Solving Satisfaction Problems
using Large-Neighbourhood Search

1[0000—0002—8032—5774] s 1[0000—0001—8730—4098
Gustav Bjordal=!| I, Pierre Flener!! 1
Justin Pearson![0000—0002—0084-8891]
)
Peter J. Stuckey?2[0000-0003-2186-0459] o] Guido Tack2[0000-0003—3357—6498]
*)

! Uppsala University, Department of Information Technology, Uppsala, Sweden
{Gustav.Bjordal,Pierre.Flener,Justin.Pearson}@it.uu.se
2 Monash University, Faculty of Information Technology, Melbourne, Australia
{Peter.Stuckey,Guido.Tack}@monash.edu

Abstract Large-neighbourhood search (LNS) improves an initial solu-
tion, hence it is not directly applicable to satisfaction problems. In order
to use LNS in a constraint programming (CP) framework to solve satis-
faction problems, we usually soften some hard-to-satisfy constraints by
replacing them with penalty-function constraints. LNS is then used to re-
duce their penalty to zero, thus satisfying the original problem. However,
this can give poor performance as the penalties rarely cause propagation
and therefore do not drive each CP search, and by extension the LNS
search, towards satisfying the replaced constraints until very late. Our
key observation is that entirely replacing a constraint is often overkill,
as the propagator for the replaced constraint could have performed some
propagation without causing backtracking. We propose the notion of a
non-failing propagator, which is subsumed just before causing a back-
track. We show that, by only making a few changes to an existing CP
solver, any propagator can be made non-failing without modifying its
code. Experimental evaluation shows that non-failing propagators, when
used in conjunction with penalties, can greatly improve LNS perform-
ance compared to just having penalties. This allows us to leverage the
power of the many sophisticated propagators that already exist in CP
solvers, in order to use LNS for solving hard satisfaction problems and
for finding initial solutions to hard-to-satisfy optimisation problems.

1 Introduction

Large-neighbourhood search (LNS) [19] is a popular method for local search.
It often uses constraint programming (CP) for neighbourhood exploration and
has been successfully applied to a vast variety of optimisation problems. LNS
starts from a feasible assignment and explores a large neighbourhood of similar
assignments by forcing most of the variables to take their current values while
performing CP search in order to find better values for the other variables. This
process is repeated in the hope of finding a good enough feasible assignment.
However, as LNS requires a feasible assignment to start from, LNS cannot be

2 G. Bjordal et al.

directly applied to satisfaction problems, because the initial feasible assignment
would be an acceptable solution. Furthermore, an optimisation problem that is
hard to satisfy, that is where finding a feasible assignment is difficult, cannot be
solved by LNS until an initial feasible assignment is obtained. We emphasise that
finding an initial feasible assignment is in fact a satisfaction problem. Therefore,
if we can efficiently solve satisfaction problems using LNS, then we can also solve
hard-to-satisfy optimisation problems using (two rounds of) LNS.

One approach to using LNS for satisfaction problems is to (manually) identify
and soften the constraints that make the problem hard to satisfy. Traditionally,
soft constraints for CP have been investigated mostly for over-constrained prob-
lems [10], that is for problems where not all the constraints can be satisfied.
There is little previous work on softening constraints in order to enable LNS
(see Section 6). Still, there are generic methods for softening a constraint, such
as replacing it by using a penalty function and minimising the penalty via the
objective function (see Section 2.1 for examples). However, these methods tend
to give poor performance in practice, as they significantly increase the size of the
CP search space and provide little propagation to drive the CP search towards
a zero-penalty solution (as we show in Section 3).

In this paper, we argue that entirely replacing constraints by using penalty
functions in order to enable LNS is overkill, because it means that we lose all
their propagation, including the propagation that would not have caused failure
but would have avoided unnecessarily high penalties.

Based on this observation, we propose the notion of a non-failing propag-
ator: the inconsistent domain values of a variable are only pruned as long as
doing so does not cause a failure. As soon as propagation would cause failure,
the propagator is disabled. This prevents the propagator from directly causing
backtracking and, when used in conjunction with a penalty function, helps the
CP search to quickly reach low-penalty solutions.

After giving some definitions on soft constraints and LNS (Section 2) and a
motivating example (Section 3), our contributions and impact are as follows:

— the concept and theory of non-failing propagators (Sections 4.1 and 4.3);

— a recipe for modifying a CP solver so that any propagator can automatically
become non-failing, without modifying its code (Section 4.2);

— an empirical evaluation of the often drastic effect of non-failing propagators
on solving satisfaction problems by LNS, as well as of their use when solving
hard-to-satisfy optimisation problems by LNS (Section 5).

We discuss related work (Section 6) and future work and conclude (Section 7).

2 Definitions

A constraint satisfaction problem is a triple (X, D,C) where X is a set of vari-
ables, the function D maps each variable z of X' to a finite set D(x), called
the current domain of x, and C is a set of constraints. An assignment is a
mapping ¢ where o(z) € D(x) for each x of X. A feasible assignment is an

Solving Satisfaction Problems using LNS 3

assignment that satisfies all the constraints in C. A constrained optimisation
problem (X, D,C,0) has a designated variable o of X' constrained in C to take
the value of an objective function that is to be minimised (without loss of gen-
erality). An optimal assignment is a feasible assignment where o is minimal.

