Generic Incremental Algorithms for Local Search

Magnus Agren, Pierre Flener*, and Justin Pearson

Department of Information Technology
Uppsala University, Box 337, SE — 751 05 Uppsala, Sweden
{agren,pierref, justin}@it.uu.se

Abstract. When a new (global) constraint is introduced in local search,
measures for the penalty and variable conflicts of that constraint must
be defined, and incremental algorithms for maintaining these measures
must be implemented. These are complicated and time-consuming tasks,
which clearly reduces the productivity of the local-search practitioner.
We introduce a generic scheme that, from a description of a constraint in
monadic existential second-order logic extended with counting, automati-
cally gives penalty and variable-conflict measures for such a constraint, as
well as incremental algorithms for maintaining these measures. We prove
that our variable-conflict measure for a variable = is lower-bounded by
the maximum penalty decrease that may be achieved by only changing
the value of x, as well as upper bounded by the penalty measure. With-
out these properties, the local search performance may degrade. We also
demonstrate the usefulness of the approach by replacing a built-in global
constraint by a modelled version, while still obtaining competitive results
in terms of runtime and robustness. This is especially attractive when a
particular (global) constraint is not built in.

1 Introduction

Local search is a powerful and well-established method for solving hard combi-
natorial problems [1]. Yet, until recently, it has provided very little user support,
leading to time-consuming and error-prone implementation tasks. The recent
emergence of languages and systems for local search, sometimes based on novel
abstractions, has alleviated the user of much of this burden [11,20,13,12].
However, if a problem cannot readily be modelled using the primitive (global)
constraints of such a local search system, then the user has to perform some
of those time-consuming and error-prone tasks. These include coming up with
measures and implementing efficient incremental maintenance algorithms for
the penalties and variable conflicts of (global) constraints. Coming up with good
measures is crucial in order to drive the local search to promising regions of
the search space. Implementing efficient maintenance algorithms is crucial since
these are called very often in the innermost loop of the search: incrementality is
of great importance. The need to perform these tasks, assuming that the user

* Part of this work was done while this author was a Visiting Faculty Member at
Sabanci University in Istanbul, Turkey.

has the necessary skills, clearly reduces her productivity, since much time must
usually be devoted to them.

In this article (which collects the results of [3,2,4]), we propose the usage
of monadic existential second-order logic extended with counting (here denoted
IMSO™) as a modelling language for (user defined) constraints in local search.
Towards this, we propose inductive definitions for measuring the penalty and
variable conflicts of a formula in IMSOT with respect to a configuration (as-
signment of values to all variables), as well as incremental algorithms for main-
taining these measures efficiently between different configurations. The proposed
penalty and variable-conflict measures are based on the idea of combinators [19]
and extended also to encompass quantifiers and set variables.

We show that our conflict measure of a variable z is lower-bounded by the
intuitive target value, namely the maximum penalty decrease of the formula that
may be achieved by only changing the value of z, as well as upper bounded by the
penalty of the formula. Without these properties, the local search performance
may degrade.

We demonstrate the usefulness of the approach by replacing a built-in global
constraint of our local-search framework by a modelled IMSO™ version, while
still obtaining competitive results in terms of run time and robustness. Since no
effort at all is then spent on defining and incrementally implementing penalty
and variable-conflict functions for the modelled global constraint, as our generic
algorithms take care of that, we bring constraint-based local search a step closer
to the level of expressiveness of constraint programming.

In the following, we introduce necessary background information concern-
ing constraint-based local search (for set-CSPs) and monadic existential second-
order logic extended with counting in Section 2. We present our penalty measure
for IMSO™ formulas in Section 3. After that, we introduce our variable-conflict
measure for IMSO™ formulas, as well as prove upper and lower bounds for this
measure, in Section 4. Next, we show how the proposed measures can be main-
tained incrementally between two different configurations and discuss complexity
issues in Section 5. After that, Section 6 contains experimental results showing
the usefulness of the approach by replacing a global constraint in a problem
model by a modelled IMSO™ version thereof, while still obtaining competitive
results. Finally, we conclude the article in Section 7. Appendix A contains all
longer proofs of the article.

2 Preliminaries

A constraint satisfaction problem (CSP) is a triple (X, D,C), where X is a fi-
nite set of variables, D is a finite domain containing the possible values for the
variables in X', and C is a finite set of constraints, each constraint being defined
on a subset of X and specifying which assignments of values from D to those
variables make the constraint hold. Note that a common domain D does not im-
ply any loss of generality since membership in a smaller domain can be required

by a constraint. By abuse of language, we often identify a constraint with the
singleton set containing it, and a CSP with its constraint set.

In this article we focus on set-CSPs, that is CSPs where the domain D is
the power set Z(U) of some set U, called the universe. Using such set variables
is already a common practice in constraint programming (e.g., [14,8,5]), but
not yet in (constraint-based) local search. Note that scalar variables can be
mimicked by set variables constrained to be singletons. Even though we only
consider set-CSPs, we make no claims about their superiourity, and many of our
results transpose to other variants of CSPs, such as the traditional scalar CSPs.

2.1 Local Search

In local search (e.g., [1]), an initial, possibly arbitrary, assignment of values to
all the variables is maintained:

Definition 1 (Configuration and Solution). Let P = (X,D,C) be a CSP
and let ¢ € C be defined on the set of variables {x1,...,x,} C X.

— A configuration for P (or X) is a total function k : X — D.

— A configuration k is a solution to a constraint ¢ € C (written k = ¢) if and
only if ¢ holds when each x; is replaced by k(x;).

— A configuration k is a solution to P if and only if k = ¢, for all c € C.

We will use Kp to denote the set of all configurations for a given CSP P.

Ezample 1. Consider a CSP P = ({S,T}, #{a,b,c}, {S C T}). A configuration
for P is given by k(S) = {a,b} and k(T) = 0, or equivalently by k& = {S —
{a,b},T +— 0}. A solution to P is given by s = {S — {a,b},T — {a,b,c}}.
Indeed, s = S C T since s(S) = {a,b} is a strict subset of s(T') = {a,b, c}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such changes, until a solution is found or
allocated resources have been exhausted. The configurations thus examined con-
stitute the neighbourhood of the current configuration:

Definition 2 (Neighbourhood and Variable-Oriented Neighbourhood).
Let P = (X,D,C) be a CSP and let k € Kp.

— A neighbourhood function for P is a function n : Kp — Z(Kp).

— The neighbourhood of P with respect to k and n is the set n(k).

— The variable-oriented neighbourhood for x € X with respect to k is the
subset of KCp reachable from k by keeping the bindings of all variables other
than © unchanged: ny(k) ={{ € Kp | Yy e X 1y #x — k(y) = L(y)}.

Note that the size of n, (k) is determined by the size of the domain D. For
set-CSPs, this is exponential in the size of U. However, we use variable-oriented
neighbourhoods to define concepts only, and do not enumerate them in practice.

Ezample 2. The neighbourhood of S C T with respect to k = {S +— {a,b},T
(0} and the neighbourhood function that transfers an element from S to T is the
set {ko ={S+ {b},T — {a}}, ky = {S — {a}, T — {b}}. The variable-oriented
neighbourhood for S with respect to k is the set:

ns(k) :{k7
ki ={S— 0,7+ 0},
kQZ{SH{a}vT’_)@}v
ks = {S — {b},T — 0},
ky={S+— {c},T — 0},
ks = {S — {a,c}, T — 0},
ke = {SH {b,C},TH®}7
k7 = {SH {aab7c}vT'_>®}}

Local search uses the penalty of a constraint, which is an estimate on how
much it is violated with respect to a given configuration, in order to rank the
different configurations of a neighbourhood:

Definition 3 (Penalty). Let P = (X,D,C) be a CSP, let ¢ € C, and let k €
Kp.

— A penalty function of ¢ is a function penalty(c) : Kp — N such that
penalty(c)(k) =0 if and only if k = c.

— The penalty of ¢ with respect to k is penalty(c)(k).

— The penalty of P with respect to k is the sum) .. penalty(c)(k).

In order for a constraint-based local-search approach to be effective, different
constraints should have balanced penalties [6], i.e., for a set of constraints C, no
¢ € C should be easier in general to make hold compared to any other d € C.
This may be application dependent, in which case weights could be added to
tune the penalties, see [12] for example. For set constraints, we believe that one
such approach is to let (by extension of the integer-variable ideas in [7]) the
penalty of a set constraint ¢ with respect to a configuration k be the length of
the shortest sequence of elementary set operations (defined below) that must be
performed on the variables of ¢ in order for ¢ to hold.

Definition 4 (Elementary Set Operations). Let P = (X, D,C) be a CSP,
let k € Kp, and let S € X. An elementary set operation on k(S) is one of the
following changes to k(S):

1. Add a value u to k(S) from its complement U \ k(S), denoted add(S,u).
2. Drop a value u from k(S), denoted drop(S,u).

Ezample 3. Consider k = {S + {a,b},T — 0}. Performing the sequence A =
[drop(S,b), add(T,a), add(T,b)] of elementary set operations on k gives A(k) =
{§—{a},T — {a,b}}.

One can of course also consider the transfer of an element from one set to
another set, the swap of single elements between two sets, and the flip of an
element from one set into an element from its complement set as elementary
set operations, even though they are expressible as sequences of add and drop
operations. Evaluating the impact of such alternative choices is beyond the scope
of this paper.

It is often crucial to limit the size of the neighbourhood for efficiency reasons.
One way of doing this is to focus on conflicting variables. A variable x has a
positive conflict with respect to a constraint ¢ and a configuration k if we may
decrease the penalty of ¢ by only changing the value of z in k. This may also be
more refined such that different variables can be ranked based on their conflicts
in order to concentrate on those with maximum conflict.

Definition 5 (Variable Conflict). Let P = (X, D,C) be a CSP, let penalty(c)
be a penalty function of c€ C, let x € X, and let k € Kp.

— A variable-conflict function of ¢ is a function conflict(c) : X x Kp — N such
that if conflict(c)(z,k) = 0 then V¢ € ny (k) : penalty(c)(k) < penalty(c)(?).
— The variable conflict of x with respect to ¢ and k is conflict(c)(z, k).
— The variable conflict of z with respect to P and k is the sum) . conflict(c)(x, k).

