Combining Tree Partitioning,
Precedence, and Incomparability Constraints

Nicolas Beldiceanl Pierre Flenér, and Xavier Lorca

! Ecole des Mines de Nantes, LINA FREE CNRS 2729
FR — 44307 Nantes Cedex 3, France
{Nicolas.Beldiceanu,Xavier.Lorca t@emn.fr
2 Department of Information Technology, and
The Linnaeus Centre for Bioinformatics
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
Pierre.Flener@it.uu.se

Abstract. Thetreeconstraint partitions a directed graph into node-disjuies.
In many practical applications that involve such a pantititnere exist side con-
straints specifying requirements on tree count, node ésgi precedences and
incomparabilities within node subsets. We present a gésatian of thetree
constraint that incorporates such side constraints. Thg&mt of our approach
is to take partially into account the strong interactionsMeen the tree partition-
ing problem and all the side constraints, in order to avaidghing during search.
We describe filtering rules for this extendeee constraint and evaluate its effec-
tiveness on three applications: the Hamiltonian path gmobthe ordered disjoint
paths problem, and the phylogenetic supertree problem.

1 Introduction

Graph partitioning problems are involved in many practaggplications such as vehi-
cle routing, mission planning, DNA sequencing, or phylogétfowever, in most real
life applications, graph partitioning problems are sutgddo various side constraints.
This paper proposes a global constraint for partitioningvargdigraph into a set of
node-disjoint trees under side constraints such as the auoflirees, the degree of
each node, and a partial order between nodes. For instaegesedconstraints can be
used to get tree partitions limited to paths (which are “yh&rees) or binary trees.
Similarly, a partial order between nodes can be used to sg@eset of precedence
constraints inherent in many tree or path problems [26].@dwer, a partial order also
expresses a set ofincomparability constraints (also krasxdominance constraints [8])
that can be used to force some nodes to belong to distindvteeehes or trees. Exam-
ples of such problems include the construction of a phyletiesupertree from given
species trees [1,7,17, 23, 31], possibly under degreeraamist requiring the resulting
tree to be binary or precedence constraints requiring sp@ees to be nested, as well
as digraph partitioning by paths [6, 11, 26], trees [5], arleg [10]*

* Some of this work was done while a Visiting Faculty Member Bna@lsmus Exchange Teacher
at Sabanci University itstanbul, Turkey, during the academic year 2006/07.

! Searching for a cycle in a digraph can be modelled as searéhiran elementary path if one
of the nodes of the digraph is duplicated.

In [3], we proposed a complete polynomial characterisapibtine tree constraint,
which partitions a given digraph into a forest of node-disjtrees. This paper extends
the originaltree constraint with the following useful side constraints:

— Precedence constrainta nodeu precedes nodev if there exists a directed path
fromu to v.

— Incomparability constraintstwo nodesu and v areincomparableif there is no
directed path fromu to v or fromv to w.

— Degree constraintthat restrict the in-degrees of the nodes in the tree patiti

— Constraints on the number of proper tre@gere aproper treeis a tree involving
at least two nodes.

We will show that combining these side constraints is mostjyivalent to solving an
NP-hard problem. As this is generally the case for hetereges combinatorial prob-
lems, a disjoint treatment of each additional restrictismot efficient and leads to
repeatedly discovering the same inconsistencies; thisgghenon is callethrashing
Thus, the main contribution of this paper is a set of necgss@uctural conditions
combining the input graph with the graphs associated wigtpttecedence and incom-
parability constraints. These conditions focus on thengfinteraction between the side
constraints (i.e., precedences, incomparabilities, agtags) in order to get an im-
proved filtering algorithm that reduces thrashing. As a egugnce, the corresponding
extendedree constraint can directly handle partitioning problems asedhas (exten-
sions to) the phylogenetic supertree and ordered disjaititspproblems, which were
previously addressed by ad-hoc approaches.

The rest of this paper is then organised as follows. Firsti®@e@ recalls the neces-
sary background in graph theory. Next, Section 3 first re¢h# originatreeconstraint
and then shows how to represent the extended version imgadiditional restrictions.
Then, Section 4 states the theoretical complexity of therededtree constraint. Sec-
tion 5 details the additional restrictions related to pdssee and incomparability con-
straints. For each, necessary conditions for partitiottiegdigraplty into trees are pro-
vided, and pruning rules are derived from these necessagittans. Next, Section 6
shows that managing the interaction between these camstediows us to improve the
necessary conditions and derive new pruning rules. Seét@mncludes the theoretical
part of the paper by a synthetic overview of all theorems dgordahms on the different
aspects of the extendé®econstraint. Section 8 then presents our experimentaltsesul
with the extendedree constraint, including the problems of constructing a stiper
of several phylogenetic species trees, possibly undercsidstraints, and constructing
an ordered simple path with mandatory nodes. Finally, 8e@&ireviews related work,
discusses future work, and concludes.

2 Background: Graph Theory

Most of the filtering algorithms involved in graph-based saints are directly depen-
dent on classical notions of graph theory. Tiee constraint introduced in [3] perfectly
illustrates this remark, but we can also mentionahlBbifferent andglobal cardinality

constraints [27, 28]. Thus, we now introduce the standatibn® of graph theory that
will be used throughout this paper.

Definition 1 (Digraph). A directed graphalso calleddigraph G is a pair (V,¢),

whereV is a set of objects, calledodes(or verticeg, and £ is a binary relation on
VY x V that defines a set of ordered pairs of nodes. The eleme#ta@f called thearcs
of the digraph.

Definition 2 (Graph). A graphg is a pair (V, &), whereV is a set of objects, called
nodeg(or verticeg, and€ is a binary relation onV x V that defines a set of unordered
pairs of distinct nodes. The element£adre called theedgeof the digraph.

A graph can be represented by a digraph in the following wayahy edg€?, ;)
of the graph, we have to build two args j) and(j, ¢) in the equivalent digraph. So, in
the rest of this section, definitions are provided in the erindf directed graphs.

Definition 3 (Partial digraph). A partial digraphg’ = (V, S) is a digraph induced by
adigraphg = (V, &) such thatS C £.

Definition 4 (Source and sink nodes)Given a digraphg = (V,€&), anodej € V
is a sourcenode ofg if for any node: € V with i # j we have that(i,j) ¢ &.
Symmetrically, a nodg¢ € V is asinknode ofG if for any nodek € V with k£ # j we
have that(j, k) ¢ £.

Definition 5 (Elementary Path). Given a digraphg = (V, £), anelementary patlof
lengthg > 0 is a sequence of aras = (uq, ue, ..., uq) 0f G such that the final node
of each arc in the sequence coincides with the initial nod@succeeding arc in the
sequence, and the sequence does not contain the same ncele twi

Definition 6 (Elementary Cycle).An elementary cyclés a path that begins and ends
at the same node, and all the other nodes used are different.

In the following, we simply use the terms ‘path’ and ‘cyclather than the terms ‘el-
ementary path’ and ‘elementary cycle’. Next, we provide sopperations that can
be applied on digraphs. Given three digraghs = (V1,&1), G2 = (M, &), and
Gs = (V3,&3):

— G1 U Gs denotes thenionof G; andgs, that is the grapliV, U Vs, E1 U £9).

— G1 NG, denotes théntersectionof G; andgG,, that is the grapiV; U Vs, £ N &Es).

— G1 € G, denotes thenclusionof G; in G,, which holds ifG, U Gy = G, and
Gi NGy =Gi.

— G1 \ V2 denotes theestrictionof G; to the nodes ob; \ Vs, preciselyG; \ Vs =
Wi\ Vo, {(i,4) € &1 [i € Vo Nj ¢ Vo)),

— G1 \ & denotes the restriction @ to the arcs of; \ &, preciselyG; \ & =
V1, {(i,9) € &1 1 (4, 5) ¢ E2}).

— TC(G) denotes théransitive closureof G, that is the grapiiy, £’) such that for
all v, w in V there is an edgév, w) in &’ iff there is a non-empty path fromto w
ing.

— TR(G) denotes théransitive reductiorof G, that is the smallest graph (under arc
inclusion) such tha’'C'(G) = TC(TR(G)).

Now, we are in position to define classical structures (opprtes) related to digraphs.

Definition 7 (Connected component)A connected componeatan undirected graph
G = (V,€&)is asetof node§ C V such that, for any pair of nodegs:, v) € C, there
exists a path fromu to v, or fromv to u, in the graph defined byC, {(i,5) € & |

i € CAj € C}). Foragiven node, themaximum connected compondonder node
inclusion) containing nodeis denoted byC'C (7).

Definition 8 (Strongly connected component)A strongly connected componesfta
digraphG = (V,€) is a set of nodes C V such that, for any pair of node€s, v) €
S, there exist a path froma to v and a path fromw to « in the digraph defined by
(8,{(i,5) e £]i e SAj € S}). For agiven node, themaximum strongly connected
componentunder node inclusion) containing nodes denoted bysC'C' (3).

Definition 9 (Sink component).A sink componentS of a digraphG = (V,€) is a
strongly connected component®fsuch that no node ig \ S is reachable by a path
from any node irS.