2.1 Soft Constraints

Given a satisfaction problem (X, D,C) and an assignment o, the penalty under o
of a constraint C'(V) in C, where V is an ordered (multi)subset of X, is given by
a function m, called the penalty function, such that (o) is 0 if C(V) is satisfied
under o, and otherwise a positive number proportional to the degree that C())
is violated. For example, for the constraint z + y = z, the penalty could be
|o(z) + o(y) — o(z)|, which is the distance between x +y and z under o. See [20]
for a variety of penalty functions in the context of constraint-based local search.

For a constraint C'()) and a penalty function 7, the soft constraint Cr(V,p)
constrains a new variable p, called the penalty variable, to take the value 7 takes.

Ezample 1. In our experiments of Section 5, the soft constraint for a linear
equality constraint) . A;V; =cisp= 1>, A;V; — ¢/, that is p = [z +y — 2| for
the unweighted equality constraint + y = z we considered above. For a linear
inequality constraint), .A;V; < ¢, we use p = max(0,) . .A;V; — c). For a global
cardinality constraint GCC(V, A, L,U), constraining every value A; to be taken
between £; and Uf; times by the variables V;, which cannot take any other values,
weuse p = >, max(0, L=, [V; = Ail, 32,V = A =Ui)+ g4 225V5 = dl,

where [a] denotes value 1 if constraint « holds and value 0 otherwise. O

We say that we soften a constraint C'(V) when we replace it in C by C(V, p)
for some 7, with variable p added to X and used in an objective function. We
call C(V) the replaced constraint, not to be mixed up with C(V,p).

We define SorT({X, D,C),S, 7, A) as the softening of a subset S C C of n con-
straints in the satisfaction problem (X, D,C) into the optimisation problem
(XU{pi | i € L.n}U{o}, D’,C\SU{CL (V,p;) | C*(V) € S}U{o= 31", Xipi}, 0)
by using the penalty functions m; and weights A\; > 0, where D’ is D extended
to give the initial domain 0.. 0o to the introduced objective variable o and each
introduced penalty variable p;.

Definition 1. For any SOFT(P,S,m,) of a satisfaction problem P, we define:

— a pseudo-solution is a feasible assignment where at least one introduced pen-
alty variable takes a positive value, and therefore the non-penalty variables
do not form a feasible assignment for P; and

— a solution is a feasible assignment where all penalty variables take the value 0,
and therefore the non-penalty variables do form a feasible assignment for P.

Note that a solution to SOFT(P,S, 7, \) is in fact an optimal solution to it,
as the introduced objective variable takes its lower bound 0, no matter what the
weights \; are, and thereby that solution establishes the satisfiability of P.

Consider a soft constraint C(V, p) and a variable v in V: we say that a value d
in D(v) imposes a penalty when min(D(p)) would increase if D(v) became {d}.

4 G. Bjordal et al.

2.2 Large-Neighbourhood Search

Large-neighbourhood search (LNS) [19] is a local-search method for solving an
optimisation problem (X, D,C, o). It starts from a feasible assignment o, which
evolves as what we call the current assignment. At each iteration, an LNS heur-
istic selects a non-empty strict subset M of the variables X, called the fragment,
where 0 € M. The optimisation problem (X, D,CU{z = o(x) | x € X \ M}, 0),
where all but the variables of the fragment take their current values, is solved,
not necessarily to optimality. If an improving feasible assignment is found, then it
replaces the current assignment, otherwise the current assignment is unchanged.
The search continues from the current assignment by selecting a new fragment.

LNS can in principle be used to solve a satisfaction problem P that has been
softened by some SOFT(P,S, 7, A) into an optimisation problem, but we show
in Sections 3 and 5 that the performance can be poor in practice.

The optimisation problem at each LNS iteration, as well as the satisfaction
problem of finding an initial feasible assignment, can in principle be solved by
using any technology, but we here only consider CP.

There exists extensive literature on the challenge of heuristically selecting a
fragment at each LNS iteration: either by exploiting the structure of the under-
lying problem [19] or by using more generic methods [9,13,14]. Both approaches
can have a significant impact on the performance of LNS.

In this paper, we focus on an orthogonal challenge of LNS, namely efficiently
solving (hard) satisfaction problems (and even optimisation problems that are
hard to satisfy, that is where finding a feasible assignment is difficult), so that
there is a need to improve the propagation in each LNS iteration in a new way.

3 Motivation

To make some motivating observations, we consider as a running example the
satisfaction problem of subset sum, as solved by CP. We then soften the problem
in order to show how it can in principle be solved by LNS.

