
Constraint Solving on Bounded String Variables

Joseph D. Scott, Pierre Flener, and Justin Pearson

Uppsala University, Uppsala, Sweden
first.last@it.uu.se

Abstract Constraints on strings of unknown length occur in a wide
variety of real-world problems, such as test case generation, program
analysis, model checking, and web security. We describe a set of con-
straints sufficient to model many standard benchmark problems from
these fields. For strings of an unknown length bounded by an integer, we
describe propagators for these constraints. Finally, we provide an experi-
mental comparison between a state-of-the-art dedicated string solver, CP
approaches utilising fixed-length string solving, and our implementation
extending an off-the-shelf CP solver.

1 Introduction

Constraints on strings occur in a wide variety of problems, such as test case
generation [8], program analysis [6], model checking [11], and web security [5].

As a motivating example, we consider the symbolic execution [7,20] of string-
manipulating programs. Symbolic execution is a semantics for a programming
language, wherein program variables are represented by symbols, and language
operators are redefined to accept symbolic inputs and produce symbolic ex-
pressions. In symbolic execution, a program P is represented by a control flow
graph [2]: a directed graph with nodes representing the basic blocks in P , and
arcs representing possible branchings. A path on a control flow graph is a finite
sequence of arc-connected nodes. A symbolic state for a path π on a program
P consists of a mapping, µ, from the program variables of P to symbolic ex-
pressions, and a path constraint, PC , which is associated with the path π, over
the symbols used in µ. Solving the path constraint results in either a set of
concrete inputs that yields an execution following the path π, or, when PC is
unsatisfiable, a proof that π is an infeasible path.

Example 1. In Fig. 1 is some JavaScript-like code (it is uninteresting, but small
enough to illustrate our points), with a corresponding control flow graph. For
the path π = 1-2-4-5-6, a corresponding path constraint may be as follows:

PC π : y = |s| ∧ y mod 2 = 0 ∧ s ∈ L((a∗b)c\1) ∧ x = s1: y/2 (1)

(Notation will be introduced in Section 2 but should not be an obstacle here.)
Note that PC π is unsatisfiable: only a string of odd length can match the expres-
sion on line 4, due to the required symbol ‘c’ in the middle, so if the condition
on that line is true, then the condition on line 2 must also be true, and therefore
π is infeasible, as node 3 should be visited at least once between nodes 2 and 4.

0 function doSomething(s) {

1 y = s.len();

2 while (y mod 2 != 0)

3 { x += s[y-1]; y = y/2; }

4 if (s.match(/^(a*b)c\1$/))

5 x = s.substr(1,s.len()/2);

6 return x;

7 }

1

2

3
4

5 6

y = s.len()

while (y mod 2 != 0)
x += s[y-1];
y = y/2if

(s.match(/^(a*b)c\1$/))

x =
s.substr(1,s.len()/2) return x

Figure 1. JavaScript-like code with a corresponding control flow graph

Example 1 helps to illuminate the type of string constraints needed for soft-
ware verification purposes: the constraint language should be rich enough to
model the kinds of string operators typically found in programming languages.
For example, the substr() operation on line 5 of Fig. 1 suggests that a con-
straint stating “string y is a substring of x, starting from index i” would be
useful. Similarly, the match() operation on line 4 suggests the utility of a con-
straint stating “string x is a member of the regular language L”. However, this
second constraint is somewhat misleading, as the ‘\1’ in the pattern on line 4 is
a back-reference: the parentheses delineate a subexpression (in this case, ‘a*b’),
and the ‘\1’ indicates that the value matched by that subexpression is repeated
in the same string. In the absence of a bound on string length, the languages
defined by expressions with back-references are not regular, but rather context
sensitive.1 Nevertheless, back-references are a common feature of regular expres-
sions as implemented in modern programming languages, and hence are a feature
we would like to model. To avoid confusion, we will write regular expression to
refer only to the formal language concept, while we will write regex to refer to
a possibly non-regular pattern allowed by a programming language.

String constraint solving has been the focus of a large amount of research in
recent years. Current string constraint solving methods may be broadly classi-
fied by their treatment of string length. At one extreme are solvers for string
variables of unbounded length, such as [1,9,11,15,17,18,23,33,36]. These solvers
define the set of all satisfying strings intensionally, typically by formal languages.
Constraint reasoning in these solvers generally reduces to a question of language
intersection; research centres on the question of how to avoid the exponential
blowup of these intersection operations. At the opposite end of the spectrum,
fixed -length string solvers, such as [19,24], are extensional in the sense that they
generate solutions individually. Fixed-length solvers are generally superior to
unbounded-length solvers for producing a single solution, but suffer comparat-
ively when producing the set of all solutions.

1 In fact, for strings of bounded length, expressions with back-references do corres-
pond to regular languages; however the size of a finite-automaton encoding grows
exponentially in the size of the bound, so even in the bounded case back-references
tend to result in inefficient encodings.

In this paper, we address a problem between these two extremes: we con-
sider string variables of bounded length. While bounded-length solvers exist in
other fields, such as [6, 29], to this point constraint programming (CP) models
have handled bounded-length strings either by iterating over a series of fixed
string lengths, or by representing a string variable as an array of variables long
enough to accommodate the maximum considered string length, while allowing
occurrences of a padding symbol at the end of the string (e. g., [16]). We fo-
cus instead on encoding the string length and contents directly; nevertheless,
our implementation (Sect. 6) can be seen as an encapsulation of padding into a
variable type. Using fixed-length strings with a padding character is appealingly
simple in theory, but in practice it leads to complicated and error-prone mod-
els. Our approach allows simpler modelling, without requiring an extension to
the solver’s modelling language, by introducing a new structured variable type
for strings. In this framework, the choice to use a padding character and the
consequences of that choice are implementation details, which may be ignored
during modelling.2 We also note that bounded-length string variables ease the
design of string-specific branching heuristics.

