
Design of Financial CDO Squared Transactions

Using Constraint Programming

Pierre Flener1, Justin Pearson1, Luis G. Reyna2, and Olof Sivertsson1

1 Department of Information Technology
Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

PierreF@it.uu.se, Justin@it.uu.se, Olof@OlofSivertsson.com

2 Swiss Re Financial Products
Swiss Re, Park Avenue Plaza, New York, NY 10055, USA

Luis Reyna@SwissRe.com

Abstract. We give an approximate and often extremely fast method of
building a particular kind of portfolio in finance, here called a portfolio
design (PD), with applications in the credit derivatives market, for exam-
ple when designing collateralised debt obligations squared (CDO2) trans-
actions. A PD generalises a balanced incomplete block design (BIBD)
and is usually harder to build. Worse, typical financial PDs are an order
of magnitude larger than the largest BIBDs built so far by constraint pro-
grams, and in practice an optimisation version of the problem of building
PDs has to be solved. Our method is based on embedding small designs,
whose determination is itself a constraint satisfaction problem, into the
original large design. Together with the detection of when a PD might
be a BIBD, symmetry breaking, extended reuse of previously built PDs,
and admissibility checking during search, the performance of the method
becomes good enough for designing (near-)optimal CDO2 transactions,
with sizes common in the credit derivatives market, within minutes. For
example, we optimally build a typical financial PD, which has over 10746

symmetries, in just a few minutes. The high quality of our approximate
designs can be assessed by comparison with a lower bound on the op-
timum. Our designs sufficiently improve the currently best ones so as
often to make the difference between having or not having a feasible
CDO2 transaction due to investor and rating-agency constraints.

1 Introduction

The structured credit market has seen two important new products over the last
decade: credit derivatives and collateralised debt obligations (CDOs). These new
products have created the ability to leverage and transform credit risk in ways
not possible through the traditional bond and loan markets.

CDOs typically consist of a special-purpose vehicle that has credit exposure
to around one hundred different issuers. Such vehicles purchase bonds and loans
and other financial assets through the issuance of notes or obligations with vary-
ing levels of risk. In a typical structure, credit losses in the underlying pool are

Manuscript
Click here to download Manuscript: opd.ps

http://www.editorialmanager.com/cons/download.aspx?id=523&guid=4febffc6-9a03-4097-ba78-ddd522b43ff3&scheme=1

allocated to the most subordinated obligations or notes first. A natural progres-
sion of the market has been to use notes from existing CDOs as assets into a
new generation of CDOs, called CDO Squared (CDO2) or CDO of CDO [13].

The credit derivatives market has allowed a more efficient mechanism for
creating CDO2. The idea is to use tranches of credit default swaps instead of
notes. The tranches are chosen from a collection of credits with the level of
liquidity and risk adequate to the potential investors. These transactions are
sometimes labelled synthetic CDO2.

In the creation of a synthetic CDO2, the natural question arises on how to
maximise the diversification of the tranches given a limited universe of previ-
ously chosen credits. In a typical CDO2, the number of available credits ranges
from 250 to 500 and the number of tranches from 4 to as many as 25. The
investment banker arranging for a CDO2 usually seeks to maximise the return
of the subordinated notes under the constraints imposed by the rating agencies
and the investors. This is a challenge that typically is only partially addressed,
in part due to the difficulty of pricing the underlying assets [6].1

In this paper, we analyse the financially relevant abstracted problem of se-
lecting the credits comprising each of the tranches with a minimal overlap, or
maximum diversification. The minimisation of the overlap usually results in bet-
ter ratings for the notes, typically resulting in more efficient structures. The
contributions and significance of this paper are as follows:

– We introduce a new method of building portfolio designs to the finance world,
with practical applications in the credit derivatives market, such as the de-
sign of CDO2 transactions. The method is fully automated, often extremely
fast, and builds designs that are as close to the optimum as one is willing to
wait for. It improves on the usual method of ad hoc manual permutations.

– We introduce portfolio designs (PDs) as a new benchmark problem and a new
successful technology transfer to the constraint programming community.

– We present the new concept of design embeddings by generalising the well-
known notion of design multiples, and successfully apply it to solve large PD
instances (near-)optimally.

– We significantly improve the run-times and quality of our previous results
in [11], where the discussed problem was actually originally introduced, using
the new theoretical and modelling results of [17].

The remainder of this paper is organised as follows. In Section 2, we present PDs
first in their financial domain and then in an abstracted way, while introducing
necessary theoretical background and results. Next, in Section 3, we present a
sophisticated method, implemented as a constraint program, for exactly building
a PD by global search. Since this method does not scale for the solution of typical
financial instances of the optimisation version of the problem of building PDs, we
introduce in Section 4 a method of approximately building such larger designs,
using a notion of embedding occurrences of smaller designs in a larger one. The
1 There are very few publicly accessible papers we can cite in this introduction, as
most are confidential due to the potential financial value of their results.

2

determination of the small designs is itself a constraint satisfaction problem, and
they are built using the method of Section 3. Finally, in Section 5, we conclude,
discuss related work, and outline future work.

All tests were done using SICStus Prolog 3.12.3 on Debian GNU/Linux run-
ning Linux 2.4.18 on an AMD AthlonXP 2400+ CPU with 256MB RAM.

2 Portfolio Designs

After giving a brief introduction to the financial background of our portfolio de-
signs (PDs) in Section 2.1, we recall balanced incomplete block designs (BIBDs)
in Section 2.2. BIBDs are a special case of PDs and we will sometimes take ad-
vantage of this when building PDs. We present admissibility conditions for the
BIBD parameters in Section 2.3 and discuss the symmetries of the usual model
for BIBDs in Section 2.4. With this background, we can then introduce PDs
in Section 2.5, present an admissibility condition for their parameters in Sec-
tion 2.6, and discuss the symmetries and other difficulties of a straightforward
model for PDs in Section 2.7. Finally, we explain the rest of the journey of this
paper in Section 2.8.

2.1 Brief Financial Background

Credit derivatives are used in finance to transfer the risk of a specified finan-
cial event happening to a credit asset without transferring the asset itself. A
credit default swap (CDS) is a type of insurance for the holder of a financial
asset against some specified financial event: the protection buyer does regular
payments to the protection seller in exchange for a payment if that event occurs.
Let us illustrate this with an example.

Example 1. Consider a small bank that six months ago issued a three-year-bond
of $1,000,000 to a new IT business, which pays 10% interest per year. The bank
has now become worried that the IT business may not be able to pay back its
debt. Therefore the bank decides to buy protection against this in the form of
a CDS from a derivative issuer. The bank pays 8% of $1,000,000, i.e., $80,000,
divided into quarterly payments of $20,000 to the derivative issuer. In exchange
for this, the derivative issuer refunds the small bank for its $1,000,000 should the
IT business not be able to redeem the bond (perhaps because of bankruptcy)
and the quarterly payments stop. Otherwise the bank is redeemed by the IT
business as if the CDS had not existed, but the derivative issuer has also made
some money at the expense of the bank.

CDSs are the most common credit derivative and naturally the issuers of
CDSs want to minimise their risk by selling on their CDSs. Just like ordinary
stock shares can be lumped together into mutual funds, CDSs can be lumped
together into baskets consisting of different CDSs (with varying risk).

Collateralised debt obligations (CDOs) are credit derivatives that consist of
a large number of other credit derivatives. There are cashflow CDOs, where the

3

underlying credit derivatives are bonds or loans, and synthetic CDOs, where the
underlying credit derivatives are CDSs.

A CDO is divided into tranches (baskets), each consisting of a fixed-sized
subset of the underlying credit derivatives. Since different tranches consist of
different bonds and loans or CDSs, they have different risks (and potential re-
turns) associated with them. There are also CDO-Squared (CDO2), where the
underlying credit derivatives are also CDO tranches. They are hard to risk-
analyse because the same underlying credit derivative may be available in many
tranches.

An investor can choose to invest in a tranche from a CDO that matches the
wanted risk. But sometimes an investor may want to put a part of his money
into a high-risk tranche and another part into a low- or medium-risk tranche.
The issuer of a CDO still wants the investor to invest as much as possible in the
issuer’s CDO instead of looking for another issuer’s CDO.

To be able to convince the investor of this, no two tranches should overlap
more than absolutely necessary, because the investor wants to spread his risks,
otherwise he could invest in just one tranche instead. Hence the question arises
of how a CDO issuer should design a CDO to minimise the overlap between any
two tranches. This is the problem we address in this paper.

2.2 Balanced Incomplete Block Designs (BIBDs)

Balanced incomplete block designs (BIBDs) [3, 14] are extensively studied in
combinatorial design theory and are used within statistical-experiment design
theory, the study of finite geometries, as well as the construction of error-
correcting codes. We study BIBDs because a portfolio design is a generalisation
of a BIBD.

