Generating Compound Moves in Local Search
by Hybridisation with Complete Search *

Gustav Bjérdalg[0000_0002_8032_5774], Pierre Flener[0000—0001—8730—4098]7 and
Justin PeaI‘SOn[OOOO_0002_0084_8891]

Uppsala University, Dept of Information Technology, SE — 751 05 Uppsala, Sweden
{Gustav.Bjordal,Pierre.Flener,Justin.Pearson}@it.uu.se

Abstract A black-box local-search backend to a solving-technology-
independent modelling language, such as MiniZinc, automatically infers
from the structure of a declarative model for a satisfaction or optim-
isation problem a combination of a neighbourhood, heuristic, and meta-
heuristic. These ingredients are then provided to a local-search solver,
but are manually designed in a handcrafted local-search algorithm. How-
ever, such a backend can perform poorly due to model structure that
is inappropriate for local search, for example when it considers moves
modifying only variables that represent auxiliary information. Towards
overcoming such inefficiency, we propose compound-move generation, an
extension to local-search solvers that uses a complete-search solver in
order to augment moves modifying non-auxiliary variables so that they
also modify auxiliary ones. Since compound-move generation is intended
to be applied to such models, we discuss how to identify them.

We present several refinements of compound-move generation and show
its very positive impact on several third-party models. This helps reduce
the unavoidable gap between black-box local search and local-search al-
gorithms crafted by experts.

1 Introduction

The aim of technology-independent modelling languages for satisfaction and op-
timisation problems is to allow many solvers to run for a single problem model
and hopefully avoid too early commitment to a solving technology. MiniZinc [13]
is such a language where a user designs a model and can then solve the prob-
lem using a wide range of backends that call solvers from technologies such as
constraint programming (CP), lazy clause generation (LCG), (constraint-based)
local search (LS and CBLS), mixed-integer programming (MIP), Boolean sat-
isfiability (SAT), and satisfiability modulo theories (SMT). Given a MiniZinc
model, a backend should infer a representation and search strategy that are
suitable for its solver and technology.

A black-boz local-search backend automatically infers from a MiniZinc model,
which is purely declarative, a representation required to compute efficiently a

* This work is supported by the Swedish Research Council (VR) through Project
Grant 2015-04910.

cost function as well as a combination of a neighbourhood, heuristic, and meta-
heuristic, which form the search strategy and are then provided to a CBLS
solver: these ingredients are manually designed in a handcrafted local-search
algorithm, which processes no model. A drawback of technology-independent
modelling is that backends of some solving technologies can be sensitive to model
structure (which backends of other technologies may be unaffected by). For all
these reasons, there will always be a gap between black-box local-search backends
and local-search algorithms handcrafted by experts for specific problems.

To help reduce this gap, we here explore a model structure where black-box
LS performs poorly, namely when its inferred neighbourhood has moves modify-
ing only variables representing auxiliary information. This model structure can
appear when such auxiliary variables are (or seem) not functionally determined
by the other variables. The intuition for why this can degrade performance is
that the search strategy should consider new values for the non-auxiliary vari-
ables and infer (possibly when generating the considered moves) new values for
the auxiliary variables from those considered values, and not vice versa.

Towards improving the performance of black-box local search, our contri-
butions are as follows, after defining all required background in Section [2] In
Section we propose compound-move generation (CMG), an extension to local-
search solvers that uses a complete-search solver (based on CP in our imple-
mentation) in order to try to augment moves modifying non-auxiliary variables
so that they also modify auxiliary ones. In Section[d] we present two approaches
for detecting the model structure that CMG is intended for. In Section 5] we ex-
perimentally demonstrate the very positive impact of CMG. We discuss related
work in Section [6] and conclude in Section [7

2 Background

We define the relevant concepts of MiniZinc, (CP-style) complete search, and
(constraint-based) local search.

2.1 MiniZinc, FlatZinc, Models, and Instances

The constraint-based modelling language MiniZinc [I3] for satisfaction and op-
timisation problems is independent of solving technologies, such as CP, LCG,
LS, CBLS, MIP, SAT, and SMT. Its open-source toolchain contains a flattener,
which translates a model and instance data into a sub-language called Flat-
Zinc, which is amenable to interpretation and analysis by a backend that calls a
targeted solver. We now present a MiniZinc model for our running example.

Ezample 1. Consider the travelling salesperson problem with time windows
(TSPTW). Given are n locations, a travel-time matrix T (where T[i,j] is the
travel time from location i to location j plus the service time at i), and a matrix
W of time windows for each location (where W[i,1] is the earliest arrival time
and W[i,2] the latest arrival time for location 1). The goal is to find a shortest
route that visits each location exactly once and within its time window.

