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Abstract. Thetreeconstraint partitions a directed graph into node-disjointtrees.
In many practical applications that involve such a partition, there exist side con-
straints specifying requirements on tree count, node degrees, or precedences and
incomparabilities within node subsets. We present a generalisation of thetree
constraint that incorporates such side constraints. The key point of our approach
is to take partially into account the strong interactions between the tree partition-
ing problem and all the side constraints, in order to avoid thrashing during search.
We describe filtering rules for this extendedtreeconstraint and evaluate its effec-
tiveness on three applications: the Hamiltonian path problem, the ordered disjoint
paths problem, and the phylogenetic supertree problem.

1 Introduction

Graph partitioning problems are involved in many practicalapplications such as vehi-
cle routing, mission planning, DNA sequencing, or phylogeny. However, in most real
life applications, graph partitioning problems are subjected to various side constraints.
This paper proposes a global constraint for partitioning a given digraph into a set of
node-disjoint trees under side constraints such as the number of trees, the degree of
each node, and a partial order between nodes. For instance, degree constraints can be
used to get tree partitions limited to paths (which are “unary” trees) or binary trees.
Similarly, a partial order between nodes can be used to express a set of precedence
constraints inherent in many tree or path problems [26]. Moreover, a partial order also
expresses a set of incomparability constraints (also knownas dominance constraints [8])
that can be used to force some nodes to belong to distinct treebranches or trees. Exam-
ples of such problems include the construction of a phylogenetic supertree from given
species trees [1, 7, 17, 23, 31], possibly under degree constraints requiring the resulting
tree to be binary or precedence constraints requiring some species to be nested, as well
as digraph partitioning by paths [6, 11, 26], trees [5], or cycles [10].1

⋆ Some of this work was done while a Visiting Faculty Member andErasmus Exchange Teacher
at Sabancı University iṅIstanbul, Turkey, during the academic year 2006/07.

1 Searching for a cycle in a digraph can be modelled as searching for an elementary path if one
of the nodes of the digraph is duplicated.



In [3], we proposed a complete polynomial characterisationof the tree constraint,
which partitions a given digraph into a forest of node-disjoint trees. This paper extends
the originaltreeconstraint with the following useful side constraints:

– Precedence constraints: a nodeu precedesa nodev if there exists a directed path
from u to v.

– Incomparability constraints: two nodesu andv are incomparableif there is no
directed path fromu to v or fromv to u.

– Degree constraintsthat restrict the in-degrees of the nodes in the tree partition.
– Constraints on the number of proper trees, where aproper treeis a tree involving

at least two nodes.

We will show that combining these side constraints is mostlyequivalent to solving an
NP-hard problem. As this is generally the case for heterogeneous combinatorial prob-
lems, a disjoint treatment of each additional restriction is not efficient and leads to
repeatedly discovering the same inconsistencies; this phenomenon is calledthrashing.
Thus, the main contribution of this paper is a set of necessary structural conditions
combining the input graph with the graphs associated with the precedence and incom-
parability constraints. These conditions focus on the strong interaction between the side
constraints (i.e., precedences, incomparabilities, and degrees) in order to get an im-
proved filtering algorithm that reduces thrashing. As a consequence, the corresponding
extendedtreeconstraint can directly handle partitioning problems as varied as (exten-
sions to) the phylogenetic supertree and ordered disjoint paths problems, which were
previously addressed by ad-hoc approaches.

The rest of this paper is then organised as follows. First Section 2 recalls the neces-
sary background in graph theory. Next, Section 3 first recalls the originaltreeconstraint
and then shows how to represent the extended version including additional restrictions.
Then, Section 4 states the theoretical complexity of the extendedtreeconstraint. Sec-
tion 5 details the additional restrictions related to precedence and incomparability con-
straints. For each, necessary conditions for partitioningthe digraphG into trees are pro-
vided, and pruning rules are derived from these necessary conditions. Next, Section 6
shows that managing the interaction between these constraints allows us to improve the
necessary conditions and derive new pruning rules. Section7 concludes the theoretical
part of the paper by a synthetic overview of all theorems and algorithms on the different
aspects of the extendedtreeconstraint. Section 8 then presents our experimental results
with the extendedtree constraint, including the problems of constructing a supertree
of several phylogenetic species trees, possibly under sideconstraints, and constructing
an ordered simple path with mandatory nodes. Finally, Section 9 reviews related work,
discusses future work, and concludes.

2 Background: Graph Theory

Most of the filtering algorithms involved in graph-based constraints are directly depen-
dent on classical notions of graph theory. Thetreeconstraint introduced in [3] perfectly
illustrates this remark, but we can also mention theallDifferent andglobal cardinality
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constraints [27, 28]. Thus, we now introduce the standard notions of graph theory that
will be used throughout this paper.

Definition 1 (Digraph). A directed graph(also calleddigraph) G is a pair (V , E),
whereV is a set of objects, callednodes(or vertices), andE is a binary relation on
V ×V that defines a set of ordered pairs of nodes. The elements ofE are called thearcs
of the digraph.

Definition 2 (Graph). A graphG is a pair (V , E), whereV is a set of objects, called
nodes(or vertices), andE is a binary relation onV × V that defines a set of unordered
pairs of distinct nodes. The elements ofE are called theedgesof the digraph.

A graph can be represented by a digraph in the following way: for any edge(i, j)
of the graph, we have to build two arcs(i, j) and(j, i) in the equivalent digraph. So, in
the rest of this section, definitions are provided in the context of directed graphs.

Definition 3 (Partial digraph). A partial digraphG′ = (V ,S) is a digraph induced by
a digraphG = (V , E) such thatS ⊆ E .

Definition 4 (Source and sink nodes).Given a digraphG = (V , E), a nodej ∈ V
is a sourcenode ofG if for any nodei ∈ V with i 6= j we have that(i, j) /∈ E .
Symmetrically, a nodej ∈ V is a sink node ofG if for any nodek ∈ V with k 6= j we
have that(j, k) /∈ E .

Definition 5 (Elementary Path).Given a digraphG = (V , E), anelementary pathof
lengthq > 0 is a sequence of arcsα = (u1, u2, . . . , uq) of G such that the final node
of each arc in the sequence coincides with the initial node ofthe succeeding arc in the
sequence, and the sequence does not contain the same node twice.

Definition 6 (Elementary Cycle).An elementary cycleis a path that begins and ends
at the same node, and all the other nodes used are different.

In the following, we simply use the terms ‘path’ and ‘cycle’ rather than the terms ‘el-
ementary path’ and ‘elementary cycle’. Next, we provide some operations that can
be applied on digraphs. Given three digraphsG1 = (V1, E1), G2 = (V2, E2), and
G3 = (V3, E3):

– G1 ∪ G2 denotes theunionof G1 andG2, that is the graph(V1 ∪ V2, E1 ∪ E2).
– G1 ∩ G2 denotes theintersectionof G1 andG2, that is the graph(V1 ∪ V2, E1 ∩ E2).
– G1 ⊆ G2 denotes theinclusionof G1 in G2, which holds ifG1 ∪ G2 = G2 and
G1 ∩ G2 = G1.

– G1 \ V2 denotes therestrictionof G1 to the nodes ofV1 \ V2, preciselyG1 \ V2 =
(V1 \ V2, {(i, j) ∈ E1 | i /∈ V2 ∧ j /∈ V2}).

– G1 \ E2 denotes the restriction ofG1 to the arcs ofE1 \ E2, preciselyG1 \ E2 =
(V1, {(i, j) ∈ E1 | (i, j) /∈ E2}).

– TC (G) denotes thetransitive closureof G, that is the graph(V , E ′) such that for
all v, w in V there is an edge(v, w) in E ′ iff there is a non-empty path fromv to w
in G.
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– TR(G) denotes thetransitive reductionof G, that is the smallest graph (under arc
inclusion) such thatTC (G) = TC (TR(G)).

Now, we are in position to define classical structures (or properties) related to digraphs.

Definition 7 (Connected component).Aconnected componentof an undirected graph
G = (V , E) is a set of nodesC ⊆ V such that, for any pair of nodes(u, v) ∈ C, there
exists a path fromu to v, or from v to u, in the graph defined by(C, {(i, j) ∈ E |
i ∈ C ∧ j ∈ C}). For a given nodei, themaximum connected component(under node
inclusion) containing nodei is denoted byCC (i).

Definition 8 (Strongly connected component).A strongly connected componentof a
digraphG = (V , E) is a set of nodesS ⊆ V such that, for any pair of nodes(u, v) ∈
S, there exist a path fromu to v and a path fromv to u in the digraph defined by
(S, {(i, j) ∈ E | i ∈ S ∧ j ∈ S}). For a given nodei, themaximum strongly connected
component(under node inclusion) containing nodei is denoted bySCC (i).

