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Abstract. In recent years, symmetry breaking for constraint satisfac-
tion problems (CSPs) has attracted considerable attention. Various gen-
eral schemes have been proposed to eliminate symmetries. In general,
these schemes may take exponential space or time to eliminate all the
symmetries. We identify several classes of CSPs that encompass many
practical problems and for which symmetry breaking for various forms
of value or variable interchangeability is tractable using dedicated search
procedures. We also show the limits of efficient symmetry breaking for
such dominance-detection schemes by proving intractability results for
some classes of CSPs.

1 Introduction

Many constraint satisfaction problems (CSPs) naturally exhibit symmetries.
Symmetry breaking may drastically improve performance [3, 21, 23, 30]. An im-
portant contribution in this area has been the development of various general
schemes for symmetry breaking during search in CSPs (e.g., SBDS [2, 16] and
SBDD [9, 14, 23], the latter being described briefly in Section 3). Unfortunately,
in general, these dynamic symmetry-breaking schemes may require exponential
resources to break all the symmetries. Indeed, some schemes may require expo-
nential space to store all the nogoods generated through symmetries, while others
may take exponential time to discover whether a partial assignment is symmetric
to one of the existing nogoods. As a consequence, practical applications often
place limits on how many nogoods can be stored and/or which symmetries to
break. Other than eliminating symmetries by re-modelling the problem (see, e.g.,
[29]), another important approach is to break symmetries statically by adding

⋆ The authors’ names are ordered according to the Swedish alphabet.



constraints before search starts (e.g., [7, 22]). Unfortunately, in general, a super-
exponential number of constraints may be needed to break all the symmetries.
For instance, the lex-leader scheme of [7] adds one constraint per symmetry, but
the number of symmetries is often super-exponential (an m × n matrix with
fully interchangeable rows and columns has m! · n! symmetries). As a conse-
quence, practical applications often add only some of these symmetry-breaking
constraints (see, e.g., [11, 28]).

We approach symmetry breaking from a different, orthogonal standpoint.
Our goal is to identify classes of CSPs that are practically relevant and for which
symmetry breaking is tractable, i.e., polynomial in time and space, using dedi-
cated search procedures exploiting the problem structure. We identify several such
classes whose CSPs feature various forms of value or variable interchangeability
and encompass many practical problems. For some of them, such dynamic struc-
tural symmetry breaking can even be performed with a constant overhead with
respect to both time and space at every node explored. We also introduce the
new notion of abstract nogood, which is used to derive the results for some of the
CSP classes. We believe that this notion is helpful to derive many other classes
of tractable symmetries. As such, this paper should be viewed only as a first
step in this fascinating area. Finally, we also show the limits of efficient dynamic
structural symmetry breaking for dominance-detection schemes like SBDD by
proving intractability results for certain classes of CSPs.

The main objective of this theoretical paper is to establish the bounds of
tractability of dynamic symmetry breaking for a landscape of CSP classes (see
Table 1 in the conclusion). A runtime comparison with static symmetry breaking,
even if structural [12, ?], is beyond the scope of this paper.

It is useful to contrast our approach with the research avenue pioneered
by Freuder [15] on value interchangeability. He also introduced various forms
of value interchangeability. However, his goal was to discover symmetries inside
CSPs and to remove them through a preprocessing reformulation. Unfortunately,
discovering symmetries in CSPs is not tractable for many interesting classes of
CSPs. This paper, in contrast, assumes that the symmetries in a CSP are known.
It focuses on how to exploit this knowledge during search to break symmetries
efficiently. In [33], we address the companion issue of how to automatically detect
symmetries in CSP models.

Example 1. Consider the scene allocation problem featured in [31]. It aims at
producing a movie (or a series) at minimal cost by deciding when to shoot which
scenes. Each scene involves a number of actors and at most five scenes a day can
be shot. All the actors of a scene must be present on the day the scene is shot.
The actors have fees representing the amount to be paid per day they spend in
the studio. An optimal solution can be modelled as an assignment of scenes to
days that minimises the production costs. The exact days assigned to the scenes
have no importance and are fully interchangeable. What is important is how the
scenes are clustered. In fact, the original problem formulation only has a number,
say n, of days. It is the often necessary naming of these days while modelling the
problem, say as 1 . . . n, that induces these symmetries. Our dynamic structural
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symmetry breaking approach does not aim at discovering this fact; it rather
focuses on how to exploit it to break the symmetries it induces.

This theoretical paper, which unites and extends4 our work published in [32,
27], is structured as follows. First, in Section 2, we define CSPs and assignments
in a non-standard way that gives rise to elegant formulations and proofs of our
results. Then, in Sections 3 to 7, we formally establish those results, for various
forms of value and/or variable interchangeability. Finally, Section 8 summarises
the results and concludes this paper.

2 Preliminaries

Our definition of constraint satisfaction problems (CSPs), although it captures
their informal meaning, is non-standard but simplifies the proofs and other def-
initions considerably. The basic idea is that the set of constraints of a CSP is
abstracted by a Boolean function that returns true if all these constraints are
satisfied. We are not interested in the constraint structure. Solutions are then
also represented as functions, namely from the variables to the possible values.

Definition 1 (CSP, Assignment, Solution). A constraint satisfaction prob-
lem (CSP) is a triplet 〈V,D,C〉, where V denotes the set of variables, D de-
notes the set of possible values for these variables and is called their domain,
and C : (V → D) → Bool is a constraint that specifies which assignments of
values to the variables are solutions. An assignment for a CSP P = 〈V,D,C〉
is a function α : V → D. If the domain D is the power-set of some other set,
called the universe, we say that the CSP is a set-CSP and has set variables,
while we call α a set assignment; otherwise, we say that the CSP has scalar
variables. A solution to a CSP P = 〈V,D,C〉 is an assignment σ for P such
that C(σ) = true. The set of all the solutions to a CSP P is denoted by Sol(P).

Algorithms to solve CSPs manipulate partial assignments. It is often im-
portant to reason about which variables are already assigned (the scope of the
partial assignment) and the set of values they are assigned to (the image of the
partial assignment).

Definition 2 (Partial Assignment, Scope, Image). A partial assignment
for a CSP P = 〈V,D,C〉 is a function α : W → D, where W ⊆ V . The scope of
α, denoted by scope(α), is W . The image of α, denoted by image(α), is the set
{α(v) | v ∈ scope(α)}. For each value d ∈ image(α), we use α−1(d) to denote
the set {v | v ∈ scope(α) & α(v) = d}. We denote the empty partial assignment
by ǫ.

4 Sections 5.3, 7.2, 7.3, and the epilogue to Corollary 2 are new, while Section 5.2
was generalised. The originally omitted proofs of Proposition 1, Proposition 2, and
Theorem 3 are now provided, while the proofs of Theorem 1 and Corollary 1 were
expanded into greater detail. The full version of this paper, including other originally
omitted proofs, but excluding Section 7.3, is in [13].
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Note that every assignment and solution to a CSP P = 〈V,D,C〉 is a partial
assignment for P, with scope V . We often denote a partial assignment α by a
conjunction of equations, and then see it as a constraint:

vi1 = α(vi1) & · · · & vik = α(vik)

where scope(α) = {vi1 , . . . , vik}.

Example 2. The partial assignment v1 = 1 & v2 = 2 & v3 = 3 represents the
function whose scope is {v1, v2, v3} and that assigns the value i to vi.

Definition 3 (Extension of a Partial Assignment). A partial assignment
θ for a CSP P is an extension of a partial assignment α for P if scope(α) ⊆
scope(θ) and ∀v ∈ scope(α) : θ(v) = α(v).

Definition 4 (Completion of a Partial Assignment). A completion of a
partial assignment α for a CSP P = 〈V,D,C〉 is an extension θ of α with
scope(θ) = V . The set of all the completions of α for P is denoted by Comp(α,P).

Note that the set of all the completions of a solution σ is the singleton {σ}.

Definition 5 (Nogood). A nogood for a CSP P is a partial assignment α for
P that cannot be extended into a solution, that is Comp(α,P) ∩ Sol(P) = ∅.

The idea behind the noun ‘nogood’ is that no partial assignment should ever
extend any previously identified nogood.

Definition 6 (Violating a Nogood). A partial assignment θ for a CSP P
violates a nogood α for P if θ is an extension of α.

The verb ‘violates’ is justified here, as we also view a partial assignment, and
hence a nogood, as a constraint, with the form of a conjunction of equations.
Strictly speaking, this notion of nogood violation is redundant with the notion
of nogood extension, but we keep it for its more intuitive appeal.

Any extension of a nogood is itself a nogood:

Proposition 1. If a partial assignment θ for a CSP P violates a nogood for P,
then θ is itself a nogood for P.

Proof. Assume that a partial assignment θ for P violates a nogood α for P and
assume that θ is not a nogood for P. Then there exists a completion γ of θ such
that γ ∈ Sol(P). Since γ is a completion of θ and θ is an extension of α, we have,
by transitivity of ⊆ and =, that γ is a completion of α. But then α cannot be a
nogood, since γ ∈ Sol(P). This is a contradiction, so θ must be a nogood. ⊓⊔

Furthermore, a partial assignment that can only be extended into a nogood
is itself a nogood:

Proposition 2. Let P = 〈V,D,C〉 be a CSP where D = {d1, . . . , dm}. Let α be
a partial assignment for P with scope(α) = {vi1 , . . . , vik}. If every α & vik+1

=
di (1 ≤ i ≤ m) is a nogood for P, then α is itself a nogood for P.
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Proof. Assume that α is not a nogood for P. Then there exists an extension
γ of α such that γ ∈ Sol(P). But γ must include α & vik+1

= di for some
1 ≤ i ≤ m. But then γ is also an extension of α & vik+1

= di for that i. But
α & vik+1

= di is a nogood for every 1 ≤ i ≤ m, so there cannot exist such a γ.
Hence α is a nogood for P. ⊓⊔

In other words, nogoods can be lifted from the children to their parent in a
search tree: when all the child nodes have been explored, their nogoods can be
forgotten and only the parent nogood needs to be kept.