The contributions and organisation of this paper are as follows, after defining
notation and terminology (Sect. 2) and outlining related work (Sect. 3):

– a formalisation of string variables and a specification of several interesting
string constraints, all applicable to strings of fixed, bounded, or unbounded
length (Sect. 4);

– a definition of a bounded-length string variable representation, called the
open-sequence representation, which is directly implementable for any exist-
ing finite-domain CP solver, and propagator descriptions for the specified
string constraints (Sect. 5);

– an implementation of our bounded-length string variable representation and
a principled derivation of actual propagators for the specified constraints, all
for the CP solver gecode [12] (Sect. 6);

– an experimental evaluation of our implementation: despite being only a pro-
totype, it already outperforms not only off-the-shelf fixed-length CP ap-
proaches [16], but also, by orders of magnitude, the state-of-the-art dedicated
string solvers sushi [9] and kaluza [29], on their benchmarks (Sect. 7).

Finally, we conclude in Sect. 8.

2 Notation and Terminology for Strings and Languages

An alphabet Σ is a finite set of symbols. A string s of length |s| = n over an
alphabet Σ is a finite sequence of n symbols of Σ, denoted s1s2 · · · sn, where
si ∈ Σ for all 1 ≤ i ≤ n. For a given string s, we denote its ith symbol by si.
We denote the empty string, of length 0, by ε. We denote the concatenation of

2 As noted elsewhere (e. g., [13]), the case for structured variable types is similar to that
for global constraints: both capture commonly recurring combinatorial substructure.

strings x and y by x · y. We say that a string y is a substring of a string s if
there exist strings x and z such that s = x · y · z. For 1 ≤ i, j ≤ |s|, we define
si : j as the substring si · · · sj from the ith to the jth symbol of s; if i > j, then
si : j = ε. The reverse of a string s = s1 · · · sn is the string srev = sn · · · s1.

We denote by Σn the set of strings over Σ of length n. The infinite set of all
strings over Σ, including ε, is denoted by Σ∗. A language over Σ is a possibly
infinite subset of Σ∗. The language of a regex r is denoted by L(r).

A constraint C of arity k is a pair 〈R,S〉 where R is the underlying relation
on ground instances of the variable tuple S = 〈X

1
, . . . , X

k
〉, called the scope of

C. We denote the domain of a variable X by D(X).
We denote scalar variables in uppercase (e. g., N , N1, etc. for integers, and

A for a symbol of a finite alphabet) and string variables (to be introduced in
Sect. 4) in boldface uppercase (e. g., S). We denote sets in script (e. g., A, B,
etc.), and write |A| for the cardinality of a set A. We refer to the set of integers
{`, `+1, . . . , u−1, u}, which is the empty set ∅ if ` > u, using the notation [`, u].
We use angled brackets to denote an ordered sequence, or tuple, 〈a1, . . . , an〉.

3 Related Work

We distinguish between string variables of fixed, unbounded, and bounded length.

Fixed-Length String Variables. In CP, a fixed-length string variable has a natural
representation as an array of scalar variables that may be acted upon by a
wide variety of constraints. Of particular interest for solving string problems are
constraints for membership in regular [4,26] and context-free [27,32] languages.
For example, the propagator in [26] for regular language membership works by
maintaining a layered graph: each layer replicates the nodes of a finite automaton
representing the regular language, but with each transition connecting to a node
in the next layer. The labels of the arcs between nodes in two consecutive layers
determine the feasible values for the corresponding variable in the string, and
propagation works by removing arcs not on a path between the start node in
the first layer and any accepting node in the last layer. Fixed-length bit-vector
variables have also been explored [24].

hampi [19] provides a theory of fixed-length strings for satisfaction modulo
theories (SMT) solvers, using the bit-vector solver stp [10]. hampi handles con-
straints of membership in both regular and context-free languages. For a set of
such constraints, on a single fixed-length string variable, hampi either returns
one satisfying string, or reports that the constraints are unsatisfiable.

Unbounded-Length String Variables. At the other extreme are solvers for string
variables of unbounded length. An example of this approach in CP is [15], in
which the regular domain of a string variable is defined by a regular language.
A regular domain is represented as a finite automaton accepting that language,
and propagation of a constraint over string variables is achieved by computing a
series of automaton operations, such as intersection or negation. The expressivity

of regular domains is balanced out by relatively expensive propagation: several of
the presented propagators take time quadratic in the size of the automata, and
the size of the automata themselves may grow exponentially with the number of
constraints. It is not surprising that performing propagation on string variables of
unbounded length by computing on a set of strings is expensive. The equivalent
for integer domains would be propagation over multiple integer variables through
computation on value tuples, which is not generally reasonable. Constraints of
regular language membership are, of course, trivially enforceable on the regular
domain, although extension to context-free languages is impractical.