Definition 10 (Reduced digraph).The reduced digraply,. is derived from a given
digraph G by associating to each strongly connected componegt afvertex ofg,.,
and to each arc o that connects two different strongly connected comporaemgsc

ing,.

Definition 11 (Dominator [21]). Given two distinct nodeis j of a digraphg = (V, £)
such that there is at least one path frérno j, a noded is adominatorof j with respect
to if and only if there is no path fromto j in G \ {d}. The set of dominator nodes of
J with respect ta is denoted byDOM g i (7).

Finally, we introduce the notion of tree. In the context abdied graphs, the proper
term that denotes a treeasti-arborescenceout in the following, we only use the term
tree.

Definition 12 (Tree and Proper Tree).A digraphg = (V, £) is atreeif and only if:

— G is connected (i.eg is composed of a single connected component).

— G does not contain any cycles.

— Each node ofj has exactly one successor, exceptrihe, which is the single sink
node inG.

A proper treds an tree with at least two nodes [12].

Definition 13 (Forest).A digraphG = (V, £) is aforestif and only if each connected
component of is a tree.

3 Extending the Original tree Constraint

Graph partitioning problems can mostly be reduced to thecheaf a partial graph
respecting a set of properties, induced by an initial gréyalh defines the problem. So,
finding a suitable representation of the initial graph ardre properties associated
with the problem has to be done.

In constraint programming, three kinds of approaches tplgpoblems are gener-
ally proposed. The first one associates to each possiblgexpectively arc) a Boolean
variable such that it is set toue if and only if the edge (respectively arc) is present in
the digraph. A second representation associates to eaehafitlde digraph an integer
variablé whose domain represents the set of potential direct sumseissthe digraph.
Finally, the most recent representation directly dealk giaph variables. Such a com-
posite type of variables was proposed in [24, 15]. It combthe representation of each
node by an integer variable and the representation of eadbyaa Boolean variable.

This section first recalls the initiflee constraint introduced in [3]. Next, it presents
the extendedree constraint, showing how to extend the initial constraindeiting in
order to deal with additional restrictions.

3.1 The Original tree Constraint

The originaltree constraint is modelled by an integer variabifEREE specifying the
number of trees in the partition and by a digraph= (V, &) in which the node set

V = {vy,...,v,} is a set of integer variables and the arc agives the domains
dom(v;) = {j | (vi,v;) € &} of these variables, so that they represent the direct
successor relation of the partition tiee(NTREE, G) constraint specifies that its digraph

G should be a forest afTREE trees. Formally:

Definition 14 (Solution of atree constraint). A ground instancef a tregNTREE, G)
constraint is said to be aolutionif and only if:

— The digraphg consists ofiTREE connected components.

— Each connected component®tas no cycle involving more than one node (no-
tice that each component contains exactly one node that ls&#fdoop and that
corresponds to the root of that tree).

Given a digrapl@y containing a set gbotential roots where a potential root @ is
a node that can be the root of a tree in a solution oftteeconstraint, the minimum
number of treesMINTREE) for partitioning the digraply of a tree constraint is the
number of sink nodes of the reduced digrapltjpind the maximum number of trees
(MAXTREE) for partitioning the digrapld is the number of potential roots . We are
now in position to recall the filtering algorithm of theee constraint. This algorithm
is the first step of the extended constraint detailed in thjgep WherNTREE has to
reachMAXTREE, the algorithm enforces, for each potential root, a loopteelf (that
represents the fact that it is a root). In the case wNEREE has to reacNINTREE, the

2 An integer variableV is a variable ranging over a finite set of integers denoteddy(V);
min(V') andmax(V'), respectively, denote the minimum and maximum valuegoat (V).

algorithm removes, for each potential root that does nairigeto a sink strongly con-
nected componerd}, the loop on itself. Finally, for any¥TREE, the main filtering rule
associated with the constraint is based on the detectioomirdhtor nodes of the di-
graph. Then, the filtering algorithm has to detect each aafe; such that there exists
a node for which j dominates all the potential roots @faccording ta. The infeasible
arcs ing for atreeconstraint are the outgoing args k), wherej is a dominator node,
such that there is no path froitto a potential root of using the ardj, k).

3.2 Modeling the Extendedtree Constraint

In order to extend the originafee constraint according to the additional restrictions
proposed in the introduction, we have to represent eachiatésh in the context of
graphs. The restrictions involved in the extended versidhe@constraint can be clas-
sified in three distinct categories:

— Restrictions related to admissible arcgjinthis is the case for the precedence and
incomparability constraints, which respectively enfoaceode to precede another
one in any admissible tree partition, and enforce two nooleg focated on distinct
paths in any admissible tree partition.

— Restrictions related to the accessibility of each nodg:ithis is the case for the
degree constraints, which restrict the in-degree of eadie imoany admissible tree
partition.

— Restrictions related to the number of trees allowed to cgvéhis is the case for
the constraint on the number of proper trees in any admessibé partition.

From this classification, the following natural represéintaof each restriction emerges:
the precedence and incomparability constraints can be lexbty a digraplyy,.. and

a graphg;,. respectively, the degree constraints can be modelled logias®g to each
node: of the given digraphg an integer variabl®; representing the in-degree of
and the constraints on the numbers of trees and proper tedsecmodeled by integer
variablesNTREE andNPROP respectively. Before upgrading Definition 14 accordingly,
we need to introduce some notions.

Definition 15 (Required digraph and possible digraph). Given an extendettee
constraint and its digraply = (V, £):

— An arc(i,7) of G is anR-arc(a required arfif ¢« has only;j as successor i;
otherwise(i, 7) is aP-arc(a possible ark

— A nodei is anR-succif all its outgoing arcs are R-arcs; otherwigas aP-succ

— A nodei is anR-predif all its incoming arcs are R-arcs; otherwigas a P-pred

— Therequired digraplg,., contains all arcs that must be in the partition. Formally,
Greq = (V, Ereq), Where€,, is the set of all R-arcs ig.

— Thepossible digraplg,,, contains all arcs that may be in the partition. Formally,
Gpos = (Vpos, Epos), WhereV,,,s contains all the nodes that are incident to at least
one P-arc, andE,,; is the set of all P-arcs ilg.

Definition 15 ensures that,., andG,,, completely define the digraph. We are
now in position to define an admissible solution for an exésticee constraint.

Definition 16 (Solution of an extendedree constraint). A ground instance of an ex-
tendedtreeconstraint is said to be aolutionif and only if:

— The digraphg,., consists ofiTREE connected components.

— Greq CONtaiNSNPROP connected components involving at least two nodes.

— Each connected component@t, has no cyle involving more than one node (no-
tice that each component contains exactly one node that Isa#fdoop and that
corresponds to the root of that tree).

— For each arc(i, j) in Gprec, there exists a path i, from node; to node;.

— For each edgé€t, j) in G, there exists neither a path .., from nodei to node
j, nor a path inG,., from node;j to node:.

— Each node of G,., has exactlyp; predecessors ig,., that are distinct from.

3.3 Representing the Extendediree Constraint in Practice

We could provide a trivial representation of the extentleeconstraint by:
tree(NTREEv NPROP, gv gp'reca g'mca Dv F)

This representation is based on seven parameters reghgctipresenting the numbers
of trees and proper trees by two integer variallEREE andNPROP, the digraphg; and
Gprec DY two n x n adjacency matrices, the gragh,. by anothem x n adjacency
matrix, the degree restrictions by a vecboof n integer variables whosg" element
gives the in-degree of nodef G, and the tree partition by a vectbiof n integer vari-
ables whosé'" element gives the successor (father) of nbdeg in the tree partition.
Such a representation approach generally leads to a padida of parameters because
a parameter is added each time a new restriction is intrat{ecg., see theycle cu-
mulative anddiffn constraints in CHIP [14], which respectively have 17, 12] 40
parameters).

Since the three grapits G,.., andg,,. involve exactly the same set of nodes
and since the vectobsandF are also oveY, a more elegant and compact representation
of the extendedree constraint rather has the form:

tree(NTREE, NPROP, NODE)

whereNTREE andNPROP are two integer variables respectively representing tiebars

of trees and proper trees in the forest, 800E is a collection of: nodeNODE[1], . . . , NODE[n].
Each node); = NODE[¢] has the following attributes, which complete the repressior

of the constraint:

— Lis aunique integer ifil, n]. It can be interpreted as tlebel of v;.

— Fis aninteger variable whose domain consists of node labelglements ifl, n).
It can be interpreted as thmique successdpr father) of v;.

— Pis a possibly empty set of node labels, i.e., integeif$.in]. It can be interpreted
as the set omandatory descendan(sr precedencef v;.

— Iis a possibly empty set of node labels, i.e., integefs i 1, n]. It can be inter-
preted as the set of nodes that emeomparablewith v;.

— D is an integer variable if0,n — 1]. It can be interpreted as tlie-degreeof v;.
Notice that the in-degree constraint ignores the posséfd@op on the node;.