With respect to the symmetry considered in this paper, in [5], two definitions
of symmetry are presented: solution symmetries, which are essentially bijections
on the set of variable-value pairs that make up assignments and preserve solu-
tions; and constraint symmetries, which are bijections on the structure of the
constraints in the problem. It is shown that the group of constraint symmetries
of a CSP is a subgroup (most often strict) of the group of solution symmetries.
In this paper, the symmetries are defined as subgroups of the set of solution
symmetries without reference to the constraint symmetries. Specific definitions
of the particular symmetry considered are given in the respective parts of the
paper.

3 Structural Symmetry Breaking for Variable and Value

Symmetry

We start our investigation by showing that there exists an efficient structural
symmetry-breaking algorithm for constraint satisfaction problems where both
the set of values and the set of variables can be partitioned into subsets such
that, within each subset, all variables or values, respectively, are interchangeable.
We call these problems piecewise interchangeable CSPs:

Definition 7 (Piecewise Bijection). Let S = ∪iPi such that the sets Pi are
disjoint, i.e., Pi ∩ Pj 6= ∅ implies i = j. Then, we write S =

∑

i Pi and call
∑

i Pi a partition of S. A bijection b : S → S is a piecewise bijection over
∑

i Pi

if and only if b(Pi) = Pi, where b(Pi) = {b(e) | e ∈ Pi}.

Definition 8 (Piecewise / Fully Interchangeable CSP). A CSP P =
〈
∑m

k=1 Vk,
∑n

ℓ=1 Dℓ, C〉 is a piecewise interchangeable CSP if and only if, for
each solution σ ∈ Sol(P), each piecewise bijection a over

∑

k Vk, and each piece-
wise bijection b over

∑

ℓ Dℓ, we have b ◦ σ ◦ a ∈ Sol(P). If the only piecewise bi-
jection over

∑

k Vk (or
∑

ℓ Dℓ) is the identity, then the CSP is a piecewise value-
interchangeable (or variable-interchangeable) CSP. If m = 1 (or n = 1), then the
CSP is a fully value-interchangeable CSP (or a fully variable-interchangeable
CSP). If m = 1 = n, then the CSP is a fully interchangeable CSP.

We will show how to break all symmetry in piecewise interchangeable CSPs
by means of Symmetry Breaking by Dominance Detection (SBDD) [9, 14]. SBDD
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is a technique to break symmetries during search. The idea is as follows: At
any given choice point during search, we check whether the subtree rooted at
the current node maps, under application of symmetry, into another subtree
that has been fully explored earlier. If so, then the current node need not be
investigated further and can be pruned. Different ways to control and limit the
number of previously expanded subtrees that must be checked against have been
developed in [9, 14]. With these results, the core procedure of any SBDD code
that determines its efficiency is the dominance detection algorithm that checks
whether a given partial (set) assignment is dominated by another one. Formally,
we define:

Definition 9 (Dominating an Assignment). Let P = 〈
∑

k Vk,
∑

ℓ Dℓ, C〉 be
a piecewise interchangeable CSP. Assignment α dominates assignment β if and
only if there exist piecewise bijections a over

∑

k V k and b over
∑

ℓ Dℓ such that
for every v ∈ scope(α) we have β(a(v)) = b(α(v)).

Given two assignments α and β for a piecewise interchangeable CSP, we
call the problem of determining whether α dominates β the dominance detec-
tion problem. Consequently, if we can solve the dominance detection problem
efficiently, then we can also break symmetries efficiently.

The key idea to tackle the dominance detection problem for piecewise in-
terchangeable CSPs consists in the introduction of structural abstractions: to
model a CSP, we need to name uniquely each value and each variable. When
certain variables and certain values are actually interchangeable, such a naming
is of course not natural. We can rectify this by viewing each variable and each
value as a member of a symmetry class. In the beginning, these classes corre-
spond directly to the sets V k and Dℓ. When assignments are committed, though,
some of those initial symmetries are broken. Then, in order to check which CSP
objects are still interchangeable, we need to introduce subclasses of the original
symmetry classes. We will see that we can detect the remaining symmetries by
naming each of those subclasses with an appropriate signature that is defined
by the set of initial symmetries and the given assignments. We will see also that
it is really these signatures that capture our intuitive wish to abstract from the
CSP model at hand to the actual structure of the problem.

3.1 Signatures

First consider the following example.

Example 3. Take variables V = {v1, . . . , v8} over the domain D = {d1, . . . , d6}.
Assume that the first four and the last four variables are interchangeable: V 1 =
{v1, . . . , v4} and V 2 = {v5, . . . , v8}. Assume that the first three and the last three
values are interchangeable: D1 = {d1, . . . , d3} and D2 = {d4, . . . , d6}. Consider
the following two partial assignments (see Figure 1(a)): α1 = (v1 = d1 & v2 =
d1 & v3 = d2 & v6 = d5 & v7 = d1 & v8 = d2) and α2 = (v1 = d6 & v2 =
d1 & v3 = d2 & v4 = d2 & v5 = d1 & v6 = d6 & v7 = d2 & v8 = d2).
When looking at α1, we see that:
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1. There is one value (namely d1) in D1 that is taken by two variables in V 1

and one variable in V 2.
2. There is one value (namely d2) in D1 that is taken by one variable in V 1

and one variable in V 2.
3. There is one value (namely d5) in D2 that is taken by one variable in V 2.

On the other hand, in α2, we see that:

I. There is one value (namely d2) in D1 that is taken by two variables in V 1

and two variables in V 2.
II. There is one value (namely d1) in D1 that is taken by one variable in V 1

and one variable in V 2.
III. There is one value (namely d6) in D2 that is taken by one variable in V 1

and one variable in V 2.

Lining up 1-I (d1 7→ d2, {v1, v2} 7→ {v3, v4}, {v7} 7→ {v7, v8}), 2-II (d2 7→ d1,
{v3} 7→ {v2}, {v8} 7→ {v5}), and 3-III (d5 7→ d6, {v6} 7→ {v6}), we see that α2

is structurally a partial assignment extended from α1, or, in other words, that
α1 dominates α2 (see also Figure 1(b)).

What we have done in this small example is to abstract from the given model
and the (arbitrary) names of the variables and values to the actual structure of
the problem. That is, instead of talking about specific variables and values, we
have considered members of classes. Specifically, for each partial assignment, we
implicitly assigned each value a signature that captures by how many members
of each variable-symmetry class it was taken. For instance, in α1, the value d1
has the signature (2 × V 1, 1 × V 2), or, in shorter writing, the signature of d1
under α1 is sigα1

(d1) = (2, 1). Under α2, on the other hand, the signature of d2
is sigα2

(d2) = (2, 2). Consequently, d2 in α2 can be viewed as more specialised
than d1 in α1, or one may also say that d1 in α1 dominates d2 in α2. In this
terminology, d1 in α2 has signature sigα2

(d1) = (1, 1) and therefore dominates
d1 in α1. Note that sigα2

(d6) is also (1, 1), but that d6 in α2 does not dominate
d1 in α1 since d6 ∈ D2 whereas d1 ∈ D1. In general:

Definition 10 (Dominating a Value). A value d in a partial assignment α
dominates a value e in a partial assignment β if and only if d and e belong to
the same value-symmetry class and sigα(d) ≤ sigβ(e).

5

A value d in a partial assignment α is structurally equivalent to a value e in
a partial assignment β if and only if d and e belong to the same value-symmetry
class and sigα(d) = sigβ(e).

In the following sub-section, we will show how these notions of dominance and
structural equivalence can be exploited to devise a polynomial-time algorithm
that solves the dominance detection problem on piecewise interchangeable CSPs.

5 The ≤-relation on vectors is defined as the usual component-wise comparison that
yields the so-called dominance ordering, which is different from a lexicographic or-
dering.
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(0,0)

(0,0)

(1,1)

α1 α2

(b)

Fig. 1. Part (a) illustrates assignments α1 and α2. Part (b) gives the signatures for
each value, links pairs of values where the one in assignment α1 dominates the one in
α2, and designates by solid lines a perfect matching that proves that α1 dominates α2.

3.2 Dominance Detection Using Signatures

The following lemma shows how signature abstractions can help to detect dom-
inance relations among partial assignments:

Lemma 1. A partial assignment α dominates another partial assignment β in
a piecewise interchangeable CSP if and only if there exists a piecewise bijection
b over D =

∑

ℓ Dℓ such that d in α dominates b(d) in β for every d ∈ D.

Proof. First, assume that α dominates β. Then, there exist piecewise bijections
a over

∑

k V k and b over
∑

ℓ Dℓ such that for every v ∈ scope(α) we have
β(a(v)) = b(α(v)). Since both v and a(v) belong to the same symmetry class,
we have sigα(d) ≤ sigβ(b(d)) for all values d ∈ D, which is the same as to say
that d in α dominates b(d) in β.
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Second, assume that there exists a piecewise bijection b over
∑

ℓ Dℓ such
that sigα(d) ≤ sigβ(b(d)) for every d ∈ D. Then, since each variable is assigned
to at most one value, there exists a piecewise bijection a over

∑

k V k such that
β(a(v)) = b(α(v)) for every v ∈ scope(α). Thus, we have that α dominates β. ⊓⊔

Consequently, we have that α dominates β if and only if there exists a perfect
matching in a bipartite graph where the edges are defined by the signature
relation of values (see Figure 1(b)). Let us denote by D′ a set of duplicates of
the values in D obtained by appending a prime sign to their names (that is,
D′ := {d′ | d ∈ D}).

Definition 11 (Dominance Detection Graph). Given two partial assign-
ments α and β, the dominance detection graph DDG(α, β) is (D∪D′, E), where
E := {(d, e′) | d in α dominates e in β} denotes the set of arcs.

Theorem 1. The dominance detection problem between two partial assignments
α and β for a piecewise interchangeable CSP has complexity O(M +m2 +mn),
where M = O(m2.5) is the time needed to determine whether there exists a perfect
matching in DDG(α, β), with m being the number of values and n the number of
variables. Hence all symmetric subtrees caused by value and variable symmetries
of a piecewise interchangeable CSP can be eliminated with a polynomial time
overhead at every node explored.