Definition 1. Let V = {1, . . . , v} be any set of v elements, called varieties.
Let B = {1, . . . , b}. A balanced incomplete block design (BIBD) 〈v, b, r, k, λ〉
consists of b sets B1, . . . , Bb, called blocks, each being a k-element subset of V ,
with 2 ≤ k < v,2 such that each pair of distinct varieties occurs together in
exactly λ blocks. This is called the balancing condition and we here call λ the
overlap.

Let Vi be the set of the indices of the blocks in which variety i occurs: Vi =
{j ∈ B | i ∈ Bj}. The Vi are here called co-blocks and all are r-element subsets
of B. The balancing condition can then be reformulated by requiring that any
two co-blocks with distinct indices share exactly λ elements. Formally:

∀j ∈ B : Bj ⊆ V (1)
∀i ∈ V : Vi ⊆ B (2)

∀j ∈ B : |Bj | = k (3)
∀i ∈ V : |Vi| = r (4)

∀i
= j ∈ V : |Vi ∩ Vj | = λ (5)

2 If k = v, then it is a complete block design.

4

Fig. 1. Incidence matrix for the BIBD 〈7, 7, 3, 3, 1〉. Columns represent blocks, rows
represent co-blocks, grey cells represent Mij = 1, and white cells represent Mij = 0.

One way of modelling a BIBD is in terms of its incidence matrix, which is a
v× b matrix M , such that the entry Mij at the intersection of row i and column
j is 1 if i ∈ Bj (that is j ∈ Vi) and 0 otherwise. Hence blocks are represented by
columns and co-blocks by rows. The constraints (1) and (2) are then unnecessary
to state. The constraints (3) to (5) are then modelled by requiring, respectively,
that there are exactly k ones (that is a sum of k) for each column, exactly r ones
(that is a sum of r) for each row, and a scalar product of exactly λ for any pair
of rows with distinct indices. Figure 1 shows an incidence matrix for the BIBD
〈7, 7, 3, 3, 1〉.

2.3 Admissibility Conditions for BIBDs

There are some interesting properties of BIBDs that we will find useful later in
this paper. Indeed, not all values of the parameters v, b, r, k, and λ result in
BIBDs; actually very few do. The following three conditions are necessary for
the parameters to be able to represent a BIBD:

λ < r (6)
vr = bk (7)

r(k − 1) = λ(v − 1) (8)

Condition (6) says that none of the co-blocks can be equal, while condition (7)
is an application of double counting: the co-blocks and blocks have together the
same number of elements. Condition (8) is also an application of double counting
since the sum of the cardinalities of the intersections between any co-block Vi

and all other co-blocks can be computed in two ways: either by stating that Vi

intersects with cardinality λ with each of the other v−1 co-blocks, or by summing
the cardinalities k of the r blocks that contain elements of Vi but subtracting the
r elements of Vi itself. When the parameters satisfy these conditions, they are
said to be admissible. A consequence of the BIBD conditions and admissibility
conditions is that any three of the five BIBD parameters are independent.

But just because the parameters are admissible does unfortunately not al-
ways result in a BIBD. An example of this is v = 22 = b, r = 7 = k, λ = 2,
which are admissible values, and yet there does not exist a BIBD with these

5

parameters. The problem is that the two equalities (7) and (8) do not capture
the fixed overlap between any two co-blocks with distinct indices, but only the
sum of the overlaps between a particular co-block and all other co-blocks. The
pairwise overlap between any two co-blocks with distinct indices is captured by
the product of the incidence matrix M and its transpose MT :

MMT =




r λ λ · · · λ
λ r λ · · · λ
λ λ r · · · λ
· · · r ·
λ λ λ · · · r




From this matrix, Fisher’s inequality for BIBDs can be derived:

Proposition 1 (Fisher [14]). For any BIBD 〈v, b, r, k, λ〉 we must have

b ≥ v (9)

Also, when the incidence matrix M is square, that is when v = b, the deter-
minant of MMT and Lagrange’s four-squares theorem can be used to prove the
following proposition:

Proposition 2 (Bruck-Ryser-Chowla [14]). For any BIBD 〈v, b, r, k, λ〉
with v = b, we must have

for v even: ∃x ∈ Z : x2 = k − λ (10)
for v odd: ∃x, y, z ∈ Z : z2 = (k − 1)x2 + (−1)(v−1)/2λy2, with x
= 0 (11)

Using this last proposition, we see that no BIBD 〈22, 22, 7, 7, 2〉 can exist.
Still, all these conditions are only necessary and not sufficient, so we can use
them only to refute parameters that cannot result in a BIBD, but when all these
conditions hold we still do not know if the BIBD exists or not. An example of
this is the BIBD 〈111, 111, 11, 11, 1〉, whose parameters fulfil all of the conditions
above, including (11) (with x = 1 = y and z = 3), but no BIBD with these
parameters exists.

Sufficient conditions for the existence of a BIBD are unfortunately not known.
All information from the matrix MMT needs to be captured in conditions with
v, b, r, k, and λ to get sufficient conditions for the existence of BIBDs, not just
projections, such as the determinant, which is used in the propositions above.

In the remainder of this paper, the three conditions of the previous two
propositions are also referred to as admissibility conditions.

2.4 Symmetries of BIBDs

Since the varieties and block identifiers are indistinguishable, any two rows or
columns of the incidence matrix can be freely permuted. Breaking all the result-
ing v!b! symmetries can in theory be performed, for instance by posting v!b!− 1

6

ordering constraints [5]. In practice, breaking just some of those symmetries by
posting just some of those ordering constraints works quite fine [9]. By simul-
taneously performing symmetry-breaking during search [8], but augmenting it
with group-theoretical insights and some heuristics, improvements of another
order of magnitude can be achieved, but only when computing all the designs
[16], whereas we are here interested only in the first design. The designs built in
[16] with 4 ≤ v ≤ 25, which is the range of interest to us, have values of b up to
50, which is an order of magnitude below our range of interest.

2.5 Portfolio Designs (PDs)

In financial terms, a portfolio design (PD) is a CDO or CDO2 transaction with
v tranches, each consisting of r credit assets (CDSs or bonds and loans) out of
a set of b credit assets, such that any two tranches with distinct indices share at
most λ credit assets [11]. The choice of symbols comes from the close relationship
to BIBDs. There is a universe of about 250 ≤ b ≤ 500 credit assets. A typical
portfolio contains about 4 ≤ v ≤ 25 tranches, each of size r ≈ 100. We now
define PDs in abstract terms.

Definition 2. Let V = {1, . . . , v} be any set of v elements, called varieties. Let
B = {1, . . . , b}. A portfolio design (PD) 〈v, b, r, λ〉 consists of v sets V1, . . . , Vv,
called co-blocks, each being an r-element subset of B, such that any two co-
blocks with distinct indices share at most λ elements. This is called the balancing
condition and we call λ the maximum overlap.

Let Bj be the set of varieties such that block index j occurs in co-block Vi:
Bj = {i ∈ V | j ∈ Vi}. The Bj are called blocks and are all arbitrary-sized
subsets of B. Formally:

∀j ∈ B : Bj ⊆ V (12)
∀i ∈ V : Vi ⊆ B (13)

∀j ∈ B : |Bj | ≤ v (14)
∀i ∈ V : |Vi| = r (15)

∀i
= j ∈ V : |Vi ∩ Vj | ≤ λ (16)

The differences with a BIBD are that any two co-blocks with distinct indices
share at most, rather than exactly, λ elements, and that the cardinalities of the
blocks can be anything in the range 0, . . . , v, rather than exactly some value
k. This means that the admissibility conditions of BIBDs are in general not
applicable to PDs. In particular, unlike in (6), the co-blocks can be equal, hence
λ ≤ r. PDs with λ = r are trivial to build, as it suffices to make all the co-blocks
equal. Being thus a generalisation of BIBDs, some PDs are actually BIBDs.
This occurs when b divides rv and any two co-blocks with distinct indices share
exactly λ elements. We will exploit this very successfully (in Section 3.3).

Finding a PD 〈v, b, r, λ〉 is a constraint satisfaction problem. In practice, only
the parameters v, b, and r are known, and a PD with a minimal value for λ is
to be found, which is a constraint optimisation problem.

7

Fig. 2. Two incidence matrices for the PD 〈10, 8, 3, 2〉. Columns represent blocks, rows
represent co-blocks, grey cells represent Mij = 1, and white cells represent Mij = 0.

Definition 3. Let V = {1, . . . , v} be any set of v elements, called varieties. Let
B = {1, . . . , b}. An optimal portfolio design (OPD) 〈v, b, r, λ〉 consists of v sets
V1, . . . , Vv, called co-blocks, each being an r-element subset of B, such that any
two co-blocks with distinct indices share at most λ elements, where λ is minimal.

Just like a BIBD, an (O)PD is naturally modelled using its v × b incidence
matrix, which has v!b! symmetries. The constraints (12) to (14) are then unnec-
essary to state. The constraints (15) and (16) are then modelled by requiring,
respectively, that there are exactly r ones (that is a sum of r) for each row, and
a scalar product of at most λ for any pair of rows with distinct indices. Figure 2
shows two incidence matrices for the PD 〈10, 8, 3, 2〉.