The aim of this representation of the constraint is to endaps the three original
graphsg, Gprec, andG;,. in a compact and expressive way. We now show how to
read off these graphs from the collectindDE of the extendedree constraint. How-
ever, in the rest of this paper, we reason directly on themglgrrather than on th@DE
structure. First, we extract the digraghi.e., the digraph to partition, from theODE
structure:

Definition 17 (Associated digraph).Theassociated digrapf = (V, &) of atreecon-
straint is defined by:

V={v; |i€[l,n]}and€ = {(v;,v;) | j € dom(NODE[:].F)}

Note that filtering an inconsistent valyén dom (NODE[].F) is equivalent to remov-
ing the ard(, j) from G,,s.

Next, we extract the digrapd,,..,which represents the precedence constraints,
from theNODE structure:

Definition 18 (Precedence digraph)Given atreeconstraint with associated digraph
G = (V,€&), theprecedence digrapf,.. corresponds to the following transitive re-
duction:

TR(V,{(i,j) € V? | i € NODE[j].P})

Finally, we extract the grapf;,., which represents the incomparability constraints,
from theNODE structure:

Definition 19 (Incomparability graph). Theincomparability grapld,,,. of atreecon-
straint with associated digrap = (V, €) is defined by:

(V,{(i,j) € V?| i € NODE[j].1})

3.4 Example of an Extendedree Constraint

Figure 1a and the first three columns of Table 1 representeatdnl graply; for which
the four solutions in Figures 1b to le are obtained fromtthe constraints in the
columns of Parts (b) to (e), respectively, of Table 1:

— Part (b):dom (NTREE) = {2} = dom(NPROP), dom(NODE[i].D) = [0, 2] for each
nodew; of G, the nodevs has to precede nodeg, and the node pair&,, v3) and
(v4, vg) are incomparable.

— Part (c):dom(NTREE) = {2}, dom(NPROP) = {1}, dom(NODE[{].D) = [0, 3] for
each node; of G, the nodev; has to precede nodg, and the node pair®s, vs),
(v4,v5), and(vg, vg) are incomparable.

— Part (d):dom (NTREE) = {2}, dom(NPROP) = {1}, dom(NODE[{].D) = [0, 1] for
each nodey; of G, the arcs(ve,vs), (v2,v4), (v2,vs), (v3,v1), @and(vg, v1) rep-
resent precedence constraints restricting the diga@md the node pair@s, vs)
and(v4, vs) are incomparable.

Cr Cr

2 &

y A
é: 0

(a) The original digrapld.

288 1650 .

(b) D < 2, NTREE = 2, NPROP = 2. (C) D < 3, NTREE = 2, NPROP = 1.

(DD
OO O

(d)p < 1, NTREE = 2, NPROP = 1. (€)Dp < 2, NTREE = 1, NPROP = 1.

Fig.1: (a) The associated digragh of the tree constraint detailed in Section 3.4.
(b,c,d,e) Plain arcs depict four solutions according tophecedence, incomparabil-
ity, and degree constraints described in Parts (b) to (gpeively, of Table 1. Dashed
arcs depict precedence constraints, while dotted edgessenm incomparability con-
straints.

— Part (e):dom(NTREE) = {1} = dom(NPROP), dom(NODE[i].D) = [0, 2] for each
nodev; of G, the node,, precedes node;, and the node pair®, v2) and(vs, vs3)
are incomparable.

Moreover, in each digraph depicted by Figures 1a to 1le, tfiereit kinds of arcs
represent distinct constraints:

— The plain arcs depict the arcs of the digraph to partitian, the digraply.

— The dashed arcs depict the precedence constraints. Invatinds, the digraph in-
duced by dashed arcs represents the precedence diggaph

— The dotted edges depict the incomparability constrairtigs iheans that the graph
induced by dotted edges represents the incomparabiliphgfa,..

The rest of this paper does not directly deal with degree tcaings or theNPROP
variable. However, in practice, the degree constraintglateally maintained by a spe-
cialised global cardinality constraint, callgtbbal cardinality no loopn [2] and dis-
cussed in [5, 4, 22]. Similarly, the propagation relatedh®NPROP integer variable is

Part (b) Part (c)

vi. \NODE[:].L NODE 1] F S oDE], TNODE 7] D| NODE[{] P|NODE[]. [[NODE[] D

v 1 {1,3} - - [0, 2] - - [0, 3]

V2 2 {4,5,6} - {3} [0,2] {4} - [0, 3]

va| 3 {14} | {1} - [0,2] - {6y | [0,3]

V4 4 {1,3,6} - {6} [0,2] - {5,6} [0, 3]

Us 5 {2,5} - - [0,2] - - [0, 3]

V6 6 {1,4,5} - - [0, 2] - - [0, 3]
Part (d) Part (e)

vi. \NODE[:].L NODE 1] Fl S oDE], TNODE 7] D| NODE[{] P NODE[]. [[NODE[:] D

n| 1 {1,3} - - 0,1 | {5} 2y | 02
va| 2 [{4,5,6}|{3,4,6}| - [0,1] - {3} | 0,2
vs| 3 (1,4} | {1} {5y | [0, - - [0,2]
vl 4 [{1,3,6}] - (s} | [0,1] - - [0,2]
vs| 5 {2,5} - - [0,1] - - [0,2]
ve| 6 |{1,4,5}| {1} - [0,1] - - [0,2]

Table 1: The first three columns describe the associatedligr of thetree constraint
depicted by Figure la. The columns of Parts (b) to (e) showptbeedence, incom-
parability, and degree constraints associated with theaghyG that lead to thdree
partitions depicted by Figures 1b to le, respectively.

discussed in [4, 22]. First, in the following, Section 4 dlstthe theoretical complexity
of each part composing the extendegke constraint. Then, Section 5.1 provides nec-
essary conditions for partitioning the digraghof a tree constraint into trees accord-
ing to a potential number of trees and a set of precedencéraons. Since achieving
arc consistency for even this simplified constraint is ayebdP-hard, some pruning
rules are derived from these necessary conditions. Negtjd®e5.2 proposes neces-
sary conditions for partitioning into trees according to a potential number of trees
and a set incomparability constraints. Section 6.1 coreplétose results by consider-
ing the interaction between precedence and incompasabditstraints, and new nec-
essary conditions are introduced to ensure that thereseati#ast one tree partitioning
of G according to the precedence and incomparability conssrdiinally, Section 6.2
improves the necessary conditions introduced in Sectioh$d56.1 by deriving new
precedence constraints from the interaction between tpeaphG and the existing
precedence and incomparability constraints.

4 Theoretical Complexity of the Extendedtree Constraint

This section discusses the theoretical complexity of easlriction involved in the
extendedree constraint. Particularly, we point out that the propagati the gener-
alised arc consistency in an extendezk constraint is an NP-hard problem. However,
notice that in the case of an extendeeke constraint involving only incomparability
constraints, we do not classify the theoretical compleditgeed, to the best of our

10

knowledge, the complexity of finding a tree partition acdéogdo a set of incompara-
bility constraints between nodes is an open question.

4.1 Thetree Constraint Is Only Constrained by the NPROP Variable

We study the theoretical complexity of propagating an edéeitree constraint to gen-
eralised arc consistency, in the context where onlWHREP variable is constrained. In
other words, the extendéxke constraint has the following characteristics:

— dom(NPROP) C dom (NTREE);

— There does not exist any precedence constraint betweendss 0fg;

— There does not exist any incomparability constraint betwibe nodes of;

— The in-degree variables associated with each nodglidve domains included in
[0, 7).

In this context, we show that the extendegk constraint cannot be propagated to reach
generalised arc consistency in polynomial time.

Theorem 1. Propagating generalised arc consistency for the exteridssconstraint
according toNPROP is NP-hard.

Proof. First, we give a polynomial certificate for the extendies constraint according
to the number of proper tre@®R0P, i.e., a deterministic polynomial-time algorithm
that checks if a ground instance of an extentleelconstraint is a solution satisfying the
constraint. We start by checking that the ground instanegfagest containing exactly
NTREE trees, i.e., the digrapfi.., (1) consists ofiTREE connected components and (2)
does not contain any cycles involving more than one nodet,Mexcheck that exactly
NPROP trees of the forest contains at least two nodes.

Second, we show that any instance of the NP-complete highgroblem [16] can
be polynomially reformulated as an extendegk constraint. A classical graph-based
representation of the hitting set problem uses a biparté@lv5 = (Vies, Vright, €)
defined in the following way (see Figure 2):

— A node ofV,. is associated with each subseCof

— A node ofV,4, is associated with each elementSf

— There exist an edge ifi between a node df;.;; and a node oV, iff the cor-
responding element with the node ;. belongs to a subset associated with a
node ofV..

A solution satisfying the hitting set problem is an assigntnef each node oV
to a node ofV,;g,: such that at mosk nodes ofV,4,; are used to assign all;.y
nodes. A polynomial-time transformation of the hitting pebblem into an extended
treeconstraint is based on a digraglilefined by(Viess UVright, { (¢, §) € Vieft X Vright |
i =jV(i,j) € £}). Then, the hitting set problem is reduced to finding a treétjmar of
G in at mostk proper trees, i.e., satisfying an extendee constraint withNPROP < k.

O

3 Given a collection of subsets of a setS and an integek, the hitting set problem checks if
there exists a subs&X C S such thalS’| < k andS’ contains at least one element of each
subset irC.

