Time-Series Constraints: Improvements and Application in CP and MIP Contexts

Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Pierre Flener, M. Andreína Francisco R., Justin Pearson, and Helmut Simonis

May 31, 2016

Time-series constraint

A time-series constraint¹ g f $\sigma(\langle X_1, \ldots, X_n \rangle, M)$ where every X_i is over $D_i \subset \mathbb{Z}$ is specified by

- A pattern, a regular expression over the alphabet $\{<, =, >\},\$ e.g. Peak = ' $\langle \langle =|$ '' \rangle '=)*>'. Currently 22 patterns in the framework
- \triangleright A feature, a function over a subseries, e.g. one. Currently 5 features in the framework
- An aggregator, a function over a feature sequence, e.g. Sum. Currently 3 aggregators in the framework

¹Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for describing and synthesising structural time-series constraints. Constraints 21(1), 22-40 (January 2016): summary on p. 723 of LNCS 9255, Springer, 2015

NbPeak

Example

 $NbPeak(\langle 4, 3, 5, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 1 \rangle, 3)$ holds !

Automata for time-series constraints

Every time-series constraint can be encoded as an automaton with three accumulators: $D(potential)$, $C(current)$, $R(aggregation)$

Automaton for the g f peak constraints.

Automaton instantiation

When f is one and g is Sum the automaton becomes

Obviously, this automaton can be simplified

Automata simplifications

Goal

- \triangleright Reduce the number of accumulators and aggregate as early as possible
- \triangleright Simplify the automata at the stage of their synthesis

Three simplification types

- \triangleright Simplifications coming from the properties of patterns, ex.: aggregate-once
- \triangleright Simplifications coming from the properties of the feature/aggregator pairs, ex.: immediate-aggregation
- \blacktriangleright Removing the never used accumulators.

"Aggregate-once" simplification

What is the "Aggregate-once" simplification ?

It allows to compute the feature value of a curent pattern occurrence only once and, possibly, earlier than the end of a pattern occurrence.

When is the simplification applicable ?

There must exist a transition on which the value of the feature from the current pattern occurrence is known.

Example: counting number of peaks

 $S_0 = ' \lt'$ $S_1 = ' \lt'$ $S_2 = ' = '$ $S_3 = ' \lt'$ $S_4 = ' \lt'$ $S_5 = ' \gt'$ $S_6 = ' \gt'$ $S_7 = ' \lt'$ $S_8 = ' = '$ $S_9 = ' \gt'$

- 1. First peak is detected upon consuming $s₅$
- 2. Second peak is detected upon consuming $s₉$

Two automata for nb_peak

Percentage of simplified constraints

Input

Input

- \triangleright Time-series variables X_i with *i* in [0, *n* − 1] over their domains $[a_i, b_i]$
- \triangleright An automaton with accumulators for a time-series constraint with
	- \blacktriangleright a set of states Q ;
	- \blacktriangleright an input alphabet Σ ;
	- \triangleright an *m*-tuple of integer accumulators with their initial values $I = \langle I_1, \ldots, I_m \rangle;$
	- A a transition function $\delta: Q \times Z^m \times \Sigma \to Q \times Z^m$.

Goal

Goal

A way to generate a model for an automaton with linear or linearisable accumulator updates, for example containing min and max.

Linear decomposition of automata without accumulators

Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular constraint with integer programming. In: CPAIOR 2007. LNCS, vol. 4510, pp. 29–43. Springer (2007)

Signature constraint

Introduced variables: S_i over Σ with $i \in [0, n-2]$.

What do the values of S_i mean?

$$
S_i = '>' \Leftrightarrow X_i > X_{i+1}, \forall i \in [0, n-2]
$$

\n
$$
S_i = ' =' \Leftrightarrow X_i = X_{i+1}, \forall i \in [0, n-2]
$$

\n
$$
S_i = ' < \Leftrightarrow X_i < X_{i+1}, \forall i \in [0, n-2]
$$

Transition function constraints

Introduced variables: Q_i over Q with $i \in [0, n-1]$; T_i over $Q \times \Sigma$ with $i \in [0, n-2]$

