
Automated Auxiliary Variable Elimination
through On-the-Fly Propagator Generation

Jean-Noël Monette, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, Uppsala, Sweden
{jean-noel.monette,pierre.flener,justin.pearson}@it.uu.se

Abstract. Model flattening often introduces many auxiliary variables.
We provide a way to eliminate some of the auxiliary variables occur-
ring in exactly two constraints by replacing those two constraints by a
new equivalent constraint for which a propagator is automatically gen-
erated on the fly. Experiments show that, despite the overhead of the
preprocessing and of using machine-generated propagators, eliminating
auxiliary variables often reduces the solving time.

1 Introduction

Constraint-based modelling languages such as Essence [6] and MiniZinc [12] en-
able the modelling of problems at a higher level of abstraction than is supported
by most constraint solvers. The transformation from a high-level model to a
low-level model supported by a solver is often called flattening and has been the
subject of intense research in order to produce good low-level, or flattened, mod-
els (see, e.g., [14]). By decomposing complex expressions into a form accepted by
a solver, flattening often introduces many auxiliary variables into the flattened
model. Those auxiliary variables and the propagators of the constraints in which
they appear may have a large negative impact on the efficiency of solving (as we
will show in Section 5).

In this paper, we propose a fully automated way to address this problem
by removing from the flattened model some auxiliary variables that appear in
exactly two constraints and replacing those two constraints by a new equivalent
constraint for which a propagator is generated. Given a flattened model, our
approach is fully automated and online. It can be summarised as follows:

1. Identify frequent patterns in the flattened model consisting of two constraints
sharing an auxiliary variable.

2. For a pattern, define a new constraint predicate that involves all variables
appearing in the pattern except for the shared auxiliary variable.

3. For a pattern, replace all its occurrences in the flattened model by instanti-
ating the new constraint predicate.

4. For each new predicate, generate a propagator description in the indexical
language of [11] and compile it for the targeted constraint solver.

5. Solve the modified flattened model using the constraint solver extended with
the new indexical-based propagators.



Our experiments in Section 5 show that our approach is useful for instances that
are hard to solve, reducing the average time by 9% for those taking more than
one minute and sometimes more than doubling the search speed.

The rest of the paper assumes that the low-level language is FlatZinc [1] and
that the constraint solver is Gecode [7], as our current implementation is based
on FlatZinc and Gecode. However, the ideas presented here are applicable to
other low-level modelling languages and other constraint solvers.

The paper is organised as follows. We start with some preliminaries in Sec-
tion 2. Then we describe our approach in Section 3 and present a complete
example in Section 4. In Section 5, we show that this approach is effective in
practice. In Section 6, we discuss the merits and limitations of our approach as
well as some alternatives. Finally, we conclude in Section 7.

2 Preliminaries

A constraint-based model is a formal way to describe a combinatorial problem.
It is composed of a set of variables, each with a finite domain in which it must
take its value, a set of constraints, and an objective. A solution is an assignment
to all variables so that all constraints are satisfied. The objective is either to find
a solution, or to find a solution in which a given variable is minimised, or to find
a solution in which a given variable is maximised.

A constraint predicate, or simply predicate, is defined by a name and a sig-
nature that lists the formal arguments of the predicate. The arguments can be
constants, variables, or arrays thereof. For simplicity, we identify a predicate
with its name and we often do not give the types of its arguments. We specify
the semantics of a predicate P by a logic formula involving the arguments of
P and constants. For example, one could write PLUS(X,Y, Z) , X = Y + Z,
for the predicate PLUS with formal arguments X, Y , and Z. A predicate whose
signature has arrays of variables is said to be of unfixed arity, or n-ary. Unfixed-
arity predicates are usually referred to as global constraints [2] in constraint
programming. Each constraint in a constraint-based model is the instantiation
of a constraint predicate to some actual arguments. We denote formal arguments
in upper case and actual arguments inside a model in lower case.

2.1 MiniZinc and FlatZinc

MiniZinc is a solver-independent constraint-based modelling language for com-
binatorial problems. Before being presented to a solver, a MiniZinc model is
transformed into a FlatZinc model by a process called flattening. The MiniZinc
flattener inlines function and predicate calls, decomposes expressions, and un-
rolls loops to provide the solver with a model that is a conjunction of primitive
constraints (i.e., constraints that are recognised by the targeted solver) over sim-
ple arguments (i.e., only variables, constants, or arrays thereof). To do so, the
flattener may introduce auxiliary variables, which are annotated in the FlatZinc
model with is introduced var.



