
Set Variables and Local Search?

Magnus Ågren, Pierre Flener, and Justin Pearson

Department of Information Technology
Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

{agren,pierref,justin}@it.uu.se

Abstract. Many combinatorial (optimisation) problems have natural
models based on, or including, set variables and set constraints. This was
already known to the constraint programming community, and solvers
based on constructive search for set variables have been around for a
long time. In this paper, set variables and set constraints are put into a
local-search framework, where concepts such as configurations, penalties,
and neighbourhood functions are dealt with generically. This scheme is
then used to define the penalty functions for five (global) set constraints,
and to model and solve two well-known applications.

1 Introduction

Many combinatorial (optimisation) problems have natural models based on, or
including, set variables and set constraints. Classical examples include set par-
titioning and set covering, and such problems also occur as sub-problems in
many real-life applications, such as airline crew rostering, tournament schedul-
ing, time-tabling, and nurse rostering. This was already known to the constraint
programming community, and constructive search (complete) solvers for set vari-
ables have been around for a long time now (see for example [11, 15, 19, 2]).

Complementary to constructive search, local search [1] is another common
technique for solving combinatorial (optimisation) problems. Although not com-
plete, it usually scales very well to large problem instances and often compares
well to, or outperforms, other techniques. Historically, the constraint program-
ming community has been mostly focused on constructive search and has only re-
cently started to apply its ideas to local search. This means that concepts such as
high declarativeness, global constraints with underlying incremental algorithms,
and high-level modelling languages for local search have been introduced there
(see [12, 25, 22, 16, 10, 7, 13, 23, 14, 6] for instance).

In this paper, we introduce set variables and (global) set constraints to
constraint-based local search. More specifically, our contributions are as follows:

– We put the local-search concepts of penalties, configurations, and neighbour-
hood functions into a set-variable framework. (Section 2)

? This paper significantly extends and revises Technical Report 2004-015 of the De-
partment of Information Technology, Uppsala University, Sweden.

– In order to be able to use (global) set constraints generally in local search, we
propose a generic penalty scheme. We use it to give the penalty definitions of
five (global) set constraints. Other than their well-known modelling merits,
we show that (global) set constraints provide opportunities for a hardwired
global reasoning while solving, which would otherwise have to be hand-coded
each time for lower-level encodings of set variables, such as integer variables
for the characteristic functions of their set values. (Section 3)

– In order to obtain efficient solution algorithms, we propose methods for the
incremental penalty maintenance of the (global) set constraints. (Section 4)

– The (global) set constraints are used to model and solve two well-known
problems, with promising results that motivate further research. (Section 5)

After this, Section 6 discusses related and future work and concludes the paper.

2 Local Search on (Set) Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple 〈V,D, C〉, where V is a finite
set of variables, D is a finite set of finite domains, each Dv ∈ D containing the
set of possible values for the corresponding variable v ∈ V , and C is a finite set
of constraints, each c ∈ C being defined on a subset of the variables in V and
specifying their valid combinations of values.

The definition above is very general and may be used with any choice of finite-
domain variables. The variables in V may, for example, range over sets of integers
(integer variables), strings, or, as in our case, sets of values of some type (set
variables, defined formally below). Of course, a CSP may also contain variables
with several kinds of domains. As an example, consider a CSP 〈V, D,C〉 in which
some variables {i1, . . . , ik} ⊂ V are integer variables, and some other variables
{s1, . . . , sk} ⊂ V are set variables. These could for instance be connected with
constraints stating that the cardinality of each sj must not exceed ij .

In this paper, we assume that all the variables are set variables, and that all
the constraints are stated on variables of this kind. This is of course a limitation,
since many models contain both set variables and integer variables. However,
mixing integer variables and set variables makes the constraints harder to define,
and we consider this to be future work. Fortunately, interesting applications, such
as the two in this paper, are already possible to model.

Definition 1 (Set Variable and its Universe). Let P = 〈V, D,C〉 be a CSP.
A variable s ∈ V is a set variable if its corresponding domain Ds = 2Us , where
Us is a finite set of values of some type, called the universe of s.

Note that this definition does not allow the indication of a non-empty set of
required values in the universe of a set variable, hence this must be done here
by an explicit constraint. This is left as future work, as not necessary for our
present purpose.

Definition 2 (Configuration). Let P = 〈V, D, C〉 be a CSP. A configuration
for P is a total function k : V → ⋃

s∈V Ds such that k(s) ∈ Ds for all s ∈ V .

Definition 3 (Delta of Configurations). Let P = 〈V, D, C〉 be a CSP and let
k and k′ be two configurations for P . The delta of k and k′, denoted delta(k, k′),
is the set {(s, v, v′) | s ∈ V & v = k(s)− k′(s) & v′ = k′(s)− k(s) & v 6= v′},
where − stands for the set difference.

Example 1. Consider a CSP P = 〈{s1, s2, s3}, {Ds1 , Ds2 , Ds3}, C〉 where Ds1 =
Ds2 = Ds3 = 2{d1,d2,d3} (hence Us1 = Us2 = Us3 = {d1, d2, d3}). One possible
configuration for P is defined as k(s1) = {d3}, k(s2) = {d1, d2}, k(s3) = ∅, or
equivalently as the set of mappings {s1 7→ {d3}, s2 7→ {d1, d2}, s3 7→ ∅}. Another
configuration for P is defined as k′ = {s1 7→ ∅, s2 7→ {d1, d2, d3}, s3 7→ ∅}. Now,
the delta of k and k′ is delta(k, k′) = {(s1, {d3}, ∅), (s2, ∅, {d3})}.
Definition 4 (Neighbourhood Function). Let K denote the set of all pos-
sible configurations for a CSP P and let k ∈ K. A neighbourhood function for
P is a function N : K → 2K . The neighbourhood of P with respect to k and N
is the set of configurations N (k).

