where CP solvers outperform SAT/SMT and
MIP solvers, or where CP practitioners challenge SAT/SMT and MIP practi-
tioners to beat CP solvers (and vice-versa).

– Limit the impact of the absence of a standard interface to CP solvers.

We stress that the mentioned difficulties are not completely specific to CP, but
addressing them could enhance the development and dissemination of CP.
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