2.6 Admissibility Conditions for PDs

We give a lower bound on λ, the maximum number of shared elements between
any two co-blocks with distinct indices in a PD. This lower bound is also appli-
cable to BIBDs, where its specialisation when b divides rv can be derived using
the BIBD admissibility conditions (7) and (8).

Theorem 1. Let V1, . . . , Vv be r-element sets and B be their union, with b =
|B|. If |Vi ∩ Vj | ≤ λ for all i
= j, then3

λ ≥
⌈

rv
b

⌉2 mod (rv, b) +
⌊

rv
b

⌋2 (b − mod(rv, b)) − rv

v(v − 1)
(17)

The proof is long and beyond the scope of this paper, but can be found
in [17]. This lower bound is tighter than the one we used in [11] and is equal to
it only when b divides rv. Furthermore, the expression of this new lower bound
is never negative, unlike the previous one, which is negative when b > rv, that
is when more elements are available than needed. This is what suggested that
a tighter lower bound ought to exist. It is an open question whether there is a
tighter lower bound that is easy to compute.

The tighter lower bound means that we can be sure that no design exists for
some PDs that were an open question previously.
3 The result of mod(a, b) is the integer leftover when doing the integer division a/b.

8

Example 2. Consider the OPD 〈10, 350, 100〉: Theorem 1 gives λ ≥ 21.1̄ (and a
design does exist with λ = 22, see Section 4) whereas the bound of [11] only
gives λ ≥ 20.63. Hence we can now be sure no design with λ = 21 exists, which
is a claim that required a separate proof previously [12].

However, even this tighter lower bound is not always exact.

Example 3. Consider the OPD 〈10, 8, 3〉: using the bound of [11] we get λ ≥ 0.916̄
while Theorem 1 gives λ ≥ 0.93̄. Consider also the OPD 〈9, 8, 3〉: using the bound
of [11] we get λ ≥ 0.890625 while Theorem 1 gives λ ≥ 0.916̄. However, it is not
difficult to show (with the method to be presented in Section 3) that there are
no 10 or even 9 subsets of size 3 in an 8-element set that such that any two of
them share at most λ = 1 element. In fact, these two OPDs are at best built with
λ = 2; some of the co-blocks of such optimal designs share only one element, as
can be seen in Figure 2. (This example will be continued in Example 4.)

It is tempting to think that bounds can be similarly obtained on the block
sizes. Indeed, a PD 〈v, b, r, λ〉 becomes a BIBD if b divides rv and any two co-
blocks with distinct indices share exactly (rather than at most) λ elements: the
integer value k = rv

b is then obtained via the BIBD admissibility constraint (7).
In case b does not divide vr, no PD constraint forces the credit assets to spread
in some manner over the co-blocks, so that we do not necessarily have, as in the
right-hand incidence matrix of Figure 2, that � rv

b � ≤ k ≤ � rv
b � for every block

size k. Indeed, we have built PDs where the block sizes are distributed over the
entire 1, . . . , v range: see the left-hand incidence matrix of Figure 2.

It is also tempting to think that it is sufficient to find co-blocks whose pairwise
overlaps are all exactly λ, rather than at most λ. However, there is no PD
〈10, 8, 3, 2〉 where the pairwise overlaps are all equal to 2, whereas Figure 2
establishes the existence of designs where the pairwise overlaps are at most 2.

2.7 Symmetries and Other Difficulties of PDs

The tranches are indistinguishable, and we assume (in a first approximation)
that all the credit assets are indistinguishable. Hence any two rows or columns
of the incidence matrix can be freely permuted, which results in v!b! symmetries.

PDs do not exhibit optimal sub-structure, in the sense that an optimal design
does not necessarily contain optimal sub-designs, as shown next.

Example 4. (Continuation of Example 3.) Recall the PD 〈10, 8, 3, 2〉 on the left-
hand side in Figure 2. Note that the block sizes are distributed over the entire
1, . . . , v range, namely one block each of sizes 1, 5, 6, 10, and four blocks of size 2.
Now, for the PD 〈8, 8, 3, 1〉, it turns out that there are 8 subsets of size 3 in an
8-element set such that the maximum overlap is 1. We can now see why PDs do
not enjoy the optimal sub-structure property: the discussed design 〈10, 8, 3, 2〉
contains no 8 subsets of size 3 in the 8-element set such that the maximum
overlap is 1. Note that the last four sets each have pairwise overlaps of 1 with
four of the first six sets, while all other pairwise overlaps are 2.

9

The absence of a constraint on the block sizes — compare the vacuous PD
condition (14) with the BIBD condition (3) — makes the PD 〈v, b, r, λ〉 much
harder to build than the BIBD 〈v, b, r, k, λ〉, if such a k exists.

2.8 Roadmap for the Rest of the Paper

The lower bound on λ of Theorem 1 suggests a (naive) method of exactly building
(small) OPDs: set λ to that lower bound and increase it by one each time no
corresponding PD is found (within a reasonable amount of time). However, as
stated above, this method will only work fast enough for OPDs that are one
order of magnitude smaller than typical financial-scale OPDs. In Section 3, we
develop a sophisticated exact method for building (small) PDs, without regard to
their optimality. Using this method, we then devise in Section 4 an approximate
method for building even large PDs that are (near-)optimal, and thereby address
the building of financial-scale OPDs.

3 Exact Building of PDs

We now present a sophisticated method, implemented as a constraint program,
for exactly building a (small) PD by global search, without regard to its op-
timality. A first model is introduced in Section 3.1, basically stating the PD
constraints (12) to (16) on the incidence matrix. For a briefer read, proceed
directly to Section 4, skipping the elaborate optimisations described in the re-
maining sub-sections. First, static symmetry-breaking constraints and a static
variable and value order are added in Section 3.2 to great effect. Another op-
timisation concerns BIBDs, which are a special case of PDs and thus easier to
build (though still very hard): we show how to exploit very successfully this
idea in Section 3.3 and refine this in Section 3.4 by checking against a pub-
lished list of BIBD-admissible parameters that are known not to admit BIBDs.
A smaller optimisation, discussed in Section 3.5, fixes the first two rows and the
first column of the incidence matrix. Spectacular improvements are sometimes
achieved, as reported in Section 3.6, by checking with very low overhead whether
the incidence sub-matrix that remains to be labelled, as a PD, satisfies the PD
admissibility condition (17). Every PD has a complement PD, which might be
easier to build: we demonstrate the usefulness of this observation in Section 3.7,
but failed to find an automatable heuristic for deciding when to try this. Finally,
in Section 3.8, we show how to exploit the caching of previous results, not just
by exact matches, but also by reusing cached designs for harder instances and
by failing if there is a cached failure for an easier instance.

3.1 Basic Method

As suggested in Sections 2.5 and 2.7, our most basic PD method represents
a PD 〈v, b, r, λ〉 by a v × b incidence matrix of zeroes and ones, whose rows
are constrained to have sum r. Three approaches were tried for the constraints

10

PD Results

v b r λ backtracks timeold timescalar product timescalar product latest

9 37 12 3 746750 39.58 24.56 24.42
10 15 6 2 96822 14.12 4.17 4.33
10 25 8 2 2492 0.22 0.10 0.09
10 37 14 6 6932 1.28 0.62 0.63
10 38 10 2 85238 10.00 5.07 4.95

Table 1. Performance comparison of limiting the overlaps in different ways

that the scalar products of any two rows with distinct indices be at most λ.
The first approach, used in [11], statically posts reified conjunction constraints
between pairs of elements from the same positions on each row, and constrains
the sum of the reified variables to be at most λ. The second and third approaches
dynamically post scalar product global constraints [2] during search, either
between a newly labelled row and all not yet labelled rows, or between a row
about to be labelled and all previously labelled rows.

Table 1 shows the performance (in number of backtracks and CPU sec-
onds until the first design) of the three approaches for a few PDs. Using
scalar product constraints roughly halves the run-time, probably because this
leads to a lot fewer constraints and hence to less overhead in the finite-domain
solver. Delaying constraint posting seems to make no difference, probably be-
cause propagation for a constraint is not done until the domain of a variable
involved changes.

3.2 Labelling Order and Static Symmetry Breaking

Breaking all the v!b! symmetries can in theory be performed, for instance by
posting v!b!−1 global constraints [2] enforcing the (anti-)lexicographical ordering
of vectors extracted from the incidence matrix [5, 10]. In practice, as for BIBDs,
breaking just some of those symmetries by just anti-lexicographically ordering
the rows (since PD co-blocks can be repeated in the extreme case where λ = r) as
well as anti-lexicographically ordering the columns (since blocks can be repeated)
works quite fine [9] for values of b up to about 36, especially when labelling in a
row-wise fashion and trying the value 1 before the value 0. However, this is one
order of magnitude below the typical value for b in a financial (O)PD.

In PDs with λ = r the left-most r columns have only ones. They might not
seem very interesting, but they can occur when trying to build OPDs using the
method in Section 4.