1 var int: w;
2 var int: y;
3 var int: z;
4

5

6

7 constraint w 6= max(y,z) ∨ 1≤ z;
8

9

10

11 solve satisfy;

(a) MiniZinc model

1 var int: w;
2 var int: y;
3 var int: z;
4 var int: x1 ::var_is_introduced;

5 var bool: x2 ::var_is_introduced;

6 var bool: x3 ::var_is_introduced;

7 constraint x1 = max(y,z);
8 constraint x2 ≡ w 6= x1;

9 constraint x3 ≡ 1 ≤ z;
10 constraint x2 ∨ x3;

11 solve satisfy;

(b) FlatZinc model

Fig. 1: MiniZinc model (1a) and FlatZinc model resulting from its flattening (1b)

For example, the MiniZinc model of Figure 1a is flattened into the FlatZinc
model of Figure 1b, modulo editorial changes. The single constraint expression
of the MiniZinc model (line 7 in Figure 1a) is flattened by introducing three aux-
iliary variables (lines 4–6 in Figure 1b) and posting four primitive constraints:
the constraints in lines 7–9 functionally define the auxiliary variables represent-
ing parts of the original constraint expression, and the disjunction of line 10
corresponds to the top-level expression.

For 75 of the 488 benchmark instances we used (see Section 5 for details),
no auxiliary variables are introduced by flattening. For 264 instances, flattening
multiplies the number of variables in the model by more than 5. For 7 instances,
flattening even multiplies the number of variables by more than 100.

2.2 Patterns, Occurrences, and Extensions

A pattern is here a new constraint predicate with signature Y1, ..., Yn,K1, ...,Km,
where the Yi are n ≥ 2 variable identifiers and the Ki are m ≥ 0 constant
identifiers. Its semantics is specified by the conjunction of two existing predicates
PA and PB applied to arguments A1, . . . , Ap and B1, . . . , Bq, for some p, q ≥ 2,
such that each Ai and each Bi is either one of Y1, . . . , Yn,K1, . . . ,Km, or a
unique local and existentially quantified variable X, or a constant, and such
that X appears in both A1, . . . , Ap and B1, . . . , Bq. We reserve the identifier X
for the local and existentially quantified variable. Hence, for simplicity, we will
often omit writing the existential quantification of X in predicate semantics.

An occurrence of a pattern in a model is made of two constraints C1 and
C2 sharing a variable x that appears only in C1 and C2 such that PA can be
instantiated to C1 and PB to C2 with X being instantiated to x.

For example, the pattern P (Y1, Y2, Y3, Y4) , ∃X : X = max(Y1, Y2) ∧ Y3 ≡
Y4 6= X occurs in the model of Figure 1b, with C1 being x1 = max(y, z) in line 7,
C2 being x2 ≡ w 6= x1 in line 8, and X being x1. Hence this occurrence of P is
equivalent to the constraint P (y, z, x2, w).



1 def PLUS(vint X, vint Y, vint Z){

2 propagator{

3 X in (min(Y)+min(Z)) .. (max(Y)+max(Z)) ;

4 Y in (min(X)-max(Z)) .. (max(X)-min(Z)) ;

5 Z in (min(X)-max(Y)) .. (max(X)-min(Y)) ;

6 }

7 checker{ X == Y + Z }

8 }

Fig. 2: Indexical propagator description for X = Y + Z

A pattern P1 is said to be a specialisation of another pattern P2 if one can
define P1 in terms of P2 by properly instantiating some of the arguments of P2.

For example, consider the patterns P1(Y1, Y2) , (X ∨ Y1) ∧ X ≡ 1 ≤ Y2
and P2(Y1, Y2,K1) , (X ∨ Y1) ∧ X ≡ K1 ≤ Y2, both of which occur on lines 9
and 10 of Figure 1b with X being x3. Then P1 is a specialisation of P2 because
P1(Y1, Y2)⇔ P2(Y1, Y2, 1).

2.3 Indexicals

Indexicals [20] are used to describe concisely propagation in propagator-based
constraint solvers. The core indexical expression takes the form ‘X in σ’ and
restricts the domain of variable X to be a subset of the set-valued expression σ,
which depends on the domains of other variables. Figure 2 presents an index-
ical propagator description in the language of [11] for the constraint predicate
PLUS(X,Y, Z) , X = Y + Z; it involves three indexical expressions, one for
each variable (lines 3–5), the min and max operators referring to the domain of
the argument variable. Figure 2 also contains a checker (line 7), which is used
to test whether the constraint holds on ground instances and can be seen as a
specification of the predicate semantics.

Our indexical compiler [11] takes an indexical propagator description like
the one in Figure 2 and compiles it into an executable propagator for a number
of constraint solvers, including Gecode. The compiled propagator is said to be
indexical-based. The experimental results in [11] show that an indexical-based
propagator uses between 1.2 and 2.7 times the time spent by a hand-crafted
propagator on a selection of n-ary constraint predicates.

3 Our Approach

Given a FlatZinc model, our approach, whose implementation is referred to
as var-elim-idxs, adds a preprocessing step before solving the model. This
preprocessing is summarised in Algorithm 1. We do not describe lines 1, 5, and 6,
as they involve purely mechanical and well-understood aspects. The core of the
algorithm iteratively identifies frequent patterns (line 2), replaces them in the



Algorithm 1 Main preprocessing algorithm of var-elim-idxs
Input: a flattened model
Output: updated flattened model and extended solver

1: Parse the flattened model
2: while there is a most frequent pattern P in the model (Section 3.1) do
3: Replace each occurrence of P in the model by instantiating P (Section 3.2)
4: Generate and compile an indexical propagator description for P (Section 3.3)

5: Output the updated model
6: Link the compiled indexical-based propagators with the solver

model (line 3), and generates propagators (line 4). Sections 3.1 to 3.3 describe
this core.