11

® © ©

@ © ©
ez AN
Y

" ()
Vri_r]hf U
(a) Bipartite graphi3. (b) Digraphg. (c) Asolution.

Fig. 2: A hitting set problem represented by an exterideztonstraint, wittNPROP = 2
and|Vleﬂ| = |C|

4.2 Thetree Constraint Only Involves Precedence Constraints

We study the theoretical complexity of propagating an edéeltree constraint to gen-
eralised arc consistency, when only precedence congraietrepresented. In other
words, we have the following assumptions:

— dom(NTREE) C dom (NPROP);

— There exist precedence constraints between the nodgs of

— There does not exist any incomparability constraint betwibe nodes of;

— The in-degree variables associated with each nodghdve domains included in
[0, 7).

In this context, we show that the extendegk constraint cannot be propagated to reach
generalised arc consistency in polynomial time.

Theorem 2. Propagating generalised arc consistency for the exteridssconstraint
according to precedence constraints is NP-hard.

Proof. First, we give a polynomial certificate for the extendies constraint according
to precedence constraints, i.e., a deterministic polyabtitne algorithm that checks
if a ground instance of an extendé&ee constraint with precedence constraints is a
solution. We start by checking that the ground instance israst containing exactly
NTREE trees, i.e., the digrap#,., (1) consists oNTREE connected components and
(2) does not contain any cycles involving more than one niégt, for each ar¢u, v)
of G,rec, We check if there is a path fromto v in G,.,; this can be done by a depth-first
search fromu in G,q.

Second, we show that any instance of the NP-complete Hardhopath prob-
lem? [16] for a digraph(V, £) can be polynomially reformulated agrae constraint.

* Given a digraptg = (V, £), theHamiltonian path problenchecks if there exists an elemen-
tary path inG containing all the nodes af.

12

@i\\
N
o

(a) The digraphg of thetreecon- (D) The precedence digrapf, .. (c) Asolution.
straint. of thetreeconstraint.

Fig. 3: Reduction of the Hamiltonian path problem to an edgtiree constraint, with
NTREE = 1. Figure 3a depicts the digraphof the constraint. The nodes involved in the
rectangle depicts the digragti for which an Hamiltonian path is searched. Figure 3b
depicts the precedence digragh... of the constraint. Finally, Figure 3c provides a
solution of the constraint.

For this purpose, we have to define the digrégphnd the precedence digraph,..
(see Figure 3). Let; = (V U {s,t},&’) with & being a superset of such that
s is the only source node i, s is a predecessor of all the nodes ¥f ¢ is the
only sink node ofG with a self-loop, and is a successor of all the nodesf Let
Gprec = VU {s,t},{(s,5) | 7 € V}U{(s,t) | i € V}. The Hamiltonian path problem
then consists of finding a tree partition @fwith one tree (i.e.NTREE = 1) according
to the set of precedence constraints definegy.. a

4.3 Thetree Constraint Only Involves In-Degree Constraints

We now study the theoretical complexity of propagating aieedectree constraint to
generalised arc consistency, in the context where onlyrtidegree variables, associ-
ated with each node of the digraghare constrained. In other words, the extentiee
constraint has the following characteristics:

— dom(NTREE) C dom (NPROP);
— There does not exist any precedence constraint betweendss 0fg;
— There does not exist any incomparability constraint betwibe nodes of;

— Some in-degree variables associated with some nodéshafve domains strictly
included in[0, n].

The extendedtreeconstraint cannot be propagated to reach generalised aststency

in polynomial time. The reduction from the Hamiltonian pattoblem is straightfor-
ward.

13

5 Precedence and Incomparability Constraints in a Tree
Partitioning

This section details how to handle the precedence and ina@bfity constraints re-
spectively provided by the andI attributes of thélODE collection. Since achieving arc
consistency for even this simplified constraint is alreadd+ard (and the complexity
is not known in the case of incomparabilities), necessanditimns are proposed for
each one and filtering rules are derived from these condition

5.1 Combining Tree Partitioning and Precedence Constrairg

From Definition 18 of Section 3.3, which proposes a digrapldehof precedence con-
straints (via a digraply,...), this section studies the precedence restriction by, first
providing an upper bound QITREE, next, considering necessary conditions related to
the existence of a solution, and finally, introducing filtgriderived from these condi-
tions.

Definition 20 (Contracted precedence digraph)Given atreeconstraint with digraph
G = (V,€) and a set of precedence constraints represented in thetdieacyclic
graph (dag)G,r.., thecontracted precedence digr@ﬁec of G is defined by:

— There is a node of[l,,
greq-

— There is an arc between two nodesgﬁec iff there is an arc inG,,.. between two
nodes of the corresponding connected componeriis.of

for each connected component of the required digraph

Without loss of generality, we assume tltht... does not contain any self-loops,
i.e., that a node of,,.. cannot precede itself. Moreover, observe that any non-loop
required arc of,., corresponds to a precedence constraint. This leads us mbaimang
the following two invariants:

V(u,v) € Ereqg U # v = (U, 0) € Eprec (1)
Greq \ {(1,v) € Ereq | u =0} C Gpree (2)

They state that the required digraph without its self-loopsst always be a sub-graph
of the precedence digraph.

Upper Bound on the Number of Trees According to Precedence Ctraints: We
now provide an upper bound on the number of trees that martitie digraptg of a
tree constraint, according to the precedence digréph.. A first upper bound, given
in [3] for the “pure”treeconstraint (i.e., th&ree constraint without any side constraints)
and denoted bYAXTREE, is the number of potential roots ¢f Since this bound does
not consider the precedence constraints, we now providgnhtetibound that considers
Gprec as Well. The basic idea is to count among the connected coemp®afG,,... those
that are necessarily connected to another one. For thiopeyrp{0, 1}-value out; is

14

associated with each connected compoi&tit:) of G,.., depending on whether there
is a node inCC (i) whose potential father nodes axié outsideCC (7):

1 if Jue CC(i) : Vv € dom(NODE[u].F) : v ¢ CC(4)
out; = .
0 otherwise
Thus,CC (¢) will have to be merged with another connected component whgn= 1.
Proposition 1. Given atreeconstraint and its precedence digragh,.. such thag ..
containsk connected components, an upper boundTREE is:
k
MAXTREE, . = k — Z out;
=1

Proof. By the definition ofout;. |
Proposition 2. MAXTREE,,... is tighter tharMAXTREE.

Proof. Let p = MAXTREE be the number of potential roots Gf We know that:

k
k‘—pSZOUtiSkJ

i=1
Thus:
k
0<k— Z out; < p
i=1
Hence0 < MAXTREE,,.. < MAXTREE. O

Filtering a tree Constraint According to Precedence Constraints:A necessary con-
dition on the existence of solutions ofrae constraint involving precedence constraints
is made of four conjuncts, each maintaining a property ostheght tree partition: first,
we have to maintain a compatible number of trees allowedverdbe digraph; second,
we have to ensure that the partition is cycle-free; third haee to ensure that the par-
tition is compatible with all the precedence constraintglfy, we have to ensure that
each tree is rooted on a potential root.

Theorem 3. If there is a solution to an extendéeteconstraint with precedences, then
the following conditions hold:

1. Number of Trees: dom (NTREE) N [MINTREE, MAXTREE,..] #), whereMINTREE
is the number of sink componentirandMAXTREE,,.. is the quantity introduced
by Proposition 1.

2. Cycle-free: G, has no cycles.

3. Compatibility: The transitive closure df,,... is included within the transitive clo-
sure ofG (i.e., TC(Gprec) C TC(G)).

15

4. Compatible Root: For each sink componestof G, at least one node is both a node
with a self-loop inG and a sink inG, ..

Proof. A proof is provided for each condition:

1. If dom(NTREE) N [MINTREE, MAXTREE,..] = (), thenmax(NTREE) < MINTREE
or min(NTREE) > MAXTREE,... If the first inequality holds, then there exists a
sink component of that does not contain any potential root; also, we know that
there is no path between two nodes of distinct sink compenefd. Naturally,
Proposition 1 ensures that if the second inequality holtn thetree constraint
has no solution.

2. Assumgj,,.. contains a cycle and there is a solution. Then there exibsgat=
(u1,...,ux) and P’ = (ug,...,u1) in Gpre.. The pathP enforces that node,
precedes nodey, in any solution. Similarly, the patR’ enforces that:, precedes
w1 in any solution. But then there is no solution satisfyingheat $ame tim&” and
P’: a contradiction.

3. Assumel'C(Gprec) € TC(G). Thenthere exists atleast one &icv) in TC(Gprec)
thatis notinTC(G). This means there exists at least one precedence constiatint
cannot be satisfied.

4. Assume on the contrary that there exists a sink compdheuth that each node
with a self-loop (i.e., node is a potential root) has at least one successgr,jn..
Since each sink component contains at least one potentib(see the necessary
and sufficient condition for the puiteee constraint [3]), there is a contradiction
with the fact that each nodehas at least one successogi)...