3.3 BIBD Detection

As noted in Section 2.5, some PDs are actually BIBDs. This is interesting as
BIBDs are easier to build than PDs because there are constraints on the columns

11

BIBD/PD Building BIBD Building PD

v b r k λ backtracks time backtracks time

7 7 3 3 1 0 0.00 2 0.00
8 14 7 4 3 57 0.01 209 0.02
9 18 8 4 3 95 0.01 168384 6.04
9 24 8 3 2 9 0.01 51487 1.99
10 30 9 3 2 23 0.02 72795534 2984.00

Table 2. Performance comparison between the BIBD and PD methods for BIBDs

PD Building PD Extending BIBD Building extending-BIBD

v b r λ backtracks time v b r k λ backtracks time

10 33 15 6 ? >3600 11 33 15 5 6 29552 2.79
19 20 9 4 ? >3600 19 19 9 9 4 11922 1.29

Table 3. Performance comparison between building the given PD or an extending
BIBD

and because the overlap constraint between co-blocks with distinct indices is an
equality instead of an inequality.

Hence our PD method first tests whether the desired PD could possibly be
a BIBD. If the PD parameters satisfy all the BIBD admissibility conditions of
Section 2.3, then our PD method first tries to build the given PD as a BIBD,
and only if that fails will it try to build it as a PD. If, instead of failing to build
a BIBD, the BIBD method times out, then we assume that the PD method will
also time out when trying to build a PD.

The used BIBD method is the one outlined in Sections 2.2 and 2.4. The BIBD
admissibility checks are more or less free in terms of run-time, but the second part
of Proposition 2, where v is odd, was actually omitted in our implementation.
The end result when the given PD can be a BIBD is a substantial performance
increase (in the number of backtracks and CPU seconds until the first design),
as can be seen in Table 2.

Another option would be to try and change the parameters of a PD 〈v, b, r, λ〉
into parameters for a BIBD 〈v′, b′, r, k, λ〉 with v′ ≥ v co-blocks, b′ ≤ b blocks,
and k determined by (7), such that they satisfy the BIBD admissibility con-
ditions. Indeed, any additional co-blocks of such a BIBD, if it exists, can just
be discarded, and any missing blocks thereof can just be set to the empty sets.
For a given PD, we call such a BIBD an extending BIBD. As can be seen from
Table 3, the performance improvement (in the number of backtracks and CPU
seconds the first design) can be huge, from not being able to build a PD in a
CPU hour (hence the question marks for the numbers of backtracks in the table)
to building it in just a few seconds.

12

3.4 Checking for Known Non-Existing BIBDs

As noted in Section 2.3, the BIBD admissibility conditions are necessary but
not sufficient. Therefore, before trying to build a BIBD if the PD parameters
satisfy the BIBD admissibility conditions (as just described in Section 3.3), our
PD method actually checks those parameters against a list of BIBD-admissible
parameters that are known not to result in BIBDs. We use a sub-list of the
parameters published in [3, 7], namely those in the ranges we are interested in. If
the PD method is given BIBD-admissible parameters that cannot possibly result
in a BIBD, then it directly tries to build a PD.

In practice, the cases where BIBD-admissible PD parameters are known not
to result in a BIBD are rare. But it is a computationally very cheap check that
will avoid an almost certain time-out, or at least a long computation.

3.5 First-Intersection and First-Column Optimisations

At least one pair of co-blocks with distinct indices in a PD 〈v, b, r, λ〉 can be
made to share exactly λ elements.

Proposition 3. A PD 〈v, b, r, λ〉 where any two co-blocks with distinct indices
actually share less than λ elements can be turned into a PD 〈v, b, r, λ〉 where at
least one pair of co-blocks with distinct indices shares exactly λ elements.

Proof. Consider a PD 〈v, b, r, λ〉 where any two co-blocks with distinct indices
actually overlap over at most λ′ < λ elements. By the full interchangeability of
the co-blocks, we can re-order them to have the observed maximum overlap λ′

between the co-blocks V1 and V2. By replacing an element of V1, but not of V2,
with an element of V2, the overlap between these two co-blocks is increased by
one. Since no other overlap is increased by more than one when doing this, and
since we can repeat this at worst until λ = r, we have proved the result. ��

To build a PD 〈v, b, r, λ〉, at least one pair of co-blocks with distinct indices
can, by Proposition 3, share exactly λ elements. Because of the full interchange-
ability of the co-blocks, we can force them to be the first two co-blocks.

Now consider how our PD method chooses the first two rows initially. For
the first row, it tries with r ones to the left and the remaining elements all
zero. For the second row, it tries with λ ones to the left, resulting in an overlap
of λ between the first two co-blocks, followed by r − λ zeroes, followed by the
remaining r − λ ones, and the remaining elements all zero. See Figure 3 for an
illustration (and ignore the second sentence of its caption for the time being).

If no design exists with this choice of the first two rows, then the solver
backtracks and chooses another second row. If all choices for the second row fail,
then the solver backtracks and chooses another first row. But any other choice
of the first two co-blocks that has an overlap of λ can always be transformed
into the choice described above by permuting the columns, because of the full
interchangeability of the blocks. Remember that at least one overlap will be λ
and that we have this for the first intersection as described above, so this is no

13

Fig. 3. The first two rows of a PD 〈v, b, r, λ〉, with v ≥ 2, b = 15, r = 6, and λ = 2.
The complement PD is 〈v, b, b − r, b − 2r + λ〉.

limitation. Hence using another choice for the elements of the first intersection
will only lead to testing rows that are symmetric to rows that have already been
tested unsuccessfully. Thus, the choice of the first two rows in the incidence
matrix need never be reconsidered.

Only when there is no design, or when we enumerate all designs, will this
technique give any performance gain, since only then will the solver backtrack
all the way to the choice of the first and second rows. With this technique, fewer
rows need to be tried before the solver can be sure no design exists. The number
of available symmetries to a fully labelled incidence matrix is decreased from
v!b! to (v − 2)!b!, that is by a factor of v(v − 1).

This technique applies to both PDs and BIBDs. But for BIBDs we can do
even more. The constant column sum of BIBDs and the anti-lexicographical
ordering of their rows imply that the first column must be k ones at the top
and the remaining elements all zero. If this was not the case, then the anti-
lexicographical ordering would not be satisfied. We cannot fix the second column,
though, as there is no constraint between pairs of columns.

By fixing the first column for BIBDs we get a small performance improvement
in some cases, not only when there is no design or when we enumerate all designs.
Table 4 shows the performance impact (in the number of backtracks and CPU
seconds) for finding the first, if any, BIBD. We see that using this optimisation
leads to some small performance gains. For example, for the BIBD 〈15, 21, 7, 5, 2〉,
the number of backtracks decreases slightly. A decrease was to be expected as it is
known that there exists no BIBD with these parameters even though they satisfy
the BIBD admissibility conditions. Of course, we here switched off the checking
for known non-existing BIBDs that was presented in Section 3.4, in order to
allow the search to exhaust all the possibilities for the BIBD 〈15, 21, 7, 5, 2〉 and
see what impact the optimisation has on the performance.

Fixing the first column and the first row (but not the second row) has been
done in [9], but there it was only evaluated as a technique for breaking symmetry
in BIBDs but was not tested together with other symmetry-breaking techniques.

3.6 Checking Admissibility During Search

The anti-lexicographical ordering constraints on rows and columns are not only
an efficient technique to break relatively much symmetry, but they also allow us
to use this knowledge about how a design must be formed in order to devise a
more efficient method. The previous Section 3.5 showed one application thereof,
and we now look at another, beginning with an example.

14

BIBD Plain building Fix rows 1 & 2 and col. 1

v b r k λ backtracks time backtracks time

8 14 7 4 3 57 0.01 57 0.00
9 18 8 4 3 96 0.01 95 0.01
9 24 8 3 2 9 0.01 9 0.01
10 30 9 3 2 23 0.01 23 0.02
15 21 7 5 2 111421 12.63 111400 12.68
19 19 9 9 4 12294 1.58 11922 1.38
25 25 9 9 3 46105 7.16 46015 6.98

Table 4. Performance comparison between plain building and building with the first
intersection and first column fixed

Fig. 4. Incidence matrix for a partially labelled PD 〈10, 15, 6, 2〉. A grey cell repre-
sents a one, a white cell a zero, and a crossed-out cell an element that has not been
labelled yet. The bold rectangle represents the PD 〈7, 13, 6, 2〉, which does not satisfy
the admissibility condition of Theorem 1, hence backtracking will occur.

Example 5. Consider the partially labelled matrix for the PD 〈10, 15, 6, 2〉 in
Figure 4. After labelling the first four rows, the solver has reached a state where
the first two columns can no longer be used, since the rows are ordered anti-
lexicographically. Hence any remaining row must consist of elements only in the
singled out lower-right bold rectangle of the incidence matrix. But this part of
the matrix must be a PD on its own and must therefore satisfy the admissibility
condition of Theorem 1, with the same λ and r, but b and v decreased accord-
ingly, giving the PD 〈7, 13, 6, 2〉. In this case, that condition is not satisfied as
we get λ ≥ � 16

7 � = 3, but we are trying to build this design with λ = 2.