A decision procedure for Boolean combinations of equalities on unbounded-
length string variables, called word equations, is provided in [23]. A word equa-
tion [21] is a constraint such as x⊕y = z, where ⊕ is a string operator and x, y, z
are string variables. Word equations are not decidable in the general case, and
their decidability in conjunction with other constraints, including length con-
straints, remains open [6]. Nonetheless, for fragments of the logic of word equa-
tions with constraints on length or regular or context-free language membership,
there exist several decision procedures. For example, sushi [9] handles a restric-
ted fragment of word equations called simple linear string equations (SLSE);
in essence, these are word equations in which no string variable appears more
than once, and string variables occur only on the left-hand side. sushi allows
concatenation, substring, regular membership, and regular replacement. Other
solvers handling weak fragments include the stand-alone solver dprle [17], which
handles only language subset and language concatenation constraints for regular
languages, and Z3-str [36], an extension for the SMT solver Z3 that provides
a theory of word equations with length constraints, but does not include lan-
guage membership. The algorithm in norn [1] is sound for the complete logic of
word equations with both length and regular language membership constraints,
and is a decision procedure for a restricted fragment (strictly stronger than that
of sushi). Also, S3 [33] improves the Z3-str solver and adds a procedure for
unfolding unbounded repetitions in regular expressions.

Another line of work has focused on avoiding the exponential blowup en-
countered in language intersection. Both revenant [11] and norn utilise inter-
polation, albeit in different contexts, while StrSolve [18] handles automaton
intersection operations by lazily constructing cross-products.

Also worth noting is that automaton-based approaches do not allow a natural
handling of length constraints. The latter may be directly encoded as automata
(e. g., [35]); however, this results in only a weak connection between string lengths
and other numerical constraints. Solvers that combine automata and numerical
reasoning [1, 14,28] strengthen this connection to varying degrees.

Bounded-Length String Variables. Less work has been done on bounded-length
string solvers. Probably the best known solver in this category is kaluza [29],
which solves constraints in two stages. First, an SMT solver is used to find
possible lengths for strings that satisfy explicit length constraints, length con-
straints implied by the string constraints of the problem, and any other integer
constraints present in the model. Second, these lengths are applied to create a

fixed-length bit-vector problem, solved with stp [10] in the same manner as by
hampi. If the problem in the second stage is unsatisfiable, then the first stage is
repeated, with the addition of new constraints to avoid previously tried lengths.
Further, a stand-alone bit-vector solver for bounded-length strings is described
in [6]; however, it does not handle regular language membership, and no inform-
ation is propagated from numerical constraints to the string variables.

In CP, propagation of constraints for bounded-length sequences of variables
is described in [22], which treats open global constraints. A constraint is global
if the cardinality of its scope is not determined a priori. In a closed global
constraint, the cardinality of the scope is determined by the model, and remains
constant throughout the solution process; however, in an open global constraint,
the cardinality of the scope is determined as the solution process progresses [3].
In [22], the scope of an open global constraint is a sequence of scalar variables
with a length that that has an upper bound that is an integer variable. During
the solving process, scalar variables are added to the end (never the beginning)
of the sequence, in connection with changes to the bounds of the length. We
here take inspiration from that work, particularly in regard to propagation for
constraints of regular and context-free language membership; nevertheless, the
two approaches are essentially orthogonal.

In [31], we introduced a representation for bounded-length string variables
by prefix-suffix pairs, and we designed propagators for this representation in an
ad hoc way, testing them only on a home-made benchmark. We here introduce
a much simpler representation, leading to propagators that are different and
achieve an incomparable level of consistency, show how to derive such propagat-
ors in a principled way, and test them on third-party standard benchmarks.

4 String Variables and String Constraints

In a model of a constraint problem, we refer to unknown strings over a finite
alphabet Σ as string variables. The most precise representation of the domain
of a string variable is a subset of Σ∗; in other words, such a domain of a string
variable is the language of all strings that are not (yet) known to be infeasible.
Operations on this representation are expensive [15], making the representa-
tion unsuitable for propagation. We use this representation as an ideal starting
point, suitable for strings of fixed, bounded, or unbounded length. We introduce
in Sect. 5 a representation more suited to propagation.

We divide constraints involving string variables into three groups: pure string
constraints, mixed string constraints, and language membership constraints.

Pure String Constraints. We refer to constraints involving only string variables
as pure string constraints.

The constraint Eq(X,Y) holds if string variables X and Y are equal, where
equality for strings means that they have equal length and the same symbol at
each index. The underlying relation E is {〈x, y〉 | |x| = |y|∧∀i ∈ [1, |x|] : xi = yi}.

The constraint Neq(X,Y) holds if string variables X and Y are not equal,
where inequality for two strings holds if the strings have different lengths, or

if there exists an index for which the two strings have a different symbol. The
underlying relation is {〈x, y〉 | |x| 6= |y| ∨ ∃i ∈ [1, |x|] : xi 6= yi}.

The constraint Rev(X,Y), for string variables X and Y, holds if X is equal
to the reverse of Y. The underlying relation is {〈x, y〉 | x = yrev}.

The constraint Cat(X,Y,Z) holds if string variable Z is the concatenation
of string variables X and Y. The underlying relation is {〈x, y, z〉 | z = x · y}.

Mixed String Constraints. We refer to constraints involving at least one string
variable and at least one non-string variable as mixed string constraints.

The constraint Sub(X,Y, N) holds if string variable Y is a contiguous sub-
string of string variable X, starting at the index given by the integer variable
N . The underlying relation is {〈x, y, n〉 | y = xn : n+|y|−1}.

For the special case of Sub in which Y has a fixed length of one (i. e., where
Y can be replaced by a scalar variable), we instead propose Char(X, A,N),
whose underlying relation is {〈x, a, n〉 | xn = a}.

The constraint Len(X, N) holds if the string variable X has a length equal
to the integer variable N . The underlying relation is {〈x, n〉 | n = |x|}.