When we define the variable-conflict function of a constraint, we want to
measure the mazimum amount of penalty decrease possible by only changing
a given variable. In order to state theoretical properties of our variable-conflict
function for AMSO™T formulas in Section 4, we now formalise this targeted value
and state some of its properties.

Definition 6 (Abstract Variable Conflict). Let P = (X,D,C) be a CSP,
let penalty(c) be a penalty function of c € C, let x € X, and let k € Kp.

— The abstract variable-conflict function of ¢ with respect to penalty(c) is the
function abstractConflict(c) : X x Kp — N such that:

abstract Conflict(c)(z, k) = max{penalty(c)(k) — penalty(c)(€) | € € ny(k)}

— The abstract variable conflict of = with respect to ¢, penalty(c), and k is
abstractConflict(c)(x, k).

Note that, given a penalty function of a constraint ¢, there is only one
abstract-variable-conflict function of ¢. However, variable-conflict functions as
in Definition 5 are not unique.

Ezxample 4. Let the penalty and variable-conflict functions of S C T be defined
by
1, if k(T) C k(S)

0, otherwise

penalty(S C T)(k) = [k(S) \ k(T)| + { (1)

and

conflict(S C T)(Q, k) =
1, if @ =T and k(T) C k(S)
K(S)\ (D) + {1, if Q=5 and 0 £ k(T) Ck(S) (2)
0, otherwise

respectively. Now, the penalties of S C T with respect to k = {S +— {a,b},T —
0} and k, = {S — {b},T — {a}} are respectively penalty(S C T)(k) = 3 and
penalty(S C T)(k,) = 1. Indeed, we may satisfy S C T with respect to k by, e.g.,
performing the sequence A = [drop(S,b), add(T, a), add(T,b)] of elementary set
operations, and with respect to k, by, e.g., performing the sequence [drop(S, b)]
of elementary set operations.

The variable conflicts of S and T with respect to S C T and k are conflict(S C
T)(S,k) = 2 and conflict(S C T)(T,k) = 3, respectively. Indeed, by changing
the value of S, we may decrease the penalty of S C T by two (by performing
the sequence [drop(S,a), drop(S,b)] of elementary set operations). Similarly, by
changing the value of T, we may decrease the penalty of S C T by three (by
performing the sequence [add(T,a), add(T,b), add(T,c)] of elementary set oper-
ations). This suggests (if we rank S and T based on their variable conflicts) that
we should try to satisfy S C T by changing the value of T

The variable-conflict function (2) gives the abstract conflicts of variables with
respect to the penalty function (1). Consider, for example, k = {S — {a,b},T —
¢} and recall the variable-oriented neighbourhood ng(k) = {k,k1,...,k7} for S
of Example 2. A configuration ¢ € ng(k) that maximises

penalty(S C T)(k) — penalty(S C T)(¥) (3)

is =k ={S— 0, T — 0}. Indeed, the maximum value of (3) is2=3-1=
penalty(S C T)({S — {a,b},T — 0}) — penalty(S C T){S — 0,7 — 0}), the
same value as given by conflict(S C T)(S, k).

If a variable x is not in the set of variables of a constraint ¢, then the abstract
variable conflict of x with respect to c is always zero:

Proposition 1. Let P = (X, D,C) be a CSP, let c € C, and let x € X. If x is
not in the set of variables that c is defined on, then abstractConflict(c)(z, k) =0,
for all k € Kp.

Proof. For any k € Kp and for each y # x it holds that V¢ € n, (k) : £(y) = k(y),
which implies that V¢ € n, (k) : penalty(c)(k) = penalty(c)(£), and hence that
max{penalty(c)(k) — penalty(c)(¢) | £ € n,(k)} =0. O

The abstract-variable-conflict function is a variable-conflict function:

Proposition 2. Let P = (X,D,C) be a CSP and let penalty(c) be a penalty
function of ¢ € C. Then the function abstractConflict(c) of Definition 6 is a
variable-conflict function according to Definition 5.

Proof. Given a variable z € X and a configuration k£ € Kp, we must show that:

1. abstractConflict(c)(x, k) > 0.
2. abstractConflict(c)(z, k) = 0 = VL € n, (k) : penalty(c)(k) < penalty(c)(€).

Consider first 1. We know that there exists at least one £ € n, (k) (namely ¢ = k)
such that penalty(c)(k) — penalty(c)(¢) = 0. Since the abstract variable conflict
is defined as the maximum difference between penalty(c)(k) and penalty(c)(¢),
for any ¢ € n,(k), this maximum difference is at least 0.
Consider now 2. Assume that abstractConflict(c)(x,k) = 0. Then we have
that
max{ penalty(c)(k) — penalty(c)(l) | £ € ny(k)} =0

and hence that V2 € n, (k) : penalty(c)(k) < penalty(c)(£). O

In Example 4 above, we presented penalty and variable-conflict functions
for the constraint S C 7. Even though this constraint is simple, it still takes
some time and effort to define and implement incremental versions of those
functions. Imagine then the time and effort needed to define and implement
incremental penalty and variable-conflict functions for a more complicated (pos-
sibly global) constraint. This is exactly what we aim at by allowing the user to
model constraints in a simple language and obtaining such incremental penalty
and variable-conflict functions for free.

2.2 Monadic Existential Second-Order Logic

We use monadic existential second-order logic extended with counting for mod-
elling user-defined set constraints [2] or entire problems, which are just conjunc-
tions of constraints. This language, referred to by IMSO™ and shown in BNF in
Figure 1, is very expressive as it captures at least the complexity class NP [10]. A
constraint in AMSOT is of the form 35, - - - 35,9, i.e., a sequence of existentially
quantified set variables, ranging over the power set of an implicit common finite
universe U, and constrained by a logical formula ¢. Note that we only consider
finite models and that the restriction to a monadic logic implies no nested set
values. Also note that our intended usage of IMSO™ here is to model set con-
straints that can be expressed by reasoning with the elements of the universe
(constraints such as S C T, S; NSy =T, and S # T, for example). Although it
is possible to model, e.g., arithmetic constraints in IMSO™ this would be very
tedious. The use of an extended language that simplifies this is considered future
work.

In Sections 3 and 4 we will define penalty and variable-conflict functions of
formulas in IMSO™. Before we do this, we define a core subset of this language
that will be used in those definitions. This is only due to the way we define the
penalty and variable-conflict functions and does not pose any limitations on the
expressiveness of the language: Any formula in IMSO™ may be transformed into
an equivalent formula in that core subset, in a way shown next.

The transformations are standard and are only described briefly. Given is
a formula 35; ---35,¢ in IMSO™. First, we can obtain an equivalent formula

{Constraint) := (3 (S))T (Formula)
(Formula) ::= ((Formula))
| (Y| 3){z) (Formula)
| (Formula) (A |V |=1SE) (Formula)
| =(Formula)
| (Literal)
(Literal) ::= (z) (€ | €) ()
| (@) (KIS 1=1#£121>))
IO 12 1=1#£121>) (a)

Fig. 1. The BNF grammar for the language IMSO™ where terminal symbols are un-
derlined. The non terminal symbol (S) denotes an identifier for a bound set variable S
such that S C U, where U is the common universe, while (z) and (y) denote identifiers
for bound first-order variables = and y such that z,y € U, and (a) denotes a natural
number constant. The core subset of IMSO™ corresponds to the language given by the
non-highlighted production rules.

381 -+ - 35,9, where ¥ does not contain equivalences or implications by replacing
equivalences by conjunctions of implications and implications by disjunctions.
Assuming that ¢ is the formula ¢; < 19, it is replaced by (=101 Vb) A(—the Vib1).
Second, we can obtain an equivalent formula 357 --- 35,1, where ¢ does not
contain the negation symbol —, by pushing those symbols downward, all the way
to the literals, which are replaced by their negated counterparts. Assuming that
¢ is the formula Va(—(x € SAxz ¢ T)), it is transformed into Va(z ¢ SVz € T).
This is possible because the set of relational operators in IMSO™ is closed under
negation.

By performing these transformations for ¢ (and recursively for the subfor-
mulas of ¢) in any formula 35 - - - 35,6, we end up with a formula in the non-
highlighted subset of the language in Figure 1, for which we will define penalty
and variable-conflict functions. In the rest of this article, we only give formulas
in this core subset.

3 Penalty of an IMSO™T Formula

In order to use a formula in IMSO™T as a constraint or an entire model in our
local search framework, we must define a penalty function of such a formula
according to Definition 3, which is done inductively below. It is important to
stress that its calculation will be totally generic and automatable, as it will be
based only on the syntax of the formula and the semantics of the quantifiers,
connectives, and relational operators of the IMSOT language, but not on the
intended semantics of the formula. A human might well give a different penalty
function to that formula, and a way of calculating it that better exploits globality,
but the scheme below requires no such user participation.

We need to express the penalty with respect to the values of any bound first-
order variables. We will therefore recursively extend the configuration at hand
also with this information for the relevant cases.

Definition 7 (Penalty of a Formula). Let @ be a formula in IMSO*and let
k be a configuration for the set variables in ®@. The penalty of @ with respect to
k is defined by:

(a) penalty(3Sy - - - 3SnP) (k) = penalty(o)(k)

(b) penalty(Vzp)(k) = %:upenalty(qﬁ)(k U{z — u})

o) (k

o) (k) = min{penalty(¢)(k U {x — u} | u € U})
A) (k)
V)(k)
< a)(k) =

(
(
(¢) penalty(3
(d) penalty (¢
(¢
(

= penalty(¢)(k) + penalty () ()
min{penalty(¢)(k), penalty(¢)(k)}

0, if |k(S)| <a

|k(S)| — a, otherwise

0, if k(z) € k(S)

1, otherwise

0, if k(z) < k(y)

k(z) — k(y), otherwise

(e) penalty
(f) penalty(|S]

(9) penalty(x € S)(k) =

(h) penalty(z < y)(k) =

In the definition above, for subformulas of the form = ¢ y, |S| ¢ ¢, and
x A S, only the cases where ¢ € {<} and A € {€} are shown. The other cases
are defined similarly. Note that cases (d) and (e) were originally proposed by [19].
We extend these ideas here to the logical quantifiers (V and 3). This is not just
a matter of simply generalising the arities and penalty calculations of the A and
V connectives, respectively, but made necessary by our handling of set variables
over which one would like to iterate, unlike the scalar variables of [19].