11

12

int: n; set of int: Loc = 1..n; % (number of) locations
array [Loc,Loc] of int: T; % travel times
array[Loc,1..2] of int: W; % time windows
array [Loc] of var Loc: pred; % predecessor locations
constraint circuit (pred);
int: depot = 1; 7 location 1 is the depot
array[Loc] of var int: A; % arrival times
constraint A[depot] = W[depot,1];
constraint forall(i in Loc where i != depot)(

A[i] = max(A[pred[il]] + Tl[predl[il],il, W[i,1]1));
constraint forall(i in Loc) (A[i] <= W[i,2]);
solve minimize sum(i in Loc) (T[pred[i],il);

Figure 1. A MiniZinc model for TSP with time windows (TSPTW)

Figure [1f shows a MiniZinc model that is good for most backends. Since
the arrival time at a location depends on the departure time at the previous
location, the route is modelled using a predecessor array pred, where variable
pred[i] denotes the location visited before location i. The circuit constraint
in line [f] requires pred to represent a Hamiltonian circuit. Location 1 is assumed
to be the start of the route. The arrival times are modelled using the array A,
where variable A[i] denotes the arrival time at location i. Each arrival time is
constrained, in lines[§to[LT] to be either the arrival time at the preceding location
plus the travel time or the start of its time window, whichever is greater, and at
most the end of its time window. The objective is to minimise the travel time of
the entire route, which is stated in line [T2]

Each variable A[i] represents auxiliary information and seems at first sight
to be functionally determined by lines [§| and However, since A[pred[i]] on
the right-hand side of the equality in line [10] defines A[i] possibly in terms of
itself, a backend should infer that A[i] cannot be functionally determined by
lines[§land [I0]alone. This is an example of a model that, somewhat unexpectedly,
a backend can see as having non-functionally determined variables representing
auxiliary informationEI Furthermore, the equality constraints in lines and[10|are
here only correct because in a minimal solution the salesperson always arrives as
early as possible. If this assumption cannot be made, possibly due to additional
side constraints, then lines[8|and [I0] have to be expressed using inequalities, thus
making the auxiliary A[i] variables necessarily non-functionally determined.

O

! Note that upon also considering the semantics of the circuit constraint in line [5]
a backend that only explores assignments satisfying that constraint can infer that
the A[i] are in fact functionally determined by line [[0] However, to the best of our
knowledge, no backend to MiniZinc performs such a semantic analysis. Also, doing
so would not address all cases where a model can be seen as having non-functionally
determined variables representing auxiliary information.

Without loss of generality, we explain everything for minimisation problems:
a maximisation or satisfaction problem can be transformed into a minimisation
problem by minimising the negated objective function or a constant, respectively.
In order to emphasise the independence from MiniZinc of our method, a Flat-
Zinc model for a minimisation problem instance is here abstracted as a tuple
(V,D,C,0), where V is the set of variables; D is the function mapping each
variable to its set of possible values, called its domain; C is the set of constraints
over variables in V; and o € V is the variable that is constrained in C to take the
value of the objective function, which is to be minimised.

2.2 Complete Search and Constraint Programming

Given a minimisation instance (V,D,C,0), a solution is an assignment of all
variables V to values allowed by the domain mapping D such that all the con-
straints C are satisfied. We denote the value assigned to a variable v in a solution
by sol(v) and a solution by sol(V) := {v + sol(v) | v € V}.

Given enough time, a complete solver is guaranteed either to return a proven
minimal solution, which is a solution where sol(0) is minimal, or to prove unsat-
isfiability otherwise. If a complete solver is stopped early, then it returns either
the best-found solution, without proof of minimality, or nothing, meaning it is
not known if the instance is satisfiable or not.

Many solving technologies offer complete solvers, such as CP, LCG, MIP,
SAT, and SMT. Our main ideas are independent of which complete technology
is used, but some refinements exploit features of CP solvers, defined next.

A CP solver builds a search tree by interleaving propagation and search. It
modifies the current domain, which maps each variable v € V to a set dom(v),
initialised to D(v). Propagation computes the fixpoint of the propagators, one for
each constraint in C: a propagator for a constraint ¢ deletes (not necessarily all)
values from the current domain of each variable in ¢ that are impossible under c.
The current domain for the root node of the search tree is computed by a first
run of propagation. If the current domain of some variable becomes empty at
some node, then there is a failure and backtracking occurs. If the current domain
of each variable becomes a singleton at some node, then the instance is proven
satisfiable, under the assignment {v +— d | v € V A dom(v) = {d}}, which
is sol(V), and the constraint o < sol(o) is added to C before backtracking in
order to search for a better solution. If at least one current domain has at least
two values, then a child node is created for each part of a partition of dom(v)
into at least two non-empty disjoint subsets for some variable v, guided by a
branching strategy. Solving (by propagation and search) recursively continues
for each child node, under usually a depth-first exploration order. Solving either
returns a minimal solution or reports unsatisfiability.

2.3 (Constraint-Based) Local Search

Other solving technologies offer non-complete solvers. For example, local search
(LS), say [11], initialises and iteratively modifies the current assignment, which

maps each variable v € V to a value val(v), called its current value, in its do-
main D(v). The current assignment need not satisfy all the constraints C. The
initial assignment is built under some amount of randomisation. At every iter-
ation, a two-step search heuristic is followed. First, a set of candidate mowves is
considered, each being a set of reassignments v — d for at least one variable
v € V and value d € D(v). We assume that each candidate move is probed by
(i) tentatively performing its reassignments, (ii) estimating the proximity p of the
resulting tentative assignment to some assignment satisfying C and computing
the resulting value 6 of the objective variable o, and (iii) undoing the tentatively
performed reassignments and returning the pair (p, 6). The set of probed can-
didate moves is called the neighbourhood, which is said to be explored, and its
elements are called neighbours. Second, among the candidate moves, the heur-
istic selects one based on a cost function applied to each pair (p,d) and actually
commits it, yielding the new current assignment. A meta-heuristic, such as tabu
search, say [10], can be used to escape local optima of the cost function. Together,
the neighbourhood, heuristic, and meta-heuristic form a local-search strategy.