Proof. With Lemma 1, it is clear that the dominance detection problem can be
solved basically by determining whether there exists a perfect bipartite matching
in DDG(α, β). The additional complexity denoted in the theorem is due to the
necessity of constructing DDG(α, β) first. This can be achieved in time O(nm2),
which already proves that symmetry breaking in this scenario is tractable. How-
ever, the runtime can be improved to the complexity that is claimed here by
using sparse representations of signatures. Instead of writing down entire signa-
tures, for each value we hold a sparse list that only contains the non-zero entries
of a signature, together with the information to which variable partition an entry
in the sparse list belongs. To set up this sparse representation, we first order the
variable instantiations in a given partial assignment according to the partition
that the corresponding variable belongs to. This can be done in time linear in the
number of variables, since this is also the maximum number of symmetry classes
that can exist. In this order, we now scan through the partial assignments and
set up the sparse signatures. Then, we iterate through the signatures of all the
values in α and compare them with all the signatures of the values in β. With
the sparse representation of signatures, this takes time O(m(|α|+ |β|)). ⊓⊔

This was the first result establishing that all the symmetries of a piecewise
interchangeable CSP can be broken in polynomial time, in the sense that there
are no symmetrical subtrees in the remaining search tree. Note that this fact does
not contradict the results from [34], which show that filtering all assignments
that do not obey static constraints for breaking piecewise symmetry is NP-hard.
As it is the case with some constraints (see for example the shorter path con-
straints [26]) where the constraint check is tractable while the filtering problem
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is not, we have shown that detecting a symmetrically dominated search node can
be done in polynomial time while [34] has shown that identifying assignments
that must eventually lead to a symmetrically dominated solution (in the sense
that it is not the selected representative of an equivalence class of solutions) is
hard.

Interestingly, it can also be shown that every bipartite graph can also be
viewed as a dominance detection graph of a CSP and assignments α and β that
can be determined in time linear in the size of the given graph. Therefore, a
perfect bipartite matching exists if and only if α dominates β, which makes
the dominance detection problem at least as hard as bipartite matching. In
other words, we can show that dominance detection takes time T , where T ∈
Ω(M) ∩O(M +m2 +mn).

Theorem 1 trivially has two interesting consequences. First, dropping the as-
sumed piecewise value interchangeability or tightening the assumed piecewise in-
terchangeabilities into full interchangeabilities will not worsen its tractability re-
sult, hence all symmetric subtrees caused by the symmetries of fully or piecewise
variable-interchangeable CSPs and of fully value- and variable-interchangeable
CSPs can be eliminated with a polynomial time overhead at every node ex-
plored. Conversely, when dropping the assumed piecewise variable interchange-
ability, we achieve tractability for the symmetries of fully and piecewise value-
interchangeable CSPs. We will study these special cases later where we will
devise highly efficient symmetry breaking methods that do not require complex
matchings to be solved and that minimise the computational overhead needed
for symmetry breaking in these special cases.

Second, dropping the assumed piecewise value interchangeability and switch-
ing to set-CSPs will not worsen the tractability result. Indeed, set variables that
take subsets of a universe of non-interchangeable values can be seen as scalar
variables that take scalar values from a domain of non-interchangeable values,
hence the tractability results of symmetry breaking are those for fully or piece-
wise variable interchangeability of (scalar) CSPs: all symmetric subtrees caused
by the symmetries of fully or piecewise variable-interchangeable set-CSPs can
be eliminated with a polynomial time overhead at every node explored. These
are special cases of Theorem 10 in Section 7.3.

4 Symmetry-Based Filtering

With Theorem 1, we can eliminate all symmetric subtrees caused by the sym-
metries of a piecewise interchangeable CSP in polynomial time at every node
explored when using a symmetry-breaking by dominance detection (SBDD) ap-
proach [9, 14]. What is annoying in this setting is that we still have to check at
every choice point to see whether it is not dominated by one that was previ-
ously expanded, that is we still have to touch the garbage in order to see that
it is garbage. We will now develop an algorithm that does not suffer from this
disadvantage.
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We achieve this goal by using dominance detection also for filtering rather
than just for pruning.6 A brute-force approach could try assignments out and
use the dominance detection algorithm above to perform filtering as well. This
procedure would lead to a very poor runtime, though. In the following, we will
show that filtering based on symmetry can be performed much more efficiently.

Within SBDD, there exists a natural distinction between two types of filtering
that apply: The first consists in making sure that none of the newly created
children are symmetric to a node that was fully expanded before the node that
is currently branching off. When applying unary branching constraints (which we
assume are used here), this can be achieved by shrinking the domains of variables
accordingly. The other, fundamentally different type of “filtering” consists in
the creation of children that are also not symmetric to each other. Both types
need to be addressed to achieve a symmetry-free search tree (which corresponds
to the GE-trees in [25]). We distinguish the two types of filtering by naming
them differently: symmetric-ancestor based filtering and symmetric-sibling based
filtering.

4.1 Symmetric-Ancestor Based Filtering

The goal of symmetric-ancestor based filtering is to shrink the domains such
that instantiating a variable with one of its domain values will not result in the
creation of a search node that is symmetric to one that was previously expanded.

Definition 12 (Ancestor-Symmetry Resistance). Given a depth-first-search
tree T , we say that a choice point β (associated with its homonymous partial
assignment β that captures previously committed unary branching decisions) is
ancestor-symmetry resistant if and only if for all previously fully expanded nodes
α ∈ T (where α is called an ancestor of β) and for all variables v and values
d ∈ Dom(v) we have that α does not dominate β & (v = d).

Assume that we are currently investigating choice point β and that α is some
ancestor node that does not dominate β. Observe that instantiating one more
variable v ∈ V k for some k by setting v 7→ e ∈ Dℓ for some ℓ will change only the
signature of e from sigβ(e) to sigβ(e)+ek, where ek denotes the unit vector with
a 1 in the kth component. We set β′ := β & (v = e). Then, G1 := DDG(α, β)
and G2 := DDG(α, β′) only differ in that the latter bipartite graph may contain
some additional edges that must all be incident to e′ in the right partition. If
G2 contains an m-matching, this matching must contain exactly one of those
additional edges. Consequently, if α dominates β′, then G1 must contain an
(m − 1)-matching. Only if this is the case, work needs to be done to make β
ancestor-symmetry resistant with respect to α.

So let us assume that G1 contains an (m− 1)-matching. Provided with that
matching, using some straightforward matching theory we can identify efficiently

6 With ‘filtering’, we refer to the idea of domain reduction in constraint program-
ming, whereas with ‘pruning’, we refer to the detection of a sufficient reason for
backtracking.
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those and only those additional edges that would allow us to transform the
existing matching into a perfect one (for an introduction to matching theory we
refer to [1]): a matching can be viewed as a flow in some network that closely
corresponds to the bipartite graph. We consider the usual residual network with
respect to that flow that has an additional source node s that connects to all
nodes in the first partition, and a sink node t that is connected from all nodes
in the second partition. The capacities of the residual network are given by the
the residual capacity of edges after the flow has been routed, including reverse
edges for edges with positive flow.

Then, a maximum matching (corresponding to a maximum flow) defines two
cuts. The first is given by the nodes that are reachable from the source in the
residual network. If we denote this set with S, then (S, SC) is an s-t-cut. The
second cut is given by the set of nodes from which the sink is reachable in the
residual network. If we denote this set with T , then (TC , T ) is also an s-t-cut.
Note that both cuts can be computed in time linear in the size of the given
networks after the maximum matching has been computed.

Now, the core observation is that, given those two cuts, the critical edges
are exactly those that run from S ∩D to T ∩ D′: clearly, adding such an edge
yields an improving path in the residual network and therefore an m-matching.
On the other hand, note that T ⊆ SC and S ⊆ TC . Any edge added from S to
SC \ T would leave the cut (TC , T ) untouched, which proves that no such edge
can improve the matching. Edges that run from TC \S to T follow analogously.

Among those critical edges that, if added, would allow us to construct an
m-matching, the only ones that we need to consider are those that run between
nodes d and e′ with d, e ∈ Dℓ for some ℓ and for which there exists k such that
sigα(d) ≤ sigβ(e) + ek. If and only if we find such a pair of nodes, a single extra
assignment added to β will result in a successful dominance detection. Precisely,
every assignment of e to a previously unassigned variable v ∈ V k will result
in a dominated choice point. Thus, if we remove e from the domain of v for
every unassigned v ∈ V k, we keep the unique parts of the search space and we
never produce any choice points that are symmetric to one that was expanded
previously to β.

Example 4. We illustrate ancestor-based filtering in Figure 2. We consider a
problem where the variable partition has three parts and where all three values
are symmetric. The solid lines indicate the matching graph that yields an almost-
perfect matching. The dashed lines indicate critical edges whose addition to the
graph would yield a perfect matching. Our algorithm implicitly enumerates those
critical edges (of which there may exist an exponential number) to find critical
assignments that would lead to a successful dominance check. In this example,
any assignment of value v3 to any unassigned variable in variable parts 1 or
3 would lead to a successful dominance check. Consequently, value v3 must be
removed from the domains of all such variables.

In summary, with Theorem 1, the runtime needed for the initial value-
matching algorithm is bounded by O(m2.5 + mn). Then, the entire filtering
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(2,2,0)

(0,2,2)

(1,0,1)(0,0,2)
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(0,2,0)
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Fig. 2. Ancestor-based filtering: To the left and right of the bipartite graph are the
signatures of symmetric values v1, v2, and v3 under two assignments α1 and α2 for a
problem where the variable partition has three parts. Solid lines indicate dominance
relationships between values. Dashed lines indicate critical edges.

algorithm runs in time O(m2 + mn). Therefore, since within SBDD at most
n(m− 1) ancestor nodes need to be considered, we can prove the following the-
orem:

Theorem 2. For a piecewise interchangeable CSP, we can achieve ancestor-
symmetry resistance for a given search node in time O(nm3.5 + n2m2).

4.2 Symmetric-Sibling Based Filtering

To achieve full symmetry prevention, we also need to guarantee that newly
created siblings are not symmetric to each other. Therefore, after choosing the
next variable to be assigned, but before branching on it, we need to perform one
more “filtering” step (it is actually more of an implicit pruning step), where we
choose a single representative value out of each equivalence class of values that,
when assigned to the chosen variable, would result in the creation of symmetric
choice points. Due to the fact that, whenever a sibling dominates another one,
they both must already be structurally equivalent (see Definition 10), we can
avoid producing symmetric siblings by choosing exactly one representative value
among those that are structurally equivalent. The complexity of this filtering
step is dominated by that of symmetric-ancestor based filtering.

