
Time-Series Constraints: Improvements
and Application in CP and MIP Contexts

Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence,
Pierre Flener, M. Andreína Francisco R., Justin Pearson,

and Helmut Simonis

May 31, 2016

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

2 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

3 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Time-series constraint

A time-series constraint1 g_f_σ(〈X1, . . . ,Xn〉,M) where every Xi

is over Di ⊂ Z is specified by
I A pattern, a regular expression over the alphabet {<,=, >},

e.g. Peak = ‘<(<|=)*(>|=)*>’.
Currently 22 patterns in the framework

I A feature, a function over a subseries, e.g. one.
Currently 5 features in the framework

I An aggregator, a function over a feature sequence, e.g. Sum.
Currently 3 aggregators in the framework

1Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite
transducers for describing and synthesising structural time-series constraints.
Constraints 21(1), 22-40 (January 2016): summary on p. 723 of LNCS 9255,
Springer, 2015

4 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

NbPeak

sum

one

peak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 3 5 3 5 5 6 3 1 1 2 2 2 2 2 1

> < > < = < > > = < = = = = >

<< >> << >> >> << == == == == >>

11 1

3

2 6 7 10 11 12 13 14

time series: input sequence

(I) signature sequence

(II) e-occurrences
s-occurrences

(III) feature sequence

(IV) output: aggregation

Example

NbPeak(〈4, 3, 5, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 1〉, 3) holds !

5 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

6 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Automata for time-series constraints

Every time-series constraint can be encoded as an automaton with
three accumulators: D(potential), C (current), R(aggregation)

g(R,C)

≥ s

 R ← defaultg,f ,
C ← defaultg,f ,
D ← idf

≤ r ≥ t

≥

<

≤,
{D ← φf (D, δf)}

>,{
C ← φf (D, δf),
D ← idf

}

>,{
C ← φf (C , φf (D, δf)),

D ← idf

}

=,
{D ← φf (D, δf)}

<, R ← g(R,C),
C ← defaultg,f ,
D ← idf

Automaton for the g_f_peak constraints.

Feature f idf minf maxf φf δif

one 1 1 1 max 0

Aggregator g defaultg,f

Sum 0
7 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Automaton instantiation

When f is one and g is Sum the automaton becomes

≥ s

 C ← 0
D ← 0
R ← 0

≤ r ≥ t

R + C

≥

<

>{
C ← max(D, 1)
D ← 0

}
≤

{D ← max(D, 1)}

>{
C ← max(C ,max(D, 1))
D ← 0

}

=
{D ← max(D, 1)}

< C ← 0
D ← 0
R ← R + C

Obviously, this automaton can be simplified

8 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

9 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Automata simplifications

Goal

I Reduce the number of accumulators and aggregate as early
as possible

I Simplify the automata at the stage of their synthesis

Three simplification types

I Simplifications coming from the properties of patterns, ex.:
aggregate-once

I Simplifications coming from the properties of the
feature/aggregator pairs, ex.: immediate-aggregation

I Removing the never used accumulators.

10 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

“Aggregate-once” simplification

What is the “Aggregate-once” simplification ?

It allows to compute the feature value of a curent pattern
occurrence only once and, possibly, earlier than the end of a pattern
occurrence.

When is the simplification applicable ?

There must exist a transition on which the value of the feature
from the current pattern occurrence is known.

11 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Example: counting number of peaks

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

4

3

2

1

0

S0 =‘<’ S1 =‘<’ S2 =‘=’ S3 =‘<’ S4 =‘<’ S5 =‘>’ S6 =‘>’ S7 =‘<’ S8 =‘=’ S9 =‘>’

1. First peak is detected upon consuming s5

2. Second peak is detected upon consuming s9

12 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Two automata for nb_peak

≥ s

 C ← 0
D ← 0
R ← 0

≤ r ≥ t

R + C

≥

<

>{
C ← max(D, 1)
D ← 0

}
≤

{D ← max(D, 1)}

>{
C ← max(C ,max(D, 1))
D ← 0

}

=
{D ← max(D, 1)}

< C ← 0
D ← 0
R ← R + C

≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<

13 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Percentage of simplified constraints

Simplification Percentage

aggregate once 28.9 %
immediate aggreg. 45.9 %
other properties 11.6 %
unchanged automata 13.6 %

14 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

15 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Input

Input

I Time-series variables Xi with i in [0, n − 1] over their
domains [ai , bi]

I An automaton with accumulators for a time-series constraint
with

I a set of states Q;
I an input alphabet Σ;
I an m-tuple of integer accumulators with their initial values

I = 〈I1, . . . , Im〉;
I a transition function δ : Q × Zm × Σ→ Q × Zm.