Recall from Section 2 that, given a constraint ¢ and a configuration k for the
variables of ¢, our aim when defining penalty(c) is that penalty(c)(k) is the length
of the shortest sequence of elementary set operations that must be performed on
the variables in ¢ in order for ¢ to hold. This is not true in general for the penalty
function induced by Definition 7. For example, given a configuration k for the
variables of a formula @, the penalty of the formula @ A & with respect to k is
always twice the penalty of @ with respect to k. But a sequence of elementary
set operations that is performed to make @ hold will make @ A @ hold as well.
However, it is true for the base cases (f) and (g) containing set variables. Indeed,
consider the subformulas ¢ = |S| < a and ¢ = 2 € S and a configuration k for
{S} such that k }= ¢ and k [~ 1. A shortest sequence of elementary set operations
that makes ¢ hold is a sequence of the form [drop(S,u1), ..., drop(S,u,)], where
n = |k(S)|—a is the number of elements in k(S) to drop such that the cardinality
of S is not greater than a. The shortest sequence of elementary set operations
that makes ¢ hold is the sequence [add(S, k(x))], which is indeed of length one.

We now show that the definition above of the penalty of an IMSO™ formula
induces a penalty function. In order not to interrupt the reading flow of the

article, all longer proofs (including the proof of this proposition) can be found
in Appendix A.

Proposition 3. The function induced by Definition 7 is a penalty function ac-
cording to Definition 3.

Proof. See Appendix A.1. O

In other words, the penalty of a (formula describing a) constraint meets the
basic requirement of a penalty function: it is zero when the constraint is satisfied,
and positive otherwise.

In our experience, the calculated penalties of violated constraints are often
meaningful, as seen in the following example.

Ezample 5. Let k = {S — {a,b},T — 0}, let U = {a, b, c}, and let
S =35FT(Ve(z ¢ SV e T))NBx(z €T Nz ¢5))) (4)

According to Definition 7, penalty(®)(k) = 3, which is meaningful since we may
satisfy @ by, e.g., adding the three values a, b, and ¢ to k(T'), and there is
no shorter sequence of elementary set operations achieving this. The value 3
is obtained in the following way. The initial call penalty(3S3T¢)(k) matches
case (a), which gives the recursive call penalty(¢)(k). Since ¢ is of the form
1 A 1o, this call matches case (d), which gives a summation of the recursive
calls penalty (¢) (k) and penalty(i2) (k). The call penalty (1) (k) matches case (b)
since ¢ = Va(z ¢ SV € T). This implies a summation of three recursive calls
where 2 is replaced by each value in the universe {a, b, c}. For a, the recursive call
is penalty(a ¢ SVa € T)(k). This call matches case (e), which is the minimum of
the recursive calls penalty(a ¢ S)(k) and penalty(a € T)(k). These calls match
case (g). The first one is 1, since a is in k(S). The second one is also 1, since a is
not in k(7). Hence the minimum is 1. Similarly, for b and ¢ in the universe, the
values are respectively 1 and 0. This implies that penalty(in)(k) = 2. The call
penalty(y2) (k) matches case (c) since ¥o = Jz(x ¢ S Ax € T). This implies the
minimum of three recursive calls where x is again replaced by each value in the
universe. For the value a, the recursive call is penalty(a ¢ SAa € T)(k). This call
matches case (d) which is the summation of the recursive calls penalty(a ¢ S)(k)
and penalty(a € T)(k). As above, these calls both give 1 so the sum is 2. Similarly,
for b and ¢ in the universe, the values are respectively 2 and 1. This implies that
penalty(2)(k) = 1, and we have that penalty(3S3T¢)(k) = 2+ 1 = 3. Note
that this is the same value as obtained by the penalty function 1 of S C T in
Example 4.

4 Variable Conflict of an IMSO™T Formula

In order to use formulas in IMSO™ as constraints or entire models in our local
search framework, we must define the variable-conflict function of such a for-
mula according to Definition 5, which is done inductively below. Similarly to the

10

penalty function of Definition 7, it is important to stress that its calculation will
be totally generic and automatable.

The aim is to design variable-conflict functions that are exact with respect
to the corresponding abstract variable-conflict functions. However, this is not
possible in general for formulas in IMSO™. Instead, as shown below, the following
definition of the conflict of a variable overapproximates the abstract variable
conflict (see Definition 6):

Definition 8 (Variable Conflict of a Formula). Let ¢ be a formula in
IMSOT, let k be a configuration for the set variables in @, and let S be one
of those variables. The variable conflict of S with respect to @ and k is defined
by:

(a) conflict(3S7 - - - 3Snd)(S, k) = conflict(d)(S, k)

(b) conflict(NVxd)(S, k) = > conflict(¢)(S, kU {x — u})

(c) conflict(3xp)(S, k) = e
penalty (3xp) (k) —
min{penalty(¢)(k U {z — u}) — conflict(¢)(S, kU {zx — u}) | u e U}
(d) conflict(d AN)(S, k) = conflict(d)(S, k) + conflict(v)(S, k)
(e) conflict(6 /) (S k)
penalty($ V') (k) — min{penalty(8)(k) — conflict(8)(S, k)
penalty () (k) — conflict(y)(S, k) }
0, if S#T
penalty(]S] < a)(k), otherwise
0, if S£T
penalty(z € S)(k), otherwise

(f) conflict(|T| < a)(S, k) = {
(g) conflict(z € T)(S,k) =

As in Definition 7, we only show the cases for subformulas of the form |S| ¢ ¢
and x A S where O € {<} and A € {€}.

This definition is specific to set variables and set constraints (modelled in
AMSO™), but its principle also applies to scalar variables and constraints. Note
that the conflict of a set variable S with respect to a formula @ is never negative
(as shown in Proposition 6 below).

Ezample 6. Let k = {S — {a,b},T — 0} and let & be (4). According to Def-
inition 8, conflict(®)(S,k) = 2 and conflict(P)(T, k) = 3, which is meaningful
since we may satisfy @ by, e.g., adding the three values a, b, and ¢ to k(T), or by
removing the two values a and b from k(S) and adding any value to k(T"), and
there are no shorter sequences of elementary set operations achieving this. Note
that these are the same values as obtained by conflict(S C T') of Example 4.

The key to understanding Definition 8 lies in the rules (¢) and (e) for dis-
junctive formulas. The following example clarifies these in terms of rule (e).

Ezample 7. Consider the formula @ = (|S| = 5V (|T| = 3A|S|] = 6)) and
let k1 be a configuration for {S,T} such that |k1(S)| = 6 and |k (T)] = 4.

11

Then penalty(®)(k1) = 1 and, according to Definition 8, we have conflict(|S| =
5)(S, k1) = 1 and conflict(|T| = 3 A |S| = 6)(S,k1) = 0. Rule (e) then applies
for calculating conflict(®)(S, k1), which is the penalty of ¢ subtracted by the
minimum penalty one may obtain for each disjunct by changing k4 (S). This is 0
(decrease by 1) for the first disjunct since we may decrease penalty(|S| = 5)(k1)
by one by changing k1(S) as witnessed by penalty(|S| = 5)(k1) — conflict(|S| =
5)(S,k1) = 1 —1 = 0. It is 1 (unchanged) for the second disjunct since we
cannot decrease penalty(|T) = 3 A |S| = 6)(k1) by changing k1 (S) as witnessed
by penalty(|T| = 3A|S| = 6)(k1) — conflict(|T| = 3A|S| =6)(S, k1) =1-0=1.
The minimum value of these is 0 and hence conflict(®)(S, k1) =1 —min{0,1} =
1-0=1.

Consider now the configuration ks for {S,T} such that |k2(S)| = 4 and
|k2(T")| = 4. Then penalty(P)(ke) = 1 and we have conflict(|S| = 5)(T, k2) =0
and conflict(|T| = 3 A|S| = 6)(T,ke) = 1. The minimum penalty one may
obtain by changing ko(7T) in the first disjunct is 1 (unchanged) as witnessed
by penalty(|S| = 5)(ke) — conflict(|S| = 5)(T, k) = 1 — 0 = 1. For the second
disjunct, this value is 2 (decrease by 1) as witnessed by penalty(|T] =3 A |S| =
6)(k2) — conflict(|T| = 3 A |S| = 6)(T,k2) = 3 —1 = 2. The minimum value
of these is 1 and hence conflict(®)(S,ke) =1 —min{2,1} =1 —1 = 0. Indeed,
we cannot decrease penalty(®)(k) by changing ko(T') since even if we satisfy
|ko(T)| = 3, the other conjunct |k2(S)| = 6 still implies a penalty larger than 1
and 1 is the minimum penalty of the two disjuncts of ®.

If a variable-conflict function underestimates the abstract conflict of a vari-
able, we may lose the reachability of some solution from any configuration. The
following proposition states that the conflict of a variable x with respect to a
formula @ in AMSO™T according to Definition 8 is lower-bounded by the abstract
variable-conflict of with respect to @.

Proposition 4. Let & be a formula in IMSO™, let k be a configuration for the
set variables in @, and let S be one of those variables. Then conflict(®)(S, k) >
abstractConflict(P)(S, k).

Proof. See Appendix A.2. O

The maximum possible penalty decrease of a constraint equals its penalty,
hence the abstract conflict of any variable x with respect to a formula & in
IMSOT is upper bounded by the penalty of @. The next proposition states that
the conflict of with respect to @ according to Definition 8 is also upper bounded
by the penalty of &.

Proposition 5. Let & be a formula in IMSOT, let k be a configuration for the
set variables in @, and let S be one of those variables. Then conflict(®)(S, k) <
penalty(P) (k).

Proof. See Appendix A.3. O

The definition of the variable conflict of an IMSOT formula induces a variable-
conflict function:

12

Proposition 6. The function induced by Definition 8 is a variable-conflict func-
tion according to Definition 5.