Putting ancestor and sibling-based filtering together, we have completed our
development of an effective symmetry-breaking algorithm for piecewise inter-
changeable CSPs that runs in polynomial time. Note that the practical per-
formance of the algorithms sketched can be enhanced in practise: for example,
it is fully sufficient to check against previously expanded nodes for which an
(m− 1− h)-maximum matching was found only after variable instantiations to
h different values have been committed [17].

5 Fast Algorithms to Break Value Symmetry

We review the special case of piecewise interchangeable CSPs with no variable
symmetry, which we call piecewise value-interchangeable CSPs. With the results
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of the previous section, we know that this symmetry breaking can be achieved
in polynomial time. Now, we focus on the development of specialised algorithms
that break value symmetry with minimal overhead. First, in Section 5.1, we
describe our new approach on the class of fully value-interchangeable CSPs,
showing how it leads to the well-known result from combinatorial enumeration
(e.g., [8, 18]) that all symmetric subtrees caused by their value symmetries can
be eliminated by a dedicated search procedure with a constant overhead with
respect to both time and space at every node explored (Theorem 4). Then,
following the same approach, we show in Sections 5.2 and Section 5.3 that this
result actually generalises to piecewise value-interchangeable CSPs (Theorem 5)
and even holds for fully value-interchangeable set-CSPs (Theorem 6).

5.1 Fully Value-Interchangeable CSPs

When all values are interchangeable and no variable symmetry is present, we
speak of a fully value-interchangeable CSP.

Definition 13 (Fully Value-Interchangeable CSP). A CSP P = 〈V,D,C〉
is a fully value-interchangeable CSP if, for each solution σ ∈ Sol(P) and each
bijection b over D, we have b ◦ σ ∈ Sol(P).

In the following, we show that in this case symmetry breaking can be per-
formed with constant overhead with respect to both time and space at every
node explored. Our method is based on nogoods. The following theorem gives
a fundamental characterisation of nogoods for fully value-interchangeable CSPs.
It states that nogoods are preserved under value interchanges:

Theorem 3. Let α be a nogood for a fully value-interchangeable P = 〈V,D,C〉
and let b : D → D be a bijection. Then b ◦ α is a nogood for P.

Proof. Let g be a completion of b ◦ α and assume that g ∈ Sol(P). Since b is a
bijection, we have b−1 ◦ g ∈ Sol(P). But (b−1 ◦ g)(v) = (b−1 ◦ (b ◦α))(v) = α(v),
for all v ∈ scope(α), by the definition of a completion, that is α can be extended
into a solution. This contradicts the fact that α is a nogood. Hence b ◦α cannot
be extended into a solution and is thus actually a nogood. ⊓⊔

The closure of a nogood α for a fully value-interchangeable CSP is the set of
nogoods obtained from α by applying each possible value interchange, or value
symmetry, to α:

Definition 14 (Closure of a Nogood). Let α be a nogood for a fully value-
interchangeable P = 〈V,D,C〉. The closure of α for P, denoted by Closure(α,P),
is the set {b ◦ α | b is a bijection over D}.

The main idea of our approach is to try and abstract such closures of nogoods
so that their representation takes polynomial space and that membership to a
closure can be tested during search in polynomial time. It will then become pos-
sible to write a search procedure that eliminates all symmetric subtrees caused
by the value symmetries by never extending any member of the closures of all
the nogoods generated during search.
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Abstract Nogoods. We first show that the closure of a nogood for a fully
value-interchangeable CSP can be characterised compactly.

Definition 15 (Abstract Nogood). Let α be a nogood for a fully value-
interchangeable P = 〈V,D,C〉. Let image(α) = {d1, . . . , dk} and let vri ∈
α−1(di), for 1 ≤ i ≤ k. The abstract nogood of α with respect to P, denoted
by Anogood(α,P), is the set of all functions γ : scope(α) → D satisfying the
condition

∀i ∈ 1 . . . k : allequal(γ(vj) | vj ∈ α−1(di)) & alldiff (γ(vr1), . . . , γ(vrk))

where allequal(a1, . . . , an) holds if all the ai are the same value, and alldiff (a1, . . . , an)
holds if all the ai are different values (and is not to be mixed up with the
allDifferent global constraint).

By abuse of language, we identify an abstract nogood, which is a set of
functions, with the condition that its members have to satisfy.

Example 5. Consider a nogood β, written as a conjunction of equations:

β(v1) = 1 & β(v2) = 2 & β(v3) = 3 & β(v4) = 1 & β(v5) = 2

The abstract nogood of β is the following condition:

allequal(γ(v1), γ(v4)) & allequal(γ(v2), γ(v5)) & alldiff (γ(v1), γ(v2), γ(v3))

or, more precisely, the set of functions γ : scope(β) → D satisfying this condition.

An abstract nogood precisely captures the closure of its nogood [13, Lem-
mas 2 and 3], and membership to the closure of a nogood can be tested in linear
time [13, Lemmas 4 and 5]. Abstract nogoods are needed only for the current
frontier nodes of the search tree (i.e., the closed nodes whose parents are open).
Once its child nodes are explored, the abstract nogood of a parent node sub-
sumes the abstract nogoods of these child nodes. Hence, maintaining the nogood
takes space O(|F ||V |), where F is the set of frontier nodes [13, Theorem 4].

Maintaining Nogoods. We now show that search procedures exploring a
search tree for a fully value-interchangeable CSP can remove all the value sym-
metries while causing only constant overhead with respect to both time and
space at every node explored. Before presenting the theoretical results, we il-
lustrate the idea using an example with depth-first search. The basic intuition
comes from the structure of the abstract nogoods.

Example 6. Consider the partial assignment

θ(v1) = 1 & θ(v2) = 2 & θ(v3) = 3 & θ(v4) = 1 & θ(v5) = 2

and assume that depth-first search tries next to label variable v6, whose set of
possible values is 1 . . . 10. The failure of v6 = 1 produces the abstract nogood

allequal(γ(v1), γ(v4), γ(v6)) & allequal(γ(v2), γ(v5)) & alldiff (γ(v1), γ(v2), γ(v3)).
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Since v1, . . . , v5 remain instantiated when the next value is tried for v6, the
abstract nogood for this part of this next branch simplifies to γ(v6) = 1, imposing
that v6 be labelled with a value different from 1. The failures of v6 = 2 and v6 = 3
produce similar abstract nogoods for the other values already used in θ. Now
consider the values not already used in θ and observe what happens for a failed
labelling of v6 with a value in 4 . . . 10, say 6. The abstract nogood then is

allequal(γ(v1), γ(v4)) & allequal(γ(v2), γ(v5)) & alldiff (γ(v1), γ(v2), γ(v3), γ(v6))

which simplifies to alldiff (1, 2, 3, γ(v6)). The disjunction of the four simplified
abstract nogoods obtained so far is the condition

γ(v6) = 1 ∨ γ(v6) = 2 ∨ γ(v6) = 3 ∨ alldiff (1, 2, 3, γ(v6))

which must not be satisfied by any labelling of v6. It follows that v6 need only
be labelled with the previously used values in 1 . . . 3 or with exactly one new
value in 4 . . . 10.

In other words, in a search tree, only some of the child nodes of a partial
assignment θ need to be explored, namely those that label the next variable vik+1

with a value in image(θ) or with exactly one other value. Clearly, deciding in
this fashion which child nodes to explore only takes constant time. Note that this
result is independent of the set of constraints. It is the essence of the labelling
procedure for graph colouring in [18] and of the set-partition enumeration pro-
cedure in [8]. This procedure, which eliminates all symmetric subtrees caused by
the value symmetries for fully value-interchangeable CSPs, is formalised in Fig-
ure 3 as procedure fValIlabel. It uses a function Failure(P, θ), which returns
false if at least one extension of the partial assignment θ is a solution to the
CSP P = 〈V,D,C〉. In other words, it satisfies the property

Failure(P, θ) ⇒ ∀β ∈ Comp(θ,P) : ¬C(β).

We establish the correctness of fValIlabel:

Theorem 4. Procedure fValIlabel eliminates all symmetric subtrees caused
by the value symmetries of a fully value-interchangeable CSP with a constant
overhead with respect to both time and space at every node explored, i.e., it
never extends any member of the closure of any nogood generated during search.

Proof. See the proof of Theorem 5 in [13].

Other search strategies, e.g., limited-discrepancy search, can also be adapted
to remove all the value symmetries of fully value-interchangeable CSPs with a
constant overhead with respect to both time and space at every node explored.

Experiments establishing speed-ups of several orders of magnitude with this
known labelling procedure have been reported elsewhere, e.g., in [18, 32, 31].
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bool fValIlabel(P) {
return fValIlabelA(P,ǫ);

}
bool fValIlabelA(〈V,D,C〉,θ) {

if scope(θ) = V then
return C(θ);

select v in V \ scope(θ);
A := image(θ);
if A 6= D then

select f in D \A; A := A ∪ {f};
forall(d ∈ A)

θ′ := θ & v = d;

if ¬Failure(〈V,D,C〉, θ′) then
if fValIlabelA(〈V,D,C〉,θ′) then

return true;
return false;

}

Fig. 3. A labelling procedure for fully value-interchangeable CSPs

5.2 Piecewise Value-Interchangeable CSPs

We now present a generalisation for piecewise value-interchangeable CSPs of the
previous results.

Definition 16 (Piecewise Value-Interchangeable CSP). A CSP P = 〈V,
∑

ℓ Dℓ, C〉
is a piecewise value-interchangeable CSP if, for each solution σ ∈ Sol(P) and
each piecewise bijection b over

∑

ℓ Dℓ, we have b ◦ σ ∈ Sol(P).

Example 7. For scene allocation (see Example 1), we can imagine a version of
the problem where the days are divided into morning and afternoon sessions.
The actors probably have strong preferences (and thus different fees for these
sessions), but the day of the session may still not matter.

Definition 17 (Closure of a Nogood). Let α be a nogood for a piecewise
value-interchangeable CSP P = 〈V,

∑

ℓ Dℓ, C〉. The closure of α for P, denoted
by Closure(α,P), is the set {b ◦ α | b is a piecewise bijection over

∑

ℓ Dℓ}.