In constraint-based local search (CBLS) [19], a declarative model is coupled
with either a user-defined LS strategy, yielding a white-box LS solver (such as
Comet [19] and OscaR.cbls [6]), or a solver-inferred LS strategy, yielding a black-
box LS solver (such as LocalSolver [1] and fzn-oscar-cbls [2]). For each built-in
constraint ¢, a predefined violation function viol(c), which returns the value 0
when c is satisfied and otherwise a positive value, can be used for estimating
the proximity of a tentative assignment to an assignment satisfying c¢. One can
then estimate the proximity p as the violation viol(C) :=) . viol(c). Note that
objective function, cost function, and violation function are here not synonyms.

A CBLS model has two categories of explicit constraints. Soft constraints have
a violation function and may be violated during search but must be satisfied in
a solution. One-way constraints, such as z <== x * y in OscaR.cbls syntax and
called invariants in Comet, are impossible to violate by candidate moves: in
z <== x * y, the functionally determined variable z cannot undergo a move,
since its value is maintained by the solver to be the product of the variables x
and y, which can undergo moves. An implicit constraint in a CBLS model is
satisfied by the initial assignment and preserved by all committed moves: this
can be done by using a constraint-specific neighbourhood [2].

For each constraint of a problem, a CBLS modeller must choose whether to
make it soft, one-way, or implicit. Note that implicit and one-way constraints do
not exist as such in MiniZinc and FlatZinc.

2.4 A Local-Search Backend to MiniZinc

Our fzn-oscar-cbls [2] LS backend to MiniZinc conceptually performs three steps.
First, the constraints of a given flattened MiniZinc model are categorised into
the three CBLS constraint categories (soft, one-way, and implicit) by using a
structure identification scheme (see [2] for full details). Second, an LS strategy
for the CBLS solver OscaR.cbls [6] is inferred: the neighbourhood is the union of
the constraint-specific neighbourhoods for all identified implicit constraints and

a default neighbourhood for all variables that are not part of any constraint-
specific neighbourhood (note that variables identified as functionally determined,
and thus maintained by one-way constraints, are not in any neighbourhood); the
heuristic selects a random best candidate move from the neighbourhood; and the
meta-heuristic is a variation of tabu search [10]. Third, OscaR.cbls is invoked.
Note that backend and solver are here not synonyms.

Ezxample 2. For the model in Figure [1| fzn-oscar-cbls categorises the circuit
constraint in lineas implicit, since a constraint-specific neighbourhood (namely
3-opt) is available in fzn-oscar-cbls. The A[i] variables are mistakenly conjec-
tured not to be functionally determined, as the structure identification scheme
does not take the semantics of circuit into account, hence the A[i] seem defined
possibly in terms of themselves and are not maintained by one-way constraints:
a default neighbourhood is inferred for them. The objective variable (introduced
by line is maintained by a one-way constraint. The soft constraints are the
equality constraints in lines [§ and [I0] O

Two major burdens for an LS backend to a technology-independent modelling
language such as MiniZinc are the identification of an LS-appropriate structure of
a model, which is non-trivial as models need not be written with LS in mind, and
the ensuing neighbourhood inference, which depends on the identified structure.
We now address these two burdens by trying to make LS backends more robust
to models without an identifiable LS-appropriate structure and by making the
moves of the inferred neighbourhoods more suitable to such models.

3 Compound-Move Generation

We present compound-move generation (CMG), an extension to local search
(LS) that hybridises LS with complete solving and is geared for models where
an LS solver is forced to make moves over what we will call auziliary variables,
which we will demonstrate in Section to greatly degrade performance. The
main idea is to use a complete solver, in our implementation a CP solver, to try
to augment each move probed by the LS solver in order to generate what we will
call a compound move that also reassigns auxiliary variables. We first explain
the basic CMG algorithm and then discuss implementation-specific refinements.

3.1 Basic Algorithm

Consider a flattened MiniZinc model (V, D, C, o), partitioned a priori such that
V =V, U V,, where the variables of V, are called core variables and those of V,
are called auziliary variables; and C = C. U C, U Cy where the constraints of C,
are called core constraints and are all the constraints over only variables in V.,
those of C, are called auziliary constraints (also known as side constraints) and
are all the constraints over only variables in V,, and those of C; are called linking
constraints. Note that o need not be in V..

In Example[T] the pred[i] variables are ideally in V, and the A[i] in V,: the
constraint sets Cc, C,, and C; follow by their definitions. We discuss in Section [4]
how to guess this partition automatically.

A model for (V,D,C, o) is created for the CBLS solver and a neighbourhood
is inferred for the non-functionally determined variables in V. but not for any
variables in V,; the values of all the variables in V. identified as functionally
determined are maintained by one-way constraints (see Section in the CBLS
model.

Further, a model for (V', D’,C,UCj, ') is created for the complete solver: we
add the prime symbol to the corresponding objects for the CBLS solver.

The probing (recall that we assume it consists of (i) tentatively performing
a candidate move m; (ii) computing the resulting value of the cost function;
and (iii) undoing the candidate move) in the CBLS solver is modified such that
between (i) and (ii) an extra step of calling the complete solver is added, divided
into three sub-steps:

1. Each variable v" in V! of the model in the complete solver is fixed to the
tentative value of its corresponding variable v in the CBLS solver by adding
the constraint v = val(v) to the model in the complete solver. The search
of the complete solver is then launched in order to find an assignment of the
variables V. that satisfies all constraints in C, U C, U {v' = val(v) | o' € V/}.