Definition 9 (Sink component).A sink componentS of a digraphG = (V , E) is a
strongly connected component ofG such that no node inG \ S is reachable by a path
from any node inS.

Definition 10 (Reduced digraph).The reduced digraphGr is derived from a given
digraphG by associating to each strongly connected component ofG a vertex ofGr,
and to each arc ofG that connects two different strongly connected componentsan arc
in Gr .

Definition 11 (Dominator [21]). Given two distinct nodesi, j of a digraphG = (V , E)
such that there is at least one path fromi to j, a noded is adominatorof j with respect
to i if and only if there is no path fromi to j in G \ {d}. The set of dominator nodes of
j with respect toi is denoted byDOM 〈G,i〉(j).

Finally, we introduce the notion of tree. In the context of directed graphs, the proper
term that denotes a tree isanti-arborescence, but in the following, we only use the term
tree.

Definition 12 (Tree and Proper Tree).A digraphG = (V , E) is a treeif and only if:

– G is connected (i.e.,G is composed of a single connected component).
– G does not contain any cycles.
– Each node ofG has exactly one successor, except theroot, which is the single sink

node inG.

A proper treeis an tree with at least two nodes [12].

Definition 13 (Forest).A digraphG = (V , E) is a forestif and only if each connected
component ofG is a tree.
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3 Extending the Original tree Constraint

Graph partitioning problems can mostly be reduced to the search of a partial graph
respecting a set of properties, induced by an initial graph that defines the problem. So,
finding a suitable representation of the initial graph and all the properties associated
with the problem has to be done.

In constraint programming, three kinds of approaches to graph problems are gener-
ally proposed. The first one associates to each possible edge(respectively arc) a Boolean
variable such that it is set totrue if and only if the edge (respectively arc) is present in
the digraph. A second representation associates to each node of the digraph an integer
variable2 whose domain represents the set of potential direct successors in the digraph.
Finally, the most recent representation directly deals with graph variables. Such a com-
posite type of variables was proposed in [24, 15]. It combines the representation of each
node by an integer variable and the representation of each arc by a Boolean variable.

This section first recalls the initialtreeconstraint introduced in [3]. Next, it presents
the extendedtreeconstraint, showing how to extend the initial constraint modelling in
order to deal with additional restrictions.

3.1 The Original tree Constraint

The originaltree constraint is modelled by an integer variableNTREE specifying the
number of trees in the partition and by a digraphG = (V , E) in which the node set
V = {v1, . . . , vn} is a set of integer variables and the arc setE gives the domains
dom(vi) = {j | (vi, vj) ∈ E} of these variables, so that they represent the direct
successor relation of the partition. Atree(NTREE,G) constraint specifies that its digraph
G should be a forest ofNTREE trees. Formally:

Definition 14 (Solution of a tree constraint). A ground instanceof a tree(NTREE,G)
constraint is said to be asolutionif and only if:

– The digraphG consists ofNTREE connected components.
– Each connected component ofG has no cycle involving more than one node (no-

tice that each component contains exactly one node that has aself-loop and that
corresponds to the root of that tree).

Given a digraphG containing a set ofpotential roots, where a potential root ofG is
a node that can be the root of a tree in a solution of thetree constraint, the minimum
number of trees (MINTREE) for partitioning the digraphG of a tree constraint is the
number of sink nodes of the reduced digraph ofG, and the maximum number of trees
(MAXTREE) for partitioning the digraphG is the number of potential roots inG. We are
now in position to recall the filtering algorithm of thetree constraint. This algorithm
is the first step of the extended constraint detailed in this paper. WhenNTREE has to
reachMAXTREE, the algorithm enforces, for each potential root, a loop on itself (that
represents the fact that it is a root). In the case whereNTREE has to reachMINTREE, the

2 An integer variableV is a variable ranging over a finite set of integers denoted bydom(V );
min(V ) andmax(V ), respectively, denote the minimum and maximum values ofdom(V ).
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algorithm removes, for each potential root that does not belong to a sink strongly con-
nected componentG, the loop on itself. Finally, for anyNTREE, the main filtering rule
associated with the constraint is based on the detection of dominator nodes of the di-
graph. Then, the filtering algorithm has to detect each nodej of G such that there exists
a nodei for whichj dominates all the potential roots ofG according toi. The infeasible
arcs inG for a treeconstraint are the outgoing arcs(j, k), wherej is a dominator node,
such that there is no path fromi to a potential root ofG using the arc(j, k).

3.2 Modeling the Extendedtree Constraint

In order to extend the originaltree constraint according to the additional restrictions
proposed in the introduction, we have to represent each restriction in the context of
graphs. The restrictions involved in the extended version of the constraint can be clas-
sified in three distinct categories:

– Restrictions related to admissible arcs inG: this is the case for the precedence and
incomparability constraints, which respectively enforcea node to precede another
one in any admissible tree partition, and enforce two nodes to be located on distinct
paths in any admissible tree partition.

– Restrictions related to the accessibility of each node inG: this is the case for the
degree constraints, which restrict the in-degree of each node in any admissible tree
partition.

– Restrictions related to the number of trees allowed to coverG: this is the case for
the constraint on the number of proper trees in any admissible tree partition.

From this classification, the following natural representation of each restriction emerges:
the precedence and incomparability constraints can be modeled by a digraphGprec and
a graphGinc respectively, the degree constraints can be modelled by associating to each
nodei of the given digraphG an integer variableDi representing the in-degree ofi,
and the constraints on the numbers of trees and proper trees can be modeled by integer
variablesNTREE andNPROP respectively. Before upgrading Definition 14 accordingly,
we need to introduce some notions.

Definition 15 (Required digraph and possible digraph). Given an extendedtree
constraint and its digraphG = (V , E):

– An arc (i, j) of G is an R-arc (a required arc) if i has onlyj as successor inG;
otherwise(i, j) is aP-arc(a possible arc).

– A nodei is anR-succif all its outgoing arcs are R-arcs; otherwisei is aP-succ.
– A nodei is anR-predif all its incoming arcs are R-arcs; otherwisei is a P-pred.
– Therequired digraphGreq contains all arcs that must be in the partition. Formally,
Greq = (V , Ereq), whereEreq is the set of all R-arcs inG.

– Thepossible digraphGpos contains all arcs that may be in the partition. Formally,
Gpos = (Vpos , Epos), whereVpos contains all the nodes that are incident to at least
one P-arc, andEpos is the set of all P-arcs inG.

Definition 15 ensures thatGreq andGpos completely define the digraphG. We are
now in position to define an admissible solution for an extendedtreeconstraint.
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Definition 16 (Solution of an extendedtree constraint). A ground instance of an ex-
tendedtreeconstraint is said to be asolutionif and only if:

– The digraphGreq consists ofNTREE connected components.
– Greq containsNPROP connected components involving at least two nodes.
– Each connected component ofGreq has no cyle involving more than one node (no-

tice that each component contains exactly one node that has aself-loop and that
corresponds to the root of that tree).

– For each arc(i, j) in Gprec, there exists a path inGreq from nodei to nodej.
– For each edge(i, j) in Ginc , there exists neither a path inGreq from nodei to node

j, nor a path inGreq from nodej to nodei.
– Each nodei of Greq has exactlyDi predecessors inGreq that are distinct fromi.

3.3 Representing the Extendedtree Constraint in Practice

We could provide a trivial representation of the extendedtreeconstraint by:

tree(NTREE, NPROP,G,Gprec,Ginc , D, F)

This representation is based on seven parameters respectively representing the numbers
of trees and proper trees by two integer variablesNTREE andNPROP, the digraphsG and
Gprec by two n × n adjacency matrices, the graphGinc by anothern × n adjacency
matrix, the degree restrictions by a vectorD of n integer variables whoseith element
gives the in-degree of nodei of G, and the tree partition by a vectorF of n integer vari-
ables whoseith element gives the successor (father) of nodei of G in the tree partition.
Such a representation approach generally leads to a proliferation of parameters because
a parameter is added each time a new restriction is introduced (e.g., see thecycle, cu-
mulative, anddiffn constraints in CHIP [14], which respectively have 17, 12, and 10
parameters).

Since the three graphsG, Gprec, andGinc involve exactly the same set of nodesV ,
and since the vectorsD andF are also overV , a more elegant and compact representation
of the extendedtreeconstraint rather has the form:

tree(NTREE, NPROP, NODE)

whereNTREE andNPROP are two integer variables respectively representing the numbers
of trees and proper trees in the forest, andNODE is a collection ofn nodesNODE[1], . . . , NODE[n].
Each nodevi = NODE[i] has the following attributes, which complete the representation
of the constraint:

– L is a unique integer in[1, n]. It can be interpreted as thelabelof vi.
– F is an integer variable whose domain consists of node labels,i.e. elements in[1, n].