We now define abstract nogoods for piecewise value-interchangeable CSPs.
The key intuition is to separate the values from each Dℓ.

Definition 18 (Abstract Nogood). Let α be a nogood for a piecewise value-
interchangeable CSP P = 〈V,D,C〉, where D =

∑

ℓ≤s Dℓ. Let image(α) =

{d11, . . . , d
1
s1
, . . . , ds1, . . . , d

s
ss
}, where dℓi ∈ Dℓ, and let vrℓ

i
∈ α−1(dℓi), for 1 ≤

i ≤ sℓ and 1 ≤ ℓ ≤ s. The abstract nogood of α with respect to P, denoted by
Anogood(α,P), is the set of all functions γ : scope(α) →

∑

ℓ Dℓ satisfying the
condition

∀i ∈ 1 . . . sℓ : allequal(γ(vj) | vj ∈ α−1(dℓi)) &
∀i ∈ 1 . . . sℓ : ∀vj ∈ α−1(dℓi) : vj ∈ Dℓ & alldiff (γ(vrℓ

1
), . . . , γ(vrℓsℓ

))

for 1 ≤ ℓ ≤ s.
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bool pValIlabel(P) {
return pValIlabelA(P,ǫ);

}
bool pValIlabelA(〈V,

∑
ℓ≤s

Dℓ, C〉,θ) {

if scope(θ) = V then
return C(θ);

select v in V \ scope(θ);
forall(ℓ ∈ 1 . . . s)

Aℓ := image(θ) ∩Dℓ;

forall(ℓ ∈ 1 . . . s)
if Aℓ 6= Dℓ then

select f in Dℓ \Aℓ; Aℓ := Aℓ ∪ {f};
forall(d ∈

⋃
ℓ
Aℓ)

θ′ := θ & v = d;

if ¬Failure(〈V,
∑

ℓ≤s
Dℓ, C〉, θ′) then

if pValIlabelA(〈V,
∑

ℓ≤s
Dℓ, C〉, θ′) then

return true;
return false;

}

Fig. 4. A labelling procedure for piecewise value-interchangeable CSPs

Figure 4 depicts the labelling procedure pValIlabel for piecewise value-
interchangeable CSPs. It generalises fValIlabel of Figure 3 by considering the
already assigned values in the sets Dℓ, as well as one new value (if any) from
each set: the procedure fValIlabel is obtained when the partition of D has
only one part (that is, when s = 1). Its correctness proof is similar to the one of
Theorem 4.

Theorem 5. Procedure pValIlabel eliminates all symmetric subtrees caused by
the value symmetries of a piecewise value-interchangeable CSP with a constant
overhead with respect to both time and space at every node explored.

Experiments establishing significant speed-ups have been reported elsewhere,
e.g., for partitioned graph colouring in [32].

5.3 Fully Value-Interchangeable Set-CSPs

We now show that symmetry breaking for fully value-interchangeable set-CSPs
is tractable. Given a finite set S, we denote by 2S the set of subsets of S.

Definition 19 (Set Bijection). A bijection b : 2S → 2S is a set bijection over
2S if b(T ) = {b′(ei) | ei ∈ T} for T ∈ 2S, where b′ : S → S is a bijection. We
say that b is induced by b′.

Definition 20 (Fully Value-Interchangeable Set-CSP). A set-CSP P =
〈V, 2D, C〉 is a fully value-interchangeable set-CSP if, for each solution σ ∈
Sol(P) and each set bijection b over 2D, we have b ◦ σ ∈ Sol(P).
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To get an impression where such problems can be of interest, consider the
following example.

Example 8. Let V be any set of v elements, called varieties. A balanced incom-
plete block design (BIBD) [6] is a multi-set of b subsets of V , called blocks, each
of size k (constraint C1), such that each pair of distinct varieties occurs together
in exactly λ blocks (constraint C2), with 2 ≤ k < v. Implied constraints are
that each variety occurs in the same number of blocks (constraint C3), namely
r = λ(v−1)/(k−1), as well as that bk = vr and λ < r. A BIBD is parametrised by
a 5-tuple 〈v, b, r, k, λ〉 of parameters, not all of which are independent. Originally
intended for the design of statistical experiments, BIBDs also have applications
in cryptography and elsewhere. Note that the varieties and the blocks are fully
interchangeable. Finding a BIBD means finding a fixed number of same-size sub-
sets of a fully interchangeable set: either find b subsets of size k of the set V , or,
dually, find v subsets of size r of the set {1, . . . , b}, subject to the constraint C2.

Definition 21 (Closure of a Nogood). Let α be a nogood for a fully in-
terchangeable set-CSP P = 〈V, 2D, C〉. The closure of α for P, denoted by
Closure(α,P), is the set {b ◦ α | b is a set bijection over 2D}.

Abstract Nogoods. We now define abstract nogoods for fully value-interchangeable
set-CSPs, first showing the intuition using Example 8. We take the first men-
tioned modelling approach (namely finding v subsets of size r of the set {1, . . . , b})
and, for simplicity, only tackle the full interchangeability of the blocks. We will
come back to the full interchangeability of the varieties just after Theorem 6.

Consider the 〈6, 10, 5, 3, 2〉 BIBD (which has one solution modulo all sym-
metries): we want to find v = 6 subsets vi of size r = 5 of the universe
D = {1, . . . , 10(= b)}, each giving the blocks to which variety i of V belongs,
such that each block is mentioned in k = 3 subsets and any two subsets have an
intersection of size λ = 2. Consider the (consistent) partial assignment:

α(v1) = {1, 2, 3, 4, 5} & α(v2) = {1, 2, 6, 7, 8} & α(v3) = {1, 3, 6, 9, 10}

and assume that α becomes a nogood on backtracking. Note that the values
4 and 5 are indistinguishable because they are the only ones to appear only
in the first set. Similarly, the value 6 is not indistinguishable from any other
value because it is the only value that appears only in the second and third sets.
Formally:

Definition 22 (Indistinguishable Values, Cluster). The values x and y
are indistinguishable under a partial assignment θ, which is denoted by x ∼ y,
if x ∈ θ(v) ↔ y ∈ θ(v) for all v ∈ scope(θ). The clusters of values that always
appear together, and are thus indistinguishable, are the equivalence classes of ∼
in D under α.

In our example, there are seven clusters:

{1}, {2}, {3}, {4, 5}, {6}, {7, 8}, {9, 10}. (1)
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Definition 23 (Signature of a Cluster). The signature of a cluster c relative
to a partial assignment θ, denoted by sig(c, θ), is the list of indices i of the
variables vi, which are given a set value by θ, of which c is a subset: sig(c, θ) =
{i | vi ∈ scope(θ) & c ⊆ θ(vi)}.

For instance, sig({3}, α) = [1, 3] because {3} is a subset of both α(v1) and
α(v3). The signatures of the seven clusters in (1) relative to α respectively are:

[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3]. (2)

We get the following condition for the abstract nogood of α:

partition(D, [(γ(v1) ∩ γ(v2) ∩ γ(v3)), (γ(v1) ∩ γ(v2)) \ γ(v3),
(γ(v1) ∩ γ(v3)) \ γ(v2), γ(v1) \ (γ(v2) ∪ γ(v3)), (γ(v2) ∩ γ(v3)) \ γ(v1),

γ(v2) \ (γ(v1) ∪ γ(v3)), γ(v3) \ (γ(v1) ∪ γ(v2))], [1, 1, 1, 2, 1, 2, 2])

where the order of the clusters is the same as in (1), and where partition(S, P,N)
holds if the elements Pi of the set list P are non-empty, mutually disjoint, union
up to the set S, and haveNi elements respectively, with theNi being the elements
of the integer listN . Note that the cluster size conditions are necessary in general,
but actually implied in this example.7 If there had been values of D that do not
appear in any of the set values for the variables in the scope of α, then their
cluster, which would have the empty list as signature, would have been equal to
D \ (γ(v1)∪γ(v2)∪γ(v3)), as D is the intersection of an empty collection of sets
drawn from D.

We first show that the closure of a nogood for a fully value-interchangeable
set-CSP can be characterised compactly and that membership to the closure of
a nogood can be tested in polynomial time in this case.

Definition 24 (Abstract Nogood). Let α be a nogood for a fully value-
interchangeable set-CSP P = 〈V, 2D, C〉. Let I be the set of indices of the vari-
ables of V that are in scope(α). Let E be the list of equivalence classes of ∼
in the universe D under α, and let N be the list of their respective sizes. The
abstract nogood of α with respect to P, denoted by Anogood(α,P), is the set of
all functions γ : scope(α) → 2D satisfying the condition

partition
(

D,
[

⋂

j∈sig(e,α) γ(vj) \
⋃

j∈I\sig(e,α) γ(vj) | e ∈ E
]

, N
)

.

An abstract nogood precisely captures the closure of its nogood [13, Lem-
mas 8 and 9].

Maintaining Nogoods. Let us now consider depth-first search, for instance,
and see what happens when the assignment to v3 is undone, making α a nogood.

7 Consider a domain of five elements and a partial assignment for two set variables,
S1 and S2, of size 3 that have one or two elements in common, that is S1 = e1 ∪ e2
and S2 = e1 ∪ e3 where e1, e2, e3 are disjoint. Then e1 can be of size 1 or 2.
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bool fValIsetLabel(〈V, 2D, C〉) {
return fValIsetLabelA(〈V, 2D, C〉,ǫ,[D]);

}
bool fValIsetLabelA(〈V, 2D, C〉,θ,E) {

if scope(θ) = V then
return C(θ);

select v in V \ scope(θ);
(b, S) := fValIsetLabelB(〈V, 2D, C〉,θ,v,∅,E);

if b = true then
θ′ := θ & v = S;

E′ := UPDATE(E,S);

return fValIsetLabelA(〈V, 2D, C〉,θ′,E′);

return false;
}
(bool, set) fValIsetLabelB(〈V, 2D, C〉,θ,v,S,[e1, e2, . . . , em]) {

if |S| = n then
return (true, S);

S′ := S ∪ {head(e1)};
if ¬Failure ′(〈V, 2D, C〉, θ, v, S′) then

(b, S′′) := fValIsetLabelB(〈V, 2D, C〉,θ,v,S′,[tail(e1), e2, . . . , em]);
if b = true then

return (true, S′′);
(b, S′′) := fValIsetLabelB(〈V, 2D, C〉,θ,v,S,[e2, . . . , em]);
if b = true then

return (true, S′′);
return false;

}

Fig. 5. A labelling procedure for fully value-interchangeable set-CSPs

By the definition of clusters, the search procedure should treat the elements of a
cluster as indistinguishable. Then, imposing an ordering on the elements of each
cluster, the idea is to select the ith element of a cluster only when the (i − 1)st

element of that cluster has already been selected as a member for the next subset
variable.