Language Membership Constraints. Conceptually, a constraint that holds if a
string variable X is a member of a given formal language L may be viewed as
a unary constraint on X, parameterised by L, irrespective of the class of L. In
practice, propagators for such a language membership constraint are specific to
the language class, so it is common to name such constraints by the language
class. For a language L, we have the constraints Regular(X,L), if L is regular,
and ContextFree(X,L), if L is context-free, with L as the underlying relation.

Example 2. Consider once again the path π = 1-2-4-5-6 of Example 1. We can
now express its path constraint PC π in (1) using the string constraints defined
in this section, along with some primitive numerical constraints:

Len(S, Y) ∧Mod(Y , 2, 0) ∧Regular(S1,L(a∗b)) ∧
Cat(“c”,S1,S2) ∧Cat(S1,S2,S) ∧Div(Y , 2, Z) ∧ Len(X, Z) ∧ Sub(S,X, 1)

Note the use of Cat in eliminating the back-reference in the regex /^(a*b)c\1$/.

5 Open-Sequence Representation and Propagation

As previously noted, a language is a natural representation of the domain of
a string variable, but the complexity of computation over languages makes this
representation unsuitable for propagation. As a more practical representation, we
consider an over-approximation of a finite set of strings, upon which we describe
propagators for the constraints defined in Sect. 4.

Open-Sequence Representation. Inspired by [22], we now introduce a string vari-
able representation, called the open-sequence representation: 〈A,N 〉 consists of
a sequence A = 〈A1, . . . ,Am〉 of sets over the same alphabet, and a set N of nat-
ural numbers, representing the possible lengths of the string, with max(N) ≤ m.
An 〈A,N 〉 pair corresponds to the set of all strings that have a length ` ∈ N
and are constructed by selecting a symbol from Ai at each index i ∈ [1, `]; in
other words, the domain of a string variable represented by 〈A,N 〉 is given by:

D(〈A,N 〉) =
⋃

`∈N

{
s ∈ Σ`

∣∣ ∀i ∈ [1, `] : si ∈ Ai
}

(2)

Intuitively, (2) shows that if any Ai is empty, then D(〈A,N 〉) contains no strings
of length at least i. This insight leads to the following representation invariant:

∀i ∈ [1,m] : Ai = ∅ ⇐⇒ max(N) < i (3)

Note that we are purposefully general in this section: in Sect. 6, we discuss a
possible implementation of the open-sequence representation, namely by treating
the value sets as the domains of scalar variables. However, the open-sequence
representation could also be implemented for a CP solver as a new first-class
string variable type. In this section, we consider an 〈A,N 〉 pair as the repres-
entation of a string variable, without regard to the choice of implementation.

Open-Sequence Propagators. We now describe, for some representative con-
straints specified in Sect. 4, the strongest pruning that may be achieved by
a propagator implementing that constraint for string variables that are all in
the open-sequence representation. In Sect. 6, we will use these propagator de-
scriptions as the basis for automatically generating an implementation of the
pure and mixed string constraints.

We give the following propagation descriptions, which specify exactly what
pruning can be achieved in the open sequence representation. It is possible to
derive the propagator descriptions in a principled manner, using a methodology
that has been omitted from this paper for reasons of space and orthogonality.

The propagator for Eq performs set intersections between Ax and Ay:

EqP (〈Ax,N x〉, 〈Ay,N y〉)

=

〈 〈〈
Ax1 ∩ A

y
1, ...,Axmax(Nx∩Ny) ∩ A

y
max(Nx∩Ny), ∅, ..., ∅

〉
,N x ∩N y

〉
,〈〈

Ax1 ∩ A
y
1, ...,Axmax(Nx∩Ny) ∩ A

y
max(Nx∩Ny), ∅, ..., ∅

〉
,N x ∩N y

〉〉

Note that EqP does not enforce the representation invariant (3): a separation
between the invariant and the propagators presented in this section significantly
simplifies design, at the level of both theory and implementation.

Example 3. If X and Y are string variables with open-sequence representations
X = 〈〈[1, 3], {3}, [1, 3], ∅, . . .〉, [2, 3]〉 and Y = 〈〈[1, 2], [1, 2], [1, 2], ∅, . . .〉, [1, 3]〉,
then propagation by EqP yields X′ = Y′ = 〈〈[1, 2], ∅, [1, 2], ∅, . . .〉, [2, 3]〉. The
invariant (3) reveals that neither string has a feasible length, resulting in failure.

The propagator for Cat is similar to EqP in regards to the relationship
between Ax and Az, but the relationship between Ay and Az is complicated
by a dependency on N x:

CatP (〈Ax,N x〉, 〈Ay,N y〉, 〈Az,N z〉)
=
〈
〈〈Ax1 ′, . . . , Axm′〉,N x′〉, 〈〈Ay1 ′, . . . , Aym′〉,N y ′〉, 〈〈Az1′, . . . , Azm′〉,N z ′〉

〉
where

N x′ = N x ∩ [min(N z)−max(N y), max(N z)−min(N y)]

N y ′ = N y ∩ [min(N z)−max(N x), max(N z)−min(N y)]

N z ′ = N z ∩ [min(N x) + min(N y), max(N x) + max(N y)]

and

Axi ′ =

{
Axi ∩ Azi if i < max(N x′)

∅ otherwise
Ayi
′ =


Ayi ∩

⋃
j∈Nx∩[1,max(N z ′)−i]

Azi+j if i < max(N y ′)

∅ otherwise

Azi ′ =



Azi ∩ Axi if i < min(N x′)

Azi ∩ Axi ∩
⋃

j∈Nx′∩[i−max(Ny ′),i]

Ayi−j if min(N x′) ≤ i < max(N x′)

Azi ∩
⋃

j∈Nx′∩[i−max(Ny ′),i]

Ayi−j if max(N x′) ≤ i < max(N z ′)

∅ if max(N z ′) ≤ i

Propagation of Len on the open-sequence representation is trivial:

LenP (〈A,N 〉,S) =
〈〈〈
A1, . . . ,Amax(N∩S), ∅, . . . , ∅

〉
,N ∩ S

〉
,N ∩ S

〉
It is also easy to express the desired propagation for the Regular constraint,
although the description in this case is of little help in regards to efficient im-
plementation (see Sect. 6).