Ezample 2. Given an integer set S and an integer ¢, the subset-sum problem
is to find a subset S’ C S such that) _g s = t. We can express this as a
satisfaction problem using a 0/1 variable z; for each element of S, and a single
constraint, say for § = {11,-3,2,5,9, -6} and t = 1:

1121 — 329 + 223 + b2y + 925 — 626 = 1 (1)

Using the classical idempotent bounds-consistency propagator in Algorithm 1 for
the linear equality (1) — because achieving domain consistency is NP-hard [2] —
and the CP search strategy that branches on the variables in order from z; to x,
always with z; = 1 as the left-branch decision, we obtain the following CP search
tree. At the root node, the value 1 is pruned from D(x7). Upon the decision 25 =
1, no value is pruned. Upon the decision x3 = 1, propagation first prunes the
value 1 from both D(z5) and D(xg), but then fails as all values of D(x4) must

Solving Satisfaction Problems using LNS 5

Algorithm 1 Bounds-consistency propagator for >, A;V; = ¢, where A is an
array of integers, V an equally long array of integer variables, and ¢ an integer;
it updates the domain function D. (Idempotent due to lines 1-3 and 12-13.)

1: done < false

2: while not done do

3: done < true // this might be the last iteration

4: L YWY A - min(DOV); uw— XYL A - max(D(V))

5: if {=c=u then

6: return SUBSUMED

7: elseif c<for u<cthen

8: return FAILED

9: fori=1to|V|do

10: D(Vi) < D(Vi)N [%—‘ ..max(D(V;)) // tighten lower bound
11: D(V;) < D(Vs) Nmin(D(V;)) .. {%“(D(V’))J // tighten upper bound
12: if some D(V;) has changed then

13: done < false // continue iterating

14: return ATFIXPOINT

be pruned. The search backtracks, failing at two more nodes, until it finds the
only feasible assignment (namely 21 = x93 = 25 = 0 and x3 = 24 = 26 = 1,
corresponding to 8’ = {2,5, —6}) upon the decisions x5 # 1 and z3 = 1. O

To solve a satisfaction problem with LNS, one must soften some constraints
in order to turn it into an optimisation problem where a zero-penalty solution cor-
responds to a feasible assignment to the satisfaction problem. If no such softening
is performed, then the initial feasible assignment will be an acceptable solution,
which means that LNS adds no benefit.

Although constraints can be softened in a generic way by using penalty func-
tions (as explained in Section 2.1), softening will in practice significantly increase
the size of the CP search space for each LNS iteration, as soft constraints usu-
ally only cause propagation towards the bottom of the search tree, where most
variables are fized, and provide little to no propagation that drives the CP search
towards an (optimal) solution, as shown in the following example.

Ezxample 3. In order to solve the subset-sum satisfaction problem of Example 2
by LNS, its constraint (1) must be softened, say as:

p:|11x1—3x2—|—2x3+5x4+9x5—6x6—1| (2)

where p € 0..26, and the objective is to minimise p. By Definition 1, if p = 0 then
the solution corresponds to a feasible assignment to the satisfaction problem.
Consider the CP search tree while finding an initial feasible assignment for LNS,
using the search strategy of Example 2. Since p is essentially unconstrained,
there is no propagation (no matter what consistency is targeted) and search
descends the left branch, arriving at a pseudo-solution where all x; = 1 and

6 G. Bjordal et al.

p = 17. Improving it into a solution requires x; = 0: this was achieved by
root-node propagation in Example 2, but is here only achievable by x; being
in a fragment. However, even that may not be enough: if the first fragment is
{z1,x3}, then the next pseudo-solution will have x3 = 0 and p = 15. Clearly,
even in a small instance, early bad decisions severely degrade performance. O

4 Avoiding Bad CP Search Decisions

We are here concerned with constraints that must be softened to enable the
use of LNS for satisfaction problems. We want to improve the CP search for
an initial (pseudo-)solution for the first LNS iteration, as well as the CP search
within each LNS iteration for better pseudo-solutions and eventually a solution.

We saw in Example 3 that bad CP search decisions can be made early if the
propagation from the soft constraints does not prune values that impose high
penalties. It could therefore be beneficial to prune some of those values, using
some propagation from the replaced constraints, so that the CP search avoids
those bad decisions. However, it would be counterproductive to prune all values
that impose a penalty, as that would again make the constraints (and by exten-
sion the problem) hard to satisfy, namely by causing significant backtracking.

Still, given the crucial role that propagation plays in the effectiveness of CP
search, we argue that only replacing some constraints by using penalty functions
(and thereby effectively removing all the propagation for those constraints) does
not fully utilise the decades of research on efficient and powerful propagators.

Based on this observation, we propose non-failing propagators (Section 4.1),
show how to modify a CP solver such that any propagator can be made non-
failing without modifying its code (Section 4.2), and discuss how the scheduling
of non-failing propagators can impact backtracking (Section 4.3).

4.1 Non-Failing Propagators

We want to extend an optimisation problem SOFT({(X', D,C),S, 7, \) by prescrib-
ing additional propagators for S to prune values that would impose a penalty,
but without causing backtracking. For this, we propose non-failing propagators:

Definition 2. For a constraint C'(V), a non-failing propagator prunes domain
values that are inconsistent with C'(V), but only until the pruning would empty
the domain of some variable v in V; at that point, the propagator is subsumed
instead of pruning the last domain value (or values) of v and being failed, which
would cause backtracking.

