
Constraints manuscript No.
(will be inserted by the editor)

A Constraint-Based Local Search
Backend for MiniZinc

Gustav Björdal · Jean-Noël Monette ·
Pierre Flener · Justin Pearson

the date of receipt and acceptance should be inserted later

Abstract MiniZinc is a modelling language for combinatorial problems, which can
then be solved by a solver provided in a backend. There are many backends, based
on technologies such as constraint programming, integer programming, or Boolean
satisfiability solving. However, to the best of our knowledge, there is currently
no constraint-based local search (CBLS) backend. We discuss the challenges to
develop such a backend and give an overview of the design of a CBLS backend for
MiniZinc. Experimental results show that for some MiniZinc models, our CBLS
backend, based on the OscaR/CBLS solver, is able to give good-quality results in
short time.

Keywords Constraint-Based Local Search · MiniZinc

1 Introduction

Solving combinatorial problems is a difficult task and no single solver can be uni-
versally better than all other solvers. Hence, when facing a problem, it is useful to
be able to model it once and run several solvers to find the best one. MiniZinc [25]
is a technology-independent modelling language for combinatorial problems, which
can then be solved by a solver provided in a backend. There are many backends,
based on technologies such as constraint programming (CP), integer programming,
or Boolean satisfiability solving. However, to the best of our knowledge, there is
currently no constraint-based local search (CBLS) backend. While most MiniZinc
backends are just a parsing interface in front of the underlying solver, things are not
as straightforward in the case of CBLS. We discuss the challenges to develop such
a CBLS backend and give an overview of the design of a backend based on the Os-
caR/CBLS solver [9]. Our backend is hereafter called fzn-oscar-cbls and is pub-
licly available from https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar.
A preliminary version of fzn-oscar-cbls has been developed by the first author [6].

The main contributions of this paper are:

Uppsala University, Department of Information Technology, 752 37 Uppsala, Sweden
E-mail: FirstName.LastName@it.uu.se

https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar


– a description of a CBLS backend for MiniZinc;
– a heuristic to discover the structure of a model that can be used by a black-box

local search procedure;
– a black-box local search procedure making use of constraint-specific neighbour-

hoods;
– a description of how to adapt MiniZinc models to be more suitable to CBLS.

The paper is organised as follows. We start with a description of both MiniZinc
and CBLS in Section 2. We give an overview of fzn-oscar-cbls in Section 3. We
describe the creation of a good CBLS model from the MiniZinc model in Section 4
and our search procedure in Section 5. Experimental results in Section 6 show that,
for some MiniZinc models, fzn-oscar-cbls is able to give good-quality results in
short time. Then, in Section 7, we describe discrepancies between the MiniZinc and
CBLS worlds, and give hints on how to write models suitable to CBLS. Related
work is discussed in Section 8. We conclude and discuss future work in Section 9.

2 Background

We only present the aspects of both MiniZinc and CBLS that are relevant to our
purpose. We first recall some basic notions in combinatorial optimisation.

2.1 Problems and Constraints

A constrained optimisation problem (COP) is a formal way to describe a combinato-
rial optimisation problem. A COP is comprised of a set of decision variables (the
unknowns of the problem), a set of constraints, and an objective variable. Each
variable has a domain in which it can take its value. A solution to a COP is an
assignment of each variable to a value in its domain so that all constraints are
satisfied. An optimal solution is a solution for which the value of the objective vari-
able is optimal (minimal or maximal). A constraint satisfaction problem (CSP) is a
COP where the objective variable is absent (i.e., all solutions are equally good).
Without loss of generality, we only talk of COPs hereafter.

In this paper, we define solving a COP to be the finding of a best possible
solution within a given amount of time. Solving a COP is performed by a solver

that receives as input a model of the COP. Solving is gradual and relative: One
can say that a solver A solves a COP better than a solver B if, for instance, A
returns a better solution than B within the time limit, or if A returns an optimal
solution faster than B.

A global constraint is a constraint representing a recurring substructure of COPs
(there is no single definition of a global constraint; see, e.g., [4] for an overview). Be-
side yielding more succinct models, the use of global constraints usually improves
the solving of a COP by enabling the use of good decompositions or specialised
algorithms inside the solver.

2.2 MiniZinc and Its Tool Chain

In an attempt to have a standard modelling language for combinatorial problems,
MiniZinc [25], a solver-independent medium-level modelling language, has been

2



1 include "globals.mzn";
2 int: n; % number of queens
3 array[1..n] of var 1..n: c; % the column of each queen
4 constraint all_different(c); % no two queens on ... the same column
5 constraint all_different([c[i] + i | i in 1..n]); % ... the same up−diagonal
6 constraint all_different([c[i] - i | i in 1..n]); % ... the same down−diagonal
7 solve satisfy;

Fig. 1 A MiniZinc model for the n-queens problem.

designed. MiniZinc supports most of the usual modelling constructs, such as sets,
arrays, user-defined constraints and functions, and decision variables of Boolean,
integer, float, and integer-set types. A solve statement defines the type of problem
(satisfaction, minimisation, or maximisation) and the objective variable (if any).
MiniZinc comes with a library of solver-independent declarative decompositions
of its global constraints and allows solver-specific decompositions of those global
constraints. MiniZinc allows parametric models with instance data provided in
separate data files. We will talk of a MiniZinc instance for the combination of a
parametric model with an associated data file, as well as for a non-parametric
model. MiniZinc supports annotations of variables, constraints, and solve state-
ments. The annotations are not part of the model but give extra information
that a solver may exploit or ignore. Predefined annotations are search on a solve

statement to describe a branching strategy, and defines var(x) on a constraint
to inform that the constraint functionally defines the variable x.

Figure 1 presents a MiniZinc model for the classical n-queens problem. The goal
is to place n queens on an n× n chessboard so that no queen can attack another
queen. Variable c[i] denotes the column of the queen in row i. The model makes
use of the AllDifferent global constraint, which states that all its argument
expressions must take different values.

2.2.1 FlatZinc

MiniZinc is paired with the low-level language FlatZinc, which is a small subset
of MiniZinc without complex expressions (e.g., loops or function calls). To solve a
MiniZinc instance, it must first be transformed into a FlatZinc model by a process
called flattening [24]. The resulting FlatZinc model is then presented to a backend,
which encapsulates a solver. During flattening, new constraints and (functionally
defined) variables can be introduced. Flattening produces solver-specific models.
In particular, each global constraint is replaced by its decomposition, or is kept as
is if it has no decomposition. In the latter case, we talk of a native global constraint.

Figure 2 presents excerpts of a FlatZinc model obtained by flattening, for n = 8,
the MiniZinc model of Figure 1 for a backend in which AllDifferent is a native
global constraint. The variables X 01 to X 16 in lines 1 to 16 are introduced during
flattening to represent each instance of the expressions c[i] + i and c[i] - i in
the MiniZinc model. The introduced variables are defined by the constraints in
lines 21 to 36, as indicated by the defines var annotations.