Proof. Let @ be a formula in IMSOT, let k be a configuration for the set variables
in @, and let S be one of those variables. We must show that:

1. conflict(®)(S, k) > 0.
2. conflict(P)(S, k) =0 =Vl € ng(k) : penalty(P)(k) < penalty(P)(L).

Consider first 1. Since abstractConflict(P)(S, k) > 0 by Proposition 2, the result
follows directly by Proposition 4.

Consider now 2. Assume that conflict(®)(S, k) = 0. Then abstractConflict(®)(S, k) =
0 by Proposition 4 and hence V¢ € ng(k) : penalty(®)(k) < penalty(P)(¢) by
Proposition 2. O

5 Incremental Algorithms for Penalty and
Variable-Conflict Functions of IMSO™ Formulas

In our local search framework, given a formula @ in IMSO™, we could use Defini-
tions 7 and 8 to calculate the penalty and variable conflicts of @ with respect to a
configuration k, and then similarly for each configuration ¢ in a neighbourhood
n(k) to be evaluated. However, such complete recalculations are impractical,
since n(k) is usually a very large set.

In local search it is therefore crucial to use incremental algorithms when
evaluating the penalty and variable conflicts of a constraint with respect to a
neighbour of a current configuration. We will now present a scheme for incre-
mental maintenance of the penalty and variable conflicts of a formula in IMSO™
with respect to Definitions 7 and 8. This scheme is based on viewing a formula in
AMSO™ as a syntax DAG (directed acyclic graph) and observing that, given the
penalty and variable conflicts with respect to k, only the paths from the leaves
that contain variables that are changed in ¢ (compared to k) to the root need to
be updated to obtain the penalty and variable-conflicts with respect to /.

In Section 5.1 we introduce the syntax DAG of an IMSO™ formula and show
how to extend it into a penalty and variable-conflict DAG. Then we show algo-
rithms for initialising and incrementally updating such a DAG in Section 5.2. In
Section 5.3 we provide an analysis of their worst-case space and time complexi-
ties.

5.1 The Penalty and Variable-Conflict DAG of a Formula

First, a syntax DAG D of a formula & in AMSO™ of the form 35; --- 35, ¢ is
constructed in the usual way. Literals in @ of the form z € S, z ¢ S, = { y, and
|S] ¢ k (where O € {<,<,=,7#,>,>}) are leaves in D. Subformulas in @ of the
form ¢y O 99 (where O € {A,V}) are sub-DAGs in D with O as parent node
and the DAGs of ¢, and 1o as children. When possible, formulas of the form
i O- -0 1y, give rise to one parent node with m children. Subformulas in @

13

5:{0—2(1)}
() —0(1)} @ T:{()—2(1)}

S:{
T:{()— 1})1 {0 —21)}

—~
[

S:{a—1, S:{ar—1,

T T
S o T
c— 0} c— 0}

T:{a—1, (452b—201),c—1a—1,b— 1(0),c—0} T:{a—1,

b 1(0), b— 1(0),
o | >< T c=o)

{a—1,b—1,c— 0} {a— 1,b+— 1(0),c+— 1}

Fig. 2. Penalty and variable-conflict DAG of (4).

of the form Vzt (resp. Jxtp) are sub-DAGs in D with Vz (resp. 3z) as parent
node and the DAG of 1 as only child. Finally, 357 - - - 35, is the root of D with
the DAG of ¢ as only child. We show the syntax DAG of (4) in Figure 2. Note
that it contains additional information, to be explained below.

It is crucial to limit the size of the syntax DAG D of a formula ¢ as much
as possible. We do this by the sharing of sub-DAGs. For example, in D, if two
subformulas ¢ and @ of @ both contain another subformula -, there will be only
one occurrence of the syntax DAG of v in D. This is illustrated in Figure 2 by,
e.g., the subformula z ¢ S only occurring once although it occurs twice in (4).

Assume that D is the syntax DAG of a formula . We extend D into a
penalty and variable-conflict DAG in the following way. Let k be a configuration
for the set variables X in &. At each node d representing a subformula 1) of &,
the penalty and variable conflicts for all S € X with respect to k are stored.
This implies that the penalty and variable-conflicts stored in the root of D are
equal to penalty(®)(k) and conflict(®)(S, k), for all S in X. This is illustrated
in Figure 2, where the penalties and variable conflicts with respect to k = {S —

14

{a,b}, T — 0} are displayed below and beside the nodes respectively. The reader
should disregard the numbers in parentheses and the directed edges for now, this
will be explained below.

As shown in Figure 2, for the descendants of nodes representing subformulas
that introduce bound first-order variables, we must store the penalty and variable
conflicts with respect to every possible mapping of those variables. For example,
the child node d of a node for a subformula of the form V¢ will have a penalty
and variable conflicts stored for each u € U. Generally, the penalty and variable
conflicts stored at a node d are mappings, denoted p(d), from the possible tuples
of values of the bound first-order variables at d to N. Assume, for example, that at
d there are two bound first-order variables z and y (introduced in that order) and
that U = {a, b}. Then the penalty and variable conflicts stored at d after initiali-
sation are mappings of the form {(a,a) — q1, (a,b) — g2, (b,a) — g3, (b,b) — qu4}
where {q1, ¢2,93,q4} C N. The first element of each tuple corresponds to z and
the second one to y. If there are no bound first-order variables at a particular
node, then the penalty and variable conflicts are mappings of the form {() — ¢},
i.e., the empty tuple mapped to some g € N.

5.2 Initialising and Updating the Penalty and Variable Conflicts

An incremental algorithm consists of two parts, the initialisation part and the
updating part. The initialisation part is used when the value is calculated from
scratch, without any prior information. The updating part is used when there
is already some information available. We will now present the initialisation
and updating parts of the incremental algorithm for maintaining a penalty and
variable-conflict DAG. We only show algorithms for initialising and updating
the penalty, and not the variable conflicts. The algorithms for initialising and
updating variable conflicts are similar.

We start by showing the function initialise(D,U, k) in Algorithm 1. This
recursive function initialises a penalty and variable-conflict DAG D of a formula
with penalty mappings with respect to a universe i/ and a configuration k. By
abuse of notation, we let formulas in IMSO™ denote their corresponding penalty
and variable-conflict DAGs. For example, Vz¢ denotes the DAG with Vx as root
and the DAG representing ¢ as only child, ¢1 A -+ A ¢,,, denotes the DAG with
A as root and the sub-DAGs of all the ¢; as children, etc. Note that we use
an auxiliary function tuple that, given a configuration k, returns the tuple of
first-order values with respect to k in the order they are introduced. We also
assume that before initialise is called for a DAG D, all penalty mappings of D
equal the empty set.

Ezample 8. Let k = {S — {a,b},T — 0} and U = {a,b,c}. The penalty and
variable-conflict DAG D of (4) in Figure 2 is the result of calling initialise(D,U, k).

Now, given a penalty and variable-conflict DAG D of a formula ¢ with re-
spect to a configuration k for the set variables in @, it is important to realise
the following: When a configuration ¢ in the neighbourhood of & is to be evalu-
ated, the only paths in D that may have changed are those leading from leaves

15

Algorithm 1 Initialising a penalty and variable-conflict DAG.
function initialise(D,U, k)
if D has not been initialised then
match D with
351 ---3Sn¢ — p(D) — {() — initialise(p, U, k)}

| Vep — p(D) «— p(D) U {tuple(k) — Y initialise(¢p,U, kU {z — u})}

uweU
| 3z —
p(D) «— p(D) U {tuple(k) — min{initialise(p,U, kU {x — u}) | u €
Ut}

| 1A - Apm — p(D) « p(D)U{tuple(k) — 32, -, ,, initialise(pi, U, k)}
| P11V -V Oy —

p(D) «— p(D) U {tuple(k) ~— min{initialise(p,U,k) | ¢ €

{¢17) ¢m}}}

0, if k(z) < k(y)

|z <y — p(D)«— p(D)U {tuple(k) — {k(l’) — k(y), otherwise }

0, if [k(S)| <m

[1S] <m — p(D) « p(D)U {tuple(k) = {|k(5)| — m, otherwise }

|z€eS — p(D)—p(D)U {tuple(k) — {

end match
else

0
return p(D)(tuple(k))

function tuple(k)
> {x1,...,Zn} is the first-order variables in domain(k), introduced in that

order.
return (k(z1),...,k(zn))

0, if k(z) € k(S) }

1, otherwise

containing any of the set variables that are affected by the change of k to ¢, to
the root. By updating the penalties with respect to the change on those paths,
we incrementally calculate penalty(®)(¢) given penalty(®)(k) and the difference
between k and /.

In Algorithm 2, we show the function submit(d;, df, 7) that updates the
penalty mappings of a penalty and variable-conflict DAG incrementally with
respect to a current configuration k and a configuration ¢ in the neighbourhood
of k. It is a recursive function where information from the node d; (void when
d; is a leaf) is propagated to the node d;. The additional argument 7 is a set of
tuples of values that are affected by changing & to £. It uses the auxiliary function
update(dy, dy, T) that performs the actual update of the penalty mappings of d;
with respect to (the change of the penalty mappings of) dy.