Example 2. Consider P and k from Example 1. A possible neighbourhood of P
with respect to k and some neighbourhood function N for P is the set N (k) =
{k1 = {s1 7→ ∅, s2 7→ {d1, d2, d3}, s3 7→ ∅}, k2 = {s1 7→ ∅, s2 7→ {d1, d2}, s3 7→
{d3}}. This neighbourhood function moves the value d3 in s1 to variable s2 or
variable s3, decreasing the cardinality of s1 and increasing the one of s2 or s3.

We will use two general neighbourhoods in this paper, which are defined next.
For both, let s ∈ V , S ⊆ V − {s}, and let k ∈ K be a configuration for a CSP
P = 〈V, D, C〉, where K is the set of all configurations for P . The first one, called
move, is defined by the neighbourhood function with the same name:

move(s, S)(k) = {k′ ∈ K | ∃d ∈ k(s) : s′ ∈ S & d ∈ Us′ − k(s′) &
delta(k, k′) = {(s, {d}, ∅), (s′, ∅, {d})}}

This neighbourhood, given k, is the set of all neighbourhoods k′ that differ from
k in the definition of two distinct set variables s and s′, the difference being
that there exists exactly one d ∈ k(s) such that d ∈ k(s) ⇔ d /∈ k′(s) and
d /∈ k(s′) ⇔ d ∈ k′(s′). Hence, d was moved from s to s′.

The second one, called swap, is defined by the neighbourhood function:

swap(s, S)(k) = {k′ ∈ K | ∃d ∈ k(s) : ∃d′ ∈ Us − k(s) : s′ ∈ S & d′ ∈ k(s′)
& d ∈ Us′ − k(s′) &
delta(k, k′) = {(s, {d}, {d′}), (s′, {d′}, {d})}}

This neighbourhood, given k, is the set of all neighbourhoods k′ that differ
from k in the definition of two distinct set variables s and s′, the difference
being that there exists exactly one pair (d ∈ k(s), d′ ∈ Us − k(s)) such that
d ∈ k(s) ⇔ d /∈ k′(s) and d /∈ k(s′) ⇔ d ∈ k′(s′), and the opposite for d′. Hence,
d and d′ were swapped between s and s′.

We will now define the notion of penalty of a constraint, which, informally, is
an estimate on how much a constraint is violated. Below is a general definition,
followed by a generic scheme for balancing the penalties of different constraints,
which is then specialised for each constraint in Section 3.

Definition 5 (Penalty). Let P = 〈V,D, C〉 be a CSP and let K denote the
set of all possible configurations for P . A penalty of a constraint c ∈ C is a
function penalty(c) : K → N. The penalty of P with respect to k is the sum∑

c∈C penalty(c)(k).

Example 3. Consider once again P from Example 1 and let c1 and c2 be the
constraints s1 ⊆ s2 and d3 ∈ s3 respectively. Let the penalty functions of c1

and c2 be defined as: penalty(c1)(k) = |k(s1) − k(s2)|, and penalty(c2)(k) =
0, if d3 ∈ k(s3), or 1, otherwise . Now, the penalties of P with respect to the
different configurations in the neighbourhood of Example 2 are penalty(c1)(k1)
+ penalty(c2)(k1) = 1, and penalty(c1)(k2) + penalty(c2)(k2) = 0 respectively.

In order for a constraint-based local-search approach to be effective, different
constraints should have balanced penalty definitions [6]: i.e. for a set of con-
straints C, no c ∈ C should be easier in general to satisfy compared to any other
c′ ∈ C. This may be application dependent, in which case weights could be added
to tune the penalties, see [13] for example. For set constraints, we believe that
one such penalty definition is to let (by extension of the integer-variable ideas
in [10]) the penalty of a set constraint c be the length of the shortest sequence of
atomic set operations (defined below) that must be performed on the variables
in c under a configuration k in order to satisfy c.

Definition 6 (Atomic Set Operations). Let P = 〈V, D, C〉 be a CSP, let k
be a configuration for P , and let s ∈ V . An atomic set operation on k(s) is one
of the following changes to k(s):

1. Add a value d to k(s) from its complement Us − k(s), denoted Add(k(s), d).
2. Remove a value d from k(s), denoted Remove(k(s), d).

Note that no value-replacement operation is considered here; its inclusion
would imply a reduction of some of the penalties in Section 3.

Example 4. Performing ∆ = [Add(k(s), d), Remove(k(s), b), Add(k(s′), b)] on
k(s) = {a, b, c} and k(s′) = ∅ will yield ∆(k(s)) = {a, c, d} and ∆(k(s′)) = {b}.
Definition 7 (Operation-Based Penalty for Set Constraints). Let P =
〈V, D,C〉 be a CSP and let K be the set of all configurations for P . Let c ∈ C be a
constraint defined on a set of set variables S ⊆ V . The penalty of c, penalty(c) :
K → N, is the length of the shortest sequence of atomic set operations that must
be performed in order to satisfy c given a specific configuration k.