3



1 var 0..7: X_01;
2 var -1..6: X_02;

[...]
15 var 8..15: X_15;
16 var 9..16: X_16;
17 array [1..8] of var 1..8: c;
18 constraint all_different_int([X_01, X_02, X_03, X_04, X_05, X_06,X_07,X_08]);
19 constraint all_different_int([X_09, X_10, X_11, X_12, X_13, X_14,X_15,X_16]);
20 constraint all_different_int(c);
21 constraint int_lin_eq([-1, 1], [X_01, c[1]], 1) :: defines_var(X_01);
22 constraint int_lin_eq([-1, 1], [X_02, c[2]], 2) :: defines_var(X_02);

[...]
35 constraint int_lin_eq([-1, 1], [X_15, c[7]], -7) :: defines_var(X_15);
36 constraint int_lin_eq([-1, 1], [X_16, c[8]], -8) :: defines_var(X_16);
37 solve satisfy;

Fig. 2 Excerpts of a FlatZinc model resulting from flattening, for n = 8, the MiniZinc model
of Figure 1. The int lin eq([a1, a2], [x1, x2], b) constraint holds if and only if a1 ·x1+a2 ·x2 = b,
where the ai and b are constants and the xi are variables.

2.2.2 The MiniZinc Challenge

Since 2008, solvers can compete in the annual MiniZinc Challenge [34,35]. For each
challenge, a collection of 100 MiniZinc instances is gathered and used to compare
solvers. After each challenge, the results and the instances are published and can
in turn be used to further benchmark new solvers and solving technologies.

2.2.3 Existing Backends

There are many backends for MiniZinc and they use various solving technologies.
Some of them are based on Gecode [16] (CP), OR-Tools [30] (CP), Opturion
CPX [29] (CP/lazy-clause generation), SCIP [1] (mixed integer programming),
fzn2smt [7] (SAT modulo theories), iZplus [15] (a hybrid of CP and local search),
and sunny-cp [3] (a portfolio of solvers). With the exception of sunny-cp, most
backends are parsers translating FlatZinc models into constructs of the underlying
solver in a straightforward manner. However, sunny-cp extracts features of the
model to decide which solver(s) to use.

To the best of our knowledge, iZplus [15] is the only MiniZinc backend using
some form of local search: solutions found by its CP solver are modified by some
form of local search to find neighbouring solutions. Unfortunately, very few details
are available on this local search procedure.

2.3 Constraint-Based Local Search

Local search (see, e.g., [21]) is a family of search procedures in which all variables
are assigned from the start and the assignment is iteratively modified until some
stopping criterion is met, such as reaching a time or iteration limit. The modifi-
cation from one assignment to the next one usually involves only a few variables
and is called a move. A move is usually picked among a set of candidate moves,
called a neighbourhood. Some well-known local search procedures are called tabu

4



search, simulated annealing, and variable neighbourhood search (see [21] for an
overview).

Local search is incomplete, meaning that it is unable to prove unsatisfiability
or optimality, or to conclude having found all solutions to a problem. Instead, local
search methods are often able to find good-quality solutions in a short amount of
time, including for very large problem instances that complete methods cannot
handle in useful time. Local search often uses randomisation, hence several exe-
cutions of the same search procedure on the same instance can produce different
results.

Constraint-based local search (see [40]) adapts ideas of CP to local search:
a declarative modelling language allows the programmer to define a problem in
terms of variables, invariants, constraints, and an objective variable. An invariant

maintains the value of one or more variables (the output of the invariant) to be
equal to some function of the values of other variables (the input). Invariants are
stated declaratively and the solver takes care of maintaining them incrementally
upon modification of the input variables, say upon a move. The variables appear-
ing in an invariant need not be decision variables of a COP. They can also be
introduced by the solver to maintain auxiliary information.

As in CP, one can use the constraints to guide the CBLS procedure towards a
good solution. There are however a number of key differences with CP. First, as
in local search, variables are assigned a value at all time. Second, constraints can
be handled in three different ways:

– Implicit constraints are always satisfied during search. An implicit constraint
is maintained satisfied through the use of a neighbourhood that only contains
moves that keep the constraint satisfied. The initial assignment is also created
to satisfy the implicit constraint.
For example, an AllDifferent(x) constraint can be made implicit by initially
assigning all variables in x to different values, and, during search, performing
moves on x that either swap the values of two variables or assign a variable to
an unused value. Other neighbourhoods are given in Section 5.1.

– One-way constraints are also always satisfied during search. A one-way con-
straint is maintained satisfied by setting one or more of its variables to be the
output of an invariant whose inputs are its other variables. We say that the
output variables of the invariant are defined by the one-way constraint.
For example, the constraint a+ b = c can be made a one-way constraint in any
one of three ways. Either c is maintained to be a+ b, or a is maintained to be
c− b, or b is maintained to be c− a.

– Soft constraints are constraints that do not have to be satisfied during search.
Instead, the violation of a soft constraint is a constraint-specific measure of how
violated it is. The violation is zero when the constraint is satisfied and positive
otherwise. The violation of a constraint is maintained by an invariant defining
an introduced variable. All soft constraints must be satisfied in any solution.
For example, the violation of the constraint a ≤ b can be defined to be max(0, b−
a): the violation is 0 if a ≤ b and b− a otherwise.

All constraints can be soft but only the ones representing a functional dependency
can be one-way. All constraints can theoretically be made implicit but in practice
only a few implicit constraints can be handled, because designing a neighbourhood
of only solutions would be equivalent to solving the problem.

5



1 val n = 8
2 val init = RandomPermutation(1..n)
3 var c = [Var(1..n,init.next()) | i in 1..n]
4 var cpi = [Invariant(c[i] + i) | i in 1..n]
5 var cmi = [Invariant(c[i] - i) | i in 1..n]
6 AllDifferent(cpi)
7 AllDifferent(cmi)
8 while(violation > 0){
9 val i1 = selectOneOf(1..n)

10 val i2 = selectOneOf(1..n)
11 swapValues(c[i1],c[i2])
12 }

Fig. 3 Pseudo-code of a CBLS model for the 8-queens problem.

In addition to the model, CBLS solvers usually require the modeller to write
a search procedure (e.g., a tabu search). To this end, CBLS solvers provide ways
to query the values of variables and the violations associated with constraints and
variables, in order to help drive the search towards (good) solutions.

Figure 3 shows pseudo-code of a CBLS model to solve the n-queens problem
with n = 8. Line 3 creates an array of variables: the constructor Var(d,v) creates a
variable with domain d and initial value v. Lines 4 and 5 introduce sixteen one-way
constraints to define the cpi and cmi variables through invariants (corresponding to
the expressions inside the constraints on lines 5 and 6 of Figure 1). The constraints
on lines 6 and 7 are soft constraints. The constraint (of line 4 of Figure 1) stating
that all c[i] should take a different value is here implicit: the initial assignment
is a permutation of the values 1 to n (lines 2 and 3), and the moves are defined
to swap the values of two variables c[i] (line 11). A basic search procedure is
given on lines 8 to 12: while the sum of the violations of the two soft constraints
is larger than zero (line 8), two rows are selected randomly (lines 9 and 10) and
the columns of the queens in these rows are swapped (line 11). When given the
FlatZinc model of Figure 2, our backend creates the same CBLS model as the one
in Figure 3, but with a different search procedure.

3 Designing a CBLS Backend

The implementation of a CBLS backend for MiniZinc presents several challenges.
Some arise because CBLS is a more recent field than, say, constraint programming
or integer programming. Others are caused by implicit assumptions made in the
MiniZinc world (be it by the designers of the language or by its users). In this
work, we focus on presenting a backend that works with existing MiniZinc models
without modification. In Section 7, we will briefly discuss how one can modify
MiniZinc models or add annotations that would help a CBLS backend.