Each condition is necessary, hence their conjunction isseuy. a

Based on the necessary condition expressed by Theorem Grithlp 1 filters a
tree constraint according to its precedence constraints. Atlgorl begins with an ini-
tialisation (STEP 1) that computes the connected comper@ti,., and marks the
single sink node of each component (by definitiorgaf,, each connected component
of G,, is a tree). This can be done@(n + m) time. Next, STEP 2 is a normalisation
step that updates the precedence digi@ph. as follows: for each non-root nodeof
a connected compone@tC(u) of G,.,, any precedence constra{at, v) is replaced by
(r(u),v) INn Gprec, Wherer(u) is the root of CC'(u) (indeed, observe that every path
from u to v visits r(u) before reaching). This can be done i®(m) time by iter-
ating through all precedences. Next, STEP 3 checks thebitiysof the constraint
according to the precedence constraints (Theorem 3); éimde done irO(nm) time
by computing the transitive closure 6f,... andG. STEP 4 updates the domain of
NTREE according to the lower boundINTREE, defined in [3], and the upper bound
MAXTREE,,.., given in Proposition 1; this can be doneln +m) time. Next, STEP 5
checks for each ar@:, v) of G, its compatibility (i.e., whether it does not create any
cycle, is not transitive, and can reach a potential rooth wie contracted precedence
digraphGfl_; this can be done if)(m) time by injecting the ar¢CC(u), CC (v)) in
the depth-first-search tree Qﬁec. Finally, STEP 6 updates the normal form (i.e., the
transitive reduction) o,,.. according toaG;,,., which can be done i (nm) time.

16

Algorithm 1 Filtering of thetree constraint according to precedence constraints.

/= STEP 1: Initialisation */

1. foreach node w <€V do

2. CC(u) < maximum connected component of Greq coONtaining u;
3. r(u) « the single sink node of CC(u);

/= STEP 2: Normalisation of the precedence digraph */

4. foreach arc (u,v) € Gpree such that w#r(u) and v ¢ CC(u) do

5. replace (u,v) In Gprec by (r(u),v);

/= STEP 3: Checking feasibility */
6
7
/
8
/

if the tree constraint has no solution (see Theorem 3) then
. report failure and exit;
* STEP 4: Updating the domain of NTREE */
. dom(NTREE) < dom (NTREE) N [MINTREE, MAXTREE ;.];
* STEP 5: Maintaining the cycle-free, compatibility, and
compatible-root conditions */
9. foreach arc (u,v) of Gp.s do
10. remove (u,v) from Gp.s if one of the following holds:

11. a. (CC(u),CC(v)) would create a cycle in Ghtees

12. b. (CC(u),CC(v)) would be a transitive arc in Gh e
13. c. uw=wv and CC(u) is not a sink of Gtees

/= STEP 6: Re-normalisation of the precedence digraph */

14, gp'r'ec — TR(gprec U g'r’eq);

Lemma 1. Algorithm 1 never removes an arc frafy,s or a value fromdom (NTREE)
that belongs to a solution tomeeconstraint.

Proof. If avaluek of dom (NTREE) is removed (STEP 4) but there exists a partitiog of
in k trees satisfying thee constraint, theMINTREE is not a lower bound oNTREE or
MAXTREE,,.. iS not an upper bound afTREE. This is impossible because of Condition
1 of Theorem 3.

If an arc(u, v) of G,,, is removed but there exists a partition@that contains it,
then this is only due to STEP 5. Conditions a, b, ¢ of this stepr@spectively derived
from Conditions 2, 3, 4 of Theorem 3. However, in Algorithmwie only consider the
digraphGZ_ instead 0fG,.. that allows us to ignore connected components,gf,

prec

i.e., the pieces of trees already built. a

5.2 Combining Tree Partitioning and Incomparability Constraints

From Definition 19 of Section 3.3, which proposes a graph rhoflemcomparability
constraints (via a grap@i,.), this section studies the incomparability restriction by
first, considering necessary conditions related to theexi® of a solution, and next,
introducing filtering rules derived from these conditions.

A necessary condition on the existence of solutions téaconstraint involving
incomparability constraints is made of two conjuncts: fivgt have to ensure that the

17

Algorithm 2 Filtering of thetree constraint according to incomparability constraints.

1. if the tree constraint has no solution (see Theorem 4) then
2. report failure and exit;
3. foreach arc e € Gpos N Gine do remove e from Gpos;

partition violates none of the incomparability constraimyvolved in the incomparabil-
ity graphg,,..; second, we have to maintain the reachability of a poteruiat for each
non-potential-root node. First, létc(u) denote the set of nodes f= (V, £) that are
incomparable with node. In other wordsjnc(u) denotes the neighbors afin G;,..
Next, we can formally introduce the necessary condition:

Theorem 4. If there is a solution to an extend#eeconstraint with incomparabilities
then, the following conditions hold:

1. Compatibility: TC(Greq) N Gine has no arcs.
2. Reachability: For each node: of G, there is at least one path reaching a potential
root of G, that does not contains any nodeiof:(u).

Proof. A proof is provided for each condition:

1. Assume there exists a path from a nadéo a nodev in G,.,. If v andv are
incomparable, then thigee constraint cannot be satisfied.

2. Assume there exists a nodef G such that for any nodewith a self-loop and any
pathP fromw tor, there is a node in P such that, andv are incomparable. Then
thetree constraint cannot be satisfied sinceannot reach a potential root without
violating an incomparability constraint.

Each condition is necessary, hence their conjunction isseuy. a

Based on the necessary condition expressed by TheoremdrjtAlg 2 first (lines
1 and 2) checks the feasibility of thieee constraint according to its incomparability
constraints (Theorem 4); this can be achieve@®{mm) time due to the computation
of the transitive closure of,., and depth-first search for each nadén the digraph
G \ inc(u). Next, line 3 detects infeasible arcs@f,, that belong taG;,,; this can be
done inO(m) time.

Lemma 2. Algorithm 2 never removes an arc fragy, that belongs to a solution to a
treeconstraint.

Proof. Assume two nodeg andv are incomparable and the &rg v) of G, is added

to G,¢,: this is a contradiction because the incomparability aamst between: andv
is violated. O

18

6 Managing Interaction Between Precedence and Incomparaliiy

This section shows how to improve the treatment of the premesl and incompara-
bility constraints introduced in Section 5. This improvemis based on two aspects
of these restrictions. The first one reasons on the infoomairovided by the interac-
tion between precedence and incomparability constraittge the second one shows
how to derive new precedence constraints hidden in theaatien between the exist-
ing precedence and incomparability constraints with tigeagihG of the extendetiree
constraint.

6.1 Combining Precedence and Incomparability Constraints

We now study the interaction between precedence and ina@ifity constraints in or-
der to provide two necessary conditions as well as a filtealggrithm directly derived
from these conditions.

A necessary condition on the existence of solutions éaconstraint combining
precedence and incomparability constraints is now exddbilt is made of two con-
juncts: first, we have to ensure that the partition satisfigh@precedence constraints
(involved in G,,..) and violates none of the incomparability constraints ¢aed in
Ginc); Second, we have to maintain the reachability of a potentiat for each non
potential-root node.

Theorem 5. If there is a solution to dree constraint involving both precedence and
incomparability constraints, then the following condiishold:

1. Compatibility: TC (Gprec) N Gine = 0.
2. Reachability: For each edgéu, v) in G;,,., there does not exist a nodesuch that
the arcs(w, «) and (w, v) both belong toT'C (Gprec).

Proof. A proof is provided for each condition:

1. This condition is directly derived from Condition 1 of Tdrem 4. Indeed, any
incomparability constraint between two nodesdf.. that belong to the same
path inG,.. leads to a contradiction with ttieee constraint.

2. Assume there exists a nodesuch that the ardsv, u) and(w, v) belong toT'C(Gprec)
and assuméu, v) € G;,.. The nodes: andwv then belong to the same path in any
solution and there is a contradiction with, v) € G;,..

Each condition is necessary, hence their conjunction iesggy. O

Algorithm 3 first checks the feasibility of theeeconstraint according to precedence
and incomparability constraints (Theorem 5); this can beeda O(nm) time due to
the computation of the transitive closure®f,.. (assuming that computing the union
and intersection of two graphs tak€$m) time). Then, lines 3 to 6 také(m?) time.
Indeed, for each artu, v) of G,,s, condition (a) checks the compatibility ¢f, v) in
the precedence digraph according to the incomparabilaplyr Condition (b) detects
the arcs oty that violate the reachability condition introduced by Tiesn 5.

19

Algorithm 3 Filtering of thetreeconstraint according to precedence and incomparabil-
ity constraints.

if the tree constraint has no solution (see Theorem 5) then
2. report failure and exit;

3. foreach arc (u,v) € Gpos do

4. remove (u,v) from G, if one of the following holds:

5

6

=

a. Tc(gp'rec U {(U7 'U)}) n gww # @1
b. I(u,uq), (va,v) € TC(Gprec) : (Ud,Va) € Gine;

Lemma 3. Algorithm 3 never removes an arc fragy,, that belongs to a solution to a
treeconstraint.