From this definition it follows that penalty(c)(k) = 0 if and only if c is satisfied
with respect to k. Also, as will be seen, to find a penalty that complies with this
definition for a given set constraint is not always obvious.

3 (Global) Set Constraints and Their Penalties

We now present five (global) set constraints and define their penalties. Through-
out this section, we assume that k is a configuration for a CSP P = 〈V, D, C〉,
and that c ∈ C.

3.1 AllDisjoint

The global constraint AllDisjoint(S), where S = {s1, . . . , sn} is a set of set
variables, expresses that all distinct pairs in S are disjoint, i.e. that ∀i < j ∈
1 . . . n : si ∩ sj = ∅. The penalty of an AllDisjoint(S) constraint under k is
equal to the length of the shortest sequence ∆ of atomic set operations of the
form Remove(k(s), d) that must be performed in order for ∀i < j ∈ 1 . . . n :
∆(k(si)) ∩∆(k(sj)) = ∅ to hold. We define the penalty as:

penalty(AllDisjoint(S))(k) =

(∑

s∈S

|k(s)|
)
−

∣∣∣∣∣
⋃

s∈S

k(s)

∣∣∣∣∣ (1)

Indeed, we need to remove all repeated occurrences of any value, and their
number equals the difference between the sum of the set sizes and the size of
their union. Hence the following proposition:

Proposition 1. The penalty (1) is correct with respect to Definition 7.

3.2 Cardinality

The constraint Cardinality(s,m), where s is a set variable and m a natural-
number constant, expresses that the cardinality of s is equal to m, i.e. that
|s| − m. This constraint would of course be more powerful if we allowed m to
be an integer variable. However, as was mentioned earlier, the penalty would be
more complicated if we did this, and we see this as future work.

The penalty of a Cardinality(s,m) constraint under k is equal to the length
of the shortest sequence ∆ of atomic set operations of the form Add(k(s), d) or
Remove(k(s), d) that must be performed in order for |∆(k(s))| = m to hold. The
penalty below expresses this:

penalty(Cardinality(s,m))(k) = abs(|k(s)| −m) (2)

where abs(e) denotes the absolute value of the expression e. Indeed, we need
to add (remove) exactly as many values to (from) k(s) in order to increase
(decrease) its cardinality to m. Hence the following proposition:

Proposition 2. The penalty (2) is correct with respect to Definition 7.

3.3 MaxIntersect

The global constraint MaxIntersect(S,m), where S = {s1, . . . , sn} is a set of set
variables and m a natural-number constant, expresses that the cardinality of the
intersection between any distinct pair in S is at most m, i.e. that ∀i < j ∈ 1 . . . n :
|si∩sj | ≤ m. This constraint expresses the same as an AllDisjoint(S) constraint
when m = 0. However, as will be seen, keeping the AllDisjoint constraint is
useful for this special case. Again, allowing m to be an integer variable would
make the constraint more powerful and is future work.

The penalty of a MaxIntersect(S, m) constraint under k is equal to the length
of the shortest sequence ∆ of atomic set operations of the form Remove(k(s), d)
that must be performed such that ∀i < j ∈ 1 . . . n : |∆(k(si)) ∩∆(k(sj))| ≤ m
holds. In fact, finding a closed form for the exact penalty of a MaxIntersect con-
straint with respect to Definition 7 turns out not to be that easy. The following
expression gives an upper bound on this penalty, namely the sum of the excesses
of the intersection sizes:

penalty(MaxIntersect(S,m))(k) ≤
∑

1≤i<j≤n

max (|k(si) ∩ k(sj)| −m, 0) (3)

Example 5. Assume that k(s1) = {d1, d2, d3}, k(s2) = {d2, d3, d4}, k(s3) =
{d1, d3, d4}, and that c = MaxIntersect({s1, s2, s3}, 1). The penalty of c accord-
ing to (3) is 2 + 2 + 2 = 3. Indeed, we may satisfy c by performing the sequence
of 3 operations [Remove(k(s1), d1),Remove(k(s2), d2),Remove(k(s3), d3)]. How-
ever, this is not the shortest sequence that achieves this, since after performing
[Remove(k(s1), d3),Remove(k(s2), d3)], the constraint c is also satisfied.

Proposition 3. The bound of (3) is an optimal upper bound w.r.t. Definition 7.

Proposition 4. The upper bound of (3) is zero iff MaxIntersect(S, m) holds.

However, the upper bound of (3) is not correct with respect to Definition 7
when m = 0. Consider s1 = {d1, d2}, s2 = {d2, d3}, and s3 = {d2, d3}. The
penalty under (3) of MaxIntersect({s1, s2, s3}, 0) is 1 + 1 + 2 = 4 whereas the
one of AllDisjoint({s1, s2, s3}) correctly is 6− 3 = 3 under (1).

We may also obtain a lower bound, by using a lemma due to Corrádi [8].

Lemma 1 (Corrádi). Let s1, . . . , sn be r-element sets and U be their union. If
|si ∩ sj | ≤ m for all i 6= j, then |U | ≥ r2·n

r+(n−1)·m .

This lemma can be applied for n ground sets that do not necessarily all
have the same cardinality r, but rather with r being the maximum of their
cardinalities, as is the case with MaxIntersect(S, m) and |S| = n. It suffices to
apply the corrective term δ = n · r −∑

s∈S |k(s)| when using the lower bound
for a configuration k where r = max s∈S |k(s)|. Note that δ is the amount of
distinct new elements (from a sufficiently large fictitious universe disjoint from⋃

s∈S k(s)) that one must add to the sets in {k(s) | s ∈ S} in order to make
them all be of size r.