We developed our CBLS backend, fzn-oscar-cbls, on top of the CBLS part of
the OscaR library [9]. OscaR [31] is a collection of open-source software, written in
Scala, for operations research. It includes, among others, a CP solver, a wrapper to
linear programming solvers, and a CBLS solver here referred to as OscaR/CBLS.
Other CBLS solvers exist, such as Comet [40], Kangaroo [26], and the Adaptive
Search library [8]. Oscar/CBLS is, to the best of our knowledge, the only publicly

6



available and actively maintained CBLS solver that is complete enough for our
purposes. While our code is specific to OscaR/CBLS, the ideas developed in this
paper are generally applicable to other CBLS solvers.

When given a FlatZinc model, parsed using a parser generated with Antlr [32],
fzn-oscar-cbls performs the following tasks:

1. The FlatZinc model is simplified and variable domains are tightened.
2. Each constraint is classified as soft, implicit, or one-way.
3. The actual CBLS model is created.
4. Search is performed on the CBLS model and solutions are printed as they are

found.

These tasks are explained in Sections 4 (tasks 1 to 3) and 5 (task 4).
Our backend is accompanied by a library of global constraint decompositions to

be used during flattening to FlatZinc. In particular, a number of global constraints
are handled natively: AllDifferent, (Sub)Circuit, counting constraints (e.g.,
GlobalCardinality, Among), Inverse, Maximum, Minimum, and Cumulative.
For the other global constraints, we use the solver-independent decompositions of
MiniZinc, sometimes because they are good enough for our purpose, but mainly
due to their absence in OscaR/CBLS. We are currently working on extending
OscaR/CBLS to improve the global constraint support. In its current state, our
backend only supports integer and Boolean variables and constraints. It would be
straightforward to extend it to set variables as OscaR/CBLS supports them.

The source code of fzn-oscar-cbls is available from https://bitbucket.org/

oscarlib/oscar/src/?at=fzn-oscar. The executable is currently available from
http://www.it.uu.se/research/group/astra/software and will be part of the next
release of OscaR.

4 Structuring the CBLS Model

We now describe how the FlatZinc model is transformed and analysed to obtain
a suitable CBLS model (tasks 1 to 3 of Section 3).

4.1 Simplification

In the first task, unary constraints are propagated, to reduce the domains of their
variables, and removed from the model. Some simple binary constraints are also
propagated. This process can reduce the domains of some variables to singletons,
turning them into constants. Hence, more constraints can become unary and the
propagation is repeated until no more de-facto unary constraints can be removed.
This task is necessary to avoid unbounded domains that may appear in näıve
models. In the current version of the backend, this propagation is implemented in
an ad-hoc way, hence we only implemented propagation for some constraints that
appear often. In future versions of fzn-oscar-cbls, we plan to use the CP part
of OscaR to perform propagation of all constraints until fix-point as this might
drastically reduce the size of the search space.

Figure 4 gives an example a of FlatZinc model where propagation largely re-
duces the domains. In this model, the domains of the variables are initially un-
bounded, as denoted by the keyword int on lines 1485 to 1487. Using the unary

7

https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar
https://bitbucket.org/oscarlib/oscar/src/?at=fzn-oscar
http://www.it.uu.se/research/group/astra/software


[...]
1485 array [1..192] of var int: bout;
1486 array [1..192] of var int: buf;
1487 array [1..192] of var int: c;

[...]
2990 constraint int_le(0, bout[3]);

[...]
3181 constraint int_le(0, buf[2]);
3182 constraint int_le(0, buf[3]);

[...]
3375 constraint int_le(bout[3], 2500);

[...]
3749 constraint int_le(buf[2], 10000);
3750 constraint int_le(buf[3], 10000);

[...]
4133 constraint int_lin_eq([1, -1, 1, 1], [bout[3], buf[2], buf[3], c[3]], 4000);

[...]

Fig. 4 Excerpts of the FlatZinc model resulting from flattening the wwtpp.mzn model with
the ex02000 2400 100.dzn data file from the 2010 MiniZinc Challenge.

constraints on lines 2990 to 3750, our current constraint propagation reduces the
domains of the bout variables to 0..2500 and the domains of the buf variables to
0..10000. By propagating all constraints until fix-point, it is in this case also possi-
ble to reduce the size of the domain of the c variables by propagating constraints
such as the int lin eq constraint on line 4133. Here the domain of c[3] can be
reduced to −8500..14000.

4.2 Constraint Classification

The second task is concerned with the main challenge in implementing a CBLS
backend, namely to decide how to translate each constraint of the FlatZinc model
into a CBLS constraint. Indeed, there are up to three possibilities for each con-
straint. In theory, one could use only soft constraints, but this generally leads to
very poor performance. On the contrary, we argue that it is important to have as
much structure as possible by using one-way and implicit constraints. However,
there are some limitations of one-way and implicit constraints: A variable can only
be defined by one one-way constraint; and an implicit constraint cannot be defined
on variables that are defined by a one-way constraint or that appear in another
implicit constraint. When alternatives exist, it is not clear how to choose which
constraints are made implicit or one-way in order to solve best the FlatZinc model.
We describe here our heuristic approach to this challenge.

First, we try to greedily discover as many one-way constraints as possible. We
execute the following steps in order:

1. All constraints annotated with defines var in the FlatZinc model are made
one-way constraints.

2. Starting from the objective variable, if any, we explore the model to turn as
many of the constraints as possible into one-way constraints, as described in
Algorithm 1.

8



Algorithm 1 FindOneWayConstraintsFromObjective

1: Set all variables to non-visited
2: Let Q be a FIFO queue containing initially only the objective variable
3: while Q is not empty do
4: Let v be the first variable in Q and dequeue it
5: if v is not defined and v can be defined by some constraint c then
6: Set c to be a one-way constraint defining v
7: if v is defined by some constraint c then
8: Enqueue all non-visited input variables of c into Q and set them visited

3. For each variable v that is not yet defined by a one-way constraint, by order of
decreasing domain size, we pick a constraint c on v in order to make c a one-
way constraint defining v. The constraint c must functionally define a unique
variable, namely v. For instance, the constraint max(x, y) = z only functionally
defines z. But the constraint x + y = z functionally defines each of x, y, and
z from the other two variables, and would not be considered in this step. A
variable for which there exists no such constraint is skipped in this step.

4. For each variable v that is not yet defined by a one-way constraint, by order
of decreasing domain size, we pick a constraint c on v in order to make c a
one-way constraint defining v. The constraint c must functionally define v but,
in this step, it is not required to functionally define only v. The constraint c
must not have been made one-way yet. A variable for which there exists no
such constraint is skipped in this step.

5. The one-way constraints are topologically sorted based on the following di-
graph: each one-way constraint is a node; there is an edge from a constraint
a to another constraint b if the variable defined by a appears in b. For each
cycle, one constraint is made non-one-way. We pick a constraint whose defined
variable has the smallest domain, ties being broken by taking the constraint
with the largest number of input variables being defined by another invariant.
This step ensures that no cycle is formed by the invariants. While cycles can
be accepted in the static graph of invariants as long as they are absent from
the dynamic graph (see [40, page 96] for details), we forbid cycles altogether
to keep things simple. Finding the minimum number of one-way constraints to
remove to make the graph acyclic is known as the minimum feedback arc set
problem and is known to be NP-hard [22]. Hence we do not try and find the
smallest number or even approximate it.