Figure 5 depicts the labelling procedure fValIsetLabel for fully value-
interchangeable set-CSPs. It uses a function Failure ′(P, θ, v, S), which returns
false if at least one extension of the partial assignment θ & v = S ∪T for some
T ⊆ D is a solution to P = 〈V, 2D, C〉. In other words, it satisfies the property

Failure ′(〈V, 2D, C〉, θ, v, S) ⇒
∀T ⊆ D : |S ∪ T | = n : ∀β ∈ Comp(θ & v = S ∪ T, 〈V, 2D, C〉) : ¬C(β).

Procedure fValIsetLabel also uses a procedure UPDATE(E,S), which returns
the equivalence classes (clusters) of T ∪ S, with those of T being E.

Theorem 6. Procedure fValIsetLabel eliminates all symmetric subtrees caused
by the value symmetries of a fully value-interchangeable set-CSP with a constant
overhead with respect to both time and space at every node explored.
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Proof. See the proof of Theorem 7 in [13].

Procedure fValIsetLabel performs what is called canonical labelling in
[10]. There, it is also shown that canonically labelling along one dimension of
a matrix of variables amounts to lexicographically ordering (a flattening of)
the other dimensions of that matrix. Experimental results have been reported
elsewhere, e.g., in [10]. We conjecture that Theorem 6 generalises to piecewise
value-interchangeable set-CSPs.

Let us now return to the full interchangeability of the v varieties. Breaking
these extra v! symmetries at the same time is hard, as they compose with the
b! block symmetries into v! · b! symmetries. Lexicographically ordering both the
rows and the columns of the mentioned v × b matrix of zero/one variables does
not break all these symmetries, but gives reasonable performance due to the
constraint C2 [11]. This leads to the issue whether a suitable abstract nogood
can be formulated and a tractable labelling procedure be derived. In this case,
it is not sufficient to store only the nogoods at the frontier nodes in the search
tree; nogoods have to be stored from higher up in the search tree, as in SBDS
[16] and SBDD [9]. Further, testing if a partial assignment extends a nogood
is NP-complete. To see this, consider a BIBD where the blocks are of size 2; a
nogood can then be thought of as a graph, each block specifying an edge. Then
testing if a partial assignment is in the closure of the nogood is equivalent to
subgraph isomorphism, which is NP-complete. A formal proof of this result will
be given in the next section.

6 Limits of Efficient Symmetry Breaking

Until now, we have dealt with cases where symmetric subtrees could be elim-
inated efficiently. Particularly, we have shown how symmetric subtrees caused
by piecewise variable and value symmetries can be eliminated efficiently, and we
have given extremely low-overhead algorithms for some cases of value symmetry
only. Unfortunately, as we will see in this section, there are limits to efficient
symmetry breaking. We consider set-CSPs with interchangeable variables and
values:

Definition 25 (Piecewise Interchangeable Set-CSP). A set-CSP P = 〈
∑

k Vk, 2
∑

ℓ Dℓ , C〉
is a piecewise interchangeable set-CSP if, for each solution σ ∈ Sol(P), each
piecewise bijection a over

∑

k Vk, and each piecewise set bijection b over 2
∑

ℓ Dℓ ,
we have b ◦ σ ◦ a ∈ Sol(P).

When trying to break the symmetry in piecewise interchangeable set-CSPs
by means of SBDD, we need to solve the following dominance detection problem
efficiently.

Definition 26 (Dominating a Set Assignment). Let P = 〈
∑

k Vk, 2
∑

ℓ Dℓ , C〉
be a piecewise interchangeable set-CSP. Set assignment α dominates set assign-
ment β if and only if there exist a piecewise bijection a over

∑

k V k and a
piecewise set bijection b over 2

∑
ℓ Dℓ such that for every v ∈ scope(α) we have

β(a(v)) = b(α(v)).
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We will show that solving this problem is NP-hard, thus proving that SBDD
is not able to break piecewise symmetry in set-CSPs efficiently. More precisely, we
reduce the corresponding dominance detection problem to subgraph-isomorphism.
To achieve the desired reduction, we construct a set assignment from a graph in
the following way:

Definition 27 (Set Assignment αG). Given an undirected graph G = (V,E)
with c := |V |, we create a set of interchangeable values N := {n1, . . . , nc} and a
set of interchangeable variables V := {pij | {i, j} ∈ E}. Then, the set assignment
αG is defined as αG :=

∧

{i,j}∈E(pij = {ni, nj}).

Theorem 7. Given two undirected graphs G1 = (V,E1) and G2 = (V,E2), we
have that G1 is sub-isomorphic to G2 if and only if αG1

dominates αG2
when all

variables and values are considered to be interchangeable.

Proof. We start by showing that αG1
dominates αG2

if G1 is sub-isomorphic to
G2. Let σ : V → V be bijective such that {i, j} ∈ E1 implies {σ(i), σ(j)} ∈
E2. Then, for all pij ∈ scope(αG1

) with αG1
(pij) = {ni, nj} we have that

αG2
(pσ(i),σ(j)) = {nσ(i), nσ(j)}. Therefore, αG1

dominates αG2
.

Now, let us assume that αG1
dominates αG2

. Then, there exist functions
a : E1 → E2 and b : V → V such that for all pij ∈ scope(αG1

) with αG1
(pij) =

{ni, nj} we have that αG2
(pa({i,j})) = {nb(i), nb(j)}. By construction of αG2

, this
is equivalent to {nb(i), nb(j)} ∈ E for all {i, j} ∈ E. Thus, b is a sub-isomorphism
between G1 and G2. ⊓⊔

With Theorem 7, it is possible to prove the following corollary:

Corollary 1. The dominance detection problem for piecewise interchangeable
set-CSPs is NP-hard.

Proof. We reduce the problem to subgraph-isomorphism. In order to apply The-
orem 7, we need to ensure that both graphs operate over the same set of nodes.
When the sets of nodes of the given graphs differ, it is possible to see that G1

cannot be sub-isomorphic to G2 if G1 contains more nodes than G2. When G1

actually contains fewer nodes than G2, it is possible to see that we can add iso-
lated nodes to G1 without affecting subgraph-isomorphism. Then, we have that
both graphs contain the same number of nodes, and, by relabelling the nodes
in both graphs, we may assume that both graphs operate on the same set of
nodes. ⊓⊔

Note that, despite this negative result, in some important special cases the
dominance detection problem for piecewise interchangeable set-CSPs is still
tractable. For example, when the set variables cannot take overlapping sets as
values, the algorithm developed in Section 3 can be adapted (by exchanging the
roles of values and variables) to break all the symmetries efficiently. Hence the
following corollary of Theorem 1:

Corollary 2. The dominance detection problem for piecewise interchangeable
set-CSPs is tractable for non-overlapping sets.
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Note that the dominance detection problem as we consider it here regards
arbitrary partial assignments. This implies that, when the detection problem is
tractable, we can break symmetries efficiently. However, the situation changes
when we achieve an intractability result like the previous one.

Within methods like SBDD, the partial assignments that need to be com-
pared can only differ in a rather specific fashion. We can also show that these
more specific dominance detection problems are NP-hard as well, therefore prov-
ing that SBDD in its general form is incapable of breaking symmetries in piece-
wise interchangeable set-CSPs efficiently. The specific dominance detection prob-
lems that SBDD considers differ from the general dominance detection problem
by the fact that the partial assignments α and β that are compared are not
arbitrary. We know that there exists exactly one assignment v = d such that
α = γ & (v = d), while β = γ & δ, and v ∈ Dom(δ) for some partial
assignments γ and δ.

We prove that dominance detection even for this limited problem is still NP-
hard by using the same idea as before, but this time we only consider complete
subgraphs, i.e., we reduce to the clique problem rather than to arbitrary sub-
graph isomorphism. Given a graph G and a value k, the first assignment is based
on a complete graph of size k and it is defined in accordance with Definition 27.
The second assignment is based on G with an additional, disconnected compo-
nent that is a complete graph of size k with just one edge missing. With this
setting, the first and second assignments have the same structural relationship
as assignments that need to be compared within SBDD. Moreover, the given
graph contains a clique of size k if and only if the first assignment dominates
the second. Consequently, for piecewise interchangeable set-CSPs, SBDD is not
capable of breaking symmetries efficiently.

As a final note on this negative result, we would like to stress that this does
not imply that symmetry breaking is NP-hard in general since we do not consider
other methods here like remodelling or the adaptation of the branching scheme.

7 Generalisations: Wreath Interchangeability

So far, we have focused on piecewise symmetry only. In this section, we gener-
alise some of our tractability results to the more complex class of CSPs where
each variable is assigned a pair of values (d1, d2) from a domain D1 × D2. All
values in D1 are interchangeable and, for a fixed value in D1, all values in
D2 are interchangeable as well. These problems are here called wreath value-
interchangeable CSPs, because the symmetry group corresponds to a wreath
product of groups [4]. Such problems arise naturally in a variety of applications,
e.g., in resource allocation and scheduling.

Example 9. Consider the problem of scheduling a meeting where different groups
must meet some day of the week in some room, subject to constraints. The days
are fully interchangeable and, on a given day, the rooms are fully interchangeable.
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7.1 Wreath Value-Interchangeable CSPs

We now formally define the class of wreath value-interchangeable CSPs. Our
definitions and results only consider two sets of fully interchangeable values, for
simplicity. They can be generalised to an arbitrary fixed number of sets, and to
sets of piecewise interchangeable values.