It can be interpreted as theunique successor(or father) of vi.
– P is a possibly empty set of node labels, i.e., integers in[1, n]. It can be interpreted

as the set ofmandatory descendants(or precedences) of vi.
– I is a possibly empty set of node labels, i.e., integers in[i + 1, n]. It can be inter-

preted as the set of nodes that areincomparablewith vi.
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– D is an integer variable in[0, n − 1]. It can be interpreted as thein-degreeof vi.
Notice that the in-degree constraint ignores the possible self-loop on the nodevi.

The aim of this representation of the constraint is to encapsulate the three original
graphsG, Gprec, andGinc in a compact and expressive way. We now show how to
read off these graphs from the collectionNODE of the extendedtree constraint. How-
ever, in the rest of this paper, we reason directly on these graphs rather than on theNODE
structure. First, we extract the digraphG, i.e., the digraph to partition, from theNODE
structure:

Definition 17 (Associated digraph).Theassociated digraphG = (V , E) of a treecon-
straint is defined by:

V = {vi | i ∈ [1, n]} andE = {(vi, vj) | j ∈ dom(NODE[i].F)}

Note that filtering an inconsistent valuej in dom(NODE[i].F) is equivalent to remov-
ing the arc(i, j) fromGpos .

Next, we extract the digraphGprec,which represents the precedence constraints,
from theNODE structure:

Definition 18 (Precedence digraph).Given atreeconstraint with associated digraph
G = (V , E), theprecedence digraphGprec corresponds to the following transitive re-
duction:

TR(V , {(i, j) ∈ V2 | i ∈ NODE[j].P})

Finally, we extract the graphGinc , which represents the incomparability constraints,
from theNODE structure:

Definition 19 (Incomparability graph). Theincomparability graphGinc of a treecon-
straint with associated digraphG = (V , E) is defined by:

(V , {(i, j) ∈ V2 | i ∈ NODE[j].I})

3.4 Example of an Extendedtree Constraint

Figure 1a and the first three columns of Table 1 represent a directed graphG for which
the four solutions in Figures 1b to 1e are obtained from thetree constraints in the
columns of Parts (b) to (e), respectively, of Table 1:

– Part (b):dom(NTREE) = {2} = dom(NPROP), dom(NODE[i].D) = [0, 2] for each
nodevi of G, the nodev3 has to precede nodev1, and the node pairs(v2, v3) and
(v4, v6) are incomparable.

– Part (c):dom(NTREE) = {2}, dom(NPROP) = {1}, dom(NODE[i].D) = [0, 3] for
each nodevi of G, the nodev2 has to precede nodev4, and the node pairs(v3, v6),
(v4, v5), and(v4, v6) are incomparable.

– Part (d):dom(NTREE) = {2}, dom(NPROP) = {1}, dom(NODE[i].D) = [0, 1] for
each nodevi of G, the arcs(v2, v3), (v2, v4), (v2, v6), (v3, v1), and(v6, v1) rep-
resent precedence constraints restricting the digraphG, and the node pairs(v3, v5)
and(v4, v5) are incomparable.
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(a) The original digraphG.

51

3 4 6 2

(b) D ≤ 2, NTREE = 2, NPROP = 2.

51

3 4 6 2

(c) D ≤ 3, NTREE = 2, NPROP = 1.

51

3 4 6 2

(d) D ≤ 1, NTREE = 2, NPROP = 1.

51

3 4 6 2

(e) D ≤ 2, NTREE = 1, NPROP = 1.

Fig. 1: (a) The associated digraphG of the tree constraint detailed in Section 3.4.
(b,c,d,e) Plain arcs depict four solutions according to theprecedence, incomparabil-
ity, and degree constraints described in Parts (b) to (e), respectively, of Table 1. Dashed
arcs depict precedence constraints, while dotted edges represent incomparability con-
straints.

– Part (e):dom(NTREE) = {1} = dom(NPROP), dom(NODE[i].D) = [0, 2] for each
nodevi of G, the nodev1 precedes nodev5, and the node pairs(v1, v2) and(v2, v3)
are incomparable.

Moreover, in each digraph depicted by Figures 1a to 1e, the different kinds of arcs
represent distinct constraints:

– The plain arcs depict the arcs of the digraph to partition, i.e., the digraphG.
– The dashed arcs depict the precedence constraints. In otherwords, the digraph in-

duced by dashed arcs represents the precedence digraphGprec.
– The dotted edges depict the incomparability constraints. This means that the graph

induced by dotted edges represents the incomparability graphGinc .

The rest of this paper does not directly deal with degree constraints or theNPROP
variable. However, in practice, the degree constraints areglobally maintained by a spe-
cialised global cardinality constraint, calledglobal cardinality no loopin [2] and dis-
cussed in [5, 4, 22]. Similarly, the propagation related to theNPROP integer variable is
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vi NODE[i].L NODE[i].F
Part (b) Part (c)

NODE[i].P NODE[i].I NODE[i].D NODE[i].P NODE[i].I NODE[i].D

v1 1 {1, 3} - - [0, 2] - - [0, 3]
v2 2 {4, 5, 6} - {3} [0, 2] {4} - [0, 3]
v3 3 {1, 4} {1} - [0, 2] - {6} [0, 3]
v4 4 {1, 3, 6} - {6} [0, 2] - {5, 6} [0, 3]
v5 5 {2, 5} - - [0, 2] - - [0, 3]
v6 6 {1, 4, 5} - - [0, 2] - - [0, 3]

vi NODE[i].L NODE[i].F
Part (d) Part (e)

NODE[i].P NODE[i].I NODE[i].D NODE[i].P NODE[i].I NODE[i].D

v1 1 {1, 3} - - [0, 1] {5} {2} [0, 2]
v2 2 {4, 5, 6} {3, 4, 6} - [0, 1] - {3} [0, 2]
v3 3 {1, 4} {1} {5} [0, 1] - - [0, 2]
v4 4 {1, 3, 6} - {5} [0, 1] - - [0, 2]
v5 5 {2, 5} - - [0, 1] - - [0, 2]
v6 6 {1, 4, 5} {1} - [0, 1] - - [0, 2]

Table 1: The first three columns describe the associated digraphG of thetreeconstraint
depicted by Figure 1a. The columns of Parts (b) to (e) show theprecedence, incom-
parability, and degree constraints associated with the digraphG that lead to thetree
partitions depicted by Figures 1b to 1e, respectively.

discussed in [4, 22]. First, in the following, Section 4 details the theoretical complexity
of each part composing the extendedtree constraint. Then, Section 5.1 provides nec-
essary conditions for partitioning the digraphG of a tree constraint into trees accord-
ing to a potential number of trees and a set of precedence constraints. Since achieving
arc consistency for even this simplified constraint is already NP-hard, some pruning
rules are derived from these necessary conditions. Next, Section 5.2 proposes neces-
sary conditions for partitioningG into trees according to a potential number of trees
and a set incomparability constraints. Section 6.1 completes those results by consider-
ing the interaction between precedence and incomparability constraints, and new nec-
essary conditions are introduced to ensure that there exists at least one tree partitioning
of G according to the precedence and incomparability constraints. Finally, Section 6.2
improves the necessary conditions introduced in Sections 5.1 to 6.1 by deriving new
precedence constraints from the interaction between the digraphG and the existing
precedence and incomparability constraints.

4 Theoretical Complexity of the Extendedtree Constraint

This section discusses the theoretical complexity of each restriction involved in the
extendedtree constraint. Particularly, we point out that the propagation of the gener-
alised arc consistency in an extendedtreeconstraint is an NP-hard problem. However,
notice that in the case of an extendedtree constraint involving only incomparability
constraints, we do not classify the theoretical complexity. Indeed, to the best of our
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knowledge, the complexity of finding a tree partition according to a set of incompara-
bility constraints between nodes is an open question.

4.1 Thetree Constraint Is Only Constrained by the NPROP Variable

We study the theoretical complexity of propagating an extendedtreeconstraint to gen-
eralised arc consistency, in the context where only theNPROP variable is constrained. In
other words, the extendedtreeconstraint has the following characteristics:

– dom(NPROP) ⊆ dom(NTREE);
– There does not exist any precedence constraint between the nodes ofG;
– There does not exist any incomparability constraint between the nodes ofG;
– The in-degree variables associated with each node ofG have domains included in

[0, n].

In this context, we show that the extendedtreeconstraint cannot be propagated to reach
generalised arc consistency in polynomial time.

Theorem 1. Propagating generalised arc consistency for the extendedtreeconstraint
according toNPROP is NP-hard.