In the current version of fzn-oscar-cbls, we only consider one-way constraints
that define one variable. However, there are constraints that can have several
defined variables. This is for instance the case of the Sort and GlobalCardinality

(with variable cardinalities) constraints. Trying to make those constraints one-way
requires changes to our heuristic and is left as future work.

Next, we try and find implicit constraints. We currently only support a small
number of implicit constraints, namely AllDifferent, GlobalCardinality with
non-variable cardinalities, LinearEquality (called int lin eq in FlatZinc, see Fig-
ure 2) with unit coefficients, Circuit, and Subcircuit. For each such constraint c,
by decreasing order of its number of variables, if c is not defined over any variable
that is defined by a one-way constraint or that is in another implicit constraint,
then c is made implicit. All remaining constraints are classified as soft.

9



Our heuristic approach to the classification of constraints gives priority to
finding one-way constraints rather than implicit constraints. Our rationale is that
it seems better to reduce the search space (by defining variables with invariants)
than to structure the search space with specific neighbourhoods.

This greedy heuristic can have negative effects. For instance, considering Lin-

earEquality constraints over Boolean variables as one-way proved to hinder the
solving of some problems (e.g., some vrp instances of the MiniZinc Challenge 2011).
Also, in general, having a greedy approach has the drawback that some bad deci-
sions might remove good choices later on. However, it has the advantage of being
fast and seems to give overall satisfactory results. We plan to study further how
other heuristics might have an impact on the efficiency of fzn-oscar-cbls.

4.3 CBLS Model Creation

In the third task, the CBLS model is created. It comprises the following elements,
which will be used in the search procedure (see Section 5):

– A collection of neighbourhoods for the implicit constraints.
– A collection of invariants that maintain one-way constraints.
– The global violation, which is the sum of the violations of all soft constraints.
– A collection of independent variables, which are the variables that do not appear

in an implicit constraint and are not defined by a one-way constraint.
– Optionally, the objective variable.

In OscaR/CBLS, an invariant does not enforce that its output variable must
take a value in its domain. Hence, when creating the CBLS model, we must add a
soft unary constraint on each variable defined by a one-way constraint to enforce
that it takes a value in its domain.

5 Black-Box Local Search

Another challenge for our CBLS backend is to design a suitable black-box search
procedure. One cannot get the help of the often used search annotation of Mini-
Zinc, as it is specific to the description of CP branching heuristics. Hence it is
necessary to design a general-purpose and autonomous search procedure, as Os-
caR/CBLS does not provide one.

Our search procedure (task 4 of Section 3) is based on the elements of the
CBLS model presented in Section 4.3. In Section 5.1, we describe the used neigh-
bourhoods. In Section 5.2, we explain our search procedure.

5.1 Constraint-Based Neighbourhoods

Our search procedure makes use of several neighbourhoods: There are two general-
purpose neighbourhoods involving only independent variables, and one specific
neighbourhood for each implicit constraint. By design choice, each variable can be
involved in at most one neighbourhood. The only variables that do not appear in
a neighbourhood are the variables defined by one-way constraints.

10



Each neighbourhood has two responsibilities: defining possible moves given a
current assignment; and creating a randomised initial assignment. Each constraint-
specific neighbourhood is defined such that the associated constraint is satisfied by
the initial assignment and is maintained satisfied by the moves. In our implemen-
tation, neighbourhoods do not return all possible moves to the search procedure
but are queried for a (random) best move (see [6] for details). We now review the
moves defined by each neighbourhood.

The first general-purpose neighbourhood defines the moves for all independent
integer variables. Each move of this neighbourhood is the reassignment of a in-
dependent integer variable to another value in its domain. The initial assignment
is created by picking a random value in the domain of each independent integer
variable.

The second general-purpose neighbourhood defines the moves for all indepen-
dent Boolean variables. It defines two kinds of moves. Moves of the first kind
change the value of one independent Boolean variable; moves of the second kind
swap the values of two independent Boolean variables. The initial assignment is
created by picking a random value in the domain of each independent Boolean
variable.

The two general-purpose neighbourhoods are not mutually exclusive: Both can
be used simultaneously during search if the model features both independent inte-
ger variables and independent Boolean variables, as is often the case. Those neigh-
bourhoods are also used together with the neighbourhoods specific to any con-
straints that have been made implicit. We now describe those constraint-specific
neighbourhoods.

The neighbourhood for AllDifferent defines two kinds of moves. The first one
is a swap between the values of two variables; the second one is a reassignment of
a variable to an unused value. Those two kinds of moves ensure that the constraint
stays satisfied if it is satisfied initially. The initial assignment is created by picking
a random value for each variable within its domain until all values are different.

The neighbourhood for GlobalCardinality with upper and lower bounds
on the cardinalities defines two kinds of moves: A swap between the values of two
variables, and a reassignment of a variable so that all cardinalities are satisfied. Any
swap keeps the constraint satisfied. A reassignment is part of the neighbourhood
only if it violates neither the lower bound for the old value of the reassigned
variable nor the upper bound for the new value of the reassigned variable. The
initial assignment is created by randomly assigning variables so that all lower and
upper bounds are respected.

Each move defined by the neighbourhood for Circuit corresponds to the re-
moval of one vertex from the circuit and its insertion at some other point. The
neighbourhood for Subcircuit extends this by also allowing removals without
corresponding insertion as well as insertions of previously removed vertices. The
initial assignment is created by setting the successor of each vertex i to vertex i+1
modulo the number of vertices.

The neighbourhood for LinearEquality with unit coefficients defines moves
involving two variables: the value of one variable is decreased by some amount and
the value of the other variable is increased by the same amount in order to keep
the sum constant. The initial assignment is created by first setting each variable
to the minimal value of its domain, then randomly increasing some of them until
their weighted sum is equal to the required sum.

11



5.2 Search Procedure

Our search procedure works in two or three consecutive phases: a greedy local
search that improves the initial assignment (Section 5.2.1); a first tabu search to
find a solution (Section 5.2.2); if there is an objective variable, a second tabu search
to find better solutions (Section 5.2.3).

The values of all numerical parameters used below have been chosen through
preliminary tests on the MiniZinc Challenge 2010 (see [6] for details). Although
our search procedure is sensitive to the parameter values, it is likely that it is
even more sensitive to other factors (e.g., which constraints are handled natively).
As our backend is in its early stages of design, we consider it to be premature
to make a proper sensitivity analysis. In the future, we plan to use automated
algorithm configuration tools (e.g., [20]) to tune properly the parameters of the
search procedure.

5.2.1 Greedy Search

The greedy search tries to minimise the global violation. It cycles over all the
independent variables and for each variable reassigns it to a possibly random
value that leads to the smallest global violation. This search stops when either a
solution is found, or the overall time limit is exceeded, or three cycles over all the
independent variables did not decrease the global violation.

This greedy search cannot change the values of variables in implicit constraints
and can be trapped in a local minimum. It nevertheless proved very efficient to
decrease initially the global violation, as the initial assignment is randomly created
and usually has a huge global violation.

5.2.2 Tabu Search for Satisfaction

The first tabu search tries to find a solution disregarding the objective, if there
is one. In tabu search (see, e.g., [17]), each variable that is involved in a move
becomes tabu for a number of iterations, called the tabu tenure. At each iteration,
the search procedure queries each neighbourhood for a random best acceptable
move. A move is acceptable if it involves at least one non-tabu variable or leads to
an assignment with a smaller global violation than the best one encountered so
far. A random best move among the ones returned by the neighbourhoods is then
performed. In order to have a single tabu tenure while accounting for different
kinds of moves, we accept moves involving tabu variables as long as one of them is
non-tabu. Otherwise, moves involving several variables would need a shorter tabu
tenure than moves involving one variable.