Proof. Case a of Algorithm 3 is directly derived from Condition 1 difiorem 5. As-
sume an ar€u, v) of G, such thatl'C'(Gprec U {(u,v)}) N Gine = 0, is removed but
there exists a solution to thee constraint containingu, v). Then there is a contradic-
tion because the equalitfC (Gprec U {(u,v)}) N Gine = 0 ensures that the afe, v)
violates at least one incomparability constraint.

Case b of Algorithm 3 is intuitively derived from Conditioro2 Theorem 5. If such
an arc(u, v) is added td@J,.,, then node: has to precede at the same time nogdgand
v; this means there exists a path in any solution satisfyiegtinstraint, starting from
nodeu, reaching first node (because, by assumptig, v) € £,,) and next node.
Moreover, we know that node, precedes node, hence, by transitivity, there exists a
path fromu, to ug in any solution satisfying the constraint: there is a caitidon with
the incomparability constraint between nodgsandwv, . |

Theorem 6. Algorithm 3 filters areeconstraint inO(m?) time.

Proof. See the discussion above of the algorithm. O

6.2 Deriving New Precedence Constraints

Graph properties related & G,,.., andg,,. lead to the derivation of new precedence
constraints that come from the strong interaction betwberconstraints induced by
these three graphs.

Using the concept of dominator in digraphs (Definition 11& propose a simple
rule that reveals new precedence constraints. Given tloeiassd digrapld, let S be a
strongly connected component@fand letu andv be two nodes of such thatu, v)
is an arc 0iG,,... For each dominatat of DOM g .,y (v), the arcu, d) and(d,v) are
new precedence constraints because any path déréorw in G reaches nodé before
reaching node. Then, addindu, d) and(d, v) to G,,.. leads the ar¢u, v) to become
transitive, thugu, v) is removed frong,,... Lines 2 to 5 of Algorithm 4 detect such a
pattern inG in O(mn) time, whereas the dominators are compute@{n?) time [13].

In practice, the dominator nodesdhare computed dynamically according to potential
roots.

20

Fig. 4: The dashed precedence @rct) can be added tG,,... The dotted edge depicts
an incomparability constraint between the nodemndv. The plain curly arcs depict
paths inGp ..

Algorithm 4 Deriving new precedence constraints.

/ = Deriving precedence constraints from G */

1. compute the dominator nodes of G according to potential roots;
2. foreach dominator d of G do

3. foreach (u,v) € Epree such that d € DOMg ,)(v) do

4. add the arcs (u,d) and (d,v) t0 Gprec;

5 remove the arc (u,v) from Gprec;

/ = Deriving precedence constraints from Gine and Gpree */

6. foreach node s with at least two successors in TC(Gprec) do
7. foreach successor u of s such that Fv: (u,v) € Gine do

8. if there exists a node t € Gpree SUCh that the arcs

(v,t) and (s,t) are in TC(Gprec) then add the arc (u,t) t0 Gprec;

The interaction between the precedence constraintsqyia) and the incompa-
rability constraints (viag;,.) can also reveal new precedence constraints. Given four
distinct nodes., v, s, andt, assume there exists an edgev) in G;,,. and the arc set
{(v,1), (s,u), (s,t)} isin TC(Gprec)- Thenthe argu, t) can be added tG,,... In Fig-
ure 4, nodes andu cannot be incomparable because both are descendants of.node
Moreover, node: cannot be reached frogmafter reaching, as otherwise nodesandv
belong to the same path and their incomparability is noteetgal. Thus, the only way
of orderingt andwu consists in adding a precedence constraint frofm¢. Lines 6 to 8
of Algorithm 4 detect such a pattern IiC'(Gpre.) in O(mn) time.

7 Synthetic Overview of thetree Constraint

Table 2 summarises the theoretical results of this artltls. divided into four hori-
zontal parts. The first part shows that the upper boundTREE has been improved
over [3] without any overhead. The second part points outesnatessary conditions
that can be evaluated in polynomial time. The third part jotes polynomial-time filter-
ing rules derived from the previous necessary conditiohs.l&st part recalls how each
instantiation of a father variable leads to updating the@dence digraph as well as the
incomparability graph. For each set of propositions andritlgms, an upper bound on

21

. Related Theorems,) .
Interaction Effects Propositions, and Algorithnglme Complexit]
g min(NTREE) Proposition 1 of [3]
Bounds Gprec |max(NTREE) Proposition 1 O(n +m)
Gprec Theorem 3
Feasibility Gine fail Theorem 4 O(mn)
Gpreec & Gine Theorem 5
. Gprec Algorithm 1
Fli?tlé?i(: Gine g Algorithm 2 O(mn)
g gprec & g’mc A|gOI’Ithm 3 O(m‘)
Internal | G & Gprec :
DerivationsGinc & Gprec Gprec Algorithm 4 O(mn)

Table 2: Summary of theree constraint.

Algorithm 5 General filtering skeleton

1.
2.
3.

4.
5.

if the
Update

if at least one value was removed

else exit

gy gprem

1

else generate a failure and exit.

t ree constraint is feasible

then

Gine according to the internal derivations;
Detect infeasible values in the variable domains
according to Algorithms 1, 2 and 3;

Remove the infeasible values detected by statement 3;

then go to statement 1

the time complexity is provided, where andm respectively denote the numbers of
nodes and arcs in the digraph Let m,,.. andm,,. respectively denote the numbers
of arcs and edges @, .. andG;,.. Notice thatmn,,,.. < m (becausg,.. is an acyclic
digraph without any transitive arc) and,,. ~ m. Thus, the time complexity of the

filtering algorithms is provided below only in terms of themioerm of arcs ingG.

A frequent problem with the combination of different kinditiering is to ensure
that the same fixpoint is reached independently of the andesf the filtering rules.
Thus, Algorithm 5 is based on a saturation loop such thatdfdbnstraint is feasible
(line 1), then first all the data structures are updated @n@ext each filtering rule is
applied and inconsistent values are recorded but not imatedgdiremoved (line 3), then
inconsistent values are removed (line 4), and finally a nevafion begins if a value
was removed (line 5), because a value removal modifiaad/orNTREE. Thus, line 3
ensures that for a given iteration, all the filtering rulesapplied on the same data (i.e.,

the same digrap@ and the sam8TREE).

22

8 Experimental Results

We now report on several experiments we have conducted loadedhe extendeee
constraint. First, in Section 8.1, we discuss our experisen real-life instances of (an
extension of) the biological problem of constructing plgdaetic supertrees, and show
that thetree constraint significantly outperforms the previous coristrarogramming
approach. Then, in Section 8.2, we present our results orotitang problem of con-
structing ordered simple paths with mandatory nodes. KinalSection 8.3, we report
on the performance on random instances for the Hamiltorasim problem.

All experiments were performed with the Choco constraimigpamming system
(which is a Java library) on an Intel Pentium 4 CPU witAHz and alGB RAM, but
with 512MB allocated to the Java Virtual Machine.

8.1 The Phylogenetic Supertree Problem

One objective of phylogeny is to construct the genealogyhef ¢pecies, called the
tree of life whose leaves represent the contemporary species and witesal nodes

represent extinct species that are not necessarily nanmeidngortant problem in phy-

logeny is the construction of a supertree [7] that is conipbativith several given trees.
There are several definitions of tree compatibility in theriture:

Definition 21 (Strong, weak, and stable compatibility).

— Atree” is strongly compatiblevith a tree7” if 7" is topologically equivalent to a
subtree of/ that respects the node labelling. [23]

— AtreeT is weakly compatiblevith a tree7” if 7’ can be obtained from by a
series of arc contraction3[31]

— Atree7 is stably compatiblavith a setS of trees if7 is weakly compatible with
each tree inS and each internal node &f can be labelled by at least one corre-
sponding internal node of some treeSn

For the supertree problem, strong and weak compatibilityaide if and only if all
the given trees are binary [23]. The existence of solutisnsot lost when restricting
weak compatibility to stable compatibility.

For example, the tree§ and7; of Figure 5 havel and7’ as supertrees under both
weak and strong compatibility. As shown, all the internade®of7”’ can be labelled by
corresponding internal nodes of the two given trees, batsmot the case for the father
of b andg in 7. Hence7Z and four other such supertrees are debatable bethege
speculate about the existence of extinct spettiaswere not in any of the given trees.
Consider also the three small trees in Figur@$and7, have7Z, as a supertree under
weak compatibility, as it suffices to contract the &8¢c2) to get7; from 7;. However,
73 and 7, have no supertree under strong compatibility, as the masintecommon
ancestor ob andc, denoted bymrca(b, ¢), is the same aswrca(a, b) in 73, namelyl,

® The contractionof an arca = (v, w) is the replacement af andw by a single node whose
incident arcs are those ofandw other tham.

23

o o

-~ e o

o

T 7 Ts

Fig. 6: Three small phylogenetic trees

but not the same ifi;, asmrca(b, ¢) = 3 is an evolutionary descendant@fca(a, b) =
2. Also, 7, and7; have neither weakly nor strongly compatible supertrees.