Proof. First, we give a polynomial certificate for the extendedtreeconstraint according
to the number of proper treesNPROP, i.e., a deterministic polynomial-time algorithm
that checks if a ground instance of an extendedtreeconstraint is a solution satisfying the
constraint. We start by checking that the ground instance isa forest containing exactly
NTREE trees, i.e., the digraphGreq (1) consists ofNTREE connected components and (2)
does not contain any cycles involving more than one node. Next, we check that exactly
NPROP trees of the forest contains at least two nodes.

Second, we show that any instance of the NP-complete hittingset problem3 [16] can
be polynomially reformulated as an extendedtree constraint. A classical graph-based
representation of the hitting set problem uses a bipartite graphB = (Vleft ,Vright , E)
defined in the following way (see Figure 2):

– A node ofVleft is associated with each subset ofC;
– A node ofVright is associated with each element ofS;
– There exist an edge inE between a node ofVleft and a node ofVright iff the cor-

responding element with the node ofVright belongs to a subset associated with a
node ofVleft .

A solution satisfying the hitting set problem is an assignment of each node ofVleft

to a node ofVright such that at mostk nodes ofVright are used to assign allVleft

nodes. A polynomial-time transformation of the hitting setproblem into an extended
treeconstraint is based on a digraphG defined by(Vleft∪Vright , {(i, j) ∈ Vleft×Vright |
i = j∨(i, j) ∈ E}). Then, the hitting set problem is reduced to finding a tree partition of
G in at mostk proper trees, i.e., satisfying an extendedtreeconstraint withNPROP ≤ k.

⊓⊔
3 Given a collection of subsetsC of a setS and an integerk, the hitting set problem checks if

there exists a subsetS ′ ⊆ S such that|S ′| ≤ k andS ′ contains at least one element of each
subset inC.
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Fig. 2: A hitting set problem represented by an extendedtreeconstraint, withNPROP = 2
and|Vleft | = |C|.

4.2 Thetree Constraint Only Involves Precedence Constraints

We study the theoretical complexity of propagating an extendedtreeconstraint to gen-
eralised arc consistency, when only precedence constraints are represented. In other
words, we have the following assumptions:

– dom(NTREE) ⊂ dom(NPROP);
– There exist precedence constraints between the nodes ofG;
– There does not exist any incomparability constraint between the nodes ofG;
– The in-degree variables associated with each node ofG have domains included in

[0, n].

In this context, we show that the extendedtreeconstraint cannot be propagated to reach
generalised arc consistency in polynomial time.

Theorem 2. Propagating generalised arc consistency for the extendedtreeconstraint
according to precedence constraints is NP-hard.

Proof. First, we give a polynomial certificate for the extendedtreeconstraint according
to precedence constraints, i.e., a deterministic polynomial-time algorithm that checks
if a ground instance of an extendedtree constraint with precedence constraints is a
solution. We start by checking that the ground instance is a forest containing exactly
NTREE trees, i.e., the digraphGreq (1) consists ofNTREE connected components and
(2) does not contain any cycles involving more than one node.Next, for each arc(u, v)
of Gprec, we check if there is a path fromu to v in Greq ; this can be done by a depth-first
search fromu in Greq .

Second, we show that any instance of the NP-complete Hamiltonian path prob-
lem4 [16] for a digraph(V , E) can be polynomially reformulated as atree constraint.

4 Given a digraphG = (V, E), theHamiltonian path problemchecks if there exists an elemen-
tary path inG containing all the nodes ofV.
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Fig. 3: Reduction of the Hamiltonian path problem to an extendedtreeconstraint, with
NTREE = 1. Figure 3a depicts the digraphG of the constraint. The nodes involved in the
rectangle depicts the digraphH for which an Hamiltonian path is searched. Figure 3b
depicts the precedence digraphGprec of the constraint. Finally, Figure 3c provides a
solution of the constraint.

For this purpose, we have to define the digraphG and the precedence digraphGprec

(see Figure 3). LetG = (V ∪ {s, t}, E ′) with E ′ being a superset ofE such that
s is the only source node inG, s is a predecessor of all the nodes ofV , t is the
only sink node ofG with a self-loop, andt is a successor of all the nodes ofV . Let
Gprec = (V ∪ {s, t}, {(s, j) | j ∈ V} ∪ {(i, t) | i ∈ V}. The Hamiltonian path problem
then consists of finding a tree partition ofG with one tree (i.e.,NTREE = 1) according
to the set of precedence constraints defined byGprec. ⊓⊔

4.3 Thetree Constraint Only Involves In-Degree Constraints

We now study the theoretical complexity of propagating an extendedtreeconstraint to
generalised arc consistency, in the context where only the in-degree variables, associ-
ated with each node of the digraphG, are constrained. In other words, the extendedtree
constraint has the following characteristics:

– dom(NTREE) ⊂ dom(NPROP);
– There does not exist any precedence constraint between the nodes ofG;
– There does not exist any incomparability constraint between the nodes ofG;
– Some in-degree variables associated with some nodes ofG have domains strictly

included in[0, n].

The extendedtreeconstraint cannot be propagated to reach generalised arc consistency
in polynomial time. The reduction from the Hamiltonian pathproblem is straightfor-
ward.
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5 Precedence and Incomparability Constraints in a Tree
Partitioning

This section details how to handle the precedence and incomparability constraints re-
spectively provided by theP andI attributes of theNODE collection. Since achieving arc
consistency for even this simplified constraint is already NP-hard (and the complexity
is not known in the case of incomparabilities), necessary conditions are proposed for
each one and filtering rules are derived from these conditions.

5.1 Combining Tree Partitioning and Precedence Constraints

From Definition 18 of Section 3.3, which proposes a digraph model of precedence con-
straints (via a digraphGprec), this section studies the precedence restriction by, first,
providing an upper bound onNTREE, next, considering necessary conditions related to
the existence of a solution, and finally, introducing filtering derived from these condi-
tions.

Definition 20 (Contracted precedence digraph).Given atreeconstraint with digraph
G = (V , E) and a set of precedence constraints represented in the directed acyclic
graph (dag)Gprec, thecontracted precedence digraphGH

prec of G is defined by:

– There is a node ofGH
prec for each connected component of the required digraph

Greq .
– There is an arc between two nodes ofGH

prec iff there is an arc inGprec between two
nodes of the corresponding connected components ofGreq .

Without loss of generality, we assume thatGprec does not contain any self-loops,
i.e., that a node ofGprec cannot precede itself. Moreover, observe that any non-loop
required arc ofGreq corresponds to a precedence constraint. This leads us to maintaining
the following two invariants:

∀(u, v) ∈ Ereq : u 6= v ⇒ (u, v) ∈ Eprec (1)

Greq \ {(u, v) ∈ Ereq | u = v} ⊆ Gprec (2)

They state that the required digraph without its self-loopsmust always be a sub-graph
of the precedence digraph.

Upper Bound on the Number of Trees According to Precedence Constraints: We
now provide an upper bound on the number of trees that partition the digraphG of a
treeconstraint, according to the precedence digraphGprec. A first upper bound, given
in [3] for the “pure”treeconstraint (i.e., thetreeconstraint without any side constraints)
and denoted byMAXTREE, is the number of potential roots ofG. Since this bound does
not consider the precedence constraints, we now provide a tighter bound that considers
Gprec as well. The basic idea is to count among the connected components ofGprec those
that are necessarily connected to another one. For this purpose, a{0, 1}-valueout i is

14



associated with each connected componentCC (i) of Gprec, depending on whether there
is a node inCC (i) whose potential father nodes areall outsideCC (i):

out i =

{

1 if ∃u ∈ CC (i) : ∀v ∈ dom(NODE[u].F) : v /∈ CC (i)

0 otherwise

Thus,CC (i) will have to be merged with another connected component whenout i = 1.

Proposition 1. Given atreeconstraint and its precedence digraphGprec such thatGprec

containsk connected components, an upper bound onNTREE is:

MAXTREEprec = k −
k

∑

i=1

out i

Proof. By the definition ofout i. ⊓⊔

Proposition 2. MAXTREEprec is tighter thanMAXTREE.

Proof. Let p = MAXTREE be the number of potential roots ofG. We know that:

k − p ≤
k

∑

i=1

out i ≤ k

Thus:

0 ≤ k −
k

∑

i=1

out i ≤ p

Hence,0 ≤ MAXTREEprec ≤ MAXTREE. ⊓⊔

Filtering a tree Constraint According to Precedence Constraints:A necessary con-
dition on the existence of solutions of atreeconstraint involving precedence constraints
is made of four conjuncts, each maintaining a property of thesought tree partition: first,
we have to maintain a compatible number of trees allowed to cover the digraph; second,
we have to ensure that the partition is cycle-free; third, wehave to ensure that the par-
tition is compatible with all the precedence constraints; finally, we have to ensure that
each tree is rooted on a potential root.