For example, the propagator of Algorithm 1 can be turned into a non-failing
propagator by rewriting line 8 to return the status SUBSUMED instead of FAILED.
In Section 4.2, we achieve this at the solver level instead of the propagator level.

We use the notation C'(V):: NONFAILING to indicate that the propagator
used for C'(V) should be non-failing.

Solving Satisfaction Problems using LNS 7

A non-failing propagator never causes backtracking itself, but it can do so
indirectly by pruning values that make the normal propagators for the con-
straints C\S be failed. Just like any propagator that is disabled during CP search,
a non-failing propagator is restored upon backtracking and restarts. Non-failing
propagators are safe to use on problems that are satisfiable:

Theorem 1. If a problem is satisfiable, then non-failing propagators for any of
its constraints will never remove any feasible assignments from the search space.

Proof. Consider a feasible assignment ¢ for a problem. A non-failing propag-
ator prunes no more than a normal propagator, by Definition 2. Therefore, no
propagator for any constraint of the problem can prune a value occurring in o
if all values in ¢ are in the domains of the corresponding variables. a

We define SOFTpontait (P, S, 7, A) as the softening of the constraints S in the
satisfaction problem P via SOFT(P,S,m, A) but with the addition of the con-
straints {C'(V)::NONFAILING | C(V) € S}: that is, the constraints S are imple-
mented both by non-failing propagators for themselves and by normal propag-
ators (or decompositions) for their soft versions.

Example 4. The application of SOFT onfail to the subset-sum problem of Ex-
ample 2 uses both a non-failing propagator for its constraint (1) and normal
propagation for its soft constraint from Example 3:

minimise p

such that (11z1 — 3z + 223 + 524 + 925 — 626 = 1):: NONFAILING
p = |11zy — 3x9 + 223 + bxy + 925 — 626 — 1]
z; € {0,1}, Viel..6

Root-node propagation of the non-failing propagator prunes value 1 from D(x1),
as in Example 2 and unlike in Example 3. Given the same CP search strategy as
in Example 2, the first decision, x5 = 1, does not trigger any propagation. The
second decision, x3 = 1, causes the non-failing propagator to first prune value 1
from D(z5), then prune value 1 from D(x¢), and then infer failure. However,
rather than failing, the propagator is subsumed. The next decision is then x4 = 1,
at which point the CP search is at a pseudo-solution (namely x; = x5 =z =0
and xo = x3 = x4 = 1). The propagator of the soft constraint from Example 3 so
far had no impact on the decisions, but gives p = 3 at this pseudo-solution. Given
this initial LNS assignment, if a fragment consisting of x5 and g is selected in the
first LNS iteration, then root-node propagation of the non-failing propagator will
immediate solve the problem by inferring zo = 0 and xg = 1, giving p = 0. Unlike
in Example 3, where only the soft constraint is used, we here see how a non-failing
propagator can help the CP searches avoid bad decisions and also allow the LNS
search to quickly arrive at a zero-penalty assignment. While this example was
specifically constructed to showcase this behaviour, our experimental evaluation
in Section 5 shows that this seems also to be beneficial in practice, across a
variety of benchmarks. O

8 G. Bjordal et al.

Algorithm 2 FIXPOINT(P, Q, D), where P is the set of all non-disabled propag-
ators (initially those for the constraints C of the problem), @ is the priority queue
of propagators not known to be at fixpoint (initially those for C, later those of
a CP search decision), and D is the function giving the current domains.

1: while @ is not empty do

2 p + Q.dequeue()

3 status < p.propagate(D) // note that this can enqueue propagators of P
4 if status = SUBSUMED then

5 p.disable() // this achieves P < P\ {p}

6: else if status = FAILED then

7 return FAILURE // fail and cause backtracking
8 else

9 // other status messages are not relevant here
10: return ATCOMMONFIXPOINT

4.2 Implementation

In principle, any propagator can be made non-failing by modifying its code
(such as in the example after Definition 2). However, this can be both tedious
and error-prone. Fortunately, we can instead modify the propagation engine of
a CP solver to treat as non-failing any propagator tagged as ::NONFAILING.

Algorithm 2 shows a typical fixpoint algorithm, based on a queue of propag-
ators that need to be executed. The only change required to support non-failing
propagators is to replace line 4 by

if status = SUBSUMED or (non-failing(p) and status = FAILED) then

so that when a propagator tagged as non-failing returns the status FAILED,
then the status is instead treated as SUBSUMED. However, in order for this
modification to Algorithm 2 to be correct, the CP solver and its propagators
must guarantee that the domains of the variables are always in a consistent
state: when a propagator returns FAILED, the domain of each variable must be
a non-empty subset of the domain before running the propagator.

For our experiments in Section 5, we modified Gecode [6] in this way. Domain
updates in Gecode are not guaranteed to leave the domains in a consistent state
after failure: we therefore modified the domain update functions to check whether
an update would result in a domain wipe-out before they modify that domain.