The technique above works for any PD or BIBD. After labelling a row, the
solver looks in what column it has its first element, as any column to the left
thereof is then unusable. For the resulting sub-design with the newly labelled
row as the first row, and possibly fewer columns, the admissibility condition

15

PD Without check With check during search

v b r λ backtracks time backtracks time

10 15 6 2 96822 4.33 138 0.01
11 11 5 2 764 0.05 45 0.01
15 15 4 1 3167791 279.97 2335130 228.99
16 8 3 1 729 0.08 11 0.00

Table 5. Performance comparison between switching off and on the admissibility check
during search for the remaining rows and columns

of Theorem 1 is checked. If is is not satisfied, then we can infer that this last
labelled row will never lead to a design and force the solver to backtrack.

There are two special cases to consider. First, when the last labelled row has
no first element, that is when it is empty, then we cannot do anything. This
can only happen when r = 0, and hence the entire matrix will be empty. PDs
with r = 0 occur sometimes when using the approximate method for OPDs
in Section 4. Second, when there is only one row left, then we need not check
anything either, since the concept of overlap with all the remaining co-blocks
becomes meaningless.

Table 5 shows the sometimes substantial performance gains (in number of
backtracks and CPU seconds until the first design) we can get with this tech-
nique. Note that only PDs have been picked for which the technique is useful;
many other PDs are not constrained enough for the admissibility check during
search to fail, and hence for them this check is only a (small) overhead.

3.7 Using the Complement

When the solver has found an incidence matrix representing a PD or BIBD, then
we have actually found another PD as well, namely the complement PD. To get
the complement to a PD or BIBD represented as an incidence matrix, switch
every 1 to a 0 and vice-versa.

For the complement of a PD 〈v, b, r, λ〉, the dimensions of the v× b incidence
matrix are not changed, and the row sum r is replaced by b− r. In addition, the
column sum k of a BIBD 〈v, b, r, k, λ〉 is replaced by v − k in the complement
BIBD. To realise what the maximum (or exact) overlap λ is in the complement
PD (or complement BIBD), look at Figure 3 again (and ignore the first sentence
of its caption). The value of λ for the complement is the width of the last rect-
angle, which contains only non-filled elements. The width of this last rectangle
is the total width b minus the width of each of the other rectangles, hence it is

b − λ − (r − λ) − (r − λ) = b − 2r + λ

To summarise, a PD 〈v, b, r, λ〉 (or BIBD 〈v, b, r, k, λ〉) also yields the complement
PD 〈v, b, b−r, b−2r+λ〉 (or the complement BIBD 〈v, b, b−r, v−k, b−2r+λ〉).

16

PD Building PD Complement PD Building Complement PD

v b r λ backtracks time v b r λ backtracks time

10 38 28 20 1360590 91.24 10 38 10 2 85238 5.01
10 31 22 15 992711 52.09 10 31 9 15 4044363 152.22
10 15 6 2 3251 0.16 10 15 9 5 138 0.02

Table 6. Performance comparison between building the given PD or its complement

Table 6 shows that the performance impact can be substantial for some PDs.
They are listed in such a way that the complement has a smaller row sum than
the original PD.

Unfortunately, no heuristic for deciding when to build the complement in-
stead of the given design has been found. Therefore the complement is not tried
by our method, but it can of course be manually fed to it instead of the given
design.

However, in the next section, we show that the complement can be automat-
ically used to increase the performance in other occasions as well.

3.8 Caching Results and Extended Cache Lookup

For each PD, our method will either succeed (find a design), or fail (establish
that there is no design), or time out prior to succeeding or failing. Each of these
results is cached, including the incidence matrix for any design, so that if the
same design resurfaces, the method need not tackle it again, but can just look
up the result.

This technique can even be extended to further increase the performance of
our method, namely by looking for harder designs that have already been built
with success and that can be adapted to become the wanted design. We assume
that fewer columns always make a design harder to build, so that if a design is
found, then so will the same design with more columns, but in at most as much
time. We also assume that more rows always make a design harder to build, so
that if a design is found, then so will the same design with fewer rows, but in at
most as much time. There are thus two possibilities.

First, if we are to build the PD 〈v, b, r, λ〉 and it is not in the cache, but
〈v, b′, r, λ〉 with b′ < b is there as a successfully built design, then the cached
design 〈v, b′, r, λ〉 provides a design 〈v, b, r, λ〉: take the first b′ columns from
〈v, b′, r, λ〉 and set the remaining b − b′ columns to all zeroes.

Second, if we are to build the PD 〈v, b, r, λ〉 and it is not in the cache, but
〈v′, b, r, λ〉 with v′ > v is there as a successfully built design, then the cached de-
sign 〈v′, b, r, λ〉 provides a design 〈v, b, r, λ〉: take the first v rows from 〈v′, b, r, λ〉
and ignore the remaining v′ − v rows.

We can also do the converse, namely by looking for easier designs that have
already been tried without success (with failure or time-out). We assume that
more columns always make a design easier to build, so that if a design is not
found prior to time-out, then so will the same design with fewer columns, but

17

in at least as much time. We also assume that fewer rows always make a design
easier to build, so that if a design is not found prior to time-out, then so will the
same design with more rows, but in at least as much time. There are thus again
two possibilities.

First, if we are to build the PD 〈v, b, r, λ〉 and it is not in the cache, but
〈v, b′, r, λ〉 with b′ > b is there as a failed or timed-out design, then the solver
will fail or time out on 〈v, b, r, λ〉 as well, under at least the same time-out limit.

Second, if we are to build the PD 〈v, b, r, λ〉 and it is not in the cache, but
〈v′, b, r, λ〉 with v′ < v is there as a failed or timed-out design, then the solver
will fail or time out on 〈v, b, r, λ〉 as well, under at least the same time-out limit.

We call this technique extended cache lookup. When approximately building
large OPDs by embedding small PDs (see Section 4), it is common for the same
PDs to appear several times, and also for PDs of roughly the same size to appear
many times, so this technique will have a large impact on the performance of
that method.

This extended cache lookup is implemented separately from the checking
for known non-existing BIBDs described in Section 3.4, even though nothing
would prevent us from merging the two. In our method, the parameters are first
checked against the cache. If they are not found in the cache, then they are
checked against the list of parameters that are known not to result in a BIBD. If
they are not there either, then our method tries to build a PD, which will result
in a new entry in the cache.

Finally, we can make use of the complement concept in Section 3.7 again. If
the extended cache lookup cannot find a design, then an extended cache lookup
is done for the complement instead, and only if this also fails does the method
need to try and build a PD.

4 Approximate Building of OPDs

The method of Section 3 for exactly building PDs does not scale for the building
of typical financial OPDs. In Section 4.3, we introduce a method of approxi-
mately building such large OPDs, using the exact PD method of Section 3. It
rests on two key insights, explained in Sections 4.1 and 4.2.

4.1 Underconstrainedness

The first insight comes from observing that the typical values of v (the number
of co-blocks) are quite small for the typical values of b (the number of blocks)
and r (the size of the co-blocks), as shown in the following example.

Example 6. The first three columns of Table 7 chart how the lower bound on
λ evolves with v ≥ 2 according to the PD admissibility condition (17) when
b = 350 and r = 100. The lower bound on λ initially grows from 0 for v = 2, to
between 9 and 26 for the typical values of v (which are between 4 and 25), but
does not grow much after that; in fact, it never exceeds 29, which it reaches for

18

b = 350 and r = 100 b = 35 and r = 10

unrounded rounded unrounded rounded time backtracks
lower bound lower bound lower bound lower bound to first to first

v on λ on λ on λ on λ design design

2 0.000 0 0.0000 0 0.01 0
3 0.000 0 0.0000 0 0.00 0
4 8.333 9 0.8333 1 0.01 1
5 15.000 15 1.5000 2 0.02 184
6 16.667 17 1.6667 2 0.05 658
7 16.667 17 1.6667 2 0.08 921
8 19.643 20 1.9643 2 0.34 8872
9 20.833 21 2.0833 3 0.04 566

10 21.111 22 2.1111 3 0.07 567
11 21.818 22 2.1818 3 0.08 567
12 22.727 23 2.2727 3 0.09 663
13 23.077 24 2.3077 3 0.14 1878
14 23.077 24 2.3077 3 0.14 2038
15 23.810 24 2.3810 3 0.19 2245
16 24.167 25 2.4167 3 0.45 9331
17 24.265 25 2.4265 3 0.52 10221
. . . 25 3
22 25.325 26 2.5325 3 1.26 16078
. . . 26 3
29 26.108 27 2.6108 3 3.33 35305
. . . 27 3
46 27.005 28 2.7005 3 ? ?
. . . 28 3
127 28.009 29 2.8009 3 ? ?
. . . 29 3

Table 7. Unrounded and rounded lower bounds on the maximum overlap λ for v ≥ 2
co-blocks and b blocks of size r, as given by the PD admissibility condition (17)

v = 127. This effect is exacerbated for smaller values of b and r, as shown in the
fourth and fifth columns of Table 7.