Definition 28 (Wreath Bijection). Let S = S1 × S2 be a Cartesian prod-
uct. A bijection b : S → S is a wreath bijection over S1 × S2 if b(〈e1, e2〉) =
〈b1(e1), b

e1
2 (e2)〉, where b1 : S1 → S1 is a bijection and each be12 : S2 → S2 (for

e1 ∈ S1) is a bijection.

Definition 29 (Wreath Value-Interchangeable CSP). A CSP P = 〈V,D1×
D2, C〉 is a wreath value-interchangeable CSP if, for each solution σ ∈ Sol(P)
and each wreath bijection b over D1 ×D2, we have b ◦ σ ∈ Sol(P).

Thus, in a wreath value-interchangeable CSP, a value in the domain D1×D2

is assigned to each variable, where the values in D1 are fully interchangeable,
and, for a fixed value in D1, the values in D2 are fully interchangeable as well.

We now propose a highly efficient symmetry breaking algorithm for wreath
value-interchangeable CSPs.

We use the following notations. If d = (d1, d2) is a pair, then d[1] = d1 and
d[2] = d2. If T is a set of tuples, then T [i] denotes the set {d[i] | d ∈ T} and
filter(T, i, di) denotes the set {d | d ∈ T & d[i] = di}. If α : D1×D2 → D1×D2

is an assignment, then α−1(d1, D2) denotes the set {α−1(d1, d2) | d2 ∈ D2}.

Definition 30 (Closure of a Nogood). Let α be a nogood for a wreath value-
interchangeable CSP P = 〈V,D1 ×D2, C〉. The closure of α for P, denoted by
Closure(α,P), is the set {b ◦ α | b is a wreath bijection over D1 ×D2}.

We now define the relevant abstract nogoods.

Definition 31 (Abstract Nogood). Let α be a nogood for a wreath value-
interchangeable CSP P = 〈V,D1 × D2, C〉. Let image(α)[1] = {d1, . . . , dk}, let
filter(image(α), 1, di) = {di1, . . . , d

i
ℓi
}, let vri ∈ α−1(di, D2), for 1 ≤ i ≤ k, and

let vri
j
∈ α−1(di, dj), for 1 ≤ i ≤ k and 1 ≤ j ≤ ℓi. The abstract nogood

of α with respect to P, denoted by Anogood(α,P), is the set of all functions
γ : scope(α) → D1 ×D2 satisfying the condition

∀i ∈ 1 . . . k : allequal(γ(vj)[1] | vj ∈ α−1(di, D2)) &
alldiff (γ(vr1)[1], . . . , γ(vrk)[1]) &

∀i ∈ 1 . . . ℓ1 : allequal(γ(vj)[2] | vj ∈ α−1(d1, d
1
i )) &

alldiff (γ(vr1
1
)[1], . . . , γ(vr1

ℓ1

)[1]) &

. . .
∀i ∈ 1 . . . ℓk : allequal(γ(vj)[2] | vj ∈ α−1(d1, d

k
i )) &

alldiff (γ(vrk
1
)[1], . . . , γ(vrk

ℓk

)[1])

Figure 6 depicts the labelling procedure wValIlabel for wreath value-interchangeable
CSPs. Its correctness proof is similar to the one of Theorem 4.
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bool wValIlabel(P) {
return wValIlabelA(P,ǫ);

}
bool wValIlabelA(〈V,D1 ×D2, C〉,θ) {

if scope(θ) = V then
return C(θ);

select v in V \ scope(θ);
A1 := image(θ)[1];
if A1 6= D1 then

select f in D1 \A1; A1 := A1 ∪ {f};
forall(d1 ∈ A1)

A2 := filter(image(α), 1, d1)[2];
if A2 6= D2 then

select f in D2 \A2; A2 := A2 ∪ {f};
forall(d2 ∈ A2)

θ′ := θ & v = (d1, d2);
if ¬Failure(〈V,D1 ×D2, C〉, θ′) then

if wValIlabelA(〈V,D1 ×D2, C〉,θ′) then
return true;

return false;
}

Fig. 6. A labelling procedure for wreath value-interchangeable CSPs

Theorem 8. Procedure wValIlabel eliminates all symmetric subtrees caused
by the value symmetries of a wreath value-interchangeable CSP with a constant
overhead with respect to both time and space at every node explored.

7.2 Wreath Value-Interchangeable Set-CSPs

Symmetry breaking for wreath value-interchangeable set-CSPs is also tractable.

Definition 32 (Wreath Set Bijection). Let S = S1 × S2 be a Cartesian
product. A bijection b : 2S → 2S is a wreath set bijection over 2S1×S2 if b is
induced by a wreath bijection over S1 × S2.

Definition 33 (Wreath Value-Interchangeable Set-CSP). A set-CSP P =
〈V, 2D1×D2 , C〉 is a wreath value-interchangeable set-CSP if, for each solution
σ ∈ Sol(P) and each wreath set bijection b over 2D1×D2 , we have b◦σ ∈ Sol(P).

Consider the following example.

Example 10. Take the set V = {v1, v2} of set variables over the universe D1 ×
D2, with D1 = {d1, d2} and D2 = {e1, e2, e3}, such that the set-CSP P =
〈V, 2D1×D2 , C〉 is wreath value-interchangeable, the constraint set C being arbi-
trary. Suppose that we have already tried the partial assignment

α1 = (v1 = {(d1, e1), (d1, e2), (d2, e2), (d2, e3)} & v2 = {(d2, e1), (d2, e2)})
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and that now we are about to investigate the partial assignment

α2 = (v1 = {(d1, e1), (d1, e2), (d2, e1), (d2, e2)} & v2 = {(d1, e2), (d1, e3)}).

How can we decide whether α2 is a symmetric variant of α1 or not? One way to do
that is to construct a permutation of D1, as well as corresponding permutations
of D2, so that the sets in α2 are transformed into those of α1.

In order to construct a permutation σ of D1, let us assess whether d1 can
be mapped to itself. If σ(d1) = d1, then v2 = {(d1, e2), (d1, e3)} in α2 cannot
be mapped to v2 = {(d2, e1), (d2, e2)} in α1, no matter how we permute D2.
Algorithmically, we can infer this by checking whether the number of tuples
starting with d1 in α2 is the same as the number of tuples starting with σ(d1) in
α1 for all assigned set variables. For v1, the important tuples in α2 are (d1, e1)
and (d1, e2). That means that there are two such tuples, which matches the
number of respective tuples for v1 in α1, namely (d1, e1) and (d1, e2). For v2, the
respective tuples in α2 are (d1, e2) and (d1, e3), i.e., there are two such tuples.
In α1, on the other hand, there are no tuples starting with σ(d1) = d1 at all,
which shows that d1 cannot be mapped to itself.

Now let us investigate whether d1 can be mapped to d2. First, we check
whether the numbers of tuples match. For v1 we have two tuples starting with
d1 in α2, and in α1 we have two tuples starting with d2. Moreover, for v2 we
have two tuples starting with d1 in α2, and also two tuples starting with d2 in
α1. Therefore, the initial check on setting σ(d1) = d2 is inconclusive. To check
fully whether we can construct a permutation σ of D1 with σ(d1) = d2, we need
to find out whether there exists a permutation of D2 such that the respective
tuple sets map exactly, and not just in number. That is, we need to construct a
permutation τ of D2 such that, with σ(d1) = d2, we have

{(σ(d1), τ(e1)), (σ(d1), τ(e2))} = {(d2, e2), (d2, e3)} (3)

and
{(σ(d1), τ(e2)), (σ(d1), τ(e3))} = {(d2, e1), (d2, e2)}, (4)

or we need to show that no such permutation exists. The equations above pose
the following constraints on the permutation τ that we are trying to construct:
τ(e1) ∈ {e2, e3}, τ(e2) ∈ {e2, e3} ∩ {e1, e2}, and τ(e3) ∈ {e1, e2}.

Fortunately, constructing τ or proving that no such permutation exists can
be done by solving a maximum matching problem in a bipartite graph. The node
set N is defined as the union of the sets N1 := {e1, e2, e3} and N2 := {e′1, e

′
2, e

′
3},

where the e′i are copies of the ei. We define the edge set E in accordance with
the constraints as given before, i.e., we add an edge (ei, e

′
j) ∈ N1 × N2 to E

if and only if τ(ei) = ej is allowed. Then, a perfect matching in G = (N,E)
exists if and only if there exists a permutation τ that satisfies equations (3)
and (4). As we can see in Figure 7(a), a maximum matching, and consequently
a permutation τ , exists that shows that we can potentially set σ(d1) = d2.

We continue to check whether setting σ(d2) = d1 and σ(d2) = d2 are possible.
We find that for both these mappings we can construct a corresponding legal
permutation τ of D2.
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Fig. 7. Part (a) gives the bipartite graph constructed to assess whether d1 can be
mapped to d2. Part (b) shows the bipartite graph constructed to find a feasible per-
mutation of D1 or to show that none exists.

Now, equipped with that knowledge, we can try at last to construct σ where
we must ensure that σ(d1) ∈ {d2} and σ(d2) ∈ {d1, d2}. Following the same idea
as before, we check whether such a permutation exists by solving a maximum
matching problem in a bipartite graph: see Figure 7(b). Since a perfect matching
exists, we have a proof that indeed assignment α2 is symmetric to α1. On the
other hand, the construction of σ could only have failed if no permutation of D1

and corresponding permutations of D2 existed.

Generally, we state:

Theorem 9. All symmetric subtrees caused by the value symmetries of a wreath
value-interchangeable set-CSP can be eliminated with a polynomial time overhead
at every node explored.

Proof. As in all pure cases of value symmetry, we only need to check search
nodes against their previously expanded siblings. We show how this dominance
check can be performed by abstracting from the concrete example above. For all
potential mappings σ(d) = e, and for all set variables vi that were assigned values
in α1, we first check whether the number of tuples in the set α1(vi) starting with
e matches the number of tuples in the set α2(vi) starting with d. If that is not
the case, we note that setting σ(d) = e is not feasible. Otherwise, we set up
a bipartite graph Gd,e = (Nd,e, Ed,e) where Nd,e consists of all possible second
tuple entries f and their copies f ′. An edge (f, g′) is an element of Ed,e if and only
if, for all set variables vi that were assigned values in α1, either (d, f) /∈ α2(vi)
or (d, f) ∈ α2(vi) & (e, g) ∈ α1(vi). We note σ(d) = e as feasible if and only
if there exists a perfect matching in Gd,e. Finally, we set up a bipartite graph
G = (N,E) where N consists of all possible first tuple entries d and their copies
d′. An edge (d, e′) is an element of E if and only if σ(d) = e is feasible. Then,
we report α2 as dominated by α1 if and only if there exists a perfect matching
in G.