RegularP (〈A,N 〉,L) =

〈〈
{s′1 ∈ A1 | s′ ∈ L}, . . . ,

{s′max(N) ∈ Amax(N) | s′ ∈ L}, ∅, ..., ∅
〉
, {` ∈ N}

〉

Propagators for the remaining constraints from Sect. 4 are omitted for reasons
of space; all may be described similarly to the propagators detailed above.

6 Implementation

While the open-sequence representation described in the previous section could
be implemented as a new variable type for a CP solver, the correspondence
between sets of feasible values and the domains of scalar variables suggests an-
other method of implementing the open-sequence representation, namely as an

aggregation of two components: an array of scalar variables over the alphabet of
the string, and an integer variable for the length of the string. Without loss of
generality, we focus on strings of integers.

This implementation is similar to [22], which also involves a sequence of
scalar variables that may be extended at the end but not at the beginning, and
an integer variable that determines the length of that sequence. Beyond that
similarity, our treatment diverges significantly. The open constraints described
in [22] rely on the existence of a meta-programming framework to dynamically
add variables to the model during search. In contrast, we extend a (closed)
CP solver by adding a variable type representing a bounded-length sequence,
eliminating the need for meta-programming and maintaining the declarative
nature of CP solving. Unlike [22], we have no concept of adding a variable to
the sequence: our implementation uses a fixed sequence of scalar variables, each
of which may or may not participate in a solution as determined by the length
variable. Additionally, we choose to treat each sequence-length pair as a single
bounded-length sequence variable; whereas in [22] OpenRegular is defined as
a global constraint of bounded arity, in our treatment Regular is a unary (non-
global) constraint on a string variable of bounded length. This choice allows us
to define constraints conventionally as relations over tuples (constraint semantics
in [22] are described using formal languages), and eases the presentation of n-ary
constraints on sequence variables (constraints in [22] involve only one sequence).

After discussing the technical challenges to such an aggregate implementa-
tion, we show how to derive actual propagators in a principled way, both from
the underlying relations of the constraints in Sect. 4 and from the propagator
descriptions in Sect. 5.

Aggregate Implementation. The open-sequence representation 〈A,N〉 for a string
of integers is here implemented as an array of integer variables N = 〈N1, . . . , Nm〉
representing A = 〈A1, . . . ,Am〉, and an integer variable N representing N .

In regards to consistency level, the length variable and the sequence variables
seem to have different requirements. For the length the most interesting values
are the bounds (i. e., the lengths of the shortest and longest feasible strings). It
seems unlikely, however, that maintaining bounds consistency on the variables
of N is useful, as the set of feasible symbols at any index will rarely form a
meaningful interval. We therefore choose to maintain a mixed consistency level,
which considers the upper and lower bounds of N , and all domain values of the
variables of N ; other choices are certainly possible.

For correctness, the representation invariant (3) must be enforced for each
〈N , N〉 pair. Some care needs to be taken in the interpretation of (3), however:
while Ai = ∅ merely means max(N) < i, we have that D(Ni) = ∅ leads to
a failed search node. One way to avoid this is to include a reserved character,
Null, in the domains of all variables of N . The representation invariant may
then be enforced by propagating the following conjunction of reified constraints:

∀i ∈ [1,m] : Ni = Null ⇐⇒ N < i (4)

1 def EQ(vint[] X, vint LenX, vint[] Y, vint LenY){

2 checker{

3 (val(LenX) == val(LenY)) and

4 and(i in (min(rng(X)) .. ((min(rng(X)) + val(LenX)) + -1)))

5 (val(X[i]) == val(Y[i]))

6 }

Figure 2. Checker for the string equality constraint Eq(X,Y)

Pure and Mixed String Constraints. An interesting feature of the propagator
descriptions in Sect. 5 for pure and mixed string constraints is that they consist
solely of a conjunction of range restriction operations. When applied to a variable
domain, such an operation is called an indexical [34]: it is of the form X ∈ σ
and restricts the domain of the variable X to its intersection with the interval σ.
An indexical language is a high-level solver-independent language for writing a
propagator description with indexicals. The extended indexical language of [25]
includes arrays and n-ary operations, and its system includes the following two
automated transformations:

– A solver-independent synthesis of an indexical description of a propagator
from a ground checker of its constraint.3

– A solver-specific code generation of an actual propagator from an indexical
description thereof.

Following our ideas in [30], applied there to our more complex representation of
bounded-length string variables in [31], we use this system to generate automat-
ically a prototype implementation of the pure and mixed string constraints of
Sect. 4 for gecode [12].

We illustrate this process using the string equality constraint Eq(X,Y). Its
underlying relation E from Sect. 4

E = {〈x, y〉 | x = y} = {〈x, y〉 | |x| = |y| ∧ ∀i ∈ [1, |x|] : xi = yi} (5)

can be seen as a ground checker for the constraint. We first replace the string
variables X and Y with the pairs 〈Ax,N x〉 and 〈Ay,N y〉, respectively, as in
Sect. 5. We then manually translate E into the checker sub-language of the
extended indexical language, yielding Fig. 2. For our purposes, it suffices to
illuminate a few less obvious features of the syntax. The aggregate variable
〈Ax,N x〉 is represented by two variables: an integer variable for the length
(vint LenX) and an array of integer variables for the string (vint[] X). One
constraint is on the lengths of the two strings (line 3). Another constraint is on
the contents of the arrays (lines 4 and 5): it is expressed as an n-ary conjunction
of equality constraints, corresponding to the universal quantification in (5).