Each transition constraint has a form:

$$
Q_i = q \wedge S_i = \sigma \Leftrightarrow Q_{i+1} = \delta_1(q, \sigma) \wedge T_i = \langle q, \sigma \rangle, \forall i \in [0, n-2], \forall q \in Q, \forall \sigma \in \Sigma
$$

Initial state is fixed

 $Q_0 = q_0$

Accumulator updates

Accumulator updates

R_i over [a, b] with i in [0, n – 1]; T_i over $Q \times \Sigma$ with i in [0, n – 2].

$$
\blacktriangleright R_0=0
$$

$$
\blacktriangleright \ \mathcal{T}_i = \langle \mathbf{r}, \mathbf{r} \rangle \Rightarrow \mathbf{R}_{i+1} = \mathbf{R}_i + \mathbf{1}, \forall i \in [0, n-2]
$$

$$
\blacktriangleright \ \ T_i = \langle q, \sigma \rangle \Rightarrow \mathbf{R_{i+1}} = \mathbf{R_i}, \forall i \in [0, n-2], \forall \langle q, \sigma \rangle \in
$$

$$
(Q \times \Sigma) \setminus \langle r, \rangle
$$

$$
\blacktriangleright M=R_{n-1}
$$

New variables for the linear model

New variables

- ▶ Q_i is replaced by 0-1 variables Q_i^q i_j^q for all q in Q . $Q_i^q = 1 \Leftrightarrow Q_i = q$
- \blacktriangleright New constraint: \sum q∈Q $Q_i^q = 1, \forall i \in [0, \ldots, n-1]$
- \blacktriangleright The same procedure for T_i and S_i wrt their domains
- \blacktriangleright X_i and R_i remain integer variables!
- \triangleright Every constraint of the logical model is made linear by applying some standard techniques
- \blacktriangleright The linear model has $O(n)$ variables and $O(n)$ constraints

Implied constraints

 $\emph{Implicit constraints}^2$ improves propagation for constraints encoded via automata with at least one accumulator

- \blacktriangleright The implied constraints are generated offline
- \blacktriangleright The implied constraints are of the form:

$$
\alpha_1y_1+\cdots+\alpha_ky_k+\beta\geq 0
$$

where the y_i are the accumulators of $A(C, D, R)$ and the weights α_i and β are to be found

 \blacktriangleright Theoretically supported by Farkas' Lemma

²Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for automaton constraints. In: GCAI 2015. EasyChair Epic Series in Computing, vol. 36, pp. 113–126. EasyChair (2015)

24 / 32

Improvements

The first version of ImpGen

- \triangleright Only linear accumulator updates
- \blacktriangleright Manual selection

Improvements of the new version

- \triangleright Can handle max and min in accumulators updates
- \blacktriangleright Automatic selection by ranking

[Background](#page-3-0) [Automata simplification](#page-8-0) [Linear Decomposition](#page-14-0) [Implied constraints](#page-21-0) [Benchmark](#page-26-0) [Conclusion](#page-30-0)

Improvements of ImpGen: example

Benchmark CP

Goal

compare original and simplified automata

- \blacktriangleright For every time-series constraint maximise the result
- \blacktriangleright Time series of length 15 over [1, 3]
- \blacktriangleright Timeout of 100 seconds

Staff scheduling application

- \blacktriangleright Satisfy the demand;
- \blacktriangleright Take into account business rules
- \blacktriangleright Respect union's rules
- Minimise the costs 29 / 32

Results for staff scheduling application

- \triangleright P characterises complexity of the problem
- \triangleright Consider $P \in \{10, 15, 20, 25, 30, 35, 40\}$
- \blacktriangleright 100 instances for every value of P

- \blacktriangleright In average MIP is always better
- \triangleright The maximal gap sometimes is smaller for CP
- \triangleright MIP can solve to optimality just few instances

Conclusion

Contributions of the paper

- A linear decomposition for time-series constraints with $O(n)$ variables and $O(n)$ constraints
- \triangleright Simplified automata for time-series constraints
- \triangleright New version of the generator of linear implied constraints which handles accumulator updates with min, max
- \triangleright Benchmarks in the contexts of CP and MIP

Thank you for your attention! Questions?