We now have the following lower bound on the penalty of a MaxIntersect(S, m)
constraint under a configuration k (where |S| = n and r = max s∈S |k(s)|):

penalty(MaxIntersect(S,m))(k) ≥ (4)⌈
r2·n

r+(n−1)·m
⌉
−

(
n · r − ∑

s∈S

|k(s)|
)
−

∣∣∣∣
⋃

s∈S

k(s)
∣∣∣∣

Example 6. Recall Example 5, where m = 1 and the n = 3 sets are of the same
size r = 3, hence δ = 0, and have a union of 4 elements. We get penalty(c)(k) ≥
d 27

5 e − 0− 4 = 2, which is correct with respect to Definition 7.

Now, the following proposition follows from Lemma 1:

Proposition 5. The bound of (4) is an optimal lower bound w.r.t. Definition 7.

The next proposition establishes what happens when m = 0, in which case
MaxIntersect(S,m) is equivalent to AllDisjoint(S):

Proposition 6. The lower bound of (4) is correct wrt Definition 7 when m = 0.

Proof. When m = 0, then
⌈

r2·n
r+(n−1)·m

⌉
= r · n and the lower bound of (4)

simplifies into the penalty expression (1). Hence it is correct, by Proposition 1.

Unfortunately, the lower bound is sometimes zero even though the constraint
is violated. Consider n = 10 sets, all of size r = 3 (hence δ = 0), that should
have pairwise intersections of at most m = 1 element and that have a union of
8 elements. Then (4) gives 0 as lower bound on the penalty, but the constraint
is violated as there are no such 10 sets, hence m would have to be at least 2.

However, we may still use (4) for the MaxIntersect constraint, but it would
have to be in conjunction with (3), with the condition that if the lower bound of
(4) is zero, then one uses the upper bound of (3) instead. In our experience, the
lower bound of (4) is frequently correct. This also argues for keeping the explicit
constraint AllDisjoint , since for that constraint (4) gives the correct penalty.

An often tighter upper bound than the one of (3) can be obtained by Al-
gorithm 1. It obtains an estimate of the penalty by returning the length of a
sequence of atomic set operations constructed in the following way: (i) Start
with the empty sequence. (ii) Until the constraint is satisfied, add an atomic set
operation removing a value that belongs to a set variable that takes part in the
largest number of violating intersections. The algorithm uses the upper bound
of (3) as the exit criterion, as it is zero only upon satisfaction of the constraint,
by Proposition 4.

Algorithm 1 Calculating the penalty of a MaxIntersect constraint.
function penalty max intersect(S, m)(k)

l← 0
while penalty(MaxIntersect(S, m))(k) > 0 do . According to (3)

choose d ∈ S
s∈S k(s) s.t. |{(i, j) | i < j & d ∈ k(si) ∩ k(sj) & |k(si) ∩

k(sj)| > m}| is maximised.
choose si ∈ S s.t. |{sj ∈ S | i 6= j & d ∈ k(si)∩k(sj) & |k(si)∩k(sj)| > m}|

is maximised.
l← l + 1 . i.e. an imaginary Remove(k(si), d) operation was added
Replace the binding for si in k by si 7→ k(si)− {d}

return l

In the current implementation of the MaxIntersect constraint, we use the
upper bound given by (3). As we have seen, this is not always a good estimate
on the penalty with respect to Definition 7. In the future, we plan to use (4) in
conjunction with (3) or (an incremental variant of) Algorithm 1.

3.4 MaxWeightedSum

The constraint MaxWeightedSum(s,w ,m), where s is a set variable, w : Us → N
is a weight function from the universe of s to the natural numbers, and m is a
natural-number constant, expresses that

∑
d∈s w(d) ≤ m. Note that we do not

allow negative weights nor m to be an integer variable. Allowing these would
need a redefinition of the penalty below.

The penalty of a MaxWeightedSum(s,w ,m) constraint under k is equal to
the length of the shortest sequence ∆ of operations of the form Remove(k(s), d)
that must be performed in order for

∑
d∈∆(k(s)) w(d) ≤ m to hold. We define

the following penalty:

penalty(MaxWeightedSum(s,w ,m))(k) = (5)
min card

({
s′ ⊆ k(s) | ∑

d′∈s′ w(d′) ≥
(∑

d∈k(s) w(d)
)
−m

})

where min card(Q) denotes the cardinality of a set q ∈ Q such that for all
q′ ∈ Q, |q| ≤ |q′|, or 0 if Q = ∅. Indeed, we must remove at least the smallest set
of values from k(s) such that their weighted sum is at least the difference between
the weighted sum of all values in k(s) and m. Hence the following proposition:

Proposition 7. The penalty (5) is correct with respect to Definition 7.

3.5 Partition

The global constraint Partition(S, q), where S = {s1, . . . , sn} is a set of set
variables and q is a ground set of values, expresses that the variables in S are
all disjoint, i.e. that ∀i < j ∈ 1 . . . n : si ∩ sj = ∅, and that their union is equal
to q, i.e. that

⋃
s∈S s = q. Note that this definition of a partition allows one or

more variables in S to be empty, which is useful in some applications, such as
the progressive party problem below. The set q, called the reference set, could
be generalised to be a set variable. The applications we currently look at do not
expect this but this may change in the future. In that case, the penalty function
below would have to be changed to take this into account.