From this checker, automatic synthesis yields an indexical description of a
propagator for Eq, given in Fig. 3. Compared with the hand-derived propagator

3 This synthesiser is not mentioned in [25], but described in a paper under preparation.

1 def EQ(vint[] X, vint LenX, vint[] Y, vint LenY){

2 propagator(gen)::DR{

3 LenX in dom(LenY);

4 LenY in dom(LenX);

5 forall(i in (min(rng(X)) .. ((min(rng(X)) + min(LenX)) + -1))){

6 X[i] in dom(Y[i]);

7 Y[i] in dom(X[i]);

8 }}}

Figure 3. Synthesised indexical description of a propagator for Eq(X,Y)

description EqP in Sect. 5, we note that while the synthesised propagator cor-
rectly filters values in the arrays X and Y at indices below the current minimum
length, it misses some propagation on LenX and LenY. Intuitively, if the inter-
section of the domains of X[i] and Y[i] is empty, then all feasible strings in X
and Y must be shorter than i. This additional reasoning is expressed with the
following forall construct that can be added to Fig. 3:

forall(i in ((min(rng(X)) + min(LenX)) .. (min(rng(X)) + max(LenX))))

{(dom(X[i]) inter dom(Y[i])) == emptyset -> LenX in inf .. (i - 1);}

Automatic code generation from the extended version of Fig. 3 results in a c++
implementation of an Eq propagator for gecode.

Alternatively, one can hand-code an Eq propagator for gecode directly
from the mathematical description that was derived in Sect. 5. This is much
more labour-intensive and error-prone than the tool-assisted approach. Hence,
the implementation we evaluate in Sect. 7 started as code generated by the
indexical compiler; however, portions have been modified for efficiency reasons.

Language Membership Constraints. Indexicals are no help when it comes to
language membership constraints, because propagators for those constraints rely
on internal data structures. However, there are propagators for open constraints
of language membership.

The Regular propagator of [26] is extended in [22] to handle bounded-
length sequences. Propagation proceeds by dynamically increasing the number
of layers in the layered automaton as the minimum feasible length of the string in-
creases. We implemented this bounded-length extension of Regular in gecode.
Bounded-length propagators for the GCC and ContextFree constraints are
also described in [22]; the addition of these constraints to our implementation
has been left to future work.

7 Experimental Results

We compare our bounded -length CP implementation of the open representation,4

called ‘open’ below, against fixed -length CP models and against state-of-the-
art string solvers, on benchmarks provided by the latter. It outperforms the

4 It is available at https://github.com/jossco/gecode-string.

https://github.com/jossco/gecode-string

Table 1. Runtimes in seconds (fastest in bold) for sushi word equations

n = 37 n = 50 n = 100

open pad sushi open pad sushi open pad sushi

Eq. 1 0.02 0.05 0.30 0.02 0.07 1.11 0.09 0.24 2.56
Eq. 2 <0.01 <0.01 0.37 <0.01 <0.01 0.88 0.01 0.02 19.24
Eq. 3 0.01 0.03 0.29 0.01 0.03 0.64 0.02 0.09 1.14
Eq. 4 <0.01 0.01 42.16 <0.01 0.03 >300 0.06 0.07 >300
Eq. 5 <0.01 <0.01 1.56 <0.01 <0.01 2.93 <0.01 0.02 6.37

implementation of our previous representation of bounded string variables [31].
In each experiment, all CP models used the same upper bound for string length.

Benchmark of sushi. sushi [9] is a word equation solver for unbounded -length
string variables (see Sect. 3). Being automaton-based, it computes the entire
solution set in one go, rather than seeking solutions one by one. Nevertheless, the
applicability of sushi as a satisfiability solver for string constraints is considered
in [9]: sushi is compared to the bounded -length string solver kaluza [29] (see
Sect. 3) on a benchmark of five satisfiable word equations, each parameterised
by a natural number n. To solve an equation with kaluza, a bounded-length
version of the equation is created for each n.

Example 4. We can model sushi word equation 1, namely x · an = (a|b)2n, as
follows: Cat(X,Y,Z) ∧Regular(Y,L(an)) ∧Regular(Z,L((a|b)2n)).

Using the CP models in [16] for the five word equations, we also test against
two fixed -length CP approaches. In the first, the string lengths are fixed at a pess-
imistically large upper bound [16], and multiple occurrences of a padding symbol
are allowed at the end of each string [16]. In the second (not tried in [16]), the
string lengths are initially fixed to a lower bound and a set of satisfying strings
is sought; upon unsatisfiability, the lengths are increased lexicographically and
search is restarted. These models use the Regular constraint, and concatena-
tion is modelled with reified channelling constraints [16]. The padding approach,
called ‘pad’ below, is always faster, so we omit results on the iterative approach.
Our bounded -length CP models use the OpenRegular propagator [22] and
our indexical-based Cat propagator of Sect. 6. For all CP models, we use the
same deterministic first-fail search heuristic, and stop at the first solution, with
a time-out of 300 seconds. The tests were run on a 2.66 GHz Intel Core 2 Duo
with 4 GB of RAM, on VirtualBox 4.3.10 (the recommended way to run sushi)
running Ubuntu 10.04 on 1 GB of RAM, using sushi 2.0 and gecode 4.3.2.