The tabu tenure is adaptive according to the following scheme. Let t be the
current tabu tenure, allowed to vary between 2 and some maximum m equal to the
number of variables times 0.6. When the search makes no progress for some number
of iterations (see [6] for details), t is incremented by m/10. It is decremented
by 1 when an assignment with a smaller global violation is found. It is reset to
its minimum when it has reached m. After reaching m five times, the search is
restarted by creating a new random initial assignment. In addition, we add some
randomisation by making each modified variable tabu for a random number of
iterations between t and t+m/10.

12



The first tabu search stops when a solution is found or the overall time limit
is exceeded.

5.2.3 Tabu Search for Optimisation

The second tabu search tries to find solutions with a better objective value. It works
very much like the first tabu search, except that it does not try and minimise the
global violation, but an aggregate of the global violation and the objective variable.
If v is the global violation and o the objective variable, it tries to minimise α·v±β ·o,
where ± is + if o is to be minimised and − if o is to be maximised, while α and β are
positive integer coefficients. Initially, α and β are both set to 1. They evolve during
search such that α is increased if the global violation is positive (i.e., there remain
unsatisfied constraints) for a large number of iterations, and β is increased if the
global violation is zero (i.e., all constraints are satisfied) but no better solution is
found for a large number of iterations (see [6] for details).

The adaptation of the tabu tenure is slightly adjusted from the first tabu
search: in addition to the scheme above, the tenure is divided by 2 whenever a
better solution is found, and the search is restarted when no better solution is
found during a quarter of the overall time limit.

The second tabu search stops when the overall time limit is exceeded or a
solution can be proven optimal. This last case happens when the value of the
objective variable reaches its relevant bound as given in the model or tightened
by task 1, but this is very unusual in practice.

6 Experimental Evaluation

Our aim is to show that a CBLS backend is a viable alternative to solve problems
modelled in MiniZinc. We also want to study the effect of using one-way and
implicit constraints instead of only using soft constraints. We claim neither that
CBLS is better suited than other technologies to solve problems modelled in Mini-
Zinc, nor that fzn-oscar-cbls can win a MiniZinc Challenge, but rather that it is
a good complement to other backends.

As discussed in Section 5.2, the parameters of our search procedure have not
been set in a systematic way. Although it is expected that our search procedure is
sensitive to the values given to these parameters, we believe that it is premature
to study their effect on the current state of our backend. On the other hand, using
one-way and implicit constraints is an important feature of our approach, and the
effects of these features are studied here.

We discuss the results of running fzn-oscar-cbls on all models of the Mini-
Zinc Challenges from 2010 to 2014. This benchmark is made of 500 instances
for 59 parametric models. We ran fzn-oscar-cbls with a time-out of 3 minutes
per instance, excluding flattening time, repeating each run 5 times. We also ran
fzn-oscar-cbls without using one-way constraints, without using implicit con-
straints, and with neither one-way nor implicit constraints. Each of those three
additional combinations was run once with a time-out of 3 minutes per instance,
excluding flattening time. Experiments were carried out inside a VirtualBox vir-
tual machine with access to one core of a 64-bit Intel Core i7 at 3GHz and 2 GB
of RAM.

13



To give a perspective on the results, we compare the results of fzn-oscar-cbls
with the results reported after the five MiniZinc Challenges over all categories. This
comparison is only indicative as the challenges were run on different hardware and
with a time limit of 15 minutes per instance, for only one run per instance.

6.1 Results

Table 1 summarises the results for optimisation problems. This table has the fol-
lowing columns:

– model: The name of the model.
– I: The number of instances of the model used in the MiniZinc Challenges 2010

to 2014. When the same instance has been used twice, it is counted as two
separate instances.

– soft+implicit+1way: The results of fzn-oscar-cbls with soft, implicit, and
one-way constraints, with the following sub-columns:
– sat: The percentage of runs (over 5 · I runs) in which fzn-oscar-cbls found

a solution.
– opt: The percentage of runs (over 5 ·I runs) in which fzn-oscar-cbls found

the best solution known from the MiniZinc Challenges (often a proven
optimal one).

– >: The percentage of backends participating in the corresponding MiniZinc
Challenge that performed worse than fzn-oscar-cbls, averaged over all 5·I
runs. We say that a backend X performs worse than another backend Y

when Y finds a solution but not X or when both find a solution but Y finds
a solution with a better objective value than the one found by X. We do
not take into account time and we do not consider that a backend finding
an optimal solution without proving its optimality is worse than a backend
proving that its solution is optimal.

– ≥: The percentage of backends participating in the corresponding MiniZinc
Challenge with respect to which fzn-oscar-cbls did not perform worse,
averaged over all 5 · I runs.

– soft+1way: The results of fzn-oscar-cbls without implicit constraints, hence
using only soft and one-way constraints. The absence of numbers for some lines
in these columns indicates that the full version of fzn-oscar-cbls did not use
any implicit constraints, so that the results are the same.

– soft+impl: The results of fzn-oscar-cbls without one-way constraints, hence
using only soft and implicit constraints.

– soft only: The results of fzn-oscar-cbls with neither one-way nor implicit
constraints, hence using only soft constraints. The absence of numbers for some
lines in this column indicates that fzn-oscar-cbls without one-way constraints
did not use any implicit constraints, so that the results are the same.

Table 2 summarises the results for satisfaction problems, with the same columns
as Table 1, minus the opt ones, which have no meaning for satisfaction problems.

For the following 10 optimisation problems, fzn-oscar-cbls produces good re-
sults and is often able to find the optimal or best-known solution: bacp, depot-

placement, fast-food , grid-colouring , mario, on-call-rostering , open-stacks, road-cons,
roster , and sugiyama. In the case of on-call-rostering and road-cons, it finds the

14



Table 1 Results for optimisation problems. All values except I are given in percent.

soft+implicit+1way soft+1way soft+impl soft only
model I sat opt > ≥ sat opt sat opt sat opt

road-cons 5 100 80 72 97 - - 0 0 0 0
on-call-rostering 5 100 80 48 97 - - 0 0 0 0

roster 5 100 80 41 93 - - 0 0 0 0
depot-placement 20 100 79 31 89 100 80 0 0 0 0

open-stacks 5 100 76 48 88 100 40 0 0 0 0
fast-food 10 100 72 13 76 - - 0 0 0 0

mario 10 100 62 40 74 0 0 0 0 0 0
grid-colouring 10 100 60 66 94 - - 100 20 - -

sugiyama 5 100 40 15 49 100 80 0 0 0 0
mspsp 6 100 23 23 42 - - 100 0 - -
filters 20 100 5 34 38 - - 5 0 15 0
celar 5 100 0 69 69 - - 0 0 - -

vrp 15 100 0 50 52 - - 0 0 0 0
mqueens 5 100 0 17 19 - - 0 0 0 0

stochastic-fjsp 5 100 0 0 1 - - 20 0 - -
bacp 20 99 56 20 64 - - 0 0 0 0

project-planning 6 93 0 17 18 - - 0 0 0 0
table-layout 5 92 8 14 21 - - 0 0 0 0

tpp 7 88 2 26 32 0 0 0 0 0 0
league 11 81 0 28 36 - - 0 0 0 0
smelt 5 80 0 25 33 - - 0 0 40 0