Theorem 3. If there is a solution to an extendedtreeconstraint with precedences, then
the following conditions hold:

1. Number of Trees: dom(NTREE) ∩ [MINTREE, MAXTREEprec] 6= ∅, whereMINTREE
is the number of sink components inG andMAXTREEprec is the quantity introduced
by Proposition 1.

2. Cycle-free: Gprec has no cycles.
3. Compatibility: The transitive closure ofGprec is included within the transitive clo-

sure ofG (i.e.,TC (Gprec) ⊆ TC (G)).
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4. Compatible Root: For each sink componentS ofG, at least one node is both a node
with a self-loop inG and a sink inGprec.

Proof. A proof is provided for each condition:

1. If dom(NTREE) ∩ [MINTREE, MAXTREEprec] = ∅, thenmax(NTREE) < MINTREE

or min(NTREE) > MAXTREEprec. If the first inequality holds, then there exists a
sink component ofG that does not contain any potential root; also, we know that
there is no path between two nodes of distinct sink components of G. Naturally,
Proposition 1 ensures that if the second inequality holds, then thetree constraint
has no solution.

2. AssumeGprec contains a cycle and there is a solution. Then there exist pathsP =
〈u1, . . . , uk〉 andP ′ = 〈uk, . . . , u1〉 in Gprec. The pathP enforces that nodeu1

precedes nodeuk in any solution. Similarly, the pathP ′ enforces thatuk precedes
u1 in any solution. But then there is no solution satisfying at the same timeP and
P ′: a contradiction.

3. AssumeTC (Gprec) * TC (G). Then there exists at least one arc(u, v) in TC (Gprec)
that is not inTC (G). This means there exists at least one precedence constraintthat
cannot be satisfied.

4. Assume on the contrary that there exists a sink componentS such that each noder
with a self-loop (i.e., noder is a potential root) has at least one successor inGprec.
Since each sink component contains at least one potential root (see the necessary
and sufficient condition for the puretree constraint [3]), there is a contradiction
with the fact that each noder has at least one successor inGprec.

Each condition is necessary, hence their conjunction is necessary. ⊓⊔

Based on the necessary condition expressed by Theorem 3, Algorithm 1 filters a
treeconstraint according to its precedence constraints. Algorithm 1 begins with an ini-
tialisation (STEP 1) that computes the connected components of Greq and marks the
single sink node of each component (by definition ofGreq , each connected component
of Greq is a tree). This can be done inO(n + m) time. Next, STEP 2 is a normalisation
step that updates the precedence digraphGprec as follows: for each non-root nodeu of
a connected componentCC (u) of Greq , any precedence constraint(u, v) is replaced by
(r(u), v) in Gprec, wherer(u) is the root ofCC (u) (indeed, observe that every path
from u to v visits r(u) before reachingv). This can be done inO(m) time by iter-
ating through all precedences. Next, STEP 3 checks the feasibility of the constraint
according to the precedence constraints (Theorem 3); this can be done inO(nm) time
by computing the transitive closure ofGprec andG. STEP 4 updates the domain of
NTREE according to the lower boundMINTREE, defined in [3], and the upper bound
MAXTREEprec, given in Proposition 1; this can be done inO(n+m) time. Next, STEP 5
checks for each arc(u, v) of Gpos its compatibility (i.e., whether it does not create any
cycle, is not transitive, and can reach a potential root) with the contracted precedence
digraphGH

prec; this can be done inO(m) time by injecting the arc(CC (u),CC (v)) in
the depth-first-search tree ofGH

prec. Finally, STEP 6 updates the normal form (i.e., the
transitive reduction) ofGprec according toGtrue, which can be done inO(nm) time.
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Algorithm 1 Filtering of thetreeconstraint according to precedence constraints.

/ * STEP 1: Initialisation * /
1. foreach node u ∈ V do
2. CC (u)← maximum connected component of Greq containing u;
3. r(u)← the single sink node of CC(u);
/ * STEP 2: Normalisation of the precedence digraph * /
4. foreach arc (u, v) ∈ Gprec such that u 6= r(u) and v /∈ CC (u) do
5. replace (u, v) in Gprec by (r(u), v);
/ * STEP 3: Checking feasibility * /
6. if the tree constraint has no solution (see Theorem 3) then
7. report failure and exit;
/ * STEP 4: Updating the domain of NTREE * /
8. dom(NTREE)← dom(NTREE) ∩ [MINTREE, MAXTREEprec ];
/ * STEP 5: Maintaining the cycle-free, compatibility, and

compatible-root conditions * /
9. foreach arc (u, v) of Gpos do

10. remove (u, v) from Gpos if one of the following holds:
11. a. (CC (u),CC (v)) would create a cycle in GH

prec;
12. b. (CC (u),CC (v)) would be a transitive arc in GH

prec ;
13. c. u = v and CC (u) is not a sink of GH

prec;
/ * STEP 6: Re-normalisation of the precedence digraph * /

14. Gprec ← TR(Gprec ∪ Greq);

Lemma 1. Algorithm 1 never removes an arc fromGpos or a value fromdom(NTREE)
that belongs to a solution to atreeconstraint.

Proof. If a valuek of dom(NTREE) is removed (STEP 4) but there exists a partition ofG
in k trees satisfying thetreeconstraint, thenMINTREE is not a lower bound onNTREE or
MAXTREEprec is not an upper bound onNTREE. This is impossible because of Condition
1 of Theorem 3.

If an arc(u, v) of Gpos is removed but there exists a partition ofG that contains it,
then this is only due to STEP 5. Conditions a, b, c of this step are respectively derived
from Conditions 2, 3, 4 of Theorem 3. However, in Algorithm 1,we only consider the
digraphGH

prec instead ofGprec that allows us to ignore connected components ofGreq ,
i.e., the pieces of trees already built. ⊓⊔

5.2 Combining Tree Partitioning and Incomparability Constraints

From Definition 19 of Section 3.3, which proposes a graph model of incomparability
constraints (via a graphGinc ), this section studies the incomparability restriction by,
first, considering necessary conditions related to the existence of a solution, and next,
introducing filtering rules derived from these conditions.

A necessary condition on the existence of solutions of atree constraint involving
incomparability constraints is made of two conjuncts: first, we have to ensure that the
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Algorithm 2 Filtering of thetreeconstraint according to incomparability constraints.

1. if the tree constraint has no solution (see Theorem 4) then
2. report failure and exit;
3. foreach arc e ∈ Gpos ∩ Ginc do remove e from Gpos ;

partition violates none of the incomparability constraints involved in the incomparabil-
ity graphGinc ; second, we have to maintain the reachability of a potentialroot for each
non-potential-root node. First, letinc(u) denote the set of nodes ofG = (V , E) that are
incomparable with nodeu. In other words,inc(u) denotes the neighbors ofu in Ginc .
Next, we can formally introduce the necessary condition:

Theorem 4. If there is a solution to an extendedtreeconstraint with incomparabilities
then, the following conditions hold:

1. Compatibility: TC (Greq) ∩ Ginc has no arcs.
2. Reachability: For each nodeu of G, there is at least one path reaching a potential

root ofGpos that does not contains any node ofinc(u).

Proof. A proof is provided for each condition:

1. Assume there exists a path from a nodeu to a nodev in Greq . If u and v are
incomparable, then thetreeconstraint cannot be satisfied.

2. Assume there exists a nodeu of G such that for any noder with a self-loop and any
pathP from u to r, there is a nodev in P such thatu andv are incomparable. Then
the treeconstraint cannot be satisfied sinceu cannot reach a potential root without
violating an incomparability constraint.

Each condition is necessary, hence their conjunction is necessary. ⊓⊔

Based on the necessary condition expressed by Theorem 4, Algorithm 2 first (lines
1 and 2) checks the feasibility of thetree constraint according to its incomparability
constraints (Theorem 4); this can be achieved inO(nm) time due to the computation
of the transitive closure ofGreq and depth-first search for each nodeu in the digraph
G \ inc(u). Next, line 3 detects infeasible arcs ofGpos that belong toGinc ; this can be
done inO(m) time.

Lemma 2. Algorithm 2 never removes an arc fromGpos that belongs to a solution to a
treeconstraint.

Proof. Assume two nodesu andv are incomparable and the arc(u, v) of Gpos is added
to Greq : this is a contradiction because the incomparability constraint betweenu andv
is violated. ⊓⊔
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6 Managing Interaction Between Precedence and Incomparability

This section shows how to improve the treatment of the precedence and incompara-
bility constraints introduced in Section 5. This improvement is based on two aspects
of these restrictions. The first one reasons on the information provided by the interac-
tion between precedence and incomparability constraints,while the second one shows
how to derive new precedence constraints hidden in the interaction between the exist-
ing precedence and incomparability constraints with the digraphG of the extendedtree
constraint.