While this example illustrates a prediction weakness of the lower bound (17)
of Theorem 1 for large values of v, the main lesson is that there is a range for v
in which the lower bound on λ does not change quickly for fixed values of b and
r. For the ranges of values of v, b, and r that are of interest here, v is within
that zone.

The consequence is that the PDs of interest here seem underconstrained in the
sense that one may get (many) more than the intended v co-blocks of the same
size r from the same universe of b credit assets, without seeing the maximum
overlap λ of the co-blocks increase. Dually, one may draw the intended v co-
blocks of the same size r from a (much) smaller universe than the available b
credit assets, without seeing the maximum overlap λ of the co-blocks increase.

19

For instance, Theorem 1 predicts that v = 10 co-blocks of r = 100 credit assets
each may be drawn with a maximum overlap λ = 22 from a universe of 337 ≤
b ≤ 351 credit assets. Again, this effect is exacerbated for smaller values of b and
r. This underconstrainedness may lead to considerable combinatorial explosion.
In fact, we have been unable to build any PDs of the magnitude considered here
with the BIBD-style method outlined in Section 3, even when setting a quite
high value for λ and allocating an entire CPU week. Labelling just one row of
the incidence matrix already tends to take a lot of time after the first few rows.

4.2 Embeddings

The second insight is that building optimal designs is not always practical. As
shown below, we can often very efficiently build real-life financial PDs with values
for λ that are within 5% of, if not identical to, the lower bound given by the
PD admissibility condition (17). So we investigate the approximate building of
real-life financial OPDs. The idea is to embed small PDs within a large one, as
illustrated in the following example.

Example 7. A not necessarily optimal PD for the OPD 〈10, 350, 100〉 can be built
by making 10 copies of each column in any possibly optimal PD for the OPD
〈10, 35, 10〉. The fifth column of Table 7 gives λ ≥ 3 for the OPD 〈10, 35, 10〉.
Building the PD 〈10, 35, 10, 3〉 with the BIBD-style method in Section 3 takes
about 0.07 CPU seconds and 567 backtracks to succeed. Since 10 · 3 = 30, this
means that we can build from it a PD 〈10, 350, 100, 30〉. Since the third column
of Table 7 gives λ ≥ 22 for the OPD 〈10, 350, 100〉, the built PD with λ = 30 is
quite far above that lower bound and may thus be sub-optimal. (This example
will be continued in Example 9.)

This kind of embedding is a standard concept for BIBDs [3].

Definition 4. A BIBD 〈v, b, r, k, λ〉 is an m-multiple BIBD if 〈v, b
m , r

m , k, λ
m 〉

parameterises a BIBD under the constraints (1) to (5).

In other words, shrinking the number of blocks by a factor m shrinks the
sizes of the co-blocks and their overlaps by the same factor m (provided they all
divide m). The corresponding concept for PDs has a similar definition.

Definition 5. A PD 〈v, b, r, λ〉 is an m-multiple PD if 〈v, b
m , r

m , λ
m 〉 parame-

terises a PD under the constraints (12) to (16). We denote this by 〈v, b, r, λ〉 =
m · 〈v, b

m , r
m , λ

m 〉.
For OPDs, we can only compare the predicted lower bounds on their maxi-

mum overlaps, rather than the actual maximum overlaps as for PDs. The follow-
ing property establishes that the same ratio holds between those lower bounds.

Observation 1 The PD admissibility condition (17) predicts λ ≥ µ for the
OPD 〈v, b, r〉 if and only if it predicts λ ≥ µ

m for the OPD 〈v, b
m , r

m 〉.

20

Example 8. Table 7 confirms the ratio of 10 between the unrounded lower bounds
on λ for the OPDs 〈v, 350, 100〉 and 〈v, 35, 10〉, with v ≥ 2.

However, a PD is not always an exact multiple of another PD. We advocate
generalising the notion of multiples of a design and here do so for PDs. Let us
first show the intuition on an example.

Example 9. (Continuation of Example 7.) Reconsider the 〈10, 350, 100, λ〉 PDs.
They are not 12-multiples of any PD as 12 does not divide both 350 and 100.
Since 350 = 12 · 27 + 26 and 100 = 12 · 8 + 4, a not necessarily optimal PD
〈10, 350, 100, λ〉 can be built by making 12 copies of each column in any possibly
optimal PD 〈10, 27, 8, λ1〉 and appending any possibly optimal PD 〈10, 26, 4, λ2〉.
The admissibility condition (17) gives λ1 ≥ 2 and λ2 ≥ 1. Building the PDs
〈10, 27, 8, 2〉 and 〈10, 26, 4, 1〉 with the BIBD-style method in Section 3 takes
about 0.03 CPU seconds and 69 backtracks total to succeed. Since 12·2+1 = 25,
this means that we can build from them a PD 〈10, 350, 100, 25〉. Since the third
column of Table 7 gives λ ≥ 22 for the OPD 〈10, 350, 100〉, the built PD with
λ = 25 is still a bit above that lower bound and may be sub-optimal. (This
example will be continued in Example 10.)

Let us now formalise all the intuitions from this example.

Definition 6. A PD 〈v, b, r, λ〉 embeds m occurrences of a PD 〈v, b1, r1, λ1〉
and one occurrence of a PD 〈v, b2, r2, λ2〉, which is denoted by 〈v, b, r, λ〉 =
m · 〈v, b1, r1, λ1〉 + 〈v, b2, r2, λ2〉, if it is built from m copies of each column
of 〈v, b1, r1, λ1〉 and one copy of each column of 〈v, b2, r2, λ2〉, modulo row and
column swaps.

This definition implies that the following four conditions hold:

0 ≤ ri ≤ bi ≥ 1 for i = 1, 2 (18)
b = mb1 + b2 (19)
r = mr1 + r2 (20)
λ ≤ mλ1 + λ2 (21)

The condition (18) ensures that the co-blocks can be subsets of B, for each of
the two embedded PDs. It also eliminates the two cases (bi = 0) where the PD
admissibility condition (17) cannot be evaluated. The conditions (19) and (20)
ensure that the embedding is exact. The reason why there is an inequality in
condition (21) is that λ is the maximum overlap. Consider v = 3 and m = 1: the
first embedded PD may have 1, 1, 2 as overlaps, and the second embedded PD
may have 1, 2, 1 as overlaps, both with a maximum of 2, giving 1 + 1, 1 + 2, 2 + 1
as overlaps for the embedding PD, with a maximum of 3, which is less than
the upper bound 1 · 2 + 2 = 4 given by condition (21). For this reason, the
calculated maximum overlap λ = 25 of the embedding PD in Example 9 is in
fact a predicted upper bound, rather than necessarily the exact value as stated
there. Hence it is in general better to use the actually observed value of λ of the

21

embedding PD than the predicted upper bound given by condition (21). In that
example, observation establishes that λ = 25 indeed.

Note that this embedding by vertical division of the incidence matrix is pos-
sible because of the currently assumed full column symmetry of the latter and
because no PD constraint works against it. However, an embedding by horizon-
tal division of the incidence matrix will lead to identical rows, that is worst-case
designs (λ = r).

4.3 Approximate Building

Given a (financial-scale) OPD 〈v, b, r〉, the issue now becomes how to construct
suitable PD embeddings, so that a PD 〈v, b, r, λ〉 with λ (near-)optimal can be
built efficiently. An additional input is an admissible value Λ of λ that we are
trying to match or undercut, say because it is one unit lower than the observed
value of λ for the currently best PD, or one unit lower than the predicted upper
bound on that value, as determined by condition (21).

The objective is to find values for m, b1, r1, b2, and r2 such that 〈v, b, r, λ〉 =
m · 〈v, b1, r1, λ1〉+ 〈v, b2, r2, λ2〉, where λ ≤ Λ and λi is the rounded lower bound
given for v, bi, ri by the PD admissibility condition (17). Two heuristic con-
straints in addition to the four conditions (18) to (21) become necessary in order
to make the method pragmatic.

First, we must restrict the focus to the pairs of embedded PDs that have a
chance of leading to a PD whose maximum overlap does not exceed Λ:

mλ1 + λ2 ≤ Λ (22)

Indeed, the left-hand side is by condition (21) the predicted upper bound on
the maximum overlap of the embedding PD built from the two embedded PDs
〈v, bi, ri, λi〉, if they exist. In practice, it is usually equal to the observed max-
imum overlap of such an embedding PD, hence this constraint. Note that this
constraint implies that m ≤ Λ.

Second, knowing that PDs with values of b up to a threshold T ≈ 36 can often
be built (quite quickly) using the BIBD-style method in Section 3, the objective
in choosing the parameters of the embedding is to have both embedded PDs
within that range for b:

bi ≤ T for i = 1, 2 (23)

where T is the last input to our OPD method. Good values of T are between 20
and 40 when 10 ≤ v ≤ 20.