radiation 10 72 0 14 31 - - 0 0 0 0
openshop 5 68 0 12 20 - - 40 0 - -

ship-schedule 15 68 0 8 10 - - 0 0 0 0
pattern-set-mining 15 64 0 12 20 - - 0 0 0 0

still-life-wastage 5 60 0 13 21 - - 0 0 0 0
prize-collecting 5 60 0 8 21 - - 0 0 0 0

rcpsp 5 60 0 6 15 - - 60 0 - -
fjsp 5 56 0 17 43 - - 60 0 - -

ghoulomb 15 22 0 9 56 - - 0 0 0 0
parity-learning 7 20 17 5 49 - - 0 0 0 0

liner-sf-reposition. 5 20 0 1 28 20 0 0 0 0 0
train 11 18 0 3 26 - - 0 0 0 0

cyclic-rcpsp 10 18 0 1 8 - - 0 0 0 0
rcpsp-max 10 8 0 3 68 - - 0 0 - -

carpet-cutting 10 8 0 4 65 - - 0 0 0 0
spot5 5 4 0 2 5 - - 0 0 0 0

proteindesign12 5 0 0 0 100 - - 0 0 - -
elitserien 5 0 0 0 62 0 0 0 0 0 0

cargo 5 0 0 0 57 - - 0 0 0 0
l2p 5 0 0 0 25 0 0 0 0 0 0

javarouting 5 0 0 0 15 0 0 0 0 0 0
traveling-tppv 5 0 0 0 9 0 0 0 0 0 0

jp-encoding 5 0 0 0 4 - - 0 0 - -
stochastic-vrp 5 0 0 0 2 0 0 0 0 0 0

known optimal solutions on all runs, except for the largest instance of each model.
Only 4 backends (out of respectively 28 and 30 entries to the MiniZinc Chal-
lenges 2013 and 2014) achieved better results than fzn-oscar-cbls on those two
problems: iZplus-free, gurobi-free, mistral-free, and chuffed-free for on-call-

rostering ; and iZplus-free, iZplus-par, Choco-par, and OR-Tools-par for road-cons.
On grid-colouring , fzn-oscar-cbls finds an optimal solution on 3 instances out of
5 on all runs, including on the difficult 12 13 instance, which only chuffed par,

15



Table 2 Results for satisfaction problems. All values except I are given in percent.

soft+impl+1way soft+1way soft+impl soft only
model I sat > ≥ sat sat sat

multi-knapsack 5 60 13 83 - 60 -
costas-array 10 50 31 88 40 0 0

fillomino 10 12 1 39 - 0 -
wwtpp-random 5 0 0 100 - 0 0

wwtpp-real 10 0 0 81 - 0 0
amaze2 6 0 0 72 - 0 0

solbat 30 0 0 67 - 0 0
pentominoes 10 0 0 51 - 0 -

nmseq 5 0 0 47 - 0 0
nonogram 15 0 0 44 - 0 -
black-hole 10 0 0 37 - 0 0

rubik 5 0 0 37 - 0 -
amaze 11 0 0 30 - 0 0

rectangle-packing 5 0 0 30 - 0 -

bumblebee-free, g12 lazyfd-free, and smt-free could solve to optimality in the
MiniZinc Challenges 2010 and 2011. Interestingly, on mario, fzn-oscar-cbls finds
and proves, in less than 2 seconds on all runs, optimal solutions to instances anno-
tated as hard, while only finding suboptimal solutions for the medium instances.

For 6 other optimisation problems, fzn-oscar-cbls is able to find a solution in
all runs, but usually a suboptimal one. This is the case for celar , filters, mqueens,
mspsp, vrp, and stochastic-fjsp. In the case of vrp, it is interesting to note that
although the solutions found by fzn-oscar-cbls are suboptimal, only integer pro-
gramming backends, iZplus-free, mistral-free, and chuffed-free are able to
achieve better results on most instances. In the case of filters, other backends than
fzn-oscar-cbls either find an optimal solution or do not find any solution.

Regarding satisfaction problems, fzn-oscar-cbls finds solutions to costas-array

instances of size up to 16, 3 multi-knapsack instances out of 5, and one fillomino

instance out of 10. It is unable to find a solution to any of the other satisfaction
models within the time-out of 3 minutes.

For the 40 other models, fzn-oscar-cbls is unable to find any solution or
any good solution within the 3 minute time-out. For four of them, namely league,
radiation, smelt, and tpp, despite finding suboptimal solutions, fzn-oscar-cbls finds
a solution in most runs within the 3 minute time-out on some instances that many
other backends are unable to solve at all.

Without using one-way constraints, fzn-oscar-cbls is unable to find any so-
lution for 51 of the 59 models, hence it is clear that using one-way constraints is
important. Regarding implicit constraints, using them clearly improves the results
for mario and tpp, but they have little effect for most other models.

The median time to parse each instance is about 0.6 seconds and the median
time to analyse the instance and create the CBLS model (i.e., tasks 1 to 3 from
Section 3) is slightly less than 0.6 seconds. A few instances could not be parsed or
analysed at all within the 3 minutes, mainly due to memory problems (e.g., the
largest nmseq instances).

16



6.2 Analysis

Looking closer at the models for which fzn-oscar-cbls does not find any solution
or any good solution, we observe that they usually exhibit one or more of the
following features:

– global constraints that are not handled natively by fzn-oscar-cbls or Os-
caR/CBLS (e.g., Regular, Diffn);

– very large domains of some decision variables;
– complex logic expressions including disjunctions or implications.

It is not surprising that models using global constraints that are not native can-
not be solved well. The obvious solution to this problem is to implement more
global constraints in OscaR/CBLS and fzn-oscar-cbls. Beside implementing the
soft versions of such constraints, it is also useful to implement them as one-way
constraints and implicit constraints. The good results observed on the mario model
are mainly due to the presence in the model of a Subcircuit constraint, for which
an appropriate neighbourhood exists.

The fact that models with very large domains are not solved well comes from
our search procedure. As each iteration requires evaluating all possible moves
to find a best one, very few iterations can be performed within the time limit.
To address this, two aspects have to be improved. First, using a CP solver to
tighten initially the domains of the variables, as mentioned in Section 4, might
actually substantially speed up the search. Second, it might be necessary, upon
large domains, to switch to a search procedure that does not require the evaluation
of all possible moves at each iteration.

Complex logic expressions in MiniZinc models are translated into reified con-
straints at the FlatZinc level. A reified constraint is a constraint of the form b ≡ C,
where C is a constraint and b a Boolean decision variable indicating whether C is
satisfied or not. Unfortunately, reified constraints are not well-handled in CBLS.
Indeed CBLS solvers use the violation of soft constraints to drive the search to-
wards (good) solutions but reified constraints only have a violation of 0 or 1,
leading to a very poor discrimination between assignments. A way to overcome
this limitation would be to replace, for each reified constraint b ≡ C, the indicator
variable b by a variable v equal to the violation of C, and to replace all constraints
on the indicator variables by appropriate constraints on the violation variables. For
instance, a disjunction b1∨ b2 would be replaced by the constraint min(v1, v2) = 0;
see [41] for more details.

Nevertheless, we consider the obtained results very promising. Indeed, while
fzn-oscar-cbls is unable to find (good) solutions for many instances, it is able
to find in a short time optimal solutions for instances that are seemingly hard
for most other backends (e.g., the hard instances of mario, as well as some grid-

colouring instances), showing that a CBLS backend for MiniZinc has strengths
complementary to other backends.