6.1 Combining Precedence and Incomparability Constraints

We now study the interaction between precedence and incomparability constraints in or-
der to provide two necessary conditions as well as a filteringalgorithm directly derived
from these conditions.

A necessary condition on the existence of solutions of atreeconstraint combining
precedence and incomparability constraints is now exhibited. It is made of two con-
juncts: first, we have to ensure that the partition satisfies all the precedence constraints
(involved in Gprec) and violates none of the incomparability constraints (involved in
Ginc ); second, we have to maintain the reachability of a potential root for each non
potential-root node.

Theorem 5. If there is a solution to atreeconstraint involving both precedence and
incomparability constraints, then the following conditions hold:

1. Compatibility: TC (Gprec) ∩ Ginc = ∅.
2. Reachability: For each edge(u, v) in Ginc , there does not exist a nodew such that

the arcs(w, u) and(w, v) both belong toTC (Gprec).

Proof. A proof is provided for each condition:

1. This condition is directly derived from Condition 1 of Theorem 4. Indeed, any
incomparability constraint between two nodes ofGprec that belong to the same
path inGprec leads to a contradiction with thetreeconstraint.

2. Assume there exists a nodew such that the arcs(w, u) and(w, v) belong toTC (Gprec)
and assume(u, v) ∈ Ginc . The nodesu andv then belong to the same path in any
solution and there is a contradiction with(u, v) ∈ Ginc .

Each condition is necessary, hence their conjunction is necessary. ⊓⊔

Algorithm 3 first checks the feasibility of thetreeconstraint according to precedence
and incomparability constraints (Theorem 5); this can be done inO(nm) time due to
the computation of the transitive closure ofGprec (assuming that computing the union
and intersection of two graphs takesO(m) time). Then, lines 3 to 6 takeO(m2) time.
Indeed, for each arc(u, v) of Gpos , condition (a) checks the compatibility of(u, v) in
the precedence digraph according to the incomparability graph. Condition (b) detects
the arcs ofGpos that violate the reachability condition introduced by Theorem 5.
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Algorithm 3 Filtering of thetreeconstraint according to precedence and incomparabil-
ity constraints.

1. if the tree constraint has no solution (see Theorem 5) then
2. report failure and exit;
3. foreach arc (u, v) ∈ Gpos do
4. remove (u, v) from Gpos if one of the following holds:
5. a. TC (Gprec ∪ {(u, v)}) ∩ Ginc 6= ∅;
6. b. ∃(u, ud), (va, v) ∈ TC (Gprec) : (ud, va) ∈ Ginc ;

Lemma 3. Algorithm 3 never removes an arc fromGpos that belongs to a solution to a
treeconstraint.

Proof. Case a of Algorithm 3 is directly derived from Condition 1 of Theorem 5. As-
sume an arc(u, v) of Gpos , such thatTC (Gprec ∪ {(u, v)})∩ Ginc = ∅, is removed but
there exists a solution to thetreeconstraint containing(u, v). Then there is a contradic-
tion because the equalityTC (Gprec ∪ {(u, v)}) ∩ Ginc = ∅ ensures that the arc(u, v)
violates at least one incomparability constraint.

Case b of Algorithm 3 is intuitively derived from Condition 2of Theorem 5. If such
an arc(u, v) is added toGreq , then nodeu has to precede at the same time nodesud and
v; this means there exists a path in any solution satisfying the constraint, starting from
nodeu, reaching first nodev (because, by assumption,(u, v) ∈ Ereq) and next nodeud.
Moreover, we know that nodeva precedes nodev, hence, by transitivity, there exists a
path fromva to ud in any solution satisfying the constraint: there is a contradiction with
the incomparability constraint between nodesud andva. ⊓⊔

Theorem 6. Algorithm 3 filters atreeconstraint inO(m2) time.

Proof. See the discussion above of the algorithm. ⊓⊔

6.2 Deriving New Precedence Constraints

Graph properties related toG, Gprec, andGinc lead to the derivation of new precedence
constraints that come from the strong interaction between the constraints induced by
these three graphs.

Using the concept of dominator in digraphs (Definition 11), we propose a simple
rule that reveals new precedence constraints. Given the associated digraphG, let S be a
strongly connected component ofG, and letu andv be two nodes ofS such that(u, v)
is an arc ofGprec. For each dominatord of DOM〈S,u〉(v), the arcs(u, d) and(d, v) are
new precedence constraints because any path fromu to v in G reaches noded before
reaching nodev. Then, adding(u, d) and(d, v) to Gprec leads the arc(u, v) to become
transitive, thus(u, v) is removed fromGprec. Lines 2 to 5 of Algorithm 4 detect such a
pattern inG in O(mn) time, whereas the dominators are computed inO(n2) time [13].
In practice, the dominator nodes inG are computed dynamically according to potential
roots.

20



u

v

t

s

Fig. 4: The dashed precedence arc(u, t) can be added toGprec. The dotted edge depicts
an incomparability constraint between the nodesu andv. The plain curly arcs depict
paths inGprec.

Algorithm 4 Deriving new precedence constraints.

/ * Deriving precedence constraints from G * /
1. compute the dominator nodes of G according to potential roots;
2. foreach dominator d of G do
3. foreach (u, v) ∈ Eprec such that d ∈ DOM〈G,u〉(v) do
4. add the arcs (u, d) and (d, v) to Gprec;
5. remove the arc (u, v) from Gprec ;
/ * Deriving precedence constraints from Ginc and Gprec * /
6. foreach node s with at least two successors in TC (Gprec) do
7. foreach successor u of s such that ∃v : (u, v) ∈ Ginc do
8. if there exists a node t ∈ Gprec such that the arcs

(v, t) and (s, t) are in TC (Gprec) then add the arc (u, t) to Gprec ;

The interaction between the precedence constraints (viaGprec) and the incompa-
rability constraints (viaGinc ) can also reveal new precedence constraints. Given four
distinct nodesu, v, s, andt, assume there exists an edge(u, v) in Ginc and the arc set
{(v, t), (s, u), (s, t)} is in TC (Gprec). Then the arc(u, t) can be added toGprec. In Fig-
ure 4, nodest andu cannot be incomparable because both are descendants of nodes.
Moreover, nodeu cannot be reached froms after reachingt, as otherwise nodesu andv
belong to the same path and their incomparability is not respected. Thus, the only way
of orderingt andu consists in adding a precedence constraint fromu to t. Lines 6 to 8
of Algorithm 4 detect such a pattern inTC (Gprec) in O(mn) time.

7 Synthetic Overview of thetree Constraint

Table 2 summarises the theoretical results of this article.It is divided into four hori-
zontal parts. The first part shows that the upper bound onNTREE has been improved
over [3] without any overhead. The second part points out some necessary conditions
that can be evaluated in polynomial time. The third part provides polynomial-time filter-
ing rules derived from the previous necessary conditions. The last part recalls how each
instantiation of a father variable leads to updating the precedence digraph as well as the
incomparability graph. For each set of propositions and algorithms, an upper bound on
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Interaction Effects
Related Theorems,

Time Complexity
Propositions, and Algorithms

Bounds
G min(NTREE) Proposition 1 of [3]

O(n + m)
Gprec max(NTREE) Proposition 1

Feasibility
Gprec

fail
Theorem 3

O(mn)Ginc Theorem 4
Gprec & Ginc Theorem 5

Direct
Gprec

G
Algorithm 1

O(mn)
Filtering

Ginc Algorithm 2
Gprec & Ginc Algorithm 3 O(m2)

Internal G & Gprec Gprec Algorithm 4 O(mn)
DerivationsGinc & Gprec

Table 2: Summary of thetreeconstraint.

Algorithm 5 General filtering skeleton

1. if the tree constraint is feasible then
2. Update G, Gprec, Ginc according to the internal derivations;
3. Detect infeasible values in the variable domains

according to Algorithms 1, 2 and 3;
4. Remove the infeasible values detected by statement 3;
5. if at least one value was removed then go to statement 1

else exit;
6. else generate a failure and exit.

the time complexity is provided, wheren andm respectively denote the numbers of
nodes and arcs in the digraphG. Let mprec andminc respectively denote the numbers
of arcs and edges inGprec andGinc . Notice thatmprec ≤ m (becauseGprec is an acyclic
digraph without any transitive arc) andminc ≈ m. Thus, the time complexity of the
filtering algorithms is provided below only in terms of the numberm of arcs inG.