The penalty of a Partition(S, q) constraint under k is equal to the length
of the shortest sequence ∆ of atomic set operations that must be performed in
order for ∀i < j ∈ 1 . . . n : ∆(k(si)) ∩ ∆(k(sj)) = ∅ &

⋃
s∈S ∆(k(s)) = q to

hold. The following penalty expresses this:

penalty(Partition(S, q))(k) =

(∑

s∈S

|k(s)|
)
−

∣∣∣∣∣
⋃

s∈S

k(s)

∣∣∣∣∣ +

∣∣∣∣∣q −
⋃

s∈S

k(s)

∣∣∣∣∣ (6)

Indeed, the first two terms are those in (1) for AllDisjoint and the third term
expresses that all unused elements of the reference set must be added to some
set of the partition for the union to hold. Hence the following proposition:

Proposition 8. The penalty (6) is correct with respect to Definition 7.

Note that this penalty could be reduced by allowing replacement operations.

4 Incrementally Maintaining Penalties

This section presents how the penalties are maintained for two of the presented
constraints, AllDisjoint and MaxIntersect . For the other three, Partition is sim-
ilar to AllDisjoint , while Cardinality and MaxWeightedSum are rather straight-
forward to maintain. Since in local search one may need to perform many it-
erations, and since each iteration usually requires searching through a large
neighbourhood, it is crucial that the penalty of a neighbouring configuration
is computed efficiently. In order to do this, it is important to use incremental
algorithms that, given a current configuration k, do not recompute from scratch
the penalty of a neighbouring configuration k′, but rather compute the penalty
with respect to the penalty of k and the difference between k and k′.

This technique is used, for instance, in [12, 22] where invariants are used to
get efficient incremental algorithms from high-level, declarative descriptions. In
this paper, the incrementality is achieved explicitly for each constraint, and we
consider it to be future work to implement this in a more general and elegant
way. The aim of this paper is to explore the usefulness of the proposed framework
and penalty definitions for set constraints.

4.1 Incrementally Maintaining AllDisjoint

Recall the penalty (1) for an AllDisjoint constraint in Section 3.1. In order to
maintain this incrementally, we use a table count of integers, indexed by the
values in U =

⋃
s∈S Us, such that count [d] is equal to the number of variables

that contain d. Now, the sum in (1) is equal to
∑

d∈U (count [d]−1) as it suffices to
remove a value d ∈ ⋃

s∈S k(s) from all but one of the set variables in {s ∈ S | d ∈
k(s)} in order to satisfy the constraint. This is easy to maintain incrementally
given an atomic set operation.

4.2 Incrementally Maintaining MaxIntersect

Recall the penalty bound of (3) for a MaxIntersect constraint. In order to main-
tain this incrementally, we use the following two data structures: (i) A table
variables indexed by the values in U =

⋃
s∈S Us, such that variables[d] is the set

of variables that d is a member of; (ii) for each variable si, a table si.intersects
indexed by the values in {i+1, . . . , n} such that si.intersects[j] = |k(si)∩k(sj)|.

The sum in (3) is then equal to
∑

1≤i<j≤n max (si.intersects[j] −m, 0) and
all this may be maintained incrementally in the following way, given an atomic
set operation o. If o = Add(k(si), d) then (i) add si to variables[d]; (ii) for
each variable sj in variables[d] such that j > i: if si.intersects[j] ≥ m then
increase the sum in (3) by 1; and (iii) for each variable sj in variables[d] such
that j > i: increase si.intersects[j] by 1. If o = Remove(k(si), d) then (i) remove
si from variables[d]; (ii) for each variable sj in variables[d] such that j > i: if
si.intersects[j] > m then decrease the sum in (3) by 1; and (iii) for each variable
sj in variables[d] such that j > i: decrease si.intersects[j] by 1.

Implementing these ideas with respect to the lower bound of (4) and Algo-
rithm 1 is future work.

5 Applications

This section presents two well-known applications for constraint programming:
the Progressive Party Problem and the Social Golfers Problem. They both have
natural models based on set variables. They have previously been solved both
using constructive and local search. See, for instance, the references [21, 10, 25,
13, 6, 24] and [3, 20, 18, 9], respectively. The constraints in Section 3 as well as
the search algorithms were implemented in OCaml and the experiments were
run on an Intel 2.4 GHz Linux machine with 512 MB memory.

5.1 The Progressive Party Problem (PPP)

The problem is to timetable a party at a yacht club. Certain boats are designated
as hosts, while the crews of the remaining boats are designated as guests. The
crew of a host boat remains on board throughout the party to act as hosts, while
the crew of a guest boat together visits host boats over a number of periods. The
crew of a guest boat must party at some host boat each period (constraint c1).
The spare capacity of any host boat is not to be exceeded at any period by the
sum of the crew sizes of all the guest boats that are scheduled to visit it then
(constraint c2). Any guest crew can visit any host boat in at most one period
(constraint c3). Any two distinct guest crews can visit the same host boat in at
most one period (constraint c4).

