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Time-series constraint

A time-series constraint1 g_f_σ(〈X1, . . . ,Xn〉,M) where every Xi

is over Di ⊂ Z is specified by
I A pattern, a regular expression over the alphabet {<,=, >},

e.g. Peak = ‘<(<|=)*(>|=)*>’.
Currently 22 patterns in the framework

I A feature, a function over a subseries, e.g. one.
Currently 5 features in the framework

I An aggregator, a function over a feature sequence, e.g. Sum.
Currently 3 aggregators in the framework

1Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite
transducers for describing and synthesising structural time-series constraints.
Constraints 21(1), 22-40 (January 2016): summary on p. 723 of LNCS 9255,
Springer, 2015

4 / 32



Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

NbPeak
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time series: input sequence

(I) signature sequence

(II) e-occurrences
s-occurrences

(III) feature sequence

(IV) output: aggregation

Example

NbPeak(〈4, 3, 5, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 1〉, 3) holds !
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Automata for time-series constraints

Every time-series constraint can be encoded as an automaton with
three accumulators: D(potential), C (current), R(aggregation)

g(R,C)

≥ s

 R ← defaultg,f ,
C ← defaultg,f ,
D ← idf



≤ r ≥ t

≥

<

≤,
{D ← φf (D, δf )}

>,{
C ← φf (D, δf ),
D ← idf

}

>,{
C ← φf (C , φf (D, δf )),

D ← idf

}

=,
{D ← φf (D, δf )}

<, R ← g(R,C),
C ← defaultg,f ,
D ← idf


Automaton for the g_f_peak constraints.

Feature f idf minf maxf φf δif

one 1 1 1 max 0

Aggregator g defaultg,f

Sum 0
7 / 32



Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Automaton instantiation

When f is one and g is Sum the automaton becomes

≥ s

 C ← 0
D ← 0
R ← 0



≤ r ≥ t

R + C

≥

<

>{
C ← max(D, 1)
D ← 0

}
≤

{D ← max(D, 1)}

>{
C ← max(C ,max(D, 1))
D ← 0

}

=
{D ← max(D, 1)}

< C ← 0
D ← 0
R ← R + C



Obviously, this automaton can be simplified
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Automata simplifications

Goal

I Reduce the number of accumulators and aggregate as early
as possible

I Simplify the automata at the stage of their synthesis

Three simplification types

I Simplifications coming from the properties of patterns, ex.:
aggregate-once

I Simplifications coming from the properties of the
feature/aggregator pairs, ex.: immediate-aggregation

I Removing the never used accumulators.
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“Aggregate-once” simplification

What is the “Aggregate-once” simplification ?

It allows to compute the feature value of a curent pattern
occurrence only once and, possibly, earlier than the end of a pattern
occurrence.

When is the simplification applicable ?

There must exist a transition on which the value of the feature
from the current pattern occurrence is known.
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Example: counting number of peaks

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

4

3

2

1

0

S0 =‘<’ S1 =‘<’ S2 =‘=’ S3 =‘<’ S4 =‘<’ S5 =‘>’ S6 =‘>’ S7 =‘<’ S8 =‘=’ S9 =‘>’

1. First peak is detected upon consuming s5

2. Second peak is detected upon consuming s9
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Two automata for nb_peak

≥ s

 C ← 0
D ← 0
R ← 0



≤ r ≥ t

R + C

≥

<

>{
C ← max(D, 1)
D ← 0

}
≤

{D ← max(D, 1)}

>{
C ← max(C ,max(D, 1))
D ← 0

}

=
{D ← max(D, 1)}

< C ← 0
D ← 0
R ← R + C


≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<
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Percentage of simplified constraints

Simplification Percentage

aggregate once 28.9 %
immediate aggreg. 45.9 %
other properties 11.6 %
unchanged automata 13.6 %

14 / 32
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Input

Input

I Time-series variables Xi with i in [0, n − 1] over their
domains [ai , bi ]

I An automaton with accumulators for a time-series constraint
with

I a set of states Q;
I an input alphabet Σ;
I an m-tuple of integer accumulators with their initial values

I = 〈I1, . . . , Im〉;
I a transition function δ : Q × Zm × Σ→ Q × Zm.
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Goal

Goal
A way to generate a model for an automaton with linear or
linearisable accumulator updates, for example containing min and
max.