Note that the determination of candidate embeddings is thus itself a con-
straint satisfaction problem.

There is no guarantee that all PDs with b ≤ T can be built sufficiently
quickly. For instance, the sixth and seventh columns of Table 7 chart the CPU
times in seconds and backtracks for 〈v, 35, 10, λ〉 for v ≥ 2 and λ equal to the
rounded lower bound in the fifth column. The experiments were conducted using
the BIBD-style method in Section 3. A question mark means that we stopped
the method after one CPU hour. We observe that for any range of values of v

22

Algorithm 1 Approximate building of OPDs
Require: v, b, r, Λ, T , time-out

m, b1, r1, λ1, b2, r2, λ2 := solve((18)–(23))
if v, b1, r1, λ1 := solve((12)–(16)) and v, b2, r2, λ2 := solve((12)–(16)) then

return m · 〈v, b1, r1, λ1〉+ 〈v, b2, r2, λ2〉
end if

m 〈v, b1, r1, λ1〉 unrounded λ1 〈v, b2, r2, λ2〉 unrounded λ2 mλ1 + λ2

10 〈10, 32, 09, 2〉 1.867 〈10, 30, 10, 3〉 2.667 23
11 〈10, 31, 09, 2〉 1.933 〈10, 09, 01, 1〉 0.022 23
11 〈10, 30, 09, 2〉 2.000 〈10, 20, 01, 0〉 0.000 22

Table 8. Embeddings of 〈10, 350, 100〉 satisfying the constraints (18) to (23) for Λ = 24
and T = 36, ordered by decreasing rounding distance to the next integer for λ1.

where the rounded lower bound on λ remains the same, the runtimes increase
with v. In other words, they increase when the rounding distance for the lower
bound on λ decreases. This may not always be the case. The same pattern can be
observed for the number of backtracks. The rounding distance seems to be a good
indicator of the constrainedness of a PD. A good heuristic then seems to be that
we should favour embeddings where both embedded PDs have not too small
rounding distances. In our observation, for the typical values of v, PDs with
rounding distances below 0.15 are often problematic. Hence we also advocate
ordering the embedded PD pairs that satisfy the constraints (18) to (23) by
decreasing rounding distance to the next integer for λ1, so that the apparently
easier PD pairs are attempted first. Setting a time limit on each attempt is
another useful refinement. Let us now illustrate this method, summarised in
Algorithm 1, which is non-deterministic.

Example 10. (Continuation of Example 9.) Let us try and improve on the
possibly sub-optimal PD with λ = 25 = Λ + 1 previously obtained for the
OPD 〈10, 350, 100〉. The embeddings satisfying the constraints (18) to (23) with
T = 36 are given in Table 8, ordered by decreasing rounding distance to the
next integer for λ1. Setting a time limit of five CPU minutes, we now attempt
to build the PDs in the second and fourth columns, proceeding row by row.

For the first embedding, it only takes about 0.76 CPU seconds and 13, 152
backtracks total to build its two PDs. Hence we can build a PD 〈10, 350, 100, λ〉
from 10 copies of the PD 〈10, 32, 9, 2〉 and one copy of the PD 〈10, 30, 10, 3〉; it
has a predicted and observed maximum overlap λ = 10 · 2 + 3 = 23, which is
better than the PD in Example 9.

For the second embedding, it takes about 157 CPU seconds and about 4 ·106

backtracks (mostly because of the first embedded PD, as the second one has
λ2 = r2 and is thus trivial to build). We get another design of predicted and
observed maximum overlap λ = 11 · 2 + 1 = 23.

The third embedding is very interesting. Building its first embedded PD can
be tried as a BIBD with blocks of fixed size k = 3 = r1v

b and pairwise overlaps of

23

Fig. 5. Optimal portfolio design 〈10, 350, 100〉, built from 11·〈10, 30, 9, 2〉+〈10, 20, 1, 0〉,
and of maximum overlap 11 · 2 + 0 = 22

OPD 〈v, b, r〉 bound (17) Λ T m · 〈v, b1, r1, λ1〉+ 〈v, b2, r2, λ2〉 observed overlap run time

〈10, 350, 100〉 22 22 36 11 · 〈10, 30, 09, 2〉+ 〈10, 20, 01, 0〉 22 0.02
〈09, 300, 100〉 25 25 36 24 · 〈09, 12, 04, 1〉+ 〈09, 12, 04, 1〉 25 0.00
〈10, 325, 100〉 24 24 36 10 · 〈10, 30, 09, 2〉+ 〈10, 25, 10, 4〉 24 0.17
〈10, 360, 120〉 32 32 72 12 · 〈10, 25, 08, 2〉+ 〈10, 60, 24, 8〉 32 68.91
〈15, 350, 100〉 24 24 72 05 · 〈15, 60, 17, 4〉+ 〈15, 50, 15, 4〉 − > 3600.00

24 72 09 · 〈15, 33, 09, 2〉+ 〈15, 53, 19, 6〉 − > 3600.00
25 72 · · · − > 3600.00
26 72 06 · 〈15, 50, 15, 4〉+ 〈15, 50, 10, 2〉 26 864.00

Table 9. Some attempts at building optimal portfolio designs by embeddings

exactly λ1 elements (rather than at most λ1 elements), as the unrounded λ1 is a
natural number, namely 2, and as b1 divides r1v. The additional constraint (3) on
the block sizes and the requirement of exact rather than bounded overlaps give
very good propagation. With this detection of potential BIBDs switched on (see
Section 2.4), our PD method builds this PD in about 0.02 CPU seconds and 23
backtracks; with this detection switched off, it takes about 3, 000 CPU seconds
and 73 · 106 backtracks on the corresponding PD, which does not have that
constraint (see Table 2). The second embedded PD is trivial (in the sense that
there are at least as many credit derivatives as in the union of the requested co-
blocks) since r2v ≤ b2 and is built in about 0.01 CPU seconds and 0 backtracks.
Hence we can build a PD 〈10, 350, 100, λ〉, given in Figure 5, from 11 copies of
the PD 〈10, 30, 9, 2〉 and one copy of the PD 〈10, 20, 1, 0〉; it has a predicted and
observed maximum overlap λ = 11 · 2 + 0 = 22 and is optimal, as (17) gives
λ ≥ 22. Note that the last 10 blocks are empty in this PD.

Some of our experiments are summarised in Table 9, for typical financial
OPDs. We always initially set Λ to the lower bound given by Theorem 1. For
the three first OPDs we used T = 36, while for the remaining two OPDs we had
to use a higher threshold, for instance T = 72 here, to get any embeddings at
all. We used a time-out of one CPU hour and report run times in CPU seconds
until the first built design. As can be seen, an optimal design for the last instance
eluded even the embedding-based approach under these parameters, even though
it is known to exist [1]. Even setting Λ = 25 did not help under these settings.
Fortunately, for Λ = 26, a candidate embedding led to success before time-out.

24

5 Conclusion

Summary. We have given an approximate and often extremely fast method,
implemented as a constraint program, of building (near-)optimal portfolio de-
signs (OPDs), with a financial application in designing CDO2 transactions in
the credit derivatives market. Their corresponding satisfaction designs, namely
portfolio designs (PDs), generalise balanced incomplete block designs (BIBDs).
However, typical financial PDs are an order of magnitude larger than the largest
BIBDs built so far by constraint programs, and PDs lack a counterpart of a
crucial BIBD constraint. Hence current BIBD-style methods are not suitable for
real-life financial OPDs. Our method is based on embedding (multiple copies
of) independent designs into the original design. Their determination is itself
a constraint satisfaction problem. The high quality of our approximate designs
can be assessed by comparison with a lower bound on the maximum overlap.

Generalisation. The generalisation of the main idea is as follows, in the context
of a large instance of a constraint optimisation problem (COP) where a bound
on the cost can be somehow calculated. One can then solve the corresponding
constraint satisfaction problem (CSP) instances for costs satisfying that bound
in order at least to get good feasible solutions to the original COP instance.
The idea is to embed several independent small CSP instances Pi within a large
CSP instance P corresponding to the given COP instance. This approximation
amounts to restricting the search space to feasible solutions of a given structure.
For an OPD 〈v, b, r〉, that structure is dictated by 〈v, b, r, λ〉 = m ·〈v, b1, r1, λ1〉+
〈v, b2, r2, λ2〉. A solution S to P can then be built from solutions Si to the Pi. If
there is a relationship between the costs of S and the Si, then this relationship
can be used to determine CSP instance candidates for the Pi, via another CSP,
using as cost estimates the calculated bounds on the costs of the corresponding
COP instances. For OPDs, this relationship is given by λ ≤ mλ1 + λ2.