A Set-Based Model. Let H be the set of host boats and let G be the set of
guest boats. Furthermore, let capacity(h) and size(g) denote the spare capacity
of host boat h and the crew size of guest boat g, respectively. Let periods be
the number of periods we want to find a schedule for and let P be the set
{1, . . . , periods}. Now, let s(h,p), where h ∈ H and p ∈ P , be a set variable
containing the set of guest boats whose crews boat h hosts during period p.
Then the following constraints model the problem:

(c1) : ∀p ∈ P : Partition({s(h,p) | h ∈ H}, G)
(c2) : ∀h ∈ H : ∀p ∈ P : MaxWeightedSum(s(h,p), size, capacity(h))
(c3) : ∀h ∈ H : AllDisjoint({s(h,p) | p ∈ P})
(c4) : MaxIntersect({s(h,p) | h ∈ H & p ∈ P}, 1)

Solving the PPP. If we are careful when defining an initial configuration and
a neighbourhood for the PPP, we may be able to exclude some of its constraints.
For instance, it is possible to give the variables s(h,p) an initial configuration and
a neighbourhood that respect c1. We can do this (i) by assigning random disjoint
subsets of G to each s(h,p), where h ∈ H, for each period p ∈ P , making sure
that each g ∈ G is assigned to some s(h,p) and (ii) by using a neighbourhood
specifying that guests from a host boat h are moved to another host boat h′ in
the same period, and nothing else.

Algorithm 2 is the solving algorithm we used for the PPP. It takes the con-
stant sets P , G, H, and the functions capacity and size as defined above as
parameters, specifying an instance of the PPP, and returns a configuration k
for a CSP with respect to that instance. MaxIter and MaxNonImproving are
additional arguments as described below. If penalty(〈V, D,C〉)(k) = 0, then a
solution was found within MaxIter iterations. The algorithm uses the notion of
conflict of a variable (line 10), which, informally, is an estimate on how much a
variable contributes to the total penalty of a set of constraints with respect to a
configuration.

Algorithm 2 Solving the PPP
1: procedure solve progressive party(P, G, H, capacity , size)
2: Initialise 〈V, D, C〉 w.r.t. P , G, H, capacity , and size to be a CSP ∈ PPP
3: iteration ← 0, non improving ← 0, best ←∞
4: k ← ∅, tabu ← ∅, history ← ∅
5: for all p ∈ P do . Initialise s.t. c1 is respected
6: Add a random mapping s(h,p) 7→ G′, where G′ ⊂ G, for each h ∈ H to k
7: s.t. penalty(Partition({s(h,p) | h ∈ H}, G))(k) = 0
8: while penalty(〈V, D, C〉)(k) > 0 & iteration < MaxIter do
9: iteration ← iteration + 1, non improving ← non improving + 1

10: choose s(h,p) ∈ V s.t. ∀s′ ∈ V : conflict(s(h,p), C)(k) ≥ conflict(s′, C)(k)
11: N ← move(s(h,p), {s(h′,p) | h′ ∈ H & h′ 6= h})(k)
12: choose k′ ∈ N s.t. ∀k′′ ∈ N : penalty(〈V, D, C〉)(k′) ≤

penalty(〈V, D, C〉)(k′′)
13: and ((s(h′,p), d, iteration) /∈ tabu or penalty(〈V, D, C〉)(k′) < best),
14: where delta(k, k′) = {(s(h,p), {d}, ∅), (s(h′,p), ∅, {d})}
15: k ← k′, tabu ← tabu ∪ {(s(h′,p), d, iteration + rand int(5, 40))}
16: if penalty(〈V, D, C〉)(k) < best then
17: best ← penalty(〈V, D, C〉)(k),non improving ← 0,
18: history ← {k}, tabu ← ∅
19: else if penalty(〈V, D, C〉)(k) = best then
20: history ← history ∪ {k}
21: else if non improving = MaxNonImproving then
22: k ← a random element in history
23: non improving ← 0, history ← {k}, tabu ← ∅
24: return k

The algorithm starts by initialising a CSP for the PPP, necessary counters,
bounds, and sets (lines 2 − 4), as well as the variables of the problem (lines
5 − 7). As long as the penalty is positive and a maximum number of iterations
has not been reached, lines 8− 23 explore the neighbourhood of the problem in
the following way. (i) Choose a variable s(h,p) with maximum conflict (line 10).
(ii) Determine the neighbourhood of type move for s(h,p) with respect to the
other variables in the same period (line 11). (iii) Move to a neighbour k′ that
minimises the penalty (lines 12− 14).

In order to escape local minima it also uses a tabu list and a restarting compo-
nent. The tabu list tabu is initially empty. When a move from a configuration k to
a configuration k′ is performed, meaning that for two variables s(h,p) and s(h′,p),
a value d in k(s(h,p)) is moved to k(s(h′,p)), the triple (s(h′p), d, iteration + t)
is added to tabu. This means that d cannot be moved to s(h′,p) again for the
next t iterations, where t is a random number between 5 and 40 (empirically
chosen). However, if such a move would imply the lowest penalty so far, it is
always accepted (lines 13 − 15). By abuse of notation, we let (s, d, t) /∈ tabu be
false iff (s, d, t′) ∈ tabu & t ≤ t′.

The restarting component (lines 16 − 23) works in the following way. Each
configuration k such that penalty(〈V, D,C〉)(k) is at most the current lowest
penalty is stored in the set history (lines 16−20). If a number MaxNonImproving
of iterations passes without any improvement to the lowest overall penalty, then
the search is restarted from a random element in history (lines 21−23). A similar
restarting component was used in [13, 24] (saving one best configuration) and [6]
(saving a set of best configurations), both for integer-domain models of the PPP.