2. There are two possible outcomes: either (a) the complete solver reports
unsatisfiability, whether at the root node or through search, and the nor-
mal probing of m continues; or (b) the complete solver returns a minimal
solution sol(V’) and the normal probing continues for the candidate move
m U {v — sol(v') | v € V,}, which we call a compound move, instead of m.

3. Sub-step 1 is undone in the complete solver.

The other aspects of the search in the CBLS solver, such as the heuristic and
the meta-heuristic, remain unchanged.

3.2 Refinements and Implementation

We have implemented CMG for our black-box local-search backend fzn-oscar-
cbls [2] to MiniZinc, calling the OscaR.cbls solver [6], by using as the complete
solver the OscaR.cp solver of the same OscaR framework [I4], thereby exploiting
the felicitous co-existence of CP and CBLS solvers within the OscaR toolkit.
In its basic form, CMG can be very slow or memory-intensive. We here
describe several refinements that improve the performance of CMG, sometimes
modifying parts of fzn-oscar-cbls. Some refinements have parameters (denoted
by Greek letters), for which we propose values in Section [5| We refer to “the
complete solver” when refinements or concepts are technology-agnostic, and to
“the CP solver” when refinements or concepts are dependent on CP technology.

A. Incomplete Solving. Since finding a minimising assignment for the vari-
ables in V, can be NP-hard, we can limit the complete solver in the total
runtime 7, the number ¢ of failures (if it is a CP solver), and the number o
of intermediate solutions.

B. Always Modifying Auxiliary Variables. If, for a large number of con-
secutive committed moves, the complete solver has failed to augment them into
compound ones, then the auxiliary variables V, remain unchanged in the CBLS
solver during those iterations. Since the current assignment of V, contributes to
the violation in the CBLS solver, as C, U C, is part of its model, and thus can
affect which candidate move is committed, this can result in the local search get-
ting stuck in some region of the search space. So fzn-oscar-cbls can be modified
to infer also a neighbourhood for V,: whenever the CBLS solver commits a move
for which the complete solver has failed, a move from the neighbourhood of V,
is also committed, in the same iteration.

C. Calling the Complete Solver Again Before Committing a Move. If
Refinement A is used, then the assignment of the auxiliary variables V, returned
by the complete solver may not be minimal with respect to the objective function.
So, between selecting and committing a candidate move, the complete solver can
be run again for that move in order to get a possibly better assignment of V,.
This second solving can be either complete or, as done in our experiments in
Section |5 a deeper incomplete solving, depending on the new parameters 71, ¢',
and o', which have the semantics of their counterparts in Refinement A.

D. Only Calling the Complete Solver Before Committing a Move.
Refinement C can be taken to the extreme where the complete solver is not
used at all while probing, but only after selecting a candidate move: instead of
modifying the probing step, we can call the complete solver as a post-processing
step to selecting a move. For large neighbourhoods, this will significantly speed
up the probing, but at the cost of possibly missing good candidate moves.

E. Only Returning the Objective Value. The cost function minimised by
fzn-oscar-cbls is « - val(o) 4+ 8 - viol(C), where o is the objective variable, viol(C)
is the violation of the constraints in C = C. UC, UCy, and «, 8 are non-negative
weights that are tuned during search. An assignment sol(V)) returned by the
complete solver satisfies all constraints in C, U C, and sol(o’) is the same value
as o will have in the CBLS solver if the corresponding reassignment is made.
Therefore, if using Refinement C, then it is enough, while probing, for the com-
plete solver to return sol(o’) since a - val(o) + 8 - viol(C) = «-sol(o’) + B - viol(C..)
in this case. By maintaining viol(C.) in a separate constraint system [19] in the
underlying CBLS solver, we can compute the cost function faster while probing.

F. Exploiting Conflicting Assignments. We say that the current assignment
of some variables in the CBLS solver is conflicting if they cause the current
domain of at least one variable to become empty in the CP solver due to root-
node propagation. For efficiency reasons, we limit this definition to root-node
failure, but one can generalise it to any failure.

For example, consider the constraints < a and a < y, where z,y € V, and
a € V,, and the conflicting assignment {x > 2,y — 1}. Until or y is reassigned
by a CBLS move, the CP solver empties the domain of its variable a’ and fails
at the root node upon adding the constraints {2’ = 2, ' = 1} in sub-step 1 of
the basic CMG. However, for this conflicting assignment and most values of a,
one of the two inequality constraints is always satisfied in the CBLS solver and

the other one might only make a small contribution to viol(C). So there might
be no strong indication for the LS strategy that x or y needs to be reassigned.

So one should try to identify which variables in V! have caused a root-node
failure in the CP solver, and then force the CBLS solver to commit moves on
its corresponding core variables. This can be done with a solver that provides
explanations for failures, such as any LCG solver, say Chuffed [3]. Most CP
solvers (e.g., OscaR.cp, which we use in our implementation) do not provide
explanations for failures, so we try to identify which variables have caused such
a failure by extending the basic CMG algorithm:

a. The constraints v’ = val(v) for each v' € V. are, in a random order, iterat-
ively added to the model of the CP solver in sub-step 1, triggering root-node
propagation each time. If a failure occurs, then the last variable that was
fixed (i.e., that triggered the failure) is returned, say u’. Otherwise, there is
no conflicting assignment.

b. Each such variable u’ € V! is recorded in a map that maintains its number
of triggered failures, which we call its conflict count. The counter is reset
to zero for a variable in V! whenever a move reassigning its corresponding
variable is committed by the CBLS solver.