Under strong compatibility, a first supertree algorithm ga®n in [1], with an ap-
plication for database management systems; it také$) time, where/ is the number
of leaves in the given trees. Derived algorithms have entefigen phylogeny, for in-
stanceOneTreg23]. The first constraint program was proposed in [17], gstandard,
non-global constraints. Under weak compatibility, a plygoetic supertree algorithm
can be found in [31] for instance. Under stable compatipithie algorithm from com-
putational linguistics of [9] has supertree constructismapecial case.

Under stable compatibility, the supertree problem forgrge. . . , 7, can be mod-
elled by an extendeilee constraint, such that:

— The digraphg is the complete digrapty, £) with node setV = NV (73) U--- U
N(7;) and edge sef = {(u,v) | u,v € V}, whereN(7) denotes the set of nodes
of tree7.

— The precedence digragh, = (V, &,) is dictated byT, ..., 7.

— Theincomparability constraints are generated from therimgarable nodes of each
tree7y, ..., 7.

— NTREE = 1 = NPROP, i.e., the partition ofG must consist of exactly one proper
tree.

— All the leaves of7, ..., 7, that are not internal nodes of any tréemust remain
leaves and thus have an in-degree of zero.

— All the other nodes o¥ have degrees 1 or 2 if a binary supertree is requested, and
within [1, n — 1] otherwise, where = |V|.

24

A smallest-domain heuristic is used to select a father béiat each waking up of the
treeconstraint (i.e., each time the solver instantiates a kibg)aand the value selection
heuristic favours, for a selected nodg a fatherv; such that there exists a minimum-
length path fromw; to v; or vice-versa in the precedence digra@f)... The latter
heuristic is based on the following intuition: the longer aximum path fromy; to v;

in G,rec, the lower the chances of satisfying all the precedenceti@nts involved in
this path.

Table 3 compares the performance of our Choco constrainemadder stable
compatibility, with an improvement (now also written in Gl by Prosser of the con-
straint model, under strong compatibility, of [17] (availa athttp://www.dcs.
gla.ac.uk/ ~pat/supertrees/). The statistics are until the first solution is found
or until the absence of solutions is established. For a gnstance, the column ‘sat-
isfiable’ indicates the existence of supertrees, and, ltyarentheses, the existence
of binary supertrees. Also, ‘n/a’ stands for ‘not appliebThere arel7 leaf species
in the two spider tree§; andSs, which were taken from study S1x6x97c14c42c30in
TreeBASE (sednttp://www.treebase.org/); they feature side constraints on
nested species and one of these trees is not binary, hemedsh® binary supertree.
Only our model can accommodate that side constraint witresatmulation. There are
23 leaf species in the two cat tre€§ and Cs, which were taken from biology jour-
nals; one of them is not binary, hence there is no binary stgeerThere aré?29 leaf
species across the seven seabird trées G, which were taken from an ornithology
journal [19]; only the trees!, F, andG are not binary, and only the listed subsets of at
least three of these seven trees have stably compatiblesagse

Table 3: Real-life phylogenetic supertree construction

instance [#speciemame | |G||satisfiabl¢#failg] time (ms
S1+ 5 o tI-‘E?c(?ssernllz ye;e(sn o 2 1:2
Cr+ (o 23 tI-‘E?c(?sserrlzlg ye;e(sn o g Zgi
A+B 30 g?c?sserr?/i ye;e(sn o 32 ggg
R
A+D 4 gfssserrgg yeje(sn 2 8 1332
A+E 9 gfssserlngg yei/(anO) n/(e)l out of mt(r)r:]g(?r:;
S = o ——
A+G 49 gfssserrgi yeje(sn . g Zigg
B+c 32 g?c?sserr?lg non(c:m) 1770 1283éze

25

instance [#speciepame | |G||satisfiablégfails] time (ms)

B+D 43 gfssserrgg ye?/e(zes g 122%
B+E 95 gfssserlngjg nonSZO) n/gl out of menfgrz)
per | e
B+G 44 gfssserrgg yese(sn 2 32 Egg
c+D 52 gfssserln(;; yese(sn . 8 ngg
C+E 96 gfssserz n(;z yei/gm) n/gl out of mi;lgé
cor | e e e oo
C+G 49 gfgsserr?ls; yeic(JnO) 8 323(1]
D+E 104 gfgsserz n2/2 n0n§20) n/(; out of melnigrf
bir | w el g
D+G 59 tPnrac?sserlnllz yeic()nO) 3(; 43%)2
E+F 96 g?c?sserlngjg nOﬂng) n/(; out of melrr?grf;
E+G 100 tPnrac?sser2 nllg nOﬂng) n/(; out of melrrfgrl)
F+G 43 tPnrac?sserr?/:z\ nOﬂng) n/(; >5- 133
A+C+E 9 tPnrac?sser2 nllz yei/gw) n/(; out of misr)nzs:)‘
A+B+D+F| 12 g?c?sserlng;g ye;e(g K 58 Zéii
A+B+D+G| 8 tI-“E?c(?sserlnslz nonSQO) n/?:\ out of merr?grz
I
A+C+D+CG| 86 g?c?sserln(jg yei/gw) n/?:\ out of mlefr?frc)

Our model generates some symmetric solutions (as someahtevdes are fathers
of only one node, which is also internal, so that their rolas be inverted), whereas
the model of [17] generates unique solutions modulo all setnies. For instance, for

26

the two given trees of Figure 5, we g## supertrees instead of tlieactually captured
by stable compatibility, due to the interchangeabilitylod internal node8 and10 and
the interchangeability of the internal nodeand9. By contracting in a post-processing
step all arcgv, w) where nodev has only one incoming arc, we obtdifi supertrees,
as some mirror symmetry remains.

However, our model has onl¢(¢) domain variables, wheré is the number of
leaves in the given trees, whereas the model of [17]@&8) domain variables. The
runtime and memory consequences thereof on large instaaodse clearly observed
in Table 3.

SpecialisedO(¢2?) runtime supertree algorithms, such as the ones of [9, 23], of
course systematically and drastically outperform our trairg model (even the hardest
of the considered instances take less than 100 ms). Howteegrdo not provide the
flexibility of a constraint programming approach, as evembination of the currently
emerging biological side constraints (on nested specieslative ancestral divergence
dates, say) and objective functions (when switching to dimogation version of the
problem) requires a new algorithm. For instance, the exddide constraint directly
accommodates the nested-species side constraint, ascsebie tpider trees, but the
algorithms of [9, 23] cannot do that.

8.2 The Ordered Simple Path Problem with Mandatory Nodes

We now evaluate thieee constraint on therdered disjoint paths probleg®DP), which
consists in partitioning a given (di)graph into a given n@mdaf mutually node-disjoint
paths [16, page 217], subject to precedence constrainteebatnodes. The extended
tree constraint can directly deal with this problem, but, in arttecompare with [26],
our evaluation is done on a restriction of this problem,ezhtheordered simple path
problem with mandatory nod¢®SPMN), which consists in finding an elementary path
containing a set of mandatory nodes in a given order.

The OSPMN problem can be modelled by an extentiee constraint whose di-
graphg is to be covered, but enriched by a loop on each node, whilsghef manda-
tory nodes is contained in a connected component of the geace digrap,,.. such
that each mandatory node succeeds the first node of the ghtiteredes the final node
of the path, and if there exist precedence constraints leettvedo mandatory nodes, then
an arc is added between them. All the other nodes represenécted components of
sizel in Gp,... An ordered-path heuristic is used to select a father viariaeach wak-
ing up of thetree constraint. This heuristic forces an incremental buildifighe path
by selecting as new variable to instantiate the value chas#me previous step: if an
arc (v;,v;) is enforced at a given step, then an arc starting fegris selected at the
next step.

Table 4 shows that our model compares favourably, in the eumbfailures, with
the results reported in [26] for an equivalent hardwarei] tim first solution is found
or until the absence of solutions is established. In [2&] ubed constraindomReach-
ability, noCycle andallDifferent are implemented in th&ecod¢CP(Graph)) C++ li-
brary [30], which explains why the computation times areantheless very similar.

27

OSPMN instances tre_e _ me Reachability+PatI{!26]

wake-up$failured timelfailureq time
SPMN _22 7 0] 52 5 110
SPMN _22_full 3 0] 36 0 70
SPMN _52b 20 0|1115 6 920
SPMN _52_full 6 0| 562 0 580
SPMN _52order_a 6 0| 592 0 500
SPMN _52order_b 1 0] 17 4 280

Table 4: Results for the OSPMN instances in [26]

8.3 Random Instances for the Hamiltonian Path Problem

Our model for the Hamiltonian path problem uses an exterdeconstraint where

each node of the given digraph has an in-degree of one, etteeprigin of the path,

which has an in-degree of zero. Precedence constraintsldesl @o that the origin of
the path precedes all the other nodes, and all these nodeglprthe destination of the
path.