5.2 The Social Golfers Problem (SGP)

In a golf club, there is a set of golfers, each of whom play golf once a week
(constraint c1) and always in ng groups of size ns (constraint c2). The objective
is to determine whether there is a schedule of nw weeks of play for these golfers,
such that there is at most one week where any two distinct players are scheduled
to play in the same group (constraint c3).

A Set-Based Model. Let G be the set of golfers and let s(g,w) be a set vari-
able containing the players playing in group g in week w. Then the following
constraints model the problem:

(c1) : ∀w ∈ 1 . . .nw : Partition({s(g,w) | g ∈ 1 . . .ng}, G)
(c2) : ∀g ∈ 1 . . .ng : ∀w ∈ 1 . . .nw : Cardinality(s(g,w),ns)
(c3) : MaxIntersect({s(g,w) | i ∈ 1 . . .ng & w ∈ 1 . . .nw}, 1)

Solving the SGP. Similar to the PPP, we need to define an initial configuration
and a neighbourhood for the SGP. This, and a slightly changed tabu list, are the
only changes in the algorithm compared to the one we used for the PPP, hence
the algorithm for the SGP is not shown.

We choose an initial configuration k and a neighbourhood that respects the
constraints c1 and c2, i.e. that each golfer plays every week and that each group
is of size ns. We do this (i) by assigning random disjoint subsets of size ns of G to
each s(g,w) where g ∈ 1 . . .ng for each week w ∈ 1 . . .nw and (ii) by choosing the
neighbourhood called swap, specifying the swap of two distinct golfers between
a given group g and another group g′ in the same week. Given such a swap of
golfers between two different groups s(g,w) and s(g′,w), what is now inserted in
the tabu list are both (s(g,w), d, t) and (s(g′,w), d, t) with t being as for the PPP.

Table 1. Run times in seconds for the PPP. Mean run time of successful runs (out of 100) and
number of unsuccessful runs (if any) in parentheses.

H/periods (fails) 6 7 8 9 10

1-12,16 1.2 2.3 21.0
1-13 7.0 90.5
1,3-13,19 7.2 128.4 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 10.3 83.0 (1)
1-9,16-19 18.2 160.6 (22)

Table 2. Run times in seconds for the SGP. Mean run time of successful runs (out of 100) and
number of unsuccessful runs (if any) in parentheses.

ng-ns-nw time (fails) ng-ns-nw time (fails) ng-ns-nw time (fails)

6-3-7 0.4 6-3-8 215.0 (76) 7-3-9 138.0 (5)
8-3-10 14.4 9-3-11 3.5 10-3-13 325.0 (35)
6-4-5 0.3 6-4-6 237.0 (62) 7-4-7 333.0 (76)
8-4-7 0.9 8-4-8 290.0 (63) 9-4-8 1.7
10-4-9 2.5 6-5-5 101.0 (1) 7-5-5 1.3
8-5-6 8.6 9-5-6 0.9 10-5-7 1.7
6-6-3 0.2 7-6-4 1.2 8-6-5 18.6
9-6-5 1.0 10-6-6 3.7 7-7-3 0.3
8-7-4 4.9 9-7-4 0.8 10-7-5 3.4
8-8-3 0.5 9-8-3 0.6 10-8-4 1.4
9-9-3 0.7 10-9-3 0.8 10-10-3 1.1

5.3 Results

Tables 1 and 2 show the experimental results for the PPP and SGP, respectively.
For both, each entry in the table is the mean value of successful runs out of 100.
The numbers in parentheses are the numbers of unsuccessful runs, if any, for that
instance. We empirically chose MaxIter = 500, 000 and MaxNonImproving = 500
for both applications. For the PPP, the instances are the same as in [25, 6, 24]
and for the SGP, the instances are taken from [9]. For both applications, our
results are comparable to, but not quite as fast as, the current best results ([6,
24] and [9] respectively) that we are aware of. We believe that they can be
improved by using more sophisticated neighbourhoods and meta-heuristics, as
well as by implementing the ideas in Section 3.3 for the MaxIntersect constraint.

6 Conclusion

We have proposed to use set variables and set constraints in local search. In
order to do this, we have introduced a generic penalty scheme for (global) set
constraints and used it to give incrementally maintainable penalty definitions for
five such constraints. These were then used to model and solve two well-known
combinatorial problems.

This research is motivated by the fact that set variables may lead to more
intuitive and simpler problem models, providing the user with a richer set of
tools, as well as more preserved structure in underlying solving algorithms such
as the incremental algorithms for maintaining penalties: (global) set constraints

provide opportunities for hard-wired global reasoning that would otherwise have
to be hand-coded each time for lower-level encodings of set variables.

In terms of related work, Localizer [12, 22], by Michel and Van Hentenryck,
was the first modelling language to allow the definition of local search algorithms
in a high-level, declarative way. It introduces invariants to obtain efficient incre-
mental algorithms. It also stresses the need for globality by making explicit the
invariants distribute and dcount.

In [10], Galinier and Hao use a similar scheme to ours for defining the penalty
of a constraint in local search: they define as the penalty of a (global) constraint
c the minimum number of variables in c that must change in order for it to be
satisfied. Note, however, that this work is for integer variables only. Nareyek uses
global constraints in [16] and argues that this is a good compromise between low-
level CSP approaches, using only simple (e.g., binary) constraints, and problem-
tailored local search approaches that are hard to reuse.