4.3 Scheduling of Non-Failing Propagators

Non-failing propagators are non-monotonic: the amount of propagation they
achieve (and whether they propagate or are subsumed) depends on the order
in which all propagators are executed [18]. Many CP solvers order propagators
using a priority queue, for example based on their algorithmic complexity [17].

The priority assigned to non-failing propagators can therefore determine if a
node fails or succeeds. However:

Solving Satisfaction Problems using LNS 9

Theorem 2. There is no static priority order (independent of the internal state
of the fixpoint algorithm) of propagators that guarantees that non-failing propag-
ators only cause failure when failure occurs for all possible priority orders.

Proof. Consider the following problem:

D(z) =D(y) =D(2) =0..5, D(bg) = D(by) = D(b3) =0..1
r+y+z=5 b =>x>2 b —>y>2 by—=>x<1, bb—y<1
bo — b1::NONFAILING, by — by::NONFAILING

where the non-failing propagators are p; for by — by :: NONFAILING and po
for by — by :: NONFAILING. We assume that both non-failing propagators are
always propagated last, as that decreases the probability of failure.

Upon the initial CP search decision z > 2, we reach the node where D(z) =
2..5 and D(z) = D(y) = 0..3. If we make the decision by = 1, then both p;
and po are enqueued. If p; is dequeued first, then we propagate by = 1, z > 2,
y > 2, bo = 0, and then the propagator for z 4+ y + z = 5 is dequeued and fails.
If po is dequeued first, then we propagate bo =1, 2 <1,y <1, b; =0, z > 1,
and then p; is dequeued and subsumed (because it fails). That is, the node only
succeeds when p, runs before py.

Upon the opposite CP search decision z < 2, we reach the node where D(z) =
0..1. If we make the decision by = 1, then both p; and py are enqueued. If p;
is dequeued first, then we propagate by = 1, x > 2, y > 2, bs = 0, and then po
is dequeued and subsumed (because it fails). If py is dequeued first, then we
propagate b = 1,z < 1,y < 1, by = 0, and then the propagator for z+y+2z =5
is dequeued and fails. That is, the node only succeeds when p; runs before ps.

So, no static priority order can always avoid indirect failures caused by non-
failing propagators, even when the indirect failure could have been avoided. O

Empirically, we found it beneficial to always run non-failing propagators at
the lowest priority. Intuitively, this makes sense: consider two propagators p;
and po, where running p; causes ps to fail, and vice versa: if only p; is non-
failing, then backtracking is only avoided when running p; after ps. We therefore
modified Gecode to schedule all non-failing propagators to run as late as possible,
with a first-in-first-out tie-breaking between non-failing propagators.

5 Experimental Evaluation

This section presents an empirical evaluation of the benefit of non-failing propag-
ators for both satisfaction and optimisation problems.

5.1 Setup

We compare three approaches to finding a solution to a satisfaction problem P:

hard treat all constraints as hard, that is: solve P by CP;

10 G. Bjordal et al.

soft soften some constraints S of P, that is: solve SOFT(P,S, 7, \) by LNS;
non-failing soften the same constraints S of P, but also use non-failing propag-
ators for those constraints, that is: solve SOFTyontail (P, S, 7, A) by LNS.

For all problems, we used published MiniZinc (version 2.4.3) [12] models.?

We modified Gecode (version 6.2.0) [6] as described in Sections 4.2 and 4.3.
We modified its MiniZinc interface so that some constraints, when tagged with
a new soften annotation for MiniZinc, are automatically softened under the
soft and non-failing approaches with A = 1 and using the penalty functions 7
in Example 1. For the non-failing approach, the soften annotation also tags
the constraint with the ::NONFAILING annotation, that is, we have both a soft
version and a non-failing version of the tagged constraint when using the non-
failing approach. To propagate a soft constraint, we use a decomposition of its
penalty function rather than a specialised propagator. We used Gecode’s built-in
LNS via its MiniZinc interface:* it selects a variable not to be in the fragment
under a given probability; we prescribed a probability of 70% or 80%, depending
on the size of the problem instances,® and used the constant restart strategy.

For each problem instance, we report the average time for finding a first
solution by LNS, over 10 independent runs, each allocated 10 minutes. The
average was only computed over the runs where a solution was actually found.

We used Linux Ubuntu 18.04 (64 bit) on an Intel Xeon E5520 of 2.27 GHz,
with 4 processors of 4 cores each, with 24 GB RAM and an 8 MB L2 cache. Note
that we only run Gecode on a single core for our experiments.

5.2 Satisfaction Problems

We want to see whether our new generic non-failing approach allows LNS to
outperform the classical generic soft approach to LNS for satisfaction problems,
and whether both beat the hard approach via only CP. We look at instances of
three satisfaction problems that are difficult to solve with Gecode via MiniZinc.

Nurse Rostering. We use the model for a simple nurse rostering problem from the
MiniZinc Handbook® but modify it by using global-cardinality constraints on the
daily numbers of nurses on each shift. We handcrafted 10 + 10 = 20 satisfiable
instances to be either easy (by having many nurses available) or difficult (by
being at the border of unsatisfiability in terms of available nurses), both for
Gecode under the hard approach. We prescribe softening for all the global-
cardinality constraints. In Figure la, we see that soft solves fewer instances
than hard and often needs over an order of magnitude more time (both only solve
the easy instances), while non-failing solves all but one (difficult) instance and
does so with seemingly no overhead compared to hard (on the easy instances).