Some of the notation used in Algorithm 2 needs explanation. The set of
affected tuples 7 depends on the maximum number of bound first-order variables
in the penalty and variable-conflict DAG, the universe U, and the configurations

16

Algorithm 2 Updating a penalty and variable-conflict DAG.
function submit(ds, ds, T)
update(ds, dy, T) > First update d; with respect to dy.
if All children affected by the change of k£ to ¢ are done then
if d; is not the root and p(d:) changed then
for all d € parents(d;) do
submit(d, d¢, T U changed(dy))
changed(dy) < 0
else () > We are at the root or p(d:) did not change. Donel!
else changed(d;) < changed(d,) UT > Not all children done. Save tuples.
function update(ds, ds, T)
p'(dy) — p(dy) > Save the old penalty mapping.
for all t € ,T|bmmds(rit) do
match d; with
31+ -3¢ — p(di) — p(di) & {() — p(ds)(())}
| Ve —
for all t’ € Tibounds(dy) such that tlbounds(a) =t do
p(di) — p(d) @ {t — p(di)(t) + p(ds)(t") — p'(df)(t')}
| Jop —
for all t' € Tyounds(a;) such that t{,,,,4.(q,) =t do
Replace the value for ¢’ in RBTree(dy,t) with p(ds)(t')
p(di) «— p(dt) @ {t — min(RBTree(ds, 1))}

| 1A AN dm — p(di) — p(di) & {t — p(de)(t) + p(dy)(t) — p'(ds)(1)}

| 1V -V ¢ — Replace the value for dy in RBTree(dy,t) with p(ds)(t)
p(ds) — p(ds) ® {t — min(RBTree(ds, t))}

0, if [£(S)|<m
S| < d, d, t
| IS| £m — p(di) «— p(t)@{ H{|g(s)|m, otherwise

|x€S*’p(dt)<*p(dt)®{tl—>{

end match

0, if t(z) € £(S) }

1, otherwise

k and £. Recall U = {a,b,c} and k = {S — {a,b},T +— 0}} of Example 1 and
assume that £ = {S — {a,b},T — {b}} (b was added to k(T)). In this case T
would be the singleton set {(b) }, since this is the only tuple affected by the change
of k to £. However, if the maximum number of bound variables was two (instead
of one as in Example 1), then 7 would be the set {(b,a), (b,b), (b, ¢), (a,b), (¢, b)}
since all of these tuples might be affected by the change.

Given a set 7 of tuples, each of arity n, we use 7),, to denote the set of
tuples in 7 projected on their first m < n positions. For example, if 7 =
{(av a), (a,b), (a,c), (b,a), (c, a)}v then ’Tll = {(a)7 (b), (C)} and ,T\O = {()} We
use a similar notation for projecting a particular tuple: if t = (a, b) then ¢; = (a)
and t)g = (). We also use t(z) to denote the value of the position of x in ¢. For
example, if x was the first introduced bound first-order variable, then ¢(x) = a
for t = (a,b).

17

We let changed(d) denote the set of tuples that has affected node d. We let
bounds(d) denote the number of bound first-order variables at node d (which is
equal to the number of nodes of the form Vz or 3z on the path from d to the
root). We use the operator @ for replacing the current bindings of a mapping
with new ones. For example, the result of {z — a,y > a,z — b}d{x — b,y — b}
is {x — b,y — b,z — b}. Finally, we assume that nodes of the form 3z and Vv
have a binary search tree RBTree for maintaining the minimum value of each of
its penalty mappings.

Now, given a change to a current configuration k, resulting in ¢, assume that
X is the set of affected set variables in a formula @ with an initialised penalty
DAG D. The call submit(ds, void, Ts) must be made for each leaf ds of D that
represents a subformula stated on any S in X, where 7g is the set of affected
tuples with respect to the change of k(S) to £(S).

Ezample 9. Recall k = {S +— {a,b},T — 0} of Example 1, and keep the ini-
tialised DAG D of Figure 2 in mind. Let ¢ = {S — {a,b},T — {b}}. We will
now explain how D is updated with respect to £. The only paths that must
be updated are the ones leading from leaves that contain 7' to the root node
(marked by directed arcs in Figure 2).

There is only one leaf in D that contains T, namely the leaf representing
the subformula = € T. Starting at this leaf, submit is called with submit(z €
T, void,{(b)}). This gives the call update(xz € T, void, {(b)}) which replaces the
binding of (b) in p(x € T') with (b) — 0 (since b is now in T'). Since a leaf node has
no children and = € T is not the root, submit is called for each parent of z € T
This results in the calls submit(dx,z € T,{(b)}) and submit(dy,z € T,{(b)}),
where dn and dy are respectively the conjunctive and disjunctive parents of
zeT.

Consider first submit(ds,x € T,{(b)}). The call update(dn,z € T,{(b)}) is
made, which replaces the binding of (b) in p(d,) with (b) — 1 (since the sum
of the penalties of the children of d, with respect to (b) is now 1). Since all
affected children of d, are done, submit is called for its only parent, resulting in
the call submit(ds, dx,{(b)}). The subsequent call update(ds, da,{(b)}) does not
change the penalty mapping of p(dsg) (since the minimum of the penalties of dx
with respect to each value in the universe is still 1). Hence there is no change to
propagate to the parent of ds.

Consider now submit(dy,z € T,{(b)}). The call update(dy,x € T,{(b)}) is
made, which replaces the binding of (b) in p(dy) with (b) — 0 (since the minimum
of the penalties of the children of d, with respect to (b) is now 0). Since all af-
fected children of d,, are done, submit is called for its only parent, resulting in the
call submit(dy, dr, {(b)}). The subsequent call update(dy, dn,{(b)}) replaces the
penalty mapping of p(dy) with () — 1 (since the sum of the penalties of dy with
respect to each value in the universe is now 1). The call to submit(d), dy, {b}),
where d), is the parent of dy, results in replacing the penalty mapping of p(d))
with () — 2 and, finally, also in replacing the penalty mapping of the root with
() 2.

18

Adding b to T resulted in a penalty decrease of 1 and, hence, the penalty
of (4) with respect to £ is 2. The changed penalty mappings with respect to ¢
are shown in Figure 2 in parentheses along the oriented edges in the DAG. The
changed variable conflicts with respect to ¢ are also shown.

5.3 Complexity

We will now present the worst-case space complexity of a penalty and variable-
conflict DAG of a formula, as well as the worst-case time complexities of the
algorithms of the previous sub-section.

Given is a penalty and variable-conflict DAG D of a formula @. In the fol-
lowing,

— let b be the maximum number of nested first-order quantifiers in @;

— let m be the number of disjuncts of the longest disjunctive subformula in @;

— let n be the number of set variables in @;

— let ¢ be the number of nodes in D;

— let t be the number of tuples in 7 (recall from Section 5.2 that 7 is the
set of tuples that are affected by changing a configuration k& to another
configuration £);

— let u be the size of U;

— let v be the maximum number of paths from leaf nodes to the root of D;

— let w be the maximum number of nodes on paths from leaf nodes to the root
of D.

In each node d of D, the number of penalty mappings that must be stored at
d is upper bounded by u’. The number of variable-conflict mappings that must
be stored at d is then upper bounded by u® - n.

The worst-case space complexity of D is O(q - u® - n). Note that many inter-
esting constraints can be modelled with b = 1. See, for example, (4) and (7) as
well as those in [16].

The worst-case time complexity of a call of the form initialise(D,U, k) is
O(q - u®), since the function visits each node d in D exactly once, updating the
penalty mappings of d.

Let d; be the node representing a subformula ¢, let d; be a successor of dy,
and let 7 be the affected tuples with respect to some change from a configuration
k to another configuration ¢. The worst-case time complexity of a call of the form
update(dy, ds, T) is O(t - ¢ - v) where

1, if no formulas of the form J¢ or ¢ V - - - V 9, are subformulas in @, or
logm, if no formulas of the form 3¢ are subformulas in @, or
logu, if no formulas of the form), V - -- V 9, are subformulas in @, or

log(max{u, m}), otherwise.

The penalty mappings with respect to each element in 7|younqs(q,) are updated
(first factor t). Each such update may (in the cases where ¢ is of the form

19

Vi or Jip) have to be calculated with respect to all elements in T bounds(dy)
(second factor t). Note that |[Tsounds(d,)| and |Zjpounds(d;)| are upper bounded
by t. Finally, each actual update may (in the cases where ¢ is of the form 3 or
1V -+ V1)) imply updating a balanced binary search tree with u (when ¢ is
of the form 3¢) or m (when ¢ is of the form 1 V - - -V ¢,.) nodes (factor 7).

The worst-case time complexity of a call of the form submit(d, void,T) is
O(v-w-t?-v). Each node on any path from the leaf node d to the root node is
visited (factor v - w). For each such node a call to update is made (factor ¢ - 7).

The most interesting part above is the complexity of a call to the submit
function, since calls to that function will be made each time a change from a
configuration k to another configuration ¢ is made. As seen above, this complex-
ity is O(v - w - t2 - v) which may seem high at first. However, for many formulas,
including (4) above and (7) below, most of the factors are constant. For example,
if the maximum number of nested first-order quantifiers in @ is b = 1, then the
factors ¢ are constant, bringing down the complexity to O(v - w -). Further-
more, the maximum number of nodes on paths from leaf nodes to the root of D
is often constant, bringing down the complexity further to O(v - 7), where v is
often linear in n.

6 Application: The Progressive Party Problem

Let us now present some experimental results. Our objective is to show that one
may use (global) constraints modelled in IMSO™ in a local search framework,
while still obtaining competitive results compared to built-in (global) constraints.
Since no effort at all is then spent on defining and incrementally implementing
penalty and variable-conflict functions for the modelled (global) constraints, as
our generic algorithms take care of that, we bring constraint based local search a
step closer to the level of expressiveness of constraint programming. We simulate
this by assuming that a built-in global constraint is not available and modelling
it by an IMSO™ version thereof. By doing this, we may compare a modelled
IMSO™ version of a constraint with a built-in version, and hence evaluate the
feasibility of our approach.

The progressive party problem (PPP) [15] is about timetabling a party at a
vacht club, where the crews of certain boats (the guest boats) party at other
boats (the host boats) over a number of periods. The crew of a guest boat must
party at some host boat in each period (constraint c¢;). The spare capacity of
a host boat is never to be exceeded (constraint cs). The crew of a guest boat
may visit a particular host boat at most once (constraint c3). The crews of two
distinct guest boats may meet at most once (constraint cy).

6.1 A Set Based Model

Let H and G be the sets of host boats and guest boats, respectively. Let
capacity(h) and size(g) denote the spare capacity of host boat h and the crew
size of guest boat g, respectively. Let P be the set of periods. Let S(;, ,) be a set

20

variable denoting the set of guest boats whose crews boat h hosts during period
p. The following constraints then model the problem:

(c1) : Vp € P (Partition({Snp) | h € H}, G))

(c2) : Yh € H (Vp € P (MaxWeightedSum(S(y p), size, capacity(h)))) (5)
(c3) : Vh € H (AllDisjoint({S(p | p € P}))

(ca) : MazIntersect({Snp) | h€ HA p € P}, 1)

The global constraint Partition(X,Q)(k) holds if and only if the values, with
respect to k, of the set variables in X’ partition the set (), where the value of a set
variable in X may be the empty set. The constraint Maz WeightedSum(S, w, m)(k)
holds if and only if 3, ¢4 (s) w(u) < m. The global constraint MazIntersect(X, m)(k)
holds if and only if the cardinality of the intersection with respect to k be-
tween any two distinct set variables in A" is at most m. The global constraint
AllDisjoint(X)(k) holds if and only if the intersection with respect to k between
any two distinct set variables in X is empty.