If at least one variable has a conflict count that is at least a parameter w, we force
the search heuristic in the CBLS solver to make a move on one or more variables
in V., with a conflict count of at least another parameter w, by exploiting the
tabu search of fzn-oscar-cbls: we make all variables in V. with a conflict count
under w tabu. We recommend w > w to avoid making too many variables tabu.

4 Partitioning a Model for CMG

To use compound-move generation (CMG), one must first partition a model
instance in order to get the sets V., V., C¢, Ca, and Cp. By V =V, UV, and the
definitions of C., C,, Cy, all these sets can be inferred given either V. or V,. We
do not impose any semantics to V. and V,: CMG can be applied to any such
partition, as done at the end of Section [5.1} However, we conjecture that CMG
is most efficient when V. is the set of variables that model the combinatorial
sub-structure of the problem, and V, has the variables whose values can easily
be determined (ideally by CP-style propagation) given an assignment of V..
We present two ways of making this partition, namely by user-provided hints
in a MiniZinc model and automatically through a heuristic: in a black-box set-
ting, a user should not have to provide a hint to use CMG and most third-party
MiniZinc models are not written with a method such as CMG in mind.

4.1 Hint-Based Partitioning

MiniZinc allows modellers to provide hints to a backend through annotations to
parts of a model. We introduce the search_variables(array of var int: V)
annotation, which is attached to the solve statement of a model and indicates

that the modeller wants search to be performed on the variables in V: an LS
backend with CMG can then use the V[i] as the core variables.

In Example[2] we saw that both the pred[i] and A[i] variables of the model
in Figure (1| are searched on by fzn-oscar-cbls. Upon annotating the solve state-
ment in line 12| with search_variables(pred), fzn-oscar-cbls with CMG can
compute that V, = {A[i] | i in Loc} because V. = {pred[i] | i in Loc}.

MiniZinc officially supports search annotations for CP and LCG solvers in
order to specify branching strategies. Unfortunately, in general, those search
annotations cannot be used in place of our here introduced search_variables
annotation, as their semantics does not hint at distinguishing core and auxiliary
variables. One could make the (often incorrect) assumption that all variables
appearing in a branching strategy are core variables: however, in practice, many
MiniZinc modellers specify a branching strategy for all variables of a model, and
our aim includes good performance on third-party models.

4.2 Heuristic-Based Partitioning

Based on our conjecture that V. should have the variables that model the combin-
atorial sub-structure of the problem, we can try to detect such model structure
automatically by using a heuristic to guess a partition. Since the global con-
straints in MiniZinc (such as circuit in Figure [1)) capture combinatorial sub-
structures of a problem and fzn-oscar-cbls has constraint-specific neighbourhoods
for some global constraints, we can use the following heuristic to decide which
variables belong to V,: if fzn-oscar-cbls infers that constraint-specific neighbour-
hoods can be used, then all variables that belong to those neighbourhoods are
guessed to be in V., and all other variables (which would have been put into a
default neighbourhood) are therefore in V,. Otherwise, the heuristic will decide
that CMG cannot be used.

This heuristic leads to the same partition for the model in Figure [I] as when
annotating its solve statement by search_variables(pred), but without hav-
ing to modify the MiniZinc model. Furthermore, this heuristic is able to guess
a good partition for some third-party models used in the MiniZinc Challenges,
as we will see in Section However, the heuristic can guess bad partitions, so
the modeller currently has to say at the command line if CMG should be used.

5 Experimental Evaluation

We believe the strength of CMG lies in dealing with solver-independent mod-
els, say in MiniZinc, where non-functionally-determined auxiliary variables can
appear naturally and where the modeller need not be familiar with local search
(LS). Therefore, we evaluate CMG on third-party MiniZinc models to see its im-
pact on the robustness of an LS backend to MiniZinc across a variety of models
in Section[5.1} In order to see how other LS solvers are affected by the presence of
non-functionally-determined auxiliary variables, we modify Example [I| to force
their presence and evaluate the impact in Section

5.1 Benchmark Problems

We compare two configurations of CMG in fzn-oscar-cbls with our original fzn-
oscar-cbls and Yuck[’] which is also a CBLS backend to MiniZinc. As a point of
reference, we also run the LCG backend Chuffed [3].

The first configuration, called configl, uses Refinements A, B, C, E, F of
Section while the second one, called config2, uses A, B, D, F, but not E,
which is meaningless with D. Indeed, initial experiments showed that using D
instead of C can both improve and degrade performance, depending on the
model, while each other refinement individually seems to improve performance.
For both configurations, we set the parameters 7 = 77 = 30 seconds, ¢ = 10000
failures, 0 = 2 solutions, w = 3 conflicts, w = 1 conflict, ¢T = 100000 failures,
and o7 = oo solutions: initial experiments showed that all those are good values.

We do not compare with the basic CMG algorithm: initial experiments
showed that it is too slow. We do not compare with the black-box local-search
solver LocalSolver [I] as it offers no backend to MiniZinc. Reformulating models
in LocalSolver’s modelling language LSP would not yield a meaningful perform-
ance comparison as it does not have all the global constraints of MiniZinc and
as LSP has features that MiniZinc does not have.