7 Constraint Modelling Abstractions and Annotations

We now argue that the design of abstractions and annotations of constraint mod-
elling languages has so far been very much geared towards backends performing

17



systematic search, so that extensions will have to be made to give better support
to backends performing local search.

Search Annotations. The most notable MiniZinc annotation, search, can be made
in an actually formalised language for prescribing how to perform systematic search
in the CP style, namely as a combination of a variable selection heuristic with a
value selection heuristic, so as to prescribe a sequence of branching guesses to
perform under backtracking search. A CBLS backend must ignore such search
annotations, as they are incompatible with local search.

Future work consists of defining another formalised annotation language, namely
for prescribing how to perform local search, using abstractions like the ones of
Comet/CBLS [37].

Symmetry-Breaking Constraints. A common approach when fine-tuning a constraint
model is to identify and exploit some if not all of the symmetries of the model,
namely by adding constraints that prevent the finding of solutions that are sym-
metric to the kind of solutions to which the search is geared. This practice is very
useful in systematic CP-style search, often giving orders of magnitude of speed-up,
but has often been shown counterproductive in local search [10,33], as the presence
of symmetric solutions increases the chances of finding solutions.

It would be helpful if symmetry-breaking constraints were marked as such by
model annotations, so that a CBLS backend (for MiniZinc) can consider discarding
these constraints.

The tool chain for the Essence constraint modelling language [14], namely
solver-independent model selection with Conjure [2] followed by solver-specific
model flattening with Savile Row [27], features similarities with the MiniZinc
tool chain, and Savile Row can also produce MiniZinc models. This tool chain
is also currently biased towards systematic CP-style search. Since Conjure can
add symmetry-breaking constraints to a model [2], a natural step is to annotate
them as such (when producing a MiniZinc model), so that a CBLS backend (for
MiniZinc) can consider discarding these constraints.

Implied Constraints. Another common approach when fine-tuning a constraint model
is to infer constraints that are logically implied by those of the model but trig-
ger additional propagation under systematic CP-style search, so that solutions are
found faster. The impact of implied (or: redundant) constraints on local search
performance has not been thoroughly studied yet (to the best of our knowledge),
but it has been noted that they can help guide the search more effectively by
increasing some violations, thus for instance distinguishing variables that would
otherwise be equally violated [40, page 73].

It would be helpful if implied constraints were marked as such by model an-
notations, so that a CBLS backend (for MiniZinc) can consider discarding these
constraints.

Propagation Reduction. Yet another common way to improve constraint models for
systematic CP-style search is to replace equality constraints by non-strict inequal-
ity constraints or equivalence by implication (see [12]), when it is safe to do so.
However, in local search, inequality constraints and implications cannot be made

18



into one-way constraints. Hence such model transformations usually increase arti-
ficially the size of the CBLS search space.

Although one cannot expect to use the same model when targeting different
underlying technologies, such model transformations could rather be performed
automatically during flattening.

Scheduling Abstractions. There are scheduling constraints that can also be used
for non-scheduling problems. For instance, the Cumulative constraint can also be
used for packing problems. While this distinction does not matter for systematic
CP-style search, one solves scheduling problems in local search by reasoning at the
abstraction level of tasks and resources, which is usually much more efficient than
reasoning at the level of constraints and variables (see, e.g., [28]).

Future work consists of adding scheduling abstractions, as in OPL [36] and
Comet/CBLS [38], to MiniZinc, so that a CBLS backend for MiniZinc can more
easily detect what kind of search to use.

The MiniZinc Challenge. As the MiniZinc Challenge is an important driver in the
MiniZinc community, we believe it should be adapted to accommodate CBLS
solvers better. Besides the points already raised in the previous paragraphs, there
are two other kinds of bias specific to the challenge.

First, the scoring mechanism awards more points to backends proving optimal-
ity and unsatisfiability. As pointed out in Section 2, CBLS is an incomplete search
method and is in general unable to prove optimality or unsatisfiability. If more
incomplete solvers enter the challenge, it would be more fair to adapt the scoring
mechanism or to create a separate category for incomplete solvers.

Second, local search procedures are almost always defined using randomisa-
tion, as that helps increase the chances of finding solutions [21]. Actually, CP-
style systematic search is nowadays also increasingly relying on non-deterministic
heuristics. However, the MiniZinc Challenge scores each solver on each instance
for only one run (probably for time reasons), hence a particular solver may score
very differently on an instance across different runs. It would be more fair if the
scoring mechanism was based on aggregate statistics over at least ten, say, runs
per instance.

8 Related Work

In [39], a way is proposed to exploit the semantics of a Comet/CBLS model to gen-
erate appropriate neighbourhoods. The modeller must explicitly define invariants
for one-way constraints and annotate the other constraints as hard (i.e., implicit)
or soft, and can give weights to soft constraints to guide the search better. As we
start from FlatZinc models without such annotations, we are bound to guess how
constraints can be handled (and we use unit weights for all soft constraints). It is
also described how to maintain satisfied some implicit constraints.

Our use of neighbourhoods to maintain implicit constraints satisfied is very
close to the notion of a solution neighbourhood, which only contains assignments
satisfying an associated constraint [19]. The main difference with our work is that
the approach in [19] does not require the constraint to be always satisfied, but a
move will satisfy the constraint associated with the used solution neighbourhood.

19



LocalSolver [5] uses a generic black-box local search procedure to solve prob-
lems modelled using only Boolean decision variables. Its modelling language also
features invariants, whose output can be an integer variable. The user of Local-
Solver must explicitly state invariants and constraints, while no such distinction
exists in a FlatZinc model.

Using the semantics of a model to generate an appropriate search procedure has
not been limited to CBLS. In constraint programming (CP), cp-as [11] proposes
a way to synthesise a search heuristic from the constraints of the model. For
scheduling problems, Aeon [23] recognises the class of the problem to generate an
appropriate search procedure (the modeller specifies the choice of a CP or CBLS
search). Several works also integrate several technologies and base the integration
on the structure of the model, e.g., [42,13].

9 Conclusion and Future Work

We have discussed the challenges in designing a CBLS backend for MiniZinc and
presented our approach implemented as fzn-oscar-cbls. We have shown that such
a backend gives good-quality results in a short time for some MiniZinc models.

Experimental results also show that there is room for improvement in our black-
box search procedure. The most important task will be to implement additional
global constraints. Our approach presents very basic features of autonomous search
(see, e.g., [18]). For instance, our tabu tenure is a simplistic example of online
tuning and the use of constraint-specific neighbourhoods is related to case-based
reasoning. However autonomous solvers go much further in their adaptation to a
class of problems or to a particular problem and we plan to integrate some of those
methods in fzn-oscar-cbls.

This work opens interesting research questions at the modelling level. As dis-
cussed in Section 7, existing solver-independent constraint-based modelling lan-
guages such as MiniZinc are very much geared towards CP-style solvers. Hence it
might be necessary to rethink or extend such languages in order to use the full
potential of other technologies (not only CBLS) without resorting to procedural
languages.

We plan to enter fzn-oscar-cbls in the next MiniZinc Challenge. We hope that
this paper will foster research on other MiniZinc backends based on optimisation
technologies not currently available for MiniZinc, such as, e.g., genetic algorithms
or ant colony optimisation.