3 We modified the models in order to deploy more global constraints and better CP
search strategies. Our versions of the MiniZinc models, the instances, and the Gecode
library are available at https://github.com/astra-uu-se/CP2020.

4 See https://www.minizinc.org/doc-latest/en/lib-gecode.html

% Section 2.3.1.4 of https://www.minizinc.org/doc-latest/en/predicates.html

https://github.com/astra-uu-se/CP2020
https://www.minizinc.org/doc-latest/en/lib-gecode.html
https://www.minizinc.org/doc-latest/en/predicates.html

Solving Satisfaction Problems using LNS 11

(a) Nurse Rostering (b) Rotating Workforce
;g F \ \ \] E]
% 102 8 E 102 £ =
o0 F 3 = &
SR 1 w0t E
”(% 100 g‘ E 100 g E
$ 101tk | | | J 101k \ \]
. 1 5 10 15 20 1 5 10 15
number of solved instances number of solved instances
—— non-failing - - - soft hard

Figure 1. Number of instances that are each solved within a given time.

Rotating Workforce. In the rotating workforce problem [11], a roster is to be
built for employees, satisfying complex rules on sequences of shifts. We use the
model and 50 instances in [11]: these are difficult for Gecode under the hard
approach, although not too difficult for mixed-integer-programming and lazy-
clause-generation solvers [11]. We prescribe softening for the global-cardinality
constraints on the daily numbers of assigned shifts. In Figure 1b, we see that
each approach only solves at most 14 of the 50 instances: soft is slowest but
solves as many instances (though not the same) as non-failing, while hard is
arguably fastest but solves fewer instances than non-failing.

Car Sequencing. In this problem [4], a sequence of cars of various classes, each
class having a set of options, is to be produced, satisfying capacity constraints on
the options over a sliding window on the sequence and occurrence constraints on
the classes. We use the MiniZinc Benchmark model® and the classic 78 instances
for sequences of 100 to 200 cars.” We prescribe softening for the capacity con-
straints, which are expressed by linear inequalities. A problem-specific softening,
which does not rely on penalties in the spirit of those in Example 1, was success-
fully used with LNS in [13]: we model it in MiniZinc and solve it by LNS with
Gecode calling this the reformulation approach. In Figure 2, we see that hard
only solves 4 instances, while soft solves 65 instances but takes an order of
magnitude more time than non-failing, which solves 69 of the 78 instances; re-
formulation solves 67 instances and takes time between soft and non-failing.

5.3 Hard-to-Satisfy Optimisation Problems

For a hard-to-satisfy optimisation problem, we solve the satisfaction problem of
finding a first solution, which enables another round of LNS to find better ones.

5 Available at https://github.com/MiniZinc/minizinc-benchmarks
7 Available also at http://www.csplib.org/Problems/prob001/data/data.txt.html

https://github.com/MiniZinc/minizinc-benchmarks
http://www.csplib.org/Problems/prob001/data/data.txt.html

12 G. Bjordal et al.

5 f !
g 102 g
S
= 10 F 4
92} = =
el L]
5 10°F y
Q = |
g E | | | | | | §
1 10 20 30 40 50 60 70
number of solved instances
—— non-failing - - - soft hard reformulation

Figure 2. Number of car-sequencing instances that are each solved within a given time.

(b)

102

10t

10° F

seconds (log scale)

[| | | | [
1 10 20 30 40 50 60 70

. X better same worse none
number of satisfied instances

—— non-failing - - - soft hard BEnon-failing+hard vs best-known

Figure 3. (a) Number of TSPTW instances that are each satisfied within a given time.
(b) Numbers of TSPTW instances where our best-found minimum is better, the same,
or worse than the best-known one; ‘none’ means we found no feasible assignment.

TSPTW. In the travelling salesperson problem (TSP) with time windows, a
shortest tour visiting all nodes in a graph during their time windows is to be
found. We use the 80 satisfiable n40, n60, and n80 instances of the Gendreau-
DumasExtended benchmark,? as they are very difficult to satisfy under the hard
approach. We prescribe softening for the linear inequalities that require the ar-
rival time at a node to be at least the arrival time at its predecessor plus the
travel time in-between. In Figure 3a, we see that hard only satisfies 1 instance
and soft only 8 instances, while non-failing satisfies 69 of the 80 instances.
When non-failing finds a solution within the allocated 10 minutes, we switch
to hard, but with LNS, in order to try and improve it for the remaining time.
We call this the non-failing+hard approach. In Figure 3b, we compare the
best solutions found by non-failing+hard to the best known solutions from
the literature.® Our new approach can improve these bounds for three instances.