We evaluate CMG on models and instances for a capacitated vehicle routing
problem (CVRP) and a time-dependent travelling salesperson problem (TDTSP),
which are taken from the MiniZinc Challenges [I8] of 2015 and 2017, as well as
our model in Figure [I| for our running example, the travelling salesperson prob-
lem with time windows (TSPTW). Furthermore, we run CMG on all instances of
all models of the MiniZinc Challenge 2018 where the heuristic-based partitioning
of Section detects that CMG can be used (in a competition setting, the ori-
ginal fzn-oscar-cbls would run on the other instances). Finally, to showcase the
hint-based partitioning of Section we also perform experiments on a group
scheduling problem (GFD), used in the MiniZinc Challenge 2018 with a model
where the partitioning heuristic of Section [1.2] does not detect that CMG can be
used. All models except the one of Figure[I] and all instances are third-party.

For the local-search backends, we made 10 independent runs with a 600-
second-timeout each. For the complete-search backend Chuffed, which is de-
terministic, we report the objective value of one run with the same timeout.
The results are reported in Table [} note that all problems are minimisation or
satisfaction problems and that all chosen instances happen to be satisfiable.

TSPTW. The heuristic-based partitioning of Section detects auxiliary vari-
ables in our model in Figure [[} We selected five “.001” instances of the Gendr-
cauDumasExtended benchmarkP] around the instance size where Chuffed and
the original fzn-oscar-cbls stopped establishing satisfiability. We see in Table
that both CMG configurations improved the best-found and median values of
the original fzn-oscar-cbls. Both configurations established satisfiability for all
instances in at least 50% of the runs, whereas the original fzn-oscar-cbls only did

2 https://github.com/informarte/yuck
3 http://lopez-ibanez.eu/tsptw-instances

https://github.com/informarte/yuck
http://lopez-ibanez.eu/tsptw-instances

o in at most 20% of the runs. The best-found objective value by configl is for
each instance equal to the best-known objective value reported at the benchmark
site. Yuck was not able to establish satisfiability for any instance.

CVRP. The heuristic-based partitioning detects auxiliary variables in the model
cvrp. We used all except the toy instance of the MiniZinc Challenge 2015. We see
in Table [I| that configl performed worse than the original fzn-oscar-cbls, except
for winning on the P-n16-k8 instance, whereas config2 otherwise outperformed
all other backends. On all but P-n16-k8, the best-found solutions by config2 are
better than those at the MiniZinc Challenge 2015 for any challenge category.

TDTSP. The heuristic-based partitioning detects auxiliary variables in the
model tdtsp. We used the four largest instances among MiniZinc Challenges
2015 and 2017. In Table[I] we see that both Yuck and Chuffed outperformed the
original fzn-oscar-cbls, but that configl outperformed all other backends.

MiniZinc Challenge 2018. The heuristic-based partitioning of Section
finds CMG to be applicable to 3 models and 14 instances of the 20 mod-
els and 100 instances in the MiniZinc Challenge 2018, namely elitserien,
soccer-computational, and vrplc. For elitserien and vrplc, neither the ori-
ginal fzn-oscar-cbls, nor configl, nor config2, nor Yuck found any solution within
the given timelimit to any instance, whereas Chuffed solved all five elitserien
instances and two vrplc instances to optimality within the given timelimit.

For soccer-computational, which is the only satisfaction problem in our
evaluation, the heuristic-based partitioning determines that CMG is not applic-
able to the xIGData_22_12_22_5 instance, as a global constraint for which fzn-
oscar-cbls has a neighbourhood is removed during flattening. For the other four
instances, Yuck found a solution in all runs, while the original fzn-oscar-cbls
found a solution in at most half the runs, and Chuffed found a solution to only
one instance. Both configurations of CMG had a negative impact on fzn-oscar-
cbls, as they did not find any solution in any run.

GFD schedule. The model gfd-schedule2 is for a scheduling problem with
multiple levels of decisions: items are allocated to groups, groups are allocated to
factories, and groups are scheduled to be processed on a day. The heuristic-based
partitioning does not detect auxiliary variables since the model does not use any
global constraint for which fzn-oscar-cbls has a neighbourhood. We therefore use
this model to showcase the hint-based partitioning of Section by annotating
the variables representing the allocation of groups to factories as core variables:
it is then inferred that all other variables are auxiliary, and their values will be
sought by the complete solver instead. Note that not all of the here inferred aux-
iliary variables are actually auxiliary, and that CMG will here behave similarly
to a decomposition where a master problem of allocating groups to factories is
solved by LS and a sub-problem of allocating items to groups and scheduling
groups is solved by CP. We use the five instances of the MiniZinc Challenge
2018. We see in Table [I] that both configl and config2 greatly improved over
the original fzn-oscar-cbls. Chuffed found and proved minimal solutions to three
instances, though config2 found the best objective value for the second instance.
On the largest instance, none of the backends found any solution.

Table 1. Comparison on MiniZinc models and third-party benchmark instances
between our original LS backend fzn-oscar-cbls, two configurations enriching it with
CMG, the LS backend Yuck, and the complete-search backend Chuffed: best-found
objective value over 10 runs (column ‘best’), boldface indicating overall best perform-
ance for the instance of that row, flagged by ‘+’ if equal to the best-known value,
and flagged by ‘*’ if proven optimal by Chuffed; median of the best-found objective
values over these runs (column ‘median’), a superscript indicating the number of runs
establishing satisfiability before timing out, a ‘~’ indicating no such run.

fzn-oscar-cbls fzn-oscar-cbls fzn-oscar-cbls Yuck Chuffed
original CMG configl CMG config2