A frequent problem with the combination of different kinds of filtering is to ensure
that the same fixpoint is reached independently of the ordering of the filtering rules.
Thus, Algorithm 5 is based on a saturation loop such that if the constraint is feasible
(line 1), then first all the data structures are updated (line2), next each filtering rule is
applied and inconsistent values are recorded but not immediately removed (line 3), then
inconsistent values are removed (line 4), and finally a new iteration begins if a value
was removed (line 5), because a value removal modifiesG and/orNTREE. Thus, line 3
ensures that for a given iteration, all the filtering rules are applied on the same data (i.e.,
the same digraphG and the sameNTREE).
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8 Experimental Results

We now report on several experiments we have conducted to evaluate the extendedtree
constraint. First, in Section 8.1, we discuss our experiments on real-life instances of (an
extension of) the biological problem of constructing phylogenetic supertrees, and show
that thetreeconstraint significantly outperforms the previous constraint programming
approach. Then, in Section 8.2, we present our results on therouting problem of con-
structing ordered simple paths with mandatory nodes. Finally, in Section 8.3, we report
on the performance on random instances for the Hamiltonian path problem.

All experiments were performed with the Choco constraint programming system
(which is a Java library) on an Intel Pentium 4 CPU with3GHz and a1GB RAM, but
with 512MB allocated to the Java Virtual Machine.

8.1 The Phylogenetic Supertree Problem

One objective of phylogeny is to construct the genealogy of the species, called the
tree of life, whose leaves represent the contemporary species and whoseinternal nodes
represent extinct species that are not necessarily named. An important problem in phy-
logeny is the construction of a supertree [7] that is compatible with several given trees.
There are several definitions of tree compatibility in the literature:

Definition 21 (Strong, weak, and stable compatibility).

– A treeT is strongly compatiblewith a treeT ′ if T ′ is topologically equivalent to a
subtree ofT that respects the node labelling. [23]

– A treeT is weakly compatiblewith a treeT ′ if T ′ can be obtained fromT by a
series of arc contractions.5 [31]

– A treeT is stably compatiblewith a setS of trees ifT is weakly compatible with
each tree inS and each internal node ofT can be labelled by at least one corre-
sponding internal node of some tree inS.

For the supertree problem, strong and weak compatibility coincide if and only if all
the given trees are binary [23]. The existence of solutions is not lost when restricting
weak compatibility to stable compatibility.

For example, the treesT1 andT2 of Figure 5 haveT andT ′ as supertrees under both
weak and strong compatibility. As shown, all the internal nodes ofT ′ can be labelled by
corresponding internal nodes of the two given trees, but this is not the case for the father
of b andg in T . HenceT and four other such supertrees are debatable becausethey
speculate about the existence of extinct speciesthat were not in any of the given trees.
Consider also the three small trees in Figure 6:T3 andT4 haveT4 as a supertree under
weak compatibility, as it suffices to contract the arc(3, 2) to getT3 from T4. However,
T3 andT4 have no supertree under strong compatibility, as the most recent common
ancestor ofb andc, denoted bymrca(b, c), is the same asmrca(a, b) in T3, namely1,

5 Thecontractionof an arca = (v, w) is the replacement ofv andw by a single node whose
incident arcs are those ofv andw other thana.
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Fig. 6: Three small phylogenetic trees

but not the same inT4, asmrca(b, c) = 3 is an evolutionary descendant ofmrca(a, b) =
2. Also,T4 andT5 have neither weakly nor strongly compatible supertrees.

Under strong compatibility, a first supertree algorithm wasgiven in [1], with an ap-
plication for database management systems; it takesO(ℓ2) time, whereℓ is the number
of leaves in the given trees. Derived algorithms have emerged from phylogeny, for in-
stanceOneTree[23]. The first constraint program was proposed in [17], using standard,
non-global constraints. Under weak compatibility, a phylogenetic supertree algorithm
can be found in [31] for instance. Under stable compatibility, the algorithm from com-
putational linguistics of [9] has supertree construction as a special case.

Under stable compatibility, the supertree problem for treesT1, . . . , Tk can be mod-
elled by an extendedtreeconstraint, such that:

– The digraphG is the complete digraph(V , E) with node setV = N (T1) ∪ · · · ∪
N (Tk) and edge setE = {(u, v) | u, v ∈ V}, whereN (T ) denotes the set of nodes
of treeT .

– The precedence digraphGp = (V , Ep) is dictated byT1, . . . , Tk.
– The incomparability constraints are generated from the incomparable nodes of each

treeT1, . . . , Tk.
– NTREE = 1 = NPROP, i.e., the partition ofG must consist of exactly one proper

tree.
– All the leaves ofT1, . . . , Tk that are not internal nodes of any treeTi must remain

leaves and thus have an in-degree of zero.
– All the other nodes ofV have degrees 1 or 2 if a binary supertree is requested, and

within [1, n − 1] otherwise, wheren = |V|.
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A smallest-domain heuristic is used to select a father variable at each waking up of the
treeconstraint (i.e., each time the solver instantiates a variable), and the value selection
heuristic favours, for a selected nodevi, a fathervj such that there exists a minimum-
length path fromvi to vj or vice-versa in the precedence digraphGprec. The latter
heuristic is based on the following intuition: the longer a maximum path fromvi to vj

in Gprec, the lower the chances of satisfying all the precedence constraints involved in
this path.

Table 3 compares the performance of our Choco constraint model, under stable
compatibility, with an improvement (now also written in Choco) by Prosser of the con-
straint model, under strong compatibility, of [17] (available athttp://www.dcs.
gla.ac.uk/ ˜ pat/supertrees/ ). The statistics are until the first solution is found
or until the absence of solutions is established. For a giveninstance, the column ‘sat-
isfiable’ indicates the existence of supertrees, and, between parentheses, the existence
of binary supertrees. Also, ‘n/a’ stands for ‘not applicable’. There are17 leaf species
in the two spider treesS1 andS2, which were taken from study S1x6x97c14c42c30 in
TreeBASE (seehttp://www.treebase.org/ ); they feature side constraints on
nested species and one of these trees is not binary, hence there is no binary supertree.
Only our model can accommodate that side constraint withoutreformulation. There are
23 leaf species in the two cat treesC1 andC2, which were taken from biology jour-
nals; one of them is not binary, hence there is no binary supertree. There are129 leaf
species across the seven seabird treesA to G, which were taken from an ornithology
journal [19]; only the treesA, E, andG are not binary, and only the listed subsets of at
least three of these seven trees have stably compatible supertrees.

Table 3: Real-life phylogenetic supertree construction

instance #speciesname |G| satisfiable#fails time (ms)

S1 + S2 17
tree 18 yes (no) 0 48
Prossern/a yes 1 155

C1 + C2 23
tree 26 yes (no) 0 75
Prossern/a yes 2 254

A + B 30
tree 52 yes (no) 0 302
Prossern/a yes 32 648

A + C 34
tree 63 yes (no) 0 406
Prossern/a no 0 810

A + D 47
tree 85 yes (no) 0 398
Prossern/a yes 0 1972

A + E 95
tree 191 yes (no) 0 10393
Prossern/a n/a n/a out of memory

A + F 33
tree 58 yes (no) 0 127
Prossern/a yes 4 710

A + G 49
tree 82 yes (no) 0 409
Prossern/a yes 9 2135

B + C 32
tree 65 no (no) 0 32
Prossern/a no 1770 12866
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instance #speciesname |G| satisfiable#fails time (ms)

B + D 43
tree 85 yes (yes) 0 301
Prossern/a yes 3 1683

B + E 95
tree 195 no (no) 0 892
Prossern/a n/a n/a out of memory

B + F 33
tree 62 yes (no) 0 144
Prossern/a yes 0 606

B + G 44
tree 81 yes (no) 0 1440
Prossern/a yes 35 1765

C + D 52
tree 101 yes (no) 0 630
Prossern/a yes 0 2979

C + E 96
tree 203 yes (no) 0 27180
Prossern/a n/a n/a out of memory

C + F 38
tree 74 yes (no) 0 393
Prossern/a yes 3 979

C + G
49

tree 93 yes (no) 0 1530
Prossern/a no 0 2371

D + E 104
tree 220 no (no) 0 1126
Prossern/a n/a n/a out of memory

D + F 46
tree 91 yes (yes) 0 630
Prossern/a yes 4 1776

D + G 59
tree 112 yes (no) 0 910
Prossern/a no 35 4403

E + F 96
tree 199 no (no) 0 1035
Prossern/a n/a n/a out of memory

E + G 100
tree 211 no (no) 0 1211
Prossern/a n/a n/a out of memory

F + G 43
tree 83 no (no) 0 62
Prossern/a n/a n/a > 5 · 105

A + C + E 99
tree 215 yes (no) 0 49224
Prossern/a n/a n/a out of memory

A + B + D + F 72
tree 139 yes (no) 0 8139
Prossern/a yes 59 4811

A + B + D + G 82
tree 157 no (no) 0 347
Prossern/a n/a n/a out of memory

A + C + D + F 76
tree 150 yes (no) 0 8690
Prossern/a no 0 2553

A + C + D + G 86
tree 168 yes (no) 0 12650
Prossern/a n/a n/a out of memory

Our model generates some symmetric solutions (as some internal nodes are fathers
of only one node, which is also internal, so that their roles can be inverted), whereas
the model of [17] generates unique solutions modulo all symmetries. For instance, for
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the two given trees of Figure 5, we get36 supertrees instead of the8 actually captured
by stable compatibility, due to the interchangeability of the internal nodes8 and10 and
the interchangeability of the internal nodes7 and9. By contracting in a post-processing
step all arcs(v, w) where nodew has only one incoming arc, we obtain10 supertrees,
as some mirror symmetry remains.