Related Work. The idea of exploiting independent sub-problems also underlies
Tree-Based Russian Doll Search [15]. The idea of embedding (multiple copies of)
sub-problem instances into a larger problem instance is related to the concept
of abstract local search [4], where a concrete solution is built from a solution
to an abstraction of the original problem instance and then analysed for flaws
so as to infer a new abstract solution. This works well if the concretisation and
analysis steps are tractable and if the abstraction is optimality preserving, in the
sense that optimal concrete solutions can be built from abstract solutions. Our
embedded problem instances can indeed be jointly seen as an abstraction of the
original problem instance. For instance, entire bundles of credit assets are here
abstracted into single super-credit-assets. We have been unable so far to prove
optimality preservation of such portfolio abstractions, or to find conditions for it.
As also observed in [4], this is not problematic for hard problem instances, such
as the typical financial OPDs considered here, where the utility of abstractions
can only be assessed by comparison with other techniques. In any case, we have

25

seen that our portfolio abstractions lead to solutions that are extremely close to
a lower bound on the maximal overlap.

Also, we have found only one paper taking a constraint programming ap-
proach to portfolio design [18], but the tackled problem there is actually different
from ours and is limited to portfolios consisting of just one tranche.

Future Work. The quality of our new, tighter lower bound in Theorem 1 on the
maximal overlap λ of an OPD 〈v, b, r〉 is an open question. For instance, note
that the bottom of Table 7 suggests that an arbitrary error might be achievable
for disproportionately large values of v compared to b and r.

Our notion of embedding can be generalised to any linear combination of
several designs. Indeed, Definition 6 is restricted to embeddings of always two
designs, namely one quotient design and one remainder design, with coefficients
m and 1, respectively. The price to pay for this structural restriction of the search
space may be that a design of optimal maximum overlap eludes us sometimes.

Some additional abstraction may reduce the 0, . . . , v range of observed block
sizes. Indeed, a counterpart of the BIBD constraint (3) might enormously speed
up the building process. The facts that some PDs (such as 〈9, 35, 10, 2〉) take CPU
days to fail while increasing their λ (to obtain 〈9, 35, 10, 3〉 here) then leads to
quasi instantaneous success, and that other PDs (such as 〈10, 30, 9, 2〉) take many
CPU minutes to build while the corresponding BIBDs, if any (〈10, 30, 9, 3, 2〉
here), are built quasi instantaneously, show that there is still much space for
improving our method. For instance, it would be nice to prove that enforcing
� rv

b � ≤ k ≤ � rv
b � for every block size k does not prevent the existence of PDs.

As can be seen in the two incidence matrices of Figure 2, such a constraint
leads to a better spread of the available credit assets over the tranches (which
might be desirable from a financial point of view) and to a better usage of the
admissibility check during search proposed in Section 3.6. This should also help
overcome some of the hardness we observed for OPDs with v ≥ 15 tranches.

Since PDs have overlaps that are at most λ, we can sometimes reorder the
rows of embedded PDs before appending these embedded PDs into the embed-
ding PD, such that its observed maximum overlap is decreased. Consider again
v = 3 and m = 1: assume both embedded PDs have 1, 1, 2 as overlaps, with a
maximum of 2, giving 1 + 1, 1 + 1, 2 + 2 as overlaps for the embedding PD, with
a maximum of 4, which is the upper bound 1 · 2 + 2 = 4 given by condition (21).
However, upon reordering the rows of the second embedded PD such that its
overlaps are 1, 2, 1, we get 1 + 1, 1 + 2, 2 + 1 as overlaps for the embedding PD,
with a maximum of 3, which is less than the upper bound 1 · 2 + 2 = 4 given by
condition (21).

Our experiments so far with dynamic symmetry-breaking by dominance de-
tection, using the STAB technique [16], are reported in [17]. The results have
been inconclusive, but more work is needed.

Instead of posting for any two co-blocks with distinct indices a constraint on
their intersection size, it would be more efficient to design a global constraint [2]
that maintains the minimum intersection size for a set of co-blocks. A global con-

26

straint would not only reduce the computational overhead, but would possibly
be able to do more propagation.

Finally, it would be interesting to try integer programming (IP) on the (opti-
mal) portfolio design problem and to test how far it scales, both with and without
the proposed embedding approach. Under standard IP modelling techniques, a
total of bv2 extra variables and 3bv2 channelling constraints have to be intro-
duced to model in a linear fashion the essentially quadratic logical conjunction
inherent in the co-block intersection constraint. In our preliminary experiments,
such an IP model builds PDs slower (under CPLEX, via OPL 3.7) than our
most basic constraint program (under ILOG Solver, via OPL 3.7) of Section 3.1
with the labelling order in Section 3.2, but without any of the improvements of
Sections 3.2 to 3.8. Improving that initial IP model is best left to IP experts.

Conclusion and Financial Relevance. Our OPD method has eliminated the need
for ad hoc manual permutations when designing CDO2 transactions. On aver-
age, we have found that the maximum overlap in a given financial PD can be
decreased anywhere from 2% to 4% by using the new method. Even though this
may not sound like a dramatic improvement, the ability to reduce the maximum
overlap from 25% to 22%, say, may make the difference between having or not
having a feasible transaction due to investor and rating-agency constraints. Is-
suers of certain types of financial instruments will benefit directly when their
instruments can be made more attractive.

It should be pointed out that it is easy to reduce the overlap by increasing
the number of available credits. However, such new credits tend to be less known
and thus more difficult to analyse, resulting in less than efficient portfolios.

In practice, the credit assets are not all indistinguishable. A client might
have personal preferences for or against some credit assets, declare some credit
assets as mutually exclusive, and so on. The advantage of our deployment of
constraint technology is that such specific needs can be neatly handled without
having to devise new (optimal) portfolio design methods from scratch each time.
However, such side constraints may break some of the full column symmetry, so
piecewise symmetry breaking has to be deployed instead. Furthermore, the likely
addition of many more side-constraints will make the problem less and less purely
combinatorial, and this is the typical scenario where constraint programming is
expected to be faster or to find better solutions than rival technologies, such as
integer programming.

Acknowledgements

We thank Ian Gent, Nic Wilson, and the referees for their useful comments.

References

1. M. Ågren, P. Flener, and J. Pearson. Incremental algorithms for local search from
existential second-order logic. In P. van Beek, editor, Proceedings of CP’05, volume
3709 of LNCS, pages 47–61. Springer-Verlag, 2005.

27

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Tech-
nical Report T2005-08, Swedish Institute of Computer Science, November 2005.

3. C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial
Designs. CRC Press, 1996.

4. J. M. Crawford, M. Dalal, and J. P. Walser. Abstract local search. In Proceedings
of the AIPS’98 Workshop on Planning as Combinatorial Search, 1998.

5. J. M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predi-
cates for search problems. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors,
Proceedings of KR’96, pages 148–159. Morgan Kaufmann, 1996.

6. S. R. Das and G. Geng. Correlated default processes: A criterion-based copula
approach. Journal of Investment Management, 2(2), 2004.

7. J. Dinitz. Handbook of combinatorial designs, new results, 2005. Available at
http://www.emba.uvm.edu/~dinitz/newresults.html. Accessed July 28th, 2005.

8. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,
editor, Proceedings of CP’01, volume 2293 of LNCS, pages 93–107. Springer-Verlag,
2001.

9. P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In P. Van Hentenryck, ed-
itor, Proceedings of CP’02, volume 2470 of LNCS, pages 462–476. Springer-Verlag,
2002.

10. P. Flener and J. Pearson. Breaking all the symmetries in matrix models: Results,
conjectures, and directions. In P. Flener and J. Pearson, editors, Proceedings of
SymCon’02, 2002. Available at http://www.it.uu.se/research/group/astra/

SymCon02/.
11. P. Flener, J. Pearson, and L. G. Reyna. Financial portfolio optimisation. In

M. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages 227–241.
Springer-Verlag, 2004.

12. I. P. Gent and N. Wilson. Minimising pairwise intersections problem. Personal
communications to Justin Pearson, October 2004.

13. K. Gilkes and M. Drexler. Drill-down approach for synthetic CDO Squared trans-
actions. Standard and Poor’s, December 2003.

14. M. Hall, Jr. Block designs. In E. F. Beckenbach, editor, Applied Combinatorial
Mathematics, chapter 13, pages 369–405. John Wiley & Sons, 1964.

15. P. Meseguer and M. Sànchez. Tree-based Russian doll search: Preliminary results.
In F. Rossi, editor, Proceedings of the CP’00 Workshop on Soft Constraints, 2000.

16. J.-F. Puget. Symmetry breaking using stabilizers. In F. Rossi, editor, Proceedings
of CP’03, volume 2833 of LNCS, pages 585–599. Springer-Verlag, 2003.

17. O. Sivertsson. Construction of synthetic CDO squared. Master’s thesis, Comput-
ing Science, Department of Information Technology, Uppsala University, Sweden,
December 2005. Available as Technical Report 2005-042 at http://www.it.uu.

se/research/reports/2005-042/.
18. G. Wetzel and F. Zabatta. A constraint programming approach to portfolio selec-

tion. In Proceedings of ECAI’98, pages 263–264, 1998.

28