Comet [13], also by Van Hentenryck and Michel, is an object-oriented lan-
guage tailored for the elegant modelling and solving of combinatorial problems.
With Comet, the concept of differentiable object was introduced, which is an
abstraction that reconciles incremental computation and global constraints. A
differentiable object may for instance be queried to evaluate the effect of local
moves. Comet also introduced abstractions for controlling search [23] and mod-
elling using constraint-based combinators such as logical operators and reifica-
tion [24]. Both Localizer and Comet support set invariants, but these are not
used as variables directly in constraints.

Generic penalty definitions for constraints are useful also in the soft-constraints
area. Petit et al. [17] use a similar penalty definition to the one of Galinier and
Hao [10] as well as another definition where the primal graph of a constraint is
used to determine its cost. This definition of cost is then refined by Petit and
Beldiceanu in [5], where the cost is expressed in terms of graph properties [4].
Bohlin [6] also introduces a scheme built on the graph properties in [4] for defin-
ing penalties, which is used in his Composer library for local search. To our
knowledge, none of these approaches considers set variables and set constraints.

Open issues exist as well. Other than fine-tuning the performance of our cur-
rent prototype implementation, further (global) set constraints should be added.
What impact will a change to the penalty of MaxIntersect with respect to Sec-
tion 3.3 have? In what way should the penalties of the (global) set constraints
in this paper be generalised to allow problems containing variables with several
kinds of domains? For instance, it would be useful to be able to replace m with
an integer variable in the Cardinality , MaxIntersect , and MaxWeightedSum con-
straints, to allow negative weights in the latter, and to have a variable reference
set in the Partition constraint.

Overall, our results are already very promising and motivate such further
research.

Acknowledgements. This research was partially funded by Project C/1.246/
HQ/JC/04 of EuroControl. We thank the referees for their useful comments.

References

1. E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons Ltd., 1997.

2. F. Azevedo and P. Barahona. Applications of an extended set constraint solver.
In Proc. of the ERCIM / CompulogNet Workshop on Constraints, 2000.

3. N. Barnier and P. Brisset. Solving the Kirkman’s schoolgirl problem in a few
seconds. In Proc. of CP’02, volume 2470 of LNCS, pages 477–491. Springer, 2002.

4. N. Beldiceanu. Global constraints as graph properties on a structured network of
elementary constraints of the same type. In Proc. of CP’00, volume 1894 of LNCS,
pages 52–66. Springer-Verlag, 2000.

5. N. Beldiceanu and T. Petit. Cost evaluation of soft global constraints. In Proc. of
CPAIOR’04, volume 3011 of LNCS, pages 80–95. Springer-Verlag, 2004.

6. M. Bohlin. Design and Implementation of a Graph-Based Constraint Model for
Local Search. PhL thesis, Mälardalen University, Väster̊as, Sweden, April 2004.

7. P. Codognet and D. Diaz. Yet another local search method for constraint solving.
In Proc. of SAGA’01, volume 2264 of LNCS, pages 73–90. Springer-Verlag, 2001.

8. K. Corrádi. Problem at Schweitzer competition. Mat. Lapok, 20:159–162, 1969.
9. I. Dotú and P. Van Hentenryck. Scheduling social golfers locally. In Proc. of

CPAIOR’05, LNCS, Springer-Verlag, 2005.
10. P. Galinier and J.-K. Hao. A general approach for constraint solving by local

search. In Proc. of CP-AI-OR’00.
11. C. Gervet. Interval propagation to reason about sets: Definition and implementa-

tion of a practical language. Constraints, 1(3):191–244, 1997.
12. L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.

In Proc. of CP’97, volume 1330 of LNCS. Springer-Verlag, 1997.
13. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.

ACM SIGPLAN Notices, 37(11):101–110, 2002. Proc. of OOPSLA’02.
14. L. Michel and P. Van Hentenryck. Maintaining longest paths incrementally. In

Proc. of CP’03, volume 2833 of LNCS, pages 540–554. Springer-Verlag, 2003.
15. T. Müller and M. Müller. Finite set constraints in Oz. In Proc. of 13th Workshop

Logische Programmierung, pages 104–115, Technische Universität München, 1997.
16. A. Nareyek. Using global constraints for local search. In Constraint Programming

and Large Scale Discrete Optimization, volume 57 of DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science, pages 9–28. AMS, 2001.

17. T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over con-
strained problems. In Proc. of CP’01, volume 2293 of LNCS, Springer, 2001.

18. S. Prestwich. Supersymmetric modeling for local search. In Proc. of 2nd Interna-
tional Workshop on Symmetry in Constraint Satisfaction Problems, at CP’02.

19. J.-F. Puget. Finite set intervals. In Proc. of CP’96 Workshop on Set Constraints.
20. J.-F. Puget. Symmetry breaking revisited. In Proc. of CP’02, volume 2470 of

LNCS, pages 446–461. Springer-Verlag, 2002.
21. B. M. Smith et al. The progressive party problem: Integer linear programming and

constraint programming compared. Constraints, 1:119–138, 1996.
22. P. Van Hentenryck and L. Michel. Localizer. Constraints, 5(1–2):43–84, 2000.
23. P. Van Hentenryck and L. Michel. Control abstractions for local search. In Proc.

of CP’03, volume 2833 of LNCS, pages 65–80. Springer-Verlag, 2003.
24. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-based combinators for local

search. In Proc. of CP’04, volume 3258 of LNCS. Springer-Verlag, 2004.
25. J. P. Walser. Integer Optimization by Local Search: A Domain-Independent Ap-

proach, volume 1637 of LNCS. Springer-Verlag, 1999.