6.2 Modelling AllDisjoint in IMSO™T

In our local search system, the four different constraints above are all built in,
having specialised penalty and variable-conflict measures as well as incremen-
tal algorithms for maintaining these measures. We take a closer look at these
elements for the AllDisjoint constraint in the following example.

Ezxample 10. The following penalty function:

penalty(AllDisjoint (X)) (k) = (Z |k(S)|> - (6)

Sex

U #(9)

Sex

computes the length of the shortest sequence of elementary set operations needed
to decrease penalty(AllDisjoint(X))(k) to zero. For instance, the penalty of
AllDisjoint({S, T,V }) under configuration k = {S — {a,b,c}, T — {b,c,d},V —
{d,e}} is 8—5 = 3, and indeed it suffices to drop the three shared elements b, ¢, d
from any set each to get a solution. The following variable conflict function:

conflict(AllDisjoint(X))(S, k) = {u € k(S) | 3T € X\ {S} : u € k(T)}|

computes the length of the shortest sequence of elementary set operations needed
to decrease conflict(AllDisjoint(X))(S, k) to zero. For instance, the conflict of
variable S with respect to the penalty and configuration above is 2, and indeed
it suffices to drop the two elements b, ¢ it shares with other sets to get a zero
conflict of S (but not a zero penalty).

In order to maintain (6) incrementally, we use a table count of integers,
indexed by the values in U, such that count[u] is equal to the number of variables
in X' that contain u. Now, the sum (6) is equal to) ,, max(count[u] —1,0) as
it suffices to drop each value u € | Jg . k(S) from all but one of the set variables
in X in order to satisfy the constraint. This is easy to maintain in O(1) time
given an elementary set operation of the form add(S,u) or drop(S,u).

21

Assume now that the global AllDisjoint constraint is not available in our
local search system. We may then model it in IMSO™ and use that version in
(5) instead of (c3). Hence, we may experiment with the IMSO™ version without
having to come up with penalty and variable-conflict measures and implement
incremental algorithms for a new built-in global constraint. We use the following
AMSO™ formula for modelling the global AllDisjoint({S1,...,Sy}) constraint:

351 ---3AS, Ve ((x ¢ S1 V(e g San-—-ANx ¢ Sy)) A
(x & SoV(xgSsN---ANxgS,)) AN (7)
(CL’%STL*IV:U%Sn))

For every value u in the universe we state that: if u is in a set S;, then u cannot be
in any set S; where j > 7. This encoding is quadratic in the number of variables
n, which is inevitable since there must be a subformula for every pair of different
variables in {S1,...,S,}. The chosen experiment is thus quite challenging since
we replace a constant size encoding having a constant time incremental penalty
maintenance by a quadratic sized encoding. However, as we show in Section 6.4,
the penalty of the quadratic encoding is incrementally maintained in linear time.

6.3 Solving the Model

If we are careful when defining an initial configuration and a neighbourhood for
the PPP, we may be able to exclude some of its constraints. For instance, it is
possible to give the variables S(;, ;) an initial configuration and a neighbourhood
that respect ¢;. We can do this (i) by assigning random disjoint subsets of G to
each S(j,), where h € H, for each period p € P, making sure that each g € G is
assigned to some Sy, ,,y and (ii) by using a neighbourhood specifying that guests
from a host boat h are moved to another host boat A’ in the same period, and
nothing else.

Algorithm 3 is the solving algorithm we used for the PPP. It takes the con-
stant sets P, G, H, and the functions capacity and size as defined above as
parameters, specifying an instance of the PPP, and returns a configuration k
for a CSP with respect to that instance. Mazxlter and MaxNonImproving are
additional arguments as described below. If penalty((X,D,C))(k) = 0, then a
solution was found within Mazlter iterations.

The algorithm starts by initialising a CSP for the PPP, necessary counters,
bounds, and sets (lines 2—4), as well as the variables of the problem (lines 5—7).
As long as the penalty is positive and a maximum number of iterations Maxlter
(we empirically chose MazIter = 500,000 for the experiments in this article) has
not been reached, lines 8 — 23 explore the neighbourhood of the problem in the
following way. (i) Choose a variable S(;, ;) with maximum conflict (line 10). (ii)
Determine the neighbourhood consisting of transferring an element from S, ;)
to another variable in the same period. (line 11). (iii) Move to a neighbour ¢
that minimises the penalty (lines 12 — 14).

In order to escape local minima it also uses a tabu list [9] and a restart-
ing component. The tabu list tabu is initially empty. When a move from a

22

Algorithm 3 Solving the PPP

1: procedure solve_progressive_party(P, G, H, capacity, size)
2: Initialise (X, D,C) w.r.t. P, G, H, capacity, and size to be a CSP € PPP

3: iteration «— 0, non_improving < 0, best < oo
4: k «— 0, tabu «— 0, history < 0
5: for all p € P do > Initialise such that c; is respected
6: Add a random mapping S,) — G, where G’ C G, for each h € H to k
7 such that penalty(Partition({Sp) | h € H},G))(k) =0
8: while penalty((X,D,C))(k) >0 & iteration < Mazlter do
9: iteration < iteration + 1, non_improving <« non_improving + 1
10: choose Shpy € X such that VI' € X : conflict(C)(Sihp), k) >
conflict(C) (T, k)
11: N — transfer(Snpy, {S,py | B € H & h' # h})(k)
12: choose £ € N such that YW/ € N : penalty({(X,D,C))({) <
penalty((X,D,C)) (L")
13: and ((S(n p), d, iteration) ¢ tabu or penalty((X,D,C))(£) < best),
14: where delta(k, £) = {(Sen,p), {d},0), (S p), 0, {d})}
15: k — £, tabu «— tabu U {(S(u p), d, iteration + rand_int(5,40))}
16: if penalty((X,D,C))(k) < best then
17: best «— penalty((X, D, C))(k), non_improving «— 0,
18: history «— {k}, tabu < 0
19: else if penalty((X,D,C))(k) = best then
20: history « history U {k}
21: else if non_improving = MaxNonImproving then
22: k < a random element in history
23: non_improving < 0, history « {k}, tabu < 0

24: return k

configuration k£ to a configuration ¢ is performed, meaning that for two vari-
ables Sy,) and S/ 1), a value d in k(S(,) is moved to k(S p), the triple
(S(hzyp), d, iteration + t) is added to tabu. This means that d cannot be moved
to S p) again for the next t iterations, where ¢ is a random number between
5 and 40 (empirically chosen interval). However, if such a move would give the
lowest penalty so far, it is always accepted (lines 13 — 15). By abuse of notation,
we let (s,d,t) ¢ tabu be false if and only if (s,d,t') € tabu & t <t'.

The restarting component (lines 16—23) works in the following way. Each con-
figuration k such that penalty((X,D,C))(k) is at most the current lowest penalty
is stored in the set history (lines 16 — 20). If a number MazNonImproving (we
empirically chose MazNonImproving = 500 for the experiments in this article)
of iterations passes without any improvement to the lowest overall penalty, then
the search is restarted from a random element in history (lines 21 —23). A similar
restarting component was used in [12, 19] (saving one best configuration) and [6]
(saving a set of best configurations), both for scalar models of the PPP.

23

Table 1. Run times in seconds for the PPP with the IMSO™ and built-in AllDisjoint
constraint respectively. Mean run time of successful runs (out of 100) and number of
unsuccessful runs (if any) in parentheses.

Using the modelled AllDisjoint constraint.

H /periods (fails) 6 7 8 9 10
(a) 1-12,16 1.3 35 420
(b) 1-13 16.5 239.3
(¢) 1,3-13,19 18.9 273.2 (3)
(d) 3-13,25,26 36.5 405.5 (16)
(e) 1-11,19,21 19.8 186.7
(f) 1-9,16-19 32.2 320.0 (12)

Using the built-in AllDisjoint constraint (values from [3]).

H /periods (fails) 6 7 8 9 10
(a) 1-12,16 1.2 23 21.0
(b) 1-13 7.0 90.5
(c) 1,3-13,19 7.2128.4 (4)
(d) 3-13,25,26 13.9 170.0 (17)
(e) 1-11,19,21 10.3 83.0 (1)
(f) 1-9,16-19 18.2 160.6 (22)
6.4 Results

We have run the same classical instances as in [20, 12,6, 3] on an Intel 2.4 GHz
Linux machine with 512 MB memory. In Table 1 we show the results when using
the IMSO™ and built-in versions of the AllDisjoint constraint. The run times for
the IMSO™ version are only 2 to 3 times higher, for all the instances, though it
must be noted that efforts such as designing penalty and variable-conflict func-
tions as well as incremental penalty and variable-conflict maintenance algorithms
for AllDisjoint were not necessary. The slowdown comes from the difference in
complexity of updating the constraints given an elementary set operation, as
shown next.

Given the penalty and variable-conflict DAG D7y of the formula (7) for n
set variables and a universe of size u, the following properties can be proved by
construction:

— the maximum number of nested first-order quantifiers in (7) is b = 1;

— the number of disjuncts of the longest disjunctive subformula in (7) is m = 2;

— the number of nodes in D7) is ¢ = 3 - n;

— the maximum number of paths from leaf nodes to the root of D7) is v = n—1;

— the maximum number of nodes on paths from leaf nodes to the root of D7)
is w = 5.