In Table 1 we give runtimes for all five word equations. We compare the CP
approaches only against sushi; experimental results reported in [9] (and replic-
ated in [16]) show that sushi typically outperforms kaluza, often significantly,
and we do not attempt to replicate those results here. Our smallest instance size,
n = 37, is the largest size tried in [9, 16]. Even for n ∈ {50, 100} the benchmark

Table 2. Runtimes (in seconds) and backtracks (best in bold) for kaluza instances

gecode(open) gecode(pad) kaluza

instance name runtime backtracks runtime backtracks runtime

concat 0.003 0 0.008 0 0.088
indexof 0.003 0 0.010 0 1.560

bettermatch1 0.002 0 0.005 0 0.223
bettermatch2 0.003 0 0.003 0 0.192

streq 0.003 0 0.006 0 0.077
replace 0.006 30 0.019 30 0.364

turns out to be trivial for all CP approaches, outperforming the state-of-the-art
sushi solver by up to three orders of magnitude, as already observed in [16] for
n = 37. On all instances, our bounded-length prototype implementation results
in the same search tree as the fixed-length padding CP approach of [16], but
with a lower runtime.

It turns out that all instances run without backtracks in both CP approaches!
The reason is that the underlying constraint graph (with variables as vertices and
constraints as hyper-arcs) is Berge-acyclic, so that domain consistency on the
entire model is achieved by maintaining domain consistency on each constraint:
this follows from the definition of the SLSE fragment, as one can observe in
Example 4. We argue that a CP model preserves problem structure that is lost by
kaluza when translating to a bit-vector representation, and that knowledge of
the complexity results of CP applicable to high-level models could have prevented
the creation of the sushi word equation benchmark in the first place.

We thus look now at another third-party benchmark (which we did not try
in [31]), also in order to see if our bounded-length prototype implementation can
outperform the fixed-length CP padding approach of [16] by a larger margin.

Benchmark of kaluza. The bounded-length string solver kaluza [29] (see
Sect. 3) includes over 50,000 instances that were generated for the symbolic exe-
cution of JavaScript, based on real-world Ajax web applications. Unfortunately,
they all turn out to be trivial for CP approaches, with runtimes below 0.01
seconds, and even the kaluza runtimes are below half a second. Hence this ex-
tensive benchmark is also not particularly interesting. In order not to be biased
by hand-picking among the 50,000 instances, we pick all the 14 instances that
are in the kaluza code. It turns out that kaluza gives erroneous results or
crashes on several of these instances, as reported also by [36]. The results on the
remaining instances are in Table 2; note that kaluza does not report backtracks
(incomparable in any case to those of CP approaches), and that Z3-str [36] can
only be applied to Regular-free versions of the actual instances.

Once again, the state-of-the-art solver is beaten, but the difference between
the CP models with bounded-length string variables (open) and padded fixed-
length string variables (pad) is small: we address this issue in the conclusion.
We are not aware of a hard third-party benchmark for string variables.

8 Conclusion

We have formalised string variables and specified several interesting string con-
straints, all applicable to strings of fixed, bounded, or unbounded length. We
have defined a bounded-length string variable representation, called the open-
sequence representation, which is directly implementable for any existing CP
solver, and we have given propagator descriptions for the specified string con-
straints. We have implemented the open-sequence representation and derived
in a principled way actual propagators for the specified constraints, for the CP
solver gecode. Despite being only a prototype, our implementation already out-
performs not only off-the-shelf fixed-length CP approaches, but also, by orders of
magnitude, state-of-the-art dedicated string solvers, on their own benchmarks.

The experimental time comparison of our advocated CP approach of bounded-
length string variables against the existing CP approach of padded fixed-length
string variables has shown only minor speed-ups on the third-party benchmarks.
In retrospect, this is not so surprising, as propagation is similar, witness the back-
track counts in Table 2 and the zero backtracks behind Table 1, and as those
benchmarks seem not to exercise the string length reasoning that could give an
advantage to our approach. The invariant (4) connecting the length of strings Ni
and the length variable N can be seen as an implementation, via reification, of
padding, thus it is unlikely that the bounded-length representation will perform
more propagation than using padding symbols, unless non-trivial reasoning is
required on string lengths. Also, at the modelling level, we argue that it is much
easier to model a bounded-length string problem without using padding symbols,
since encoding such a problem as a fixed-length one is both labour-intensive and
error-prone: by designing the required propagators once and for all, we allow
modellers to save the encoding effort and risk. Indeed, in [16] the automaton
representation had to be modified to include the padding symbol, adding an
extra level of complexity to the modelling. Since our bounded-length approach
subsumes the fixed-length one, it suffices to fix the length instead of bounding
it when one has a fixed-length string variable. Future work consists of strength-
ening our length reasoning, implementing our open-sequence representation as
a first-class string variable type, and adapting our propagators.

We argue that CP is well-suited for string variables and constraints: unlike for
many non-CP solvers mentioned here, there is no difficulty in upgrading from a
single string variable to multiple ones, possibly with shared element variables, in
having both string and numeric variables in a model, or in handling numeric
variables and constraints without unnatural encodings. Indeed, it suffices to
extend any CP solver, coming with existing numeric variables and numeric or
symbolic constraints, in plug-and-play fashion, by adding the new type of string
variables and providing propagators for the new constraints. This may result in
high-level models that preserve problem structure and are amenable to faster
solving than by lower-level encodings in ad hoc solvers.