TSPTW best median best median best median best median best
n20w180 377 3771 *t253 25310 261 26310 ~ - *253
n20w200 347 3732 1+233 23310 +233 23410 - - *233
n40w120 - — 1T434 439° 437 464° - - 536
n40w140 - — 1328 3347 367 3880 - - -
n40w160 - - 1+348 3498 362 39310 - - -
CVRP
A-n37-k5 2614 2870° 2925 2934 875 983° - — 1570
A-n64-k9 5431 5659% 5518 5661° 2868 3472° - - 3667
B-n45-k5 3638 4121% 4201 4207*° 972 1182 - — 2466
P-n16-k8 489 5032 450 5236 481 481! - - 502
TDTSP
20.14_10 22546 22883° 12556 13506'° 13390 15706'° 17446 17446'° 17024
20-25_00 22924 229612 14888 16024'° 15014 16114% 18646 18646'° 22328
20-26_00 22901 22930% 12926 13917'° 13723 14711% 20790 20790'° 19076
20.36_10 22611 229465 12809 145591 13859 16752'° 17247 17247'° 17054
GFD schedule
n65f2d50... 12741 185478 446 55210 343 645 6861 6861°° *19
n80f7d30... 9952 13338° 665 1062'° 660 857'° 10578 10578'° 2023
n90£5d40... 8655 15865° 473 967 655 880'° 15488 154881 *11
nl00f7d5... 29967 40071% 1187 2384° 885 1474'° 26397 263971 *14
n200£5d5. . . - - - - - - - - -

5.2 Impact of Auxiliary Variables on Local-Search Solvers

We now show the negative impact on CMG-free black-box local search of com-
mitting moves on non-functionally-determined variables that represent auxiliary
information. Towards this, we reformulate the TSPTW model in Figure [1| such
that it can be written in LocalSolver’s modelling language LSP and, unlike
in Example [2] the A[i] variables can be detected to be functionally determ-
ined without a semantic analysis of the entire model. We replace the prede-
cessor array pred in line @ by the array order, where variable order[i] de-
notes the ith location visited. The circuit (pred) constraint in line |5 then be-
comes alldifferent (order), and the earliest-arrival-time constraint in line [I0]

Gustav Björdal�

becomes A[i] = max(A[i-1] + T[order[i-1],order[il], W[order[i],1]):
this means that the A[i] can now be determined by one-way constraints and
there is no need for CMG. The main drawbacks of the new model, called the
alldifferent model, are that an LS backend can infer a more suitable neigh-
bourhood for the old model, called the circuit model, namely 3-opt in the
case of fzn-oscar-cbls, and that the circuit model is better suited for complete
solvers as it captures the combinatorial sub-structure of the problem better.

However, in the alldifferent model, we can now artificially make the A[i]
variables non-functionally determined by replacing the equality constraint above
by an >= inequality constraint, which will not change the minimal objective
value. This allows us to measure the negative impact on CMG-free black-box
local search of committing moves on non-functionally-determined auxiliary vari-
ables. Recall from Example [I] that using an inequality is not only correct but
may also be necessary in TSPTW variants.

We examined the impact on LocalSolver, Yuck, and the original fzn-oscar-cbls
of the alldifferent model with either equality (model variant eq) or inequality
(model variant ineq) constraints in the modified line Since LocalSolver does
not have a backend to MiniZinc, we wrote equivalent models in LSP.

In Table [2| we see the negative impact of having auxiliary variables that are
not functionally determined and thus must undergo moves: both fzn-oscar-cbls
and LocalSolver did not find any solutions to ineq, where the auxiliary variables
are not functionally determined, though Yuck found solutions but with worse
objective values than for eq. On model eq, where the auxiliary variables need
not undergo moves, both fzn-oscar-cbls and Yuck found solutions, as opposed to
when running the circuit model for TSPTW used in Table

This shows that other black-box local-search solvers are adversely affected
when moves must be made on non-functionally-determined auxiliary variables.

6 Related Work

In the hybridisation context, [8] discusses two categories of hybrids between local
search (LS) and constraint programming (CP):

Table 2. Best-found objective values over 5 independent runs for variants of the
alldifferent model of TSPTW, showing the negative impact on the original fzn-
oscar-cbls, on Yuck, and on LocalSolver (neither of them using CMG) when reformu-
lating so that functionally-determined auxiliary variables (column ‘eq’) become non-
functionally-determined ones (column ‘ineq’). Boldface indicates overall best perform-
ance for the instance of that row, flagged by ‘+’ if equal to the best-known value.

fzn-oscar-cbls Yuck LocalSolver
instance \ model eq 1ineq eq ineq eq ineq
n40w120 T434 - 436 468 t434 -
n40w140 328 - +t328 391 +t328 -

n40w160 352 - T348 411 T348 —

— Augmenting LS with CP: Examples include using only the root-node
propagation of a CP solver to try to check the feasibility of side constraints
of capacitated vehicle routing problems and thereby try to find values for
the auxiliary variables when probing an LS candidate move [5]; modelling
an LS neighbourhood as an optimisation problem and using a CP solver to
find a best neighbour to the current assignment [I5]; and large-neighbourhood
search (LNS) [I7], where some variables in a feasible current LS assignment
are fixed for a CP solver to look for a best assignment to the other variables,
thereby building an LS move to another feasible current assignment.

— Augmenting CP with LS: Examples include performing LS starting from
the leaf nodes of the CP search tree in order to improve solutions; performing
LS at the internal nodes of the CP search tree in order to repair or improve
a node [16]; and using LS in order to guide the CP branching strategy [12].