16 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Goal

Goal
A way to generate a model for an automaton with linear or
linearisable accumulator updates, for example containing min and
max.

Linear decomposition of automata without accumulators

Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular
constraint with integer programming. In: CPAIOR 2007. LNCS,
vol. 4510, pp. 29–43. Springer (2007)

17 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Signature constraint

Introduced variables: Si over Σ with i ∈ [0, n − 2].

What do the values of Si mean ?

Si = ‘>’⇔ Xi > Xi+1,∀i ∈ [0, n − 2]

Si = ‘=’⇔ Xi = Xi+1,∀i ∈ [0, n − 2]

Si = ‘<’⇔ Xi < Xi+1,∀i ∈ [0, n − 2]

18 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Transition function constraints

Introduced variables: Qi over Q with i ∈ [0, n − 1]; Ti over Q × Σ
with i ∈ [0, n − 2]

q δ1(q, σ)

σ

Each transition constraint has a form:
Qi = q ∧ Si = σ ⇔ Qi+1 = δ1(q, σ) ∧ Ti = 〈q, σ〉,
∀i ∈ [0, n − 2], ∀q ∈ Q, ∀σ ∈ Σ

Initial state is fixed
Q0 = q0

19 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Accumulator updates

≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<

Accumulator updates

Ri over [a, b] with i in [0, n− 1]; Ti over Q ×Σ with i in [0, n− 2].
I R0 = 0
I Ti = 〈r , >〉 ⇒ Ri+1 = Ri + 1,∀i ∈ [0, n − 2]

I Ti = 〈q, σ〉 ⇒ Ri+1 = Ri,∀i ∈ [0, n − 2],∀〈q, σ〉 ∈
(Q × Σ) \ 〈r , >〉

I M = Rn−1
20 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

New variables for the linear model

New variables

I Qi is replaced by 0-1 variables Qq
i for all q in Q.

Qq
i = 1⇔ Qi = q

I New constraint:
∑
q∈Q

Qq
i = 1,∀i ∈ [0, . . . , n − 1]

I The same procedure for Ti and Si wrt their domains
I Xi and Ri remain integer variables!

I Every constraint of the logical model is made linear by
applying some standard techniques

I The linear model has O(n) variables and O(n) constraints

21 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

22 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Implied constraints

Implied constraints2 improves propagation for constraints encoded
via automata with at least one accumulator

I The implied constraints are generated offline

I The implied constraints are of the form:

α1y1 + · · ·+ αkyk + β ≥ 0

where the yi are the accumulators of A(C , D, R) and the
weights αi and β are to be found

I Theoretically supported by Farkas’ Lemma

2Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for
automaton constraints. In: GCAI 2015. EasyChair Epic Series in Computing,
vol. 36, pp. 113–126. EasyChair (2015)

23 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<

Options
Ri+2 ≤ Ri +1

24 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Improvements

The first version of ImpGen

I Only linear accumulator updates
I Manual selection

Improvements of the new version

I Can handle max and min in accumulators updates
I Automatic selection by ranking

25 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Improvements of ImpGen: example

R s

{R ← −∞}

R

≥<
{R ← max(R, Xi+1 − Xi)}

Options
Ri ≥ Xi+1 − Xi

26 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Contents

Time-Series
Constraintsstart Automata Simplified

Automata

Implied
Constraints

Linear
Decomposition

Benchmarks
CP and MIP

27 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Benchmark CP

Goal
compare original and simplified automata

I For every time-series constraint maximise the result
I Time series of length 15 over [1, 3]
I Timeout of 100 seconds

(a) Runtime

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

(b) Backtracks

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1 10 100 1000 10000 100000 1x10
6

 1x10
728 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Staff scheduling application

I Satisfy the demand;
I Take into account business rules
I Respect union’s rules
I Minimise the costs 29 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Results for staff scheduling application

I P characterises complexity of the problem
I Consider P ∈ {10, 15, 20, 25, 30, 35, 40}
I 100 instances for every value of P

optimality gap
cp mip

p avg max avg max opt
20 3.42 9.67 2.28 18.77 27/100
30 3.20 8.02 2.04 6.34 26/100
40 3.51 17.32 1.97 10.47 18/100

I In average MIP is always better
I The maximal gap sometimes is smaller for CP
I MIP can solve to optimality just few instances

30 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Conclusion

Contributions of the paper

I A linear decomposition for time-series constraints with O(n)
variables and O(n) constraints

I Simplified automata for time-series constraints
I New version of the generator of linear implied constraints

which handles accumulator updates with min, max
I Benchmarks in the contexts of CP and MIP

31 / 32

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Thank you for your attention!
Questions?

32 / 32

	Background
	Automata simplification
	Linear Decomposition
	Implied constraints
	Benchmark
	Conclusion