8 Available at http://lopez-ibanez.eu/tsptw-instances

http://lopez-ibanez.eu/tsptw-instances

Solving Satisfaction Problems using LNS 13

(a) (b)
< — : . . | | \
g w0l g
g 10} 4 E
© E E 5
TOWE E g
RN S
$ 107k x x) z
1 180 360 540

size 10 size 20 size 30
number of satisfied instances

—— non-failing - - - soft hard D@ non-failing I Bsoft [Fhard

Figure 4. (a) Number of TDTSP instances that are each satisfied within a given time.
(b) Numbers of satisfied TDTSP instances for the three batches of instances.

TDTSP. In the time-dependent TSP [1], a shortest tour visiting all nodes in a
graph during their time windows is to be found, similarly to TSPTW, but the
travel time between two nodes depends on the arrival time at the first node. We
use the model of the MiniZinc Challenge 2017,° but modify it to constrain the
tour using successor variables and a circuit global constraint [8]. We prescribe
softening as for TSPTW. By private communication with the author of the ori-
ginal MiniZinc model, we received 540 generated instances of 10, 20, and 30
nodes, with 180 instances for each batch; some of the size-10 and size-20 in-
stances were used in the Challenge, but none of the size-30 ones as, for most
of them, no MiniZinc backend ever found a feasible solution so that they were
deemed too hard. In Figure 4a, we see that soft only satisfies 177 instances and is
over two orders of magnitude slower than the other approaches. Note that hard
satisfies 359 instances about as fast as non-failing, but as the instances be-
come more difficult to satisfy its runtime quickly increases. In Figure 4b, we see
that soft only satisfies instances of size 10, whereas hard only satisfies instances
of size at most 20, and non-failing satisfies all the instances.

HRC. For the hospitals/residents matching problem with couples (HRC), we
use the model and 5 instances of the MiniZinc Challenge 2019.° We prescribe
softening for the linear inequalities on the hospital capacities. In Table 1, we see
that soft satisfies all the instances, whereas non-failing completely backfires
and satisfies no instance (and actually does not even find a pseudo-solution for
any instance). The non-failing propagators prevent the CP search from reaching
a pseudo-solution due to too many indirect failures. Furthermore, since hard can
solve 3 instances, it seems that the CP search space for non-failing is larger
than for hard. We describe how to address indirect failures in Section 7.

9 Available at https://www.minizinc.org/challenge.html

https://www.minizinc.org/challenge.html

14 G. Bjordal et al.

Table 1. Runtimes (in seconds, or ‘-’ if more than 600) to satisfy each HRC instance:
the non-failing approach backfires.

instance non-failing soft hard
expl-1-5110 - 83.47 26.96
expl-1-5425 — 21.98 240.74
expl-1-5460 - 341.01 40.89
exp2-1-5145 - 65.10 -
exp2-1-5600 - 208.22 -

6 Related Work

We now discuss three areas of related work: soft constraints, variable-objective
LNS, and streamliners.

Traditionally, soft constraints for CP have almost exclusively been researched
in the context of over-constrained problems: see [10] and [16, Chapter 3] for ex-
tensive overviews. In this paper, we assume the problem is not over-constrained
but hard to satisfy and therefore requires softening to enable the use of LNS.
To the best of our knowledge, there exists very little research on softening prob-
lems that are not over-constrained, and replacing constraints by using penalties
seems to originate from the over-constrained setting. The only other work we
found is [5], which generalises Lagrangian relaxations to CP models.

Variable-objective LNS (VO-LNS) [15] is based on the observation that the
penalty variables introduced by softening are usually connected to the object-
ive variable by a linear equality and any new bounds on the objective variable
result in little to no propagation on the penalty variables. Therefore, VO-LNS
eagerly bounds penalty variables during branch-and-bound. This achieves more
propagation from the soft constraints. This is conceptually related to our ap-
proach: we improve the poor propagation from the soft constraints and reduce
their negative impact on LNS, by pruning more. VO-LNS satisfies Theorem 1:
it never removes a solution from the CP search space if the problem is satis-
fiable. But, like our approach, VO-LNS can remove pseudo-solutions from the
CP search space, and might therefore remove all pseudo-solutions with the lowest
positive penalty. VO-LNS and non-failing propagators can be complementary:
first experiments, where both approaches are used together, indicate that there
can be a synergy.

Streamliners [7| are constraints added in order to remove a large portion
of the CP search space while ideally not removing all solutions. Streamliners
are identified by empirically observing structures in solutions to easy instances
and hoping that those structures, and thereby constraints, extend to difficult
instances. However, while streamliners are ideally safe, by not removing non-
dominated solutions, they are not always guaranteed to be safe; their addition
can even make a satisfiable instance unsatisfiable. Non-failing propagators, when
added to a problem SOFT(P,S,m,), can be thought of as streamliners since
they remove a large portion of the CP search space. But, unlike streamliners,

Solving Satisfaction Problems using LNS 15

non-failing propagators are always safe to use as they never make a satisfiable
instance unsatisfiable, due to Theorem 1, and they are not based on empirical
observation, but rather on the actual constraints of the problem.