For each densifyamong{0%, 10%, ..., 100%}, a total of50 random connected
digraphs of size&5, 50, 75, and100 were generated, the origin and destination nodes
being randomly chosen. Figure 7a shows that the instanedsaader for a density of
8% to 22%. Intuitively, the denser a graph, the higher thdabdity of existence of a
Hamiltonian path [20, 25]. If there are no arcs, then no Hamian path can exist. If the
graph is complete, then the existence of such a path is giegcr-rom this observa-
tion, the left-hand side of the density intery&, 22%)] of Figure 7a is easy (according
to the number of backtracks) because the probability otemee of a Hamiltonian path
is low, and the right-hand side of this interval is also easgause this probability is
high. Figure 7b confirms the theoretical runtime complerityiounced in Table 2 of
Section 7. The interval of more complex instances (in terfrizagktracks) is not dis-
cernable because even if it is easy (in terms of backtrackpjdvide a Hamiltonian
path for a dense graph, the runtime complexity of the filgalgorithms depends di-
rectly on thenumberof arcs in the graph. In practice, a more efficienee constraint
would require an efficient trigger for each filtering algbrit. This is not surprising,
and randomised algorithms have been proposed for somelglobstraints, such as
AlIDifferent and Global Cardinality[18]. Finally, an average of only.9 backtracks
for graphs of sizd 00 may seem strange for a well-known NP-hard problem. This ob-
servation rather highlights the difficulty of generatingdh@andomised instances for
the Hamiltonian path problem. Obviously, there do exishphtgical graphs, such as
Tutte’s graph [32], for which we needl20 backtracks to prove that there exists no
Hamiltonian cycle.

8 The densityof ann-nodem-arc digraph isn/n?.
" Tutte's graphis a non-Hamiltonian 3-connected cubic graph of gize

28

2 T T T 7 T
. size=25——-

18- = size=50- -
- size = 75——

16 s size =100 - - -+ B

14 1t i

backtracks

0 10 20 30 40 50 60 70 80 90 100
density ofG (%)

(a) Backtracks in terms of the density of the graph

10% T T T T I T

size =25——
107 size =50

10°
10°

10*

time (ms)

w7

10?

10

0 10 20 30 40 50 60 70 80 90 100
density ofG (%)

(b) Runtime in terms of the density of the graph

Fig. 7: Evaluation of théreeconstraint on the Hamiltonian path problem.

9 Conclusion

Thetreeandpath constraints have been unified within a single global coirgtrislore-
over, we have shown how to handle in a uniform way a varietyidd sonstraints,
namely precedence, incomparability, and degree contgraimich often occur in the
context of path and tree problems. The resulting globalttaims can thus tackle a large
variety of graph partitioning problems related to pathgees.

Our experiments, particularly on dense graphs, point torgrortant topic for future
research, namely the finding of efficient filters that avoiggering heavy algorithms
when there is obviously nothing to prune (particularly fepensive filtering algorithms
like the one of the global cardinality constraint [18]). Mowrer, using fully incremental
algorithms in order to maintain during search some grappenes such as the transi-
tive closure, the strongly connected components, etc, S@etrucial point to improve
the scalability and runtime complexity [29]. However, cogpiup with fully dynamic

29

algorithms for complex graph properties that need to mairdad synchronise many
data structures seems quite challenging, even if suchitigm exist for many graph
properties considered independently.

In the case of the phylogenetic supertree problem, we painthat our approach
naturally provides a lot of information on the structure o€ supertrees, by means of
the precedence digragh,,... However, there remain two questions. First, is it possible
to provide a complete filtering algorithm for this problemaen if solving its model in
terms of precedence and incomparability constraints ishiifékin general? Second, is
it possible to see the precedence digraph as a canonicaldtine set of compatible
supertrees for a given set of trees?

Acknowledgements

We are grateful for the constructive discussions with M&Baelirsky, Vincent Moul-
ton, Patrick Prosser, and Luis Quesada. Many thanks albe rtonymous referees for
their useful comments.

References

1. A. Aho, Y. Sagiv, T. Szymanski, and J. D. Ullman. Inferriadgree from lowest common
ancestors with an application to the optimization of relaail expressionsSIAM Journal of
Computing 10(3):405-421, 1981.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Globalttaim catalog. Research Report
T2005-08, Swedish Institute of Computer Science, 2005.

3. N.Beldiceanu, P. Flener, and X. Lorca. Ttheeconstraint. IrProceedings of CP-Al-OR’Q5
volume 3524 oLNCS pages 64—78. Springer-Verlag, 2005.

4. N.Beldiceanu, P. Flener, and X. Lorca. Combining tredit@ming, precedence, incompara-
bility, and degree constraints, with an application to pigginetic and ordered-path problems.
Technical Report 2006-020, Department of Information Tebdbgy, Uppsala University,
Sweden, 2006. Available at http://www.it.uu.se/resegmablications/reports/2006-020/.

5. N. Beldiceanu, P. Flener, and X. Lorca. Partitionnemergrdphes par des arbres sous con-
traintes de degré. IDeuxiemes Journées Francophones de Programmation pair¬es
(JFPC’06), pages 35-42, 2006. In French.

6. N. Beldiceanu and X. Lorca. Necessary condition for paitttigoning constraints. IfPro-
ceedings of CP-AI-OR’Q%olume 4510 o£ NCS pages 141-154. Springer-Verlag, 2007.

7. O. Bininda-Emonds, J. Gittleman, and M. Steel. The (Stqger of life: Procedures, prob-
lems, and prospect&nnual Reviews of Ecological Syster®3:265—-289, 2002.

8. M. Bodirsky, D. Duchier, S. Miehle, and J. Niehren. A negaalthm for normal dominance
constraints. IrProceedings of SODA'Q4ages 59-67, 2004.

9. M. Bodirsky and M. Kutz. Determining the consistency oftigdtree descriptionsArtificial
Intelligence 171:185-196, 2007.

10. E. BourreauTraitement de contraintes sur les graphes en programmatécontraintes
PhD thesis, University of Paris 13, France, March 1999. BnEh.

11. H. Cambazard and E. Bourreau. Conception d'une cotérgiobale de chemin. IRro-
ceedings of the Dixiemes Journées Nationales sur lalR&wo Pratique de Problemes NP-
Complets (JNPC’'04)ages 107-120, 2004. In French.

12. A. Cayley. A theorem on treeQuarterly Journal of Mathemati¢c23:376-378, 1889.

30

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Cooper, T. Harvey, and K. Kennedy. A simple, fast danige algorithm. Software
Practice and Experien¢&1(4):1-10, 2001.

COSYTEC.CHIP Reference Manuatelease 5.1 edition, 1997.

G. Dooms, Y. Deville, and P. E. Dupont. CP(Graph): Inimdg a graph computation do-
main in constraint programming. IRroceedings of CP’05volume 3709 ofLNCS pages
211-225, 2005.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the Theory of
NP-Completeness-reeman, New York, 1978.

I. Gent, P. Prosser, B. Smith, and W. Wei. Supertree ngt&in with constraint program-
ming. InProceedings of CP’03s0lume 2833 oLNCS pages 837-841, 2003.

|. Katriel. Expected-case analysis for delayed filigrinn Proceedings of CP-AI-OR’Q6
volume 3990 oLNCS pages 119-125. Springer-Verlag, 2006.

M. Kennedy and R. D. Page. Seabird supertrees: Combairigal estimates of procellari-
iform phylogeny.The Auk, A Quarterly Journal of Ornitholog$19:88-108, 2002.

J. Komlbs and E. Szemerédi. Limit distribution for #adstence of a Hamilton cycle in a
random graphDiscrete Mathemati¢13:55—-63, 1983.

T. Lengauer and R. E. Tarjan. A fast algorithm for findiregnihators in a flowgraphACM
Transactions on Programming Languages and Systé(i$:121-141, 1979.

X. Lorca. Contraintes de Partitionnement de GraphhD thesis, Université de Nantes,
Ecole des Mines, Nantes, France, 2007. In French.

M. Ng and N. Wormald. Reconstruction of rooted trees fsuhtrees. Discrete Applied
Mathematics69:19-31, 1996.

C. L. Pape, L. Perron, J.-C. Régin, and P. Shaw. Robusparallel solving of a network
design problem. Ifroceedings of CP’02/0lume 2470 o NCS pages 633-648. Springer-
Verlag, 2002.

L. Pbsa. Hamiltonian circuits in random grapbBéscrete Mathematicsl4:359-364, 1976.
L. QuesadaSolving Constrained Graph Problems Using Reachability @ints Based on
Transitive Closure and Dominatar®hD thesis, Université catholique de Louvain, Louvain-
la-Neuve, Belgium, 2006.

J.-C. Régin. A filtering algorithm for constraints offdience in CSP. IProceedings of
AAAI'94, pages 362-367, 1994.

J.-C. Régin. Generalized arc consistency for globalipality constraint. IfProceedings of
AAAI'96, pages 209-215, 1996.

G. Richaud, X. Lorca, and N. Jussien. A portable and efficimplementation of global
constraints: Theree constraint case. In S. Abreu and V. S. Costa, editeraceedings of
CICLOPS'07 Porto, Portugal, September 2007.

C. Schulte, M. Lagerkvist, and G. Tackecode 2006. Available at http://www.gecode.org/.
M. Steel. The complexity of reconstructing trees fromalijative characters and subtrees.
Journal of Classification9:91-116, 1992.

W. T. Tutte. On Hamiltonian circuitslournal of the London Mathematical Socie®l:98—
101, 1946.

31