Acknowledgements This work is supported by grants 2011-6133 and 2012-4908 of the
Swedish Research Council. We thank R. De Landtsheer for his support on OscaR/CBLS.
We thank the anonymous reviewers for their constructive and insightful comments.

20



References

1. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming
Computation 1(1), 1–41 (2009)

2. Akgün, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I.,
Nightingale, P.: Automated symmetry breaking and model selection in CONJURE. In:
C. Schulte (ed.) CP 2013, LNCS, vol. 8124, pp. 107–116. Springer (2013)

3. Amadini, R., Gabbrielli, M., Mauro, J.: Sunny: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming 14, 509–524 (2014)

4. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: Past,
present, and future. Constraints 12(1), 21–62 (2007). The catalogue is at http://sofdem.
github.io/gccat

5. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: LocalSolver 1.x: a black-box
local-search solver for 0-1 programming. 4OR, A Quarterly Journal of Operations Research
9(3), 299–316 (2011)

6. Björdal, G.: The first constraint-based local search backend for MiniZinc. Bachelor Thesis
in Computer Science, Report IT 14 066, Faculty of Science and Technology, Uppsala
University, Sweden (2014). http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234847

7. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: fzn2smt, a compiler from the FlatZinc language
to the standard SMT-LIB language. http://ima.udg.edu/Recerca/lap/fzn2smt/

8. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In:
K. Steinhöfel (ed.) SAGA 2001, First International Symposium on Stochastic Algorithms:
Foundations and Applications, LNCS, vol. 2264, pp. 73–90. Springer (2001)

9. De Landtsheer, R.: Oscar.cbls: a constraint-based local search engine (2012). https:
//bitbucket.org/oscarlib/oscar/downloads/Oscar.cbls.pdf

10. Dotú, I., Van Hentenryck, P.: Scheduling social golfers locally. In: R. Barták, M. Milano
(eds.) CP-AI-OR 2005, LNCS, vol. 3524, pp. 155–167. Springer (2005)

11. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP models. In:
J. Lee (ed.) CP 2011, LNCS, vol. 6876, pp. 256–270. Springer (2011)

12. Feydy, T., Somogyi, Z., Stuckey, P.: Half-reification and flattening. In: J. Lee (ed.) CP
2011, LNCS, vol. 6876, pp. 286–301. Springer (2011)

13. Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid optimization.
In: C. Schulte (ed.) CP 2013, LNCS, vol. 8124, pp. 299–314. Springer (2013)

14. Frisch, A.M., Grum, M., Jefferson, C., Martinez Hernandez, B., Miguel, I.: The design of
ESSENCE: A constraint language for specifying combinatorial problems. In: IJCAI 2007
(2007)

15. Fujiwara, T.: iZ based solver for MiniZinc Challenge 2014. http://www.minizinc.org/
challenge2014/description_izplus.txt

16. Gecode Team: Gecode/FlatZinc. http://www.gecode.org/flatzinc.html

17. Glover, F.: Tabu Search Part I. ORSA Journal on Computing 1(3), 190–206 (1989).
DOI 10.1287/ijoc.1.3.190

18. Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer (2012)
19. He, J., Flener, P., Pearson, J.: Solution neighbourhoods for constraint-directed local search.

In: S. Bistarelli, E. Monfroy, B. O’Sullivan (eds.) SAC/CSP 2012, pp. 74–79. ACM Press
(2012)

20. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Y. Hamadi,
E. Monfroy, F. Saubion (eds.) Autonomous Search, pp. 37–71. Springer (2012)

21. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier /
Morgan Kaufmann (2004)

22. Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

23. Monette, J.N., Deville, Y., Van Hentenryck, P.: Aeon: Synthesizing scheduling algorithms
from high-level models. In: J.W. Chinneck, B. Kristjansson, M.J. Saltzman (eds.) Oper-
ations Research and Cyber-Infrastructure, Operations Research/Computer Science Inter-
faces, vol. 47, pp. 43–59. Springer (2009)

24. Nethercote, N.: Converting MiniZinc to FlatZinc. http://www.minizinc.org/downloads/
doc-1.6/mzn2fzn.pdf

25. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: C. Bessière (ed.) CP 2007, LNCS, vol.
4741, pp. 529–543. Springer (2007). http://www.minizinc.org/

21

http://sofdem.github.io/gccat
http://sofdem.github.io/gccat
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234847
http://ima.udg.edu/Recerca/lap/fzn2smt/
https://bitbucket.org/oscarlib/oscar/downloads/Oscar.cbls.pdf
https://bitbucket.org/oscarlib/oscar/downloads/Oscar.cbls.pdf
http://www.minizinc.org/challenge2014/description_izplus.txt
http://www.minizinc.org/challenge2014/description_izplus.txt
http://www.gecode.org/flatzinc.html
http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf
http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf
http://www.minizinc.org/


26. Newton, M.H., Pham, D.N., Sattar, A., Maher, M.: Kangaroo: An efficient constraint-
based local search system using lazy propagation. In: J. Lee (ed.) CP 2011, LNCS, vol.
6876, pp. 645–659. Springer (2011)

27. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving
constraint models in Savile Row through associative-commutative common subexpression
elimination. In: B. O’Sullivan (ed.) CP 2014, LNCS, vol. 8656, pp. 590–605. Springer
(2014)

28. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Man-
agement Science 42(6), 797–813 (1996)

29. Opturion Pty Ltd.: Opturion CPX. http://www.opturion.com/cpx
30. OR Team at Google: OR-Tools. https://code.google.com/p/or-tools/
31. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
32. Parr, T.J.: The Definitive ANTLR Reference: Building Domain-Specific Languages. The

Pragmatic Bookshelf (2007)
33. Prestwich, S.D.: Supersymmetric modeling for local search. In: P. Flener, J. Pearson (eds.)

SymCon 2002 (2002). http://www.it.uu.se/research/group/astra/SymCon02
34. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Constraints

15(3), 307–316 (2010)
35. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–

2013. AI Magazine 35(2), 55–60 (2014)
36. Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press

(1999)
37. Van Hentenryck, P., Michel, L.: Control abstractions for local search. In: F. Rossi (ed.)

CP 2003, LNCS, vol. 2833, pp. 65–80. Springer (2003)
38. Van Hentenryck, P., Michel, L.: Scheduling abstractions for local search. In: J.C. Régin,

M. Rueher (eds.) CP-AI-OR 2004, LNCS, vol. 3011, pp. 319–334. Springer (2004)
39. Van Hentenryck, P., Michel, L.: Synthesis of constraint-based local search algorithms from

high-level models. In: A. Howe, R.C. Holte (eds.) AAAI 2007, pp. 273–278. AAAI Press
(2007)

40. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press (2009)
41. Van Hentenryck, P., Michel, L., Liu, L.: Constraint-based combinators for local search. In:

M. Wallace (ed.) CP 2004, LNCS, vol. 3258, pp. 47–61. Springer (2004)
42. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems.

Operations Research 58(2), 342–356 (2010)

22

http://www.opturion.com/cpx
https://code.google.com/p/or-tools/
https://bitbucket.org/oscarlib/oscar
http://www.it.uu.se/research/group/astra/SymCon02

	Introduction
	Background
	Designing a CBLS Backend
	Structuring the CBLS Model
	Black-Box Local Search
	Experimental Evaluation
	Constraint Modelling Abstractions and Annotations
	Related Work
	Conclusion and Future Work