Let ¢ be the number of tuples in 7, which is a constant value for (7) since the
maximum number of nested first-order quantifiers in (7) is b = 1. Here we assume

24

that ¢ = 1, which is the case if we consider updating D7y with respect to one
elementary set operation of the form add(S,u) or drop(S,u). Recall now the
worst-case space and time complexities of Section 5.3 with respect to a penalty
and variable-conflict DAG D of a formula @. We obtain the following worst-case
space and time complexities for (7) and D(7):

— The worst-case space complexity of D7) is:
O(g-u’-n)=0B -n-u'-n)=0(n* u)
— The worst-case time complexity of a call of the form initialise(D7y, U, k) is:
O(qg-u?) =03 -n-u')=0(n-u)
— The worst-case time complexity of a call of the form update(dy, dy, T) is:
Ot-t-v)=0(1-1-1log2) =0(1)

where v = log 2 since there are disjunctive formulas but no formulas of the
form J¢ are subformulas in (7).
— The worst-case time complexity of a call of the form submit(d, void,T) is

OWw-w-t*-9)=0(n—-1)-5-1*-1log2) = O(n)
where, again, v = log 2 as explained above.

Hence, incrementally updating the penalty and variable-conflict DAG D7) of (7)
with respect to an elementary set operation is linear in the number of variables
as this can be done by one call to the function submit. This compares to incre-
mentally updating (6) for the built-in AllDisjoint constraint, which can be done
in constant time. Of course, the built-in version may take advantage of global
properties of the constraint that make it possible to define a faster incremental
algorithm. However, as the results show, the overall performance for using the
modelled AllDisjoint is still acceptable, making a modelled constraint in IMSO™
a good alternative when a particular constraint is not built in. Note also that
the robustness of the local search algorithm does not degrade when using the
IMSOT version of the AllDisjoint constraint, as witnessed by the number of
solved instances when using the IMSO™ version being at least as large as the
number of solved instances when using the built-in version.

7 Conclusion

There is a need for more user support in local search. This is witnessed by, e.g,
the complexity of coming up with new (global) constraints. To do this, the user
must define penalty and variable-conflict measures, as well as implement efficient
incremental algorithms for maintaining these measures. The need to perform
these tasks, assuming that the user has the necessary skills, clearly reduces her
productivity, since much time must usually be devoted to them.

25

In this article, we introduced tools to help overcome this situation. Towards
this, we proposed the usage of monadic existential second-order logic extended
with counting (IMSO™) as a modelling language for (user defined) constraints
in local search. Furthermore, we introduced inductive definitions for measuring
the penalty and variable conflicts of an IMSO™ formula with respect to a given
configuration. We also showed that the proposed measure of the conflict of a
variable x is lower-bounded by the intuitive target value, i.e., the maximum
penalty decrease that may be achieved by only changing the value of x, as
well as upper bounded by the penalty of the formula. Without these important
properties, the local search performance may degrade.

On the practical side, we came up with and implemented incremental al-
gorithms for maintaining penalty and variable conflicts of IMSO™T formulas ac-
cording to the proposed measures. Using these algorithms, we replaced a built-in
global AllDisjoint constraint by an IMSO™ version thereof in a set based model
of the progressive party problem. The results show the usefulness of the ap-
proach by the IMSOT version not incurring too high losses in run time, and by
being at least as robust in terms of the number of solved instances, compared to
the built-in version. Had that AllDisjoint constraint not been built-in, the user
would have obtained those rather efficient incremental algorithms at the low cost
of just modelling that constraint.

The adaptation of the traditional combinators of constraint programming
for local search was pioneered for the Comet system [19,17]. The combinators
there include logical connectives (such as A and V), cardinality operators (such
as exactly and atmost), reification, and expressions over variables. We have ex-
tended these ideas here to the logical quantifiers, namely V and 3. This is not just
a matter of simply generalising the arities and the existing definitions [19,17]
of the penalties and variable conflicts for the A and V connectives, respectively,
but was made necessary by our handling of set variables over which one would
like to iterate, unlike the scalar variables of Comet.

In parallel and independently of our work on a generic variable-conflict func-
tion for IMSO™ formulas [4], the work of [11,12,19,17] was generalised in or-
der to introduce differentiable invariants [18]. The latter are a novel, unifying
abstraction for local search that lifts arbitrary expressions and formulas into
differentiable objects [12,17], which incrementally maintain a value, its maxi-
mum possible increase and decrease, and can be queried for the effects of local
moves. Generic definitions and incremental maintenance algorithms for penalty
and variable-conflict functions, such as ours, are thus inherited for free as par-
ticular cases of the differentiable-invariant calculus [18]. While our penalty and
variable-conflict functions (when adapted to scalar variables) seem to give the
same results as theirs and enjoy the same desirable properties (which in their
case follow directly by structural induction on the expression), it should be noted
that they also support negation and reification. Our work, which took place in-
dependently and in parallel, is not completely subsumed by their development of
the state of the art, as we support second-order set variables, unlike their scalar
variables, and as we also address first-order bounded quantification.

26

Acknowledgements

This research was partially funded by EuroControl Project C/1.246/HQ/JC/04
and its Amendments 1/04 and 2/05. We thank Christian Schulte and the anony-
mous referees of [3,2,4] and this special issue for their useful comments. The
second author thanks Sabanci University, for the research time included in his
Visiting Faculty Member position in 2006/07.

References

10.
11.

12.

13.

14.

15.

. Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Opti-

mization. John Wiley & Sons, 1997.

Magnus Agren, Pierre Flener, and Justin Pearson. Incremental algorithms for local
search from existential second-order logic. In Peter van Beek, editor, Proceedings
of CP’05, volume 3709 of LNCS, pages 47-61. Springer-Verlag, 2005.

Magnus Agren, Pierre Flener, and Justin Pearson. Set variables and local search. In
Roman Bartdk and Michela Milano, editors, Proceedings of CP-AI-OR’05, volume
3524 of LNCS, pages 19-33. Springer-Verlag, 2005.

Magnus Agren, Pierre Flener, and Justin Pearson. Inferring variable conflicts for
local search. In Frédéric Benhamou, editor, Proceedings of CP’06, volume 4204 of
LNCS, pages 665-669. Springer-Verlag, 2006.

Francisco Azevedo and Pedro Barahona. Applications of an extended set constraint
solver. In Proceedings of the ERCIM / CompulogNet Workshop on Constraints,
2000.

Markus Bohlin. Design and Implementation of a Graph-Based Constraint Model
for Local Search, 2004. PhL thesis, Mélardalen University, Vésteras, Sweden.
Philippe Galinier and Jin-Kao Hao. A general approach for constraint solving by
local search. In Proceedings of CP-AI-OR’00, 2000.

Carmen Gervet. Interval propagation to reason about sets: Definition and imple-
mentation of a practical language. Constraints, 1(3):191-244, 1997.

Fred Glover and Manuel Laguna. Tabu search. In Modern Heuristic Techniques
for Combinatorial Problems, pages 70-150. John Wiley & Sons, 1993.

Neil Immerman. Descriptive Complezity. Springer-Verlag, 1998.

Laurent Michel and Pascal Van Hentenryck. Localizer: A modeling language for
local search. In Gert Smolka, editor, Proceedings of CP’97, volume 1330 of LNCS,
pages 237-251. Springer-Verlag, 1997.

Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture for
local search. ACM SIGPLAN Notices, 37(11):101-110, 2002. Proceedings of OOP-
SLA’02.

Alexander Nareyek. Using global constraints for local search. In E.C. Freuder
and R.J. Wallace, editors, Constraint Programming and Large Scale Discrete Opti-
mization, volume 57 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, pages 9-28. American Mathematical Society, 2001.
Jean-Frangois Puget. Finite set intervals. In Proceedings of CP’96 Workshop on
Set Constraints, 1996.

Barbara M. Smith, Sally C. Brailsford, Peter M. Hubbard, and H. Paul Williams.
The progressive party problem: Integer linear programming and constraint pro-
gramming compared. Constraints, 1:119-138, 1996.

27

16. Guido Tack, Christian Schulte, and Gert Smolka. Generating propagators for finite
set constraints. In Frédéric Benhamou, editor, Proceedings of CP’06, volume 4204
of LNCS, pages 575-589. Springer-Verlag, 2006.

17. Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The
MIT Press, 2005.

18. Pascal Van Hentenryck and Laurent Michel. Differentiable invariants. In Frédéric
Benhamou, editor, Proceedings of CP’06, volume 4204 of LNCS, pages 604—619.
Springer-Verlag, 2006.

19. Pascal Van Hentenryck, Laurent Michel, and Liyuan Liu. Constraint-based com-
binators for local search. In Mark Wallace, editor, Proceedings of CP’04, volume
3258 of LNCS, pages 47-61. Springer-Verlag, 2004.

20. Joachim Paul Walser. Integer Optimization by Local Search: A Domain-
Independent Approach, volume 1637 of LNCS. Springer-Verlag, 1999.

A Proofs

In order to simplify the proofs, we assume that a formula of the form Vz¢ is
replaced by the equivalent formula (¢1 A (p2 A+ A (-1 A dp)---)), where ¢;
denotes the formula ¢ in which any occurrence of z is replaced by u; and where
U = {ug,...,u,} with n > 2. Similarly, a formula of the form Jz¢ is replaced
by the equivalent formula (¢1 V (¢2 V-V (¢p—1V ép)--+)).

For example, assuming that & = {a,b}, the formula stating that S and T
have at most one common element:

ASIT(Va(Vy(z > yV (e ¢ SVyg¢ Sve ¢ TVy¢T))))
is replaced by:

3s53ar SVa¢g SvagTVa¢T)) A

SVbeéSvagTVbeT)) A

SVa¢SVvbeTVae¢T)) A
)

SVbEéSVbE TVbET)).

VIV IV IV
SR o9
<< < <«
S3E %
‘ﬂlﬂmm

A.1 Proof of Proposition 3

Proposition 3. The function induced by Definition 7 is a penalty function
according to Definition 3.

Proof. Let P = (X,D,C) be a CSP, let & € C be a formula in AMSO™, and let
k € Kp. We must show that:

1. penalty(®)(k) > 0.
2. penalty(P)(k) =0k = &.

Consider first 1. The proof is by structural induction on @. The result holds for
the base cases (f), (g), and (h). For case (a), the result follows by induction
from the definition.

28

Case & = ¢ Ayp. We have that penalty(¢)(k) > 0 and that penalty (i) (k) > 0
by induction. Hence we must have that

penalty(¢ A) (k) = penalty(¢)(k) + penalty(y)(k) = 0.