However, our model has onlyΘ(ℓ) domain variables, whereℓ is the number of
leaves in the given trees, whereas the model of [17] hasΘ(ℓ2) domain variables. The
runtime and memory consequences thereof on large instancescan be clearly observed
in Table 3.

SpecialisedO(ℓ2) runtime supertree algorithms, such as the ones of [9, 23], of
course systematically and drastically outperform our constraint model (even the hardest
of the considered instances take less than 100 ms). However,they do not provide the
flexibility of a constraint programming approach, as every combination of the currently
emerging biological side constraints (on nested species orrelative ancestral divergence
dates, say) and objective functions (when switching to an optimisation version of the
problem) requires a new algorithm. For instance, the extended treeconstraint directly
accommodates the nested-species side constraint, as seen for the spider trees, but the
algorithms of [9, 23] cannot do that.

8.2 The Ordered Simple Path Problem with Mandatory Nodes

We now evaluate thetreeconstraint on theordered disjoint paths problem(ODP), which
consists in partitioning a given (di)graph into a given number of mutually node-disjoint
paths [16, page 217], subject to precedence constraints between nodes. The extended
treeconstraint can directly deal with this problem, but, in order to compare with [26],
our evaluation is done on a restriction of this problem, called theordered simple path
problem with mandatory nodes(OSPMN), which consists in finding an elementary path
containing a set of mandatory nodes in a given order.

The OSPMN problem can be modelled by an extendedtree constraint whose di-
graphG is to be covered, but enriched by a loop on each node, while theset of manda-
tory nodes is contained in a connected component of the precedence digraphGprec such
that each mandatory node succeeds the first node of the path and precedes the final node
of the path, and if there exist precedence constraints between two mandatory nodes, then
an arc is added between them. All the other nodes represent connected components of
size1 in Gprec. An ordered-path heuristic is used to select a father variable at each wak-
ing up of thetreeconstraint. This heuristic forces an incremental buildingof the path
by selecting as new variable to instantiate the value chosenat the previous step: if an
arc (vi, vj) is enforced at a given step, then an arc starting fromvj is selected at the
next step.

Table 4 shows that our model compares favourably, in the number of failures, with
the results reported in [26] for an equivalent hardware, until the first solution is found
or until the absence of solutions is established. In [26], the used constraintsdomReach-
ability, noCycle, andallDifferent are implemented in theGecode(CP(Graph)) C++ li-
brary [30], which explains why the computation times are nevertheless very similar.
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OSPMN instances
tree DomReachability+Path[26]

wake-upsfailures time failures time

SPMN 22 7 0 52 5 110
SPMN 22 full 3 0 36 0 70
SPMN 52b 20 0 1115 6 920
SPMN 52 full 6 0 562 0 580
SPMN 52order a 6 0 592 0 500
SPMN 52order b 1 0 17 4 280

Table 4: Results for the OSPMN instances in [26]

8.3 Random Instances for the Hamiltonian Path Problem

Our model for the Hamiltonian path problem uses an extendedtree constraint where
each node of the given digraph has an in-degree of one, exceptthe origin of the path,
which has an in-degree of zero. Precedence constraints are added so that the origin of
the path precedes all the other nodes, and all these nodes precede the destination of the
path.

For each density6 among{0%, 10%, . . . , 100%}, a total of50 random connected
digraphs of sizes25, 50, 75, and100 were generated, the origin and destination nodes
being randomly chosen. Figure 7a shows that the instances are harder for a density of
8% to 22%. Intuitively, the denser a graph, the higher the probability of existence of a
Hamiltonian path [20, 25]. If there are no arcs, then no Hamiltonian path can exist. If the
graph is complete, then the existence of such a path is guaranteed. From this observa-
tion, the left-hand side of the density interval[8%, 22%] of Figure 7a is easy (according
to the number of backtracks) because the probability of existence of a Hamiltonian path
is low, and the right-hand side of this interval is also easy because this probability is
high. Figure 7b confirms the theoretical runtime complexityannounced in Table 2 of
Section 7. The interval of more complex instances (in terms of backtracks) is not dis-
cernable because even if it is easy (in terms of backtracks) to provide a Hamiltonian
path for a dense graph, the runtime complexity of the filtering algorithms depends di-
rectly on thenumberof arcs in the graph. In practice, a more efficienttree constraint
would require an efficient trigger for each filtering algorithm. This is not surprising,
and randomised algorithms have been proposed for some global constraints, such as
AllDifferent and Global Cardinality [18]. Finally, an average of only1.9 backtracks
for graphs of size100 may seem strange for a well-known NP-hard problem. This ob-
servation rather highlights the difficulty of generating hard randomised instances for
the Hamiltonian path problem. Obviously, there do exist pathological graphs, such as
Tutte’s graph [32],7 for which we need120 backtracks to prove that there exists no
Hamiltonian cycle.

6 Thedensityof ann-nodem-arc digraph ism/n2.
7 Tutte’s graphis a non-Hamiltonian 3-connected cubic graph of size47.
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Fig. 7: Evaluation of thetreeconstraint on the Hamiltonian path problem.

9 Conclusion

Thetreeandpath constraints have been unified within a single global constraint. More-
over, we have shown how to handle in a uniform way a variety of side constraints,
namely precedence, incomparability, and degree constraints, which often occur in the
context of path and tree problems. The resulting global constraint can thus tackle a large
variety of graph partitioning problems related to paths or trees.

Our experiments, particularly on dense graphs, point to an important topic for future
research, namely the finding of efficient filters that avoid triggering heavy algorithms
when there is obviously nothing to prune (particularly for expensive filtering algorithms
like the one of the global cardinality constraint [18]). Moreover, using fully incremental
algorithms in order to maintain during search some graph properties such as the transi-
tive closure, the strongly connected components, etc, seems a crucial point to improve
the scalability and runtime complexity [29]. However, coming up with fully dynamic
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algorithms for complex graph properties that need to maintain and synchronise many
data structures seems quite challenging, even if such algorithms exist for many graph
properties considered independently.

In the case of the phylogenetic supertree problem, we point out that our approach
naturally provides a lot of information on the structure of the supertrees, by means of
the precedence digraphGprec. However, there remain two questions. First, is it possible
to provide a complete filtering algorithm for this problem, even if solving its model in
terms of precedence and incomparability constraints is NP-hard in general? Second, is
it possible to see the precedence digraph as a canonical formof the set of compatible
supertrees for a given set of trees?

Acknowledgements

We are grateful for the constructive discussions with Manuel Bodirsky, Vincent Moul-
ton, Patrick Prosser, and Luis Quesada. Many thanks also to the anonymous referees for
their useful comments.

References

1. A. Aho, Y. Sagiv, T. Szymanski, and J. D. Ullman. Inferringa tree from lowest common
ancestors with an application to the optimization of relational expressions.SIAM Journal of
Computing, 10(3):405–421, 1981.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Research Report
T2005-08, Swedish Institute of Computer Science, 2005.

3. N. Beldiceanu, P. Flener, and X. Lorca. Thetreeconstraint. InProceedings of CP-AI-OR’05,
volume 3524 ofLNCS, pages 64–78. Springer-Verlag, 2005.

4. N. Beldiceanu, P. Flener, and X. Lorca. Combining tree partitioning, precedence, incompara-
bility, and degree constraints, with an application to phylogenetic and ordered-path problems.
Technical Report 2006-020, Department of Information Technology, Uppsala University,
Sweden, 2006. Available at http://www.it.uu.se/research/publications/reports/2006-020/.

5. N. Beldiceanu, P. Flener, and X. Lorca. Partitionnement de graphes par des arbres sous con-
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la-Neuve, Belgium, 2006.
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