We have here augmented LS with CP in a manner most similar to [5] and
LNS. Unlike [5], we allow the CP solver to search for a best assignment to the
auxiliary variables when feasible values cannot be inferred through only root-node
propagation; furthermore, we refine CMG and make it available in a problem-
independent context. Like LNS, a partial assignment is here fixed for a CP solver,
and complete search is made over the remaining variables. However, unlike LNS,
the complete search is here on a subset of the constraints, always the same
variables are here fixed, and we allow moves to infeasible current assignments.
In the MiniZinc context, LS-CP hybrids exist for LNS, namely the GELATO
framework [4], combining their LS solver EasyLocal++ with the CP solver Ge-
code [9], and Mini-LNS [7], which is solver-independent, but neither of these are
black-box and therefore both require a search strategy to be specified.

7 Conclusion and Future Work

We presented compound-move generation (CMG), an extension to black-box
local search, geared for model structure that may cause local-search solvers to
make moves reassigning variables representing auxiliary information. We have
outlined two methods for detecting such model structure, which can appear
naturally, for example for routing problems with side constraints. This means
that such solvers without CMG might perform unexpectedly worse than com-
plete solvers and considerably worse than handcrafted local-search algorithms on
such problems. Our experiments show that several black-box local-search solvers
are adversely affected in the presence of that model structure, and that CMG
greatly improves the performance of our fzn-oscar-cbls backend to MiniZinc on
such models, without requiring any model reformulation.

Future work includes extracting more information from the complete solver
in order to help guide local search. For example, if an LCG solver is used as
the complete solver for CMG, then learned clauses could be used to construct
the next local-search move. Furthermore, making some constraints soft for the
complete solver could help when infeasible solutions are explored and would
improve on refinement B in Section [3.2]

References

10.

11.

12.

13.

14.

15.

16.

Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: LocalSolver 1.x: a
black-box local-search solver for 0-1 programming. 4OR — A Quarterly Journal of
Operations Research 9(3), 299-316 (September 2011), LocalSolver is available at
https://www.localsolver.com

Bjordal, G., Monette, J.N., Flener, P., Pearson, J.: A constraint-based
local search backend for MiniZinc. Constraints 20(3), 325-345 (July 2015).
https://doi.org/10.1007/s10601-015-9184-z, the fzn-oscar-cbls backend is available
at http://optimisation.research.it.uu.se/software

Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, Department of
Computing and Information Systems, University of Melbourne, Australia (2011),
the Chuffed solver and MiniZinc backend are available at https://github.com/
chuffed/chuffed

Cipriano, R., Di Gaspero, L., Dovier, A.: A multi-paradigm tool for large neigh-
borhood search. In: Talbi, E. (ed.) Hybrid Metaheuristics, SCI, vol. 434, chap. 15,
pp. 389—414. Springer (2013)

De Backer, B., Furnon, V., Shaw, P.; Kilby, P., Prosser, P.: Solving vehicle routing
problems using constraint programming and metaheuristics. Journal of Heuristics
6(4), 501-523 (September 2000)

De Landtsheer, R., Ponsard, C.: OscaR.cbls: An open source framework for
constraint-based local search. In: ORBEL-27, the 27th annual conference of the
Belgian Operational Research Society (2013), available as http://www.orbel.
be/orbel27/pdf/abstract293.pdf; the OscaR.cbls solver is available at https:
//bitbucket.org/oscarlib/oscar/branch/CBLS

Dekker, J.J., Garcia de la Banda, M., Schutt, A., Stuckey, P.J., Tack, G.: Solver-
independent large neighbourhood search. In: Hooker, J. (ed.) CP 2018. LNCS, vol.
11008, pp. 81-98. Springer (2018)

Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming.
In: Glover, F.W., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, ORMS,
vol. 57, chap. 13, pp. 369-403. Springer (2003)

Gecode Team: Gecode: A generic constraint development environment (2018), the
Gecode solver and MiniZinc backend are available at http://www.gecode.org
Glover, F., Laguna, M.: Tabu search. In: Modern Heuristic Techniques for Com-
binatorial Problems, pp. 70-150. John Wiley & Sons (1993)

Hoos, H.H., Stiitzle, T.: Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann (2004)

Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence 139(1), 21-45 (July 2002)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: Towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529-543. Springer (2007), the MiniZinc toolchain is available
at https://www.minizinc.org

OscaR Team: OscaR: Scala in OR (2012), available at https://oscarlib.
bitbucket.io

Pesant, G., Gendreau, M.: A constraint programming framework for local search
methods. Journal of Heuristics 5(3), 255-279 (October 1999)

Prestwich, S.: A hybrid search architecture applied to hard random 3-SAT and low-
autocorrelation binary sequences. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 337-352. Springer (2000)

https://www.localsolver.com
https://doi.org/10.1007/s10601-015-9184-z
http://optimisation.research.it.uu.se/software
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
http://www.orbel.be/orbel27/pdf/abstract293.pdf
http://www.orbel.be/orbel27/pdf/abstract293.pdf
https://bitbucket.org/oscarlib/oscar/branch/CBLS
https://bitbucket.org/oscarlib/oscar/branch/CBLS
http://www.gecode.org
https://www.minizinc.org
https://oscarlib.bitbucket.io
https://oscarlib.bitbucket.io

17.

18.

19.

Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417-431. Springer (1998)

Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc Challenge
2008-2013. AI Magazine 35(2), 55-60 (summer 2014), see https://www.minizinc.
org/challenge.html

Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press
(2005)

https://www.minizinc.org/challenge.html
https://www.minizinc.org/challenge.html

	Generating Compound Moves in Local Search by Hybridisation with Complete Search