This method either constructs permutations that prove the dominance of
α1 or shows that no such permutation exists. When p denotes the number of
possible first tuple entries and q the number of possible second tuple entries, our
algorithm can be implemented to run in O(p2q2.5) time. ⊓⊔
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Note that the dominance checker that we outlined in the proof above can be
generalised for tuples with k entries. However, the run-time is then exponential
in k. We leave open whether an efficient labelling algorithm can be formulated
to break this type of value symmetry. The point here was to show that wreath
value symmetry allows tractable symmetry breaking for set-CSPs.

Also note that this tractability results subsumes the special case discussed
in Section 5.3, where a very efficient symmetry-breaking method was given for
fully value-interchangeable set-CSPs.

7.3 The Grapes of Wreath:8 Wreath Variable-Interchangeable
(Set-)CSPs

The previous ideas transfer to wreath variable-interchangeable CSPs, which were
not considered in [32, 27]. A variable set V = V1×V2 is a two-dimensional matrix
of variables, with index sets V1 for the rows and V2 for the columns. Wreath
variable interchangeability in such a matrix means that the rows are piecewise
interchangeable and, for a given row index in V1, the row variables with column
indices in V2 are piecewise interchangeable as well. Such problems also arise
naturally in a variety of applications.

Example 11. Consider Steiner triple systems, where there is a set B of 3-element
subsets, called triples, of a set X of v ≥ 3 elements, such that every pair of

distinct elements of X appears in exactly one triple of B. If we use a v(v−1)
6 -

by-3 matrix of scalar variables in X to represent the triples, then the triples
(rows) are fully interchangeable and, in a given triple, the elements are fully
interchangeable. (Note that the values in X are also fully interchangeable.)

Definition 34 (Wreath Variable-Interchangeable CSP). A CSP P = 〈V1×
V2, D,C〉 is a wreath variable-interchangeable CSP if, for each solution α ∈
Sol(P) and each wreath bijection σ over V1 × V2, we have α ◦ σ ∈ Sol(P).

Let us start from just wreath variable interchangeability, and it then does
not matter whether it is a scalar CSP or a set-CSP.

Theorem 10. The dominance detection problem for wreath variable-interchangeable
(set-)CSPs is tractable.

Proof. A wreath variable-interchangeable CSP P = 〈V1 × V2, D,C〉 can be re-
formulated as the piecewise variable-interchangeable set-CSP

P ′ = 〈V1, 2
D, C ′ ∪ {card(i) = card(V2) | i ∈ V1}〉

whose set variables are all constrained to be |V2|-element sub-multisets of D,
and whose constraints C ′ are a reformulation of C for multiset variables. In-
deed, the order of the elements in a (multi)set is irrelevant, and this effectively
models the fact that for a given row index i ∈ V1, the variables (V1 × V2)[i, j]

8 With apologies to John Steinbeck, author of The Grapes of Wrath, 1939.
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are piecewise interchangeable for all the column indices j ∈ V2. Since it is al-
ready known that all symmetric subtrees caused by the variable symmetries
of a piecewise interchangeable CSP can be eliminated with a polynomial-time
overhead at every node explored (see Theorem 1), it is also so for piecewise
variable-interchangeable set-CSPs, where the piecewise value interchangeability
is dropped (with no negative impact on the tractability) and where set vari-
ables replace the scalar variables. Indeed, a set variable that takes a subset of
a universe U of non-interchangeable values can be seen as a collection of scalar
variables that take (scalar) values from U . (In other words, set variables only
complicate matters when the universe has interchangeable values.) The stated re-
sult thus follows from the reformulation. The argument goes similarly for wreath
variable-interchangeable set-CSPs. ⊓⊔

Even adding only full value interchangeability, we unfortunately lose the
tractability, at least for dynamic symmetry-breaking approaches based on domi-
nance detection. The following is our first intractability result for a class of scalar
CSPs.

Theorem 11. The dominance detection problem for fully value-interchangeable
and wreath variable-interchangeable CSPs is NP-hard. Hence the dominance
detection problem is NP-hard also for fully value-interchangeable and wreath
variable-interchangeable set-CSPs, for piecewise value-interchangeable and wreath
variable-interchangeable (set-)CSPs, and for wreath value-interchangeable and
wreath variable-interchangeable (set-)CSPs.

Proof. Consider a fully value-interchangeable and wreath variable-interchangeable
CSP. Temporarily dropping the full value interchangeability, we get a wreath
variable-interchangeable CSP, which we can reformulate as a fully variable-
interchangeable set-CSP, like at the beginning of the proof of Theorem 10,
without losing the tractability of dominance detection. Bringing back the full
value interchangeability, we get a fully interchangeable set-CSP. Since the dom-
inance detection problem for fully interchangeable set-CSPs is NP-hard (see
Corollary 1), the stated results for scalar CSPs follow. The stated results on
set-CSPs follow from the intractability on scalar CSPs because scalar variables
can replace set variables that are all constrained to take singleton values. ⊓⊔

Example 12. The matrix model of Example 11 for Steiner triple systems is a
fully value-interchangeable and wreath variable-interchangeable CSP. Hence the
dominance detection problem is NP-hard for this model. Note that there are
v(v−1)

6 !3!v symmetries in it, that is already 1, 410, 877, 440 symmetries for the
7-by-3 variable matrix for v = 7.

8 Conclusion

We have theoretically studied several classes of CSPs for which symmetry break-
ing is tractable, in the sense that all symmetric subtrees caused by the symme-
tries of CSPs in those classes can be eliminated with a polynomial time overhead
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variable interchangeability
none full piecewise wreath

va
lu
e

in
te
rc
h
a
n
g
ea
b
il
it
y none

P (Thm 1) P (Thm 1) P (Thm 10) scalar CSP
P (Thm 1) P (Thm 1) P (Thm 10) set-CSP

full
P (Thm 4) P (Thm 1) P (Thm 1) NP (Thm 11) scalar CSP
P (Thm 6) NP (Cor. 1) NP (Cor. 1) NP (Thm 11) set-CSP

piecewise
P (Thm 5) P (Thm 1) P (Thm 1) NP (Thm 11) scalar CSP
P (Thm 9) NP (Cor. 1) NP (Cor. 1) NP (Thm 11) set-CSP

wreath
P (Thm 8) P [?, Thm 4] P [?, Thm 4] NP (Thm 11) scalar CSP
P (Thm 9) NP [?, Cor. 1] NP [?, Cor. 1] NP (Thm 11) set-CSP

Table 1. Tractability of symmetry breaking and dominance detection

at every node explored. These CSP classes, which encompass many practical
problems, feature various forms of value or variable interchangeability and al-
low symmetry breaking to be performed with a polynomial overhead (which is
often even a constant overhead) with respect to both time and space at every
node explored, using dedicated search procedures. Unfortunately, efficient sym-
metry breaking by such dominance-detection schemes has its limits, as we have
identified some CSP classes where dominance detection is intractable.

Table 1 summarises our main results, where “P (Thm i)” means that break-
ing all the symmetries mentioned in the corresponding row is feasible with a
polynomial overhead with respect to both time and space at every node ex-
plored for the corresponding (set-)CSP in the column, as proved in Theorem i
or a trivial consequence thereof. However, no specialised labelling procedures are
given for these particular CSP classes in this paper. The negative tractability
results, marked “NP (Thm/Cor. i)” and referring to Theorem/Corollary i, only
concern the NP-hardness of dominance-detection schemes like SBDD; it remains
an open research issue whether other schemes can break those symmetries in
polynomial time.

In [25] it is proved that all value symmetries of a CSP are polynomial-time
tractable; this is proved using group theoretic notions and although the resulting
complexities are the order of a low-degree polynomial they are in general not as
efficient as the specialised algorithms presented in this paper. A key component
in the proofs is the notion of a minimal GE-tree, which is essentially the search
tree that results from a search procedure that eliminates all symmetric subtrees.
All the search procedures in this paper produce GE-trees.

In [12] we have provided a static counterpart of the here considered dynamic
structural symmetry breaking for piecewise interchangeable CSPs, that is we
have exploited the concept of signature to devise a set of symmetry-breaking
constraints that break all the considered symmetries. Other methods for static
symmetry breaking are discussed in [7, 11, 19, 20, 22, 24, 28], for instance.

There are many directions for future research. Of particular interest is the
study of tractable classes of CSPs exhibiting variable symmetries where the vari-
able set has a more complex structure than the partitions studied in this paper.
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In particular, when the variable set is obtained by a Cartesian product over some
index sets, we get what is known as a matrix model. There are many interesting
forms of interchangeability in matrix models, such as the full/piecewise/wreath
interchangeability of matrix slices (rows, columns, . . . ) [11]. For many of these
forms of variable interchangeability, including their compositions with various
forms of value interchangeability, tractability results for symmetry breaking are
still missing and finding effective search procedures is a challenging problem.
Also, as Corollary 2 has shown, negative tractability results call for the identifi-
cation of special cases where symmetry breaking is tractable.
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ECAI 2004, pages 211–215. IOS Press, 2004.

26. M. Sellmann, T. Gellermann, and R. Wright. Cost-based filtering for shorter path
constraints. Constraints, 12(2):207–238, 2007.

27. M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In IJ-

CAI 2005, pages 298–303. Morgan Kaufmann, 2005.
28. I. Shlyakhter. Generating effective symmetry-breaking predicates for search prob-

lems. Electronic Notes in Discrete Mathematics, 9, 2001. SAT 2001.
29. B. M. Smith. Reducing symmetry in a combinatorial design problem. In C. Gervet

and M. Wallace, editors, CP-AI-OR 2001, 2001.
30. B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams. The progressive

party problem: Integer linear programming and constraint programming compared.
Constraints, 1:119–138, 1996.

33



31. P. Van Hentenryck. Constraint and integer programming in OPL. INFORMS

Journal on Computing, 14(4):345–372, 2002.
32. P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Tractable symmetry
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