7 Conclusion and Future Work

LNS is a powerful approach to solving difficult problems, but is typically only
applied to (easy-to-satisfy) optimisation problems. We show that by using our
non-failing propagators we can apply LNS to effectively tackle hard satisfaction
problems (including those arising from hard-to-satisfy optimisation problems).
Implementing non-failing propagators is not difficult in a CP solver, and can
be done at the engine level with some care. Experimental results show that
non-failing propagators can drastically improve the solving of hard-to-satisfy
problems, although they are not universally beneficial.

Future work includes the design of constraint-specific non-failing propag-
ators. For example, consider ALLDIFFERENT([21, X2, Z3,...,Zy,]): rather than
disabling its propagator upon detecting x; = x5, one can replace it by a propag-
ator for ALLDIFFERENT([z3, . .., Z,]), thereby still avoiding the failure but now
without losing the propagation on the remaining variables.

A weakness of non-failing propagators is that they can cause too many in-
direct failures, via normal propagators, as seen in Table 1. Indirect failures can
sometimes be avoided by giving non-failing propagators the right priority (see
Section 4.3). As future work, we can address this weakness with the following
two orthogonal ideas. First, when using a learning CP solver such as Chuffed [3],
which explains failures, we can detect that a failure is indirect and we can identify
a node where a responsible non-failing propagator ran: the CP search can then
backtrack and disable that propagator at that node, thus avoiding the failure.
Second, non-failing propagators can be made more cautious about the values they
prune: for example, rather than eagerly pruning values that impose a penalty, a
non-failing propagator can prune only the values that impose a penalty above
some threshold, which can be adjusted during CP search. Initial experiments
show that these ideas work in principle, but do not yet outperform our generic
implementation (of Section 4.2), as they bring their own sets of challenges, which
require further investigation.

Acknowledgements. We thank the reviewers for their constructive feedback,
and Graeme Gange for discussions on how to implement these ideas in LCG
solvers. This work is supported by the Swedish Research Council (VR) through
Project Grant 2015-04910, by the Vice-Chancellor’s travel grant from the Wal-
lenberg Foundation for a visit by the first author to Monash University, and by
the Australian Research Council grant DP180100151.

16

G. Bjordal et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Aguiar Melgarejo, P., Laborie, P., Solnon, C.: A time-dependent no-overlap con-
straint: Application to urban delivery problems. In: Michel, L. (ed.) CP-AI-
OR 2015. LNCS, vol. 9075, pp. 1-17. Springer (2015)

Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds con-
sistency revisited. In: Sattar, A., Kang, B.H. (eds.) AI 2006. LNCS, vol. 4304, pp.
49-58. Springer (2006)

Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, Department of
Computing and Information Systems, University of Melbourne, Australia (2011),
available at http://hdl.handle.net/11343/36679; the Chuffed solver and Mini-
Zinc backend are available at https://github.com/chuffed/chuffed

Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving the car-sequencing problem
in constraint logic programming. In: Kodratoff, Y. (ed.) ECAI 1988. pp. 290-295.
Pitman (1988)

Fontaine, D., Michel, L., Van Hentenryck, P.: Constraint-based Lagrangian relax-
ation. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 324-339. Springer
(2014)

. Gecode Team: Gecode: A generic constraint development environment (2020), the

Gecode solver and its MiniZinc backend are available at https://www.gecode.org
Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274-287. Springer (2004)

Lauriére, J.L.: A language and a program for stating and solving combinatorial
problems. Artificial Intelligence 10(1), 29-127 (February 1978)

Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CP-AI-
OR 2014. LNCS, vol. 8451, pp. 293-300. Springer (2014)

Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, chap. 9, pp. 281-328.
Elsevier (2006)

Musliu, N., Schutt, A., Stuckey, P.J.: Solver independent rotating workforce
scheduling. In: van Hoeve, W.J. (ed.) CP-AI-OR 2018. LNCS, vol. 10848, pp.
429-445. Springer (2018)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: Towards a standard CP modelling language. In: Bessiére, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529-543. Springer (2007), the MiniZinc toolchain is available
at https://www.minizinc.org

Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468-481. Springer (2004)
Prud’homme, C., Lorca, X., Jussien, N.: Explanation-based large neighborhood
search. Constraints 19(4), 339-379 (October 2014)

Schaus, P.: Variable objective large neighborhood search: A practical approach to
solve over-constrained problems. In: Brodsky, A. (ed.) ICTAI 2013. pp. 971-978.
IEEE Computer Society (2013)

Schiendorfer, A.: Soft Constraints in MiniBrass: Foundations and Applications.
Ph.D. thesis, Universitdt Augsburg, Germany (2018), available at https://doi.
org/10.13140/RG.2.2.10745.72802

Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. ACM Transac-
tions on Programming Languages and Systems 31(1), 1-43 (December 2008)
Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 723-730. Springer (2009)

http://hdl.handle.net/11343/36679
https://github.com/chuffed/chuffed
https://www.gecode.org
https://www.minizinc.org
https://doi.org/10.13140/RG.2.2.10745.72802
https://doi.org/10.13140/RG.2.2.10745.72802

Solving Satisfaction Problems using LNS 17

19. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417-431. Springer (1998)

20. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press
(2005)

	Solving Satisfaction Problems using Large-Neighbourhood Search