Linear decomposition of automata without accumulators

Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular
constraint with integer programming. In: CPAIOR 2007. LNCS,
vol. 4510, pp. 29–43. Springer (2007)
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Signature constraint

Introduced variables: Si over Σ with i ∈ [0, n − 2].

What do the values of Si mean ?

Si = ‘>’⇔ Xi > Xi+1,∀i ∈ [0, n − 2]

Si = ‘=’⇔ Xi = Xi+1,∀i ∈ [0, n − 2]

Si = ‘<’⇔ Xi < Xi+1,∀i ∈ [0, n − 2]
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Transition function constraints

Introduced variables: Qi over Q with i ∈ [0, n − 1]; Ti over Q × Σ
with i ∈ [0, n − 2]

q δ1(q, σ)

σ

Each transition constraint has a form:
Qi = q ∧ Si = σ ⇔ Qi+1 = δ1(q, σ) ∧ Ti = 〈q, σ〉,
∀i ∈ [0, n − 2], ∀q ∈ Q, ∀σ ∈ Σ

Initial state is fixed
Q0 = q0
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Accumulator updates

≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<

Accumulator updates

Ri over [a, b] with i in [0, n− 1]; Ti over Q ×Σ with i in [0, n− 2].
I R0 = 0
I Ti = 〈r , >〉 ⇒ Ri+1 = Ri + 1,∀i ∈ [0, n − 2]

I Ti = 〈q, σ〉 ⇒ Ri+1 = Ri,∀i ∈ [0, n − 2],∀〈q, σ〉 ∈
(Q × Σ) \ 〈r , >〉

I M = Rn−1
20 / 32
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New variables for the linear model

New variables

I Qi is replaced by 0-1 variables Qq
i for all q in Q.

Qq
i = 1⇔ Qi = q

I New constraint:
∑
q∈Q

Qq
i = 1,∀i ∈ [0, . . . , n − 1]

I The same procedure for Ti and Si wrt their domains
I Xi and Ri remain integer variables!

I Every constraint of the logical model is made linear by
applying some standard techniques

I The linear model has O(n) variables and O(n) constraints
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Implied constraints

Implied constraints2 improves propagation for constraints encoded
via automata with at least one accumulator

I The implied constraints are generated offline

I The implied constraints are of the form:

α1y1 + · · ·+ αkyk + β ≥ 0

where the yi are the accumulators of A(C , D, R) and the
weights αi and β are to be found

I Theoretically supported by Farkas’ Lemma

2Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for
automaton constraints. In: GCAI 2015. EasyChair Epic Series in Computing,
vol. 36, pp. 113–126. EasyChair (2015)
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≥ s{R ← 0}

≤ r ≥ t

R

≥

<

>
{R ← R + 1}

≤ >

=
<

Options
Ri+2 ≤ Ri +1
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Improvements

The first version of ImpGen

I Only linear accumulator updates
I Manual selection

Improvements of the new version

I Can handle max and min in accumulators updates
I Automatic selection by ranking

25 / 32
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Improvements of ImpGen: example

R s

{R ← −∞}

R

≥<
{R ← max(R, Xi+1 − Xi )}

Options
Ri ≥ Xi+1 − Xi
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Benchmark CP

Goal
compare original and simplified automata

I For every time-series constraint maximise the result
I Time series of length 15 over [1, 3]
I Timeout of 100 seconds

(a) Runtime
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Staff scheduling application

I Satisfy the demand;
I Take into account business rules
I Respect union’s rules
I Minimise the costs 29 / 32
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Results for staff scheduling application

I P characterises complexity of the problem
I Consider P ∈ {10, 15, 20, 25, 30, 35, 40}
I 100 instances for every value of P

optimality gap
cp mip

p avg max avg max opt
20 3.42 9.67 2.28 18.77 27/100
30 3.20 8.02 2.04 6.34 26/100
40 3.51 17.32 1.97 10.47 18/100

I In average MIP is always better
I The maximal gap sometimes is smaller for CP
I MIP can solve to optimality just few instances
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Conclusion

Contributions of the paper

I A linear decomposition for time-series constraints with O(n)
variables and O(n) constraints

I Simplified automata for time-series constraints
I New version of the generator of linear implied constraints

which handles accumulator updates with min, max
I Benchmarks in the contexts of CP and MIP
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Thank you for your attention!
Questions?
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