Acknowledgements. This work is supported by grants 2009-4384, 2011-6133,
and 2012-4908 of VR, the Swedish Research Council. We thank J.-N. Monette.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,
J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) Computer-
Aided Verification (CAV 2014). LNCS, vol. 8559, pp. 150–166. Springer (2014)

2. Allen, F.E.: Control flow analysis. ACM Sigplan Notices 5(7), 1–19 (1970)

3. Barták, R.: Dynamic global constraints in backtracking based environments. An-
nals of Operations Research 118(1), 101–119 (2003)

4. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer (2004)

5. Bisht, P., Hinrichs, T., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: White-
box analysis of web applications for parameter tampering exploit construction.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Computer and Communications
Security (CCS 2011). pp. 575–586. ACM (2011)

6. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2009). LNCS,
vol. 5505, pp. 307–321. Springer (2009)

7. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering 2(3), 215–222 (1976)

8. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database ap-
plications. In: Rosenblum, D.S., Elbaum, S.G. (eds.) Software Testing and Analysis
(ISSTA 2007). pp. 151–162. ACM (2007)

9. Fu, X., Powell, M.C., Bantegui, M., Li, C.C.: Simple linear string constraints.
Formal Aspects of Computing 25, 847–891 (November 2013), sushi is available from
http://people.hofstra.edu/Xiang_Fu/XiangFu/projects/SAFELI/SUSHI.php

10. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer-Aided Verification (CAV 2007). LNCS, vol.
4590, pp. 519–531. Springer (2007), stp is available from https://sites.google.

com/site/stpfastprover/

11. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2013). LNCS, vol. 7795, pp. 277–291. Springer (2013)

12. Gecode Team: Gecode: A generic constraint development environment (2006),
http://www.gecode.org

13. Gervet, C.: Constraints over structured domains. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming, chap. 17, pp. 605–638. Elsevier
(2006)

14. Ghosh, I., Shafiei, N., Li, G., Chiang, W.F.: JST: an automatic test generation
tool for industrial Java applications with strings. In: Notkin, D., Cheng, B.H.C.,
Pohl, K. (eds.) International Conference on Software Engineering (ICSE 2013). pp.
992–1001. IEEE / ACM (2013)

15. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 377–391. Springer (2003)

16. He, J., Flener, P., Pearson, J.: Solving string constraints: The case for constraint
programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 381–397.
Springer (2013)

http://people.hofstra.edu/Xiang_Fu/XiangFu/projects/SAFELI/SUSHI.php
https://sites.google.com/site/stpfastprover/
https://sites.google.com/site/stpfastprover/
http://www.gecode.org

17. Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over reg-
ular languages. In: Hind, M., Diwan, A. (eds.) Programming Language Design and
Implementation (PLDI 2009). pp. 188–198. ACM (2009)

18. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Automated
Software Engineering 19(4), 531–559 (2012)

19. Kieżun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Rothermel, G., Dillon, L.K. (eds.) International Sym-
posium on Software Testing and Analysis (ISSTA 2009). pp. 105–116. ACM (2009),
hampi is available from http://people.csail.mit.edu/akiezun/hampi/

20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

21. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library, Cam-
bridge University Press (1997)

22. Maher, M.J.: Open constraints in a boundable world. In: van Hoeve, W.J., Hooker,
J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 163–177. Springer (2009)

23. Makanin, G.: The problem of solvability of equations in a free semigroup. Sbornik:
Mathematics 32(2), 129–198 (1977)

24. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In: Mil-
ano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 527–543. Springer (2012)

25. Monette, J.N., Flener, P., Pearson, J.: Towards solver-independent propagators.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 544–560. Springer (2012),
the indexical compiler is available from http://www.it.uu.se/research/group/

astra/software#indexicals

26. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer
(2004)

27. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer (2006)

28. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs with
strings. In: Kroeze, J.H., de Villiers, R. (eds.) South African Institute of Computer
Scientists and Information Technologists Conference (SAICSIT 2012). pp. 139–148.
ACM (2012)

29. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Security and Privacy (S&P 2010). pp. 513–
528. IEEE Computer Society (2010), kaluza is available from http://webblaze.

cs.berkeley.edu/2010/kaluza/

30. Scott, J.D.: Rapid prototyping of a structured domain through indexical compila-
tion. In: Schaus, P., Monette, J.N. (eds.) Domain Specific Languages in Combinat-
orial Optimization (CoSpeL workshop at CP 2013) (2013), http://cp2013.a4cp.
org/workshops/cospel

31. Scott, J.D., Flener, P., Pearson, J.: Bounded strings for constraint programming.
In: Tools with Artificial Intelligence (ICTAI 2013). pp. 1036–1043. IEEE Computer
Society (2013)

32. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 530–544. Springer (2006)

33. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Computer and Communications Security (CCS
2014) (2014)

34. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). techreport CS-93-02, Brown University,

http://people.csail.mit.edu/akiezun/hampi/
http://www.it.uu.se/research/group/astra/software#indexicals
http://www.it.uu.se/research/group/astra/software#indexicals
http://webblaze.cs.berkeley.edu/2010/kaluza/
http://webblaze.cs.berkeley.edu/2010/kaluza/
http://cp2013.a4cp.org/workshops/cospel
http://cp2013.a4cp.org/workshops/cospel

Providence, USA (January 1993), revised version: Journal of Logic Programming,
37(1–3):293–316 (1998)

35. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: Combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2009). LNCS, vol.
5505, pp. 322–336. Springer (2009)

36. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web applic-
ation analysis. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Foundations of Software
Engineering (FSE 2013). pp. 114–124. ACM (2013)

	Constraint Solving on Bounded String Variables