Case & = ¢V 1p. We have that penalty(¢)(k) > 0 and that penalty(y)(k) > 0
by induction. Hence we must have that

penalty(¢ V 1) (k) = min{penalty(¢)(k), penalty(y)(k)} > 0.

Consider now 2 and (=). Assume that penalty(®)(k) = 0. The proof is by
structural induction on @. The result holds for the base cases (f), (g), and (h).
For case (a), the result follows by induction from the definition.

Case @ = ¢ A 1. We have that

penalty(¢ A) (k) = penalty(¢)(k) + penalty(y)(k) =0

by assumption and we must show that & = ¢ A 1), i.e., that k = ¢ and that
k | 1. We know that penalty(¢)(k) = 0 and that penalty(y)(k) = 0 (since
penalty(¢)(k) > 0 and penalty(y)(k) > 0 by 1 above) and, hence, the result
follows by induction.

Case @ = ¢ V 1. We have that

penalty (¢ V) (k) = min{penalty(4)(k), penalty () (k)} = 0

by assumption and we must show that k &= ¢ V ¢, ie., that k& | ¢ or that
k |= 4. Since either penalty(¢p)(k) = 0 or penalty(y)(k) = 0, the result follows
by induction.

Consider now 2 and («<). Assume that k = @. The proof is by structural
induction on @. The result holds for the base cases (f), (g), and (k). For case (a),
the result follows by induction from the definition.

Case & = ¢ A 1p. We have that & | ¢ A ¢ by assumption and we must
show that penalty(¢ A ¥)(k) = penalty(d)(k) + penalty(y)(k) = 0, i.e., that
penalty(p)(k) = 0 and that penalty(¢)(k) = 0. Since k = ¢ A ¢ we have that
k | ¢ and that k = ¢ and, hence, the result follows by induction.

Case & = ¢ V ¢. We have that k = ¢ V ¢ by assumption and we must
show that penalty(¢ V 1) (k) = min{penalty(o)(k), penalty()(k)} = 0, i.e., that
penalty(é)(k) = 0 or that penalty(v)(k) = 0. Since k = ¢ V ¢ we have that
k = ¢ or that k = ¢ and, hence, the result follows by induction. O

A.2 Proof of Proposition 4

Proposition 4. Let @ be a formula in IMSOT, let k be a configuration for the
set variables in @, and let S be one of those variables. Then conflict(®)(S, k) >
abstractConflict(P)(S, k).

Proof. The proof is by structural induction on @. The result holds for the base
cases (f) and (g). For case (a), the result follows by induction from the definition.
Case @ = ¢ A . We have that

29

abstractConflict(d A)(S, k) =

max{(penalty(¢)(k) + penalty(¥)(k))—

(penalty(¢)(€) + penalty(Y)(£)) | £ € ns(k)} =
max{ penalty(¢)(k) — penalty(d)(£)+

penalty () (k) — penalty(P)(£) | € € ns(k)} = e.

Now, to see that

e < max{penalty(¢)(k) — penalty(d)(¢') | £ € ng(k)} +
max{penalty()(k) — penalty()(") | " € ns(k)} = f

we pick an ¢ € ng(k) that maximises

penalty(¢) (k) — penalty(¢)(€) + penalty () (k) — penalty()(£).

For that ¢ we have that either it maximises both penalty(¢p)(k) — penalty(¢)(€)
and penalty () (k) — penalty()(£), or there exist ¢/, ¢ € ng(k) that make the
sum of those expressions larger than e. Now

f = abstractConflict(¢)(S, k) + abstractConflict(1)(S, k)

by definition. By induction it then follows that

I < conflict($)(S, k) + conflict(1)(S, k) = conflict(d A1) (S, k).
Case @ = ¢ V 1. We have that

abstractConflict(d V)(S, k) =
o B

max{min{penalty(¢)(k), penalty(v)(k)} —

A
¥y 4

min{penalty(4)(£), penalty () (£)} | £ € ns(k)} = e.
B

Consider first the case where A = « (i.e., penalty(¢)(k) < penalty(¢)(k))
and B = v above for an ¢ € ng(k) that maximises A — B. Then we have that

e = max{penalty(¢)(k) — penalty(p)(¢) | £ € ng(k)} = abstractConflict($)(S, k).

By definition we have that

conflict(d V)(S, k) = penalty(d V) (k)—
min{ penalty(¢)(k) — conflict(¢)(S, k), penalty () (k) — conflict(v)(S, k)} = f.

Assume first that

f = penalty(¢ v)(k) — (penalty($)(k) — conflict(¢)(S, k)).

30

This simplifies into f = conflict(¢)(S, k) and the result follows by induction.
Assume now that

f = penalty(¢ v ¥)(k) — (penalty(y) (k) — conflict(1)(S, k))
which can be simplified and rewritten as
f = penalty(¢)(k) — penalty(¥)(k) + conflict(:)(S, k) =
conflict(¥)(S, k) + (penalty(¢) (k) — penalty () (k)).
We have that
penalty(¢) (k) — conflict($)(S, k) > penalty(y) (k) — conflict()(S, k)
and consequently that
penalty(¢)(k) — penalty (1) (k) > conflict($)(S, k) — conflict(y)(S, k).
Hence
[= conflict(1)(S, k) + (penalty (o) (k) — penalty()(k)) >
conflict(¥)(S, k) + (conflict()(S, k) — conflict(1)(S, k)) =

and the result follows by induction.

The case where A = 3 and B = § above for an ¢ € ng(k) that maximises
A — B is symmetric to the previous.

Consider now the case where A = « (i.e., penalty(¢)(k) < penalty(w)(k))
and B = § above for an £ € ng(k) that maximises A — B. Then we have that

e = max{penalty(¢)(k) — penalty(¥)(€) | £ € ng(k)}.

By definition we have that

conflict(6)(S, k)

conflict(¢p V) (S, k) = penalty(o V ¥)(k)—
min{ penalty(¢)(k) — conflict(¢)(S, k), penalty () (k) — conflict(v)(S, k) } = f.

Assume first that
f = penalty(¢ v) (k) — (penalty(¢)(k) — conflict(4)(S, k))

which simplifies into f = conflict(¢)(S, k).
We have that

penalty(p) (k) — conflict(¢)(S, k) < penalty()(k) — conflict(y)(S, k)

and consequently by induction that

penalty (o) (k) — conflict(p)(S, k) < penalty(y)(k) — abstractConflict(y)(S, k).

31

By definition of abstract conflict we get
penalty(¢)(k) — conflict(¢)(S, k) <
penalty(v) (k) — max{penalty (1) (k) — penalty(¥)(€) | £ € ns(k)}

which is equivalent to

penalty(¢)(k) — conflict()(S, k) <
penalty (¥)(k) — (penalty () (k) — min{penalty(¥)(¢) | £ € ns(k)})
which is simplified to
penalty () (k) — conflict(¢)(S, k) < min{penalty(y)(£) | £ € ns(k)}.
Hence we have that
penalty(¢)(k) — min{penalty(1))(£) | £ € ns(k)} < conflict(¢)(S, k)
which is equivalent to
e = max{penalty(¢)(k) — penalty(y)(£) | £ € ns(k)} < conflict(¢)(S, k) = f.
Assume now that
[= penalty(¢ v ¥)(k) — (penalty(v) (k) — conflict(1)(S, k))
which can be simplified and rewritten as
f = penalty(¢)(k) — penalty(¥)(k) + conflict(v))(S, k) =
conflict(¥)(S. k) + penalty(¢)(k) — penalty(¢) (k).
We have that
[= conflict(y)(S, k) + penalty(¢) (k) — penalty(y)(k) >
abstractConflict()(S, k) + penalty(¢)(k) — penalty(v) (k)
by induction and that
f = conflict(y)(S, k) + penalty(¢)(k) — penalty(y)(k) >

max{penalty(v)(k) — penalty()(€) | £ € ng(k)}+
penalty(¢)(k) — penalty(y) (k)

by definition of abstract conflict. Rewriting the right hand side gives us

f = conflict(y)(S, k) + penalty(¢)(k) — penalty(¢) (k) >
penalty (1) (k) — min{penalty () (£) | £ € ns(k)}+
penalty(¢)(k) — penalty(y) (k)

32

and consequently by cancelling terms

f = conflict()(S. k) + penalty(¢)(k) — penalty(w)() >
penalty(¢)(k) — min{penalty(¢¥)(£) | £ € ng(k)}

which is equivalent to

f = conflict()(S, k) + penalty(¢) (k) — penalty () (k) >
max{penalty(¢)(k) — penalty(¥)(¢) | £ € ng(k)} = e.

The case where A = 3 and B = ~ above for an ¢ € ng(k) that maximises
A — B is symmetric to the previous one. (]

A.3 Proof of Proposition 5

Proposition 5. Let @ be a formula in IMSOT, let k be a configuration for the
set variables in @, and let S be one of those variables. Then conflict(®)(S, k) <
penalty(P)(k).

Proof. The proof is by structural induction on @. The result holds for the base
cases (f) and (g). For case (a), the result follows by induction from the definition.
Case @ = ¢ A . We have that

conflict(p N)(S, k) = conflict(9)(S, k) + conflict(v)(S, k)

and that
penalty(¢p A) (k) = penalty(p)(k) + penalty(y) (k)

by definition. Since conflict(¢)(S,k) < penalty(¢)(k) and conflict(y)(S, k) <
penalty () (k) by induction, we must have that

conflict(¢)(S, k) + conflict(v)(S, k) < penalty(¢)(k) + penalty (1) (k)
and hence conflict(¢ A)(S, k) < penalty(¢d A1) (k).
Case @ = ¢ V 1. By definition we have that
conflict(6\/ 6)(S, k) = penalty(6V) (k)
min{penalty(¢p)(k) — conflict(¢)(S, k), penalty () (k) — conflict(v)(S, k)} = e.
Assume first that
e = penalty(¢ V ¥)(k) — (penalty(¢)(k) — conflict(¢)(S, k)).

The result follows directly since penalty(¢)(k) — conflict(¢)(S, k) > 0 by induc-
tion.
The case when

e = penalty(¢ V 1) (k) — (penalty () (k) — conflict(¢)(S, k))

is symmetric to the previous one. U

33