The loop of lines 2 to 4 ends when no pattern occurs often enough, which
is when the number of occurrences of a most frequent pattern (if any) is less
than 10 or less than 5% of the number of variables in the model: under those
thresholds, the effort of preprocessing is not worth it. To save further efforts, if
the number of auxiliary variables is less than 10 or less than 5% of the number
of variables in the model (this criterion can be checked very fast with Unix
utilities such as grep), then the preprocessing is not performed at all. The two
thresholds, 10 and 5%, have been set arbitrarily after some initial experiments.

3.1 Identification of Frequent Patterns

We now show how we identify patterns that occur frequently in a given model.
First, we collect all auxiliary variables that appear in exactly two constraints.

Indeed, to be in an occurrence of a pattern, a shared variable must occur only in
those two constraints. Most auxiliary variables appear in exactly two constraints:
this is the case of 84% of the auxiliary variables appearing in the 488 benchmark
instances we used. For example, this is also the case for all auxiliary variables
in Figure 1b. However, due to common subexpression elimination [13,14], some
auxiliary variables appear in more than two constraints. We do not consider such
variables for elimination as common subexpression elimination usually increases
the amount of filtering and eliminating those variables might cancel this benefit.

Then, for each collected variable x, we create a pattern as follows. Let
PA(a1, . . . , ap) and PB(b1, . . . , bq) be the two constraints in which x appears. The
pattern is such that the two predicates are PA(A1, . . . , Ap) and PB(B1, . . . , Bq),
where each Ai is defined by the following rules, and similarly for each Bi:

– If ai is x, then Ai is X.
– If ai is a variable other than x, then Ai is Yk for the next unused k.
– If ai ∈ {−1, 0, 1, true, false}, then Ai is ai.
– If ai is a constant not in {−1, 0, 1, true, false}, then Ai is Kk for the next

unused k.
– If ai is an array, then Ai is an array of the same length where each element

is defined by applying the previous rules to the element of ai at the same
position.



The purpose of the third rule is to allow a better handling of some special
constants, which may simplify the generated propagators. For example, linear
(in)equalities can be propagated more efficiently with unit coefficients.

In general, there might be other shared variables between PA(a1, . . . , ap) and
PB(b1, . . . , bq) besides x but, to keep things simple, we consider them separately,
i.e., a new argument Yk with an unused k is created for each occurrence of another
shared variable. Ignoring other shared variables does not affect the correctness
of our approach, but the generated propagators may achieve less filtering than
possible otherwise. We will revisit this issue in Section 6.

In order to avoid the creation of symmetric patterns, we sort the elements of
an array when their order is not relevant: we do this currently only for the n-ary
Boolean disjunction and conjunction constraints.

For example, both (x∨y)∧(x ≡ 1 ≤ z) and (w∨u)∧(u ≡ 1 ≤ v) are considered
occurrences of P (Y1, Y2) , (X ∨ Y1) ∧ (X ≡ 1 ≤ Y2), although, syntactically,
the shared variables (x and u, respectively) occur in different positions in their
respective disjunctions.

Finally, we count the occurrences of each created pattern. In doing so, we
ignore the following patterns, expressed here in terms of criteria that are specific
to FlatZinc and Gecode:

– Patterns involving an n-ary predicate with at least five variables among
its arguments: currently, our approach considers only fixed-arity patterns.
Hence n-ary constraints with different numbers of variables are considered
as fixed-arity constraints with different arities. We only want to keep those
of small arities for efficiency reasons. The threshold is set to 5 because no
fixed-arity predicate in FlatZinc has more than four variable arguments.

– Patterns involving a predicate for which an indexical-based propagator is
expected to perform poorly with respect to a hand-written propagator: this
includes all the global constraint predicates from the MiniZinc standard li-
brary, as well as the element, absolute value, division, modulo, and multipli-
cation predicates of FlatZinc.

– Patterns involving a bool2int predicate in which the Boolean variable is the
shared variable, and another predicate that is not a pattern itself: this case
is ignored as, in some cases, the Gecode-FlatZinc parser takes advantage of
bool2int constraints and we do not want to lose that optimisation.

The two first criteria partially but not completely overlap: for example, the
constraint all different([X,Y, Z,W ]) is not ruled out by the first criterion as
it has fewer than five variables, but it is ruled out by the second one; conversely,
int lin eq(coeffs, [X,Y, Z,W,U ], k) is ruled out by the first criterion but not
by the second one.

The result of pattern identification is a pattern that occurs most in the model.

3.2 Pattern Instantiation

Having identified a most frequent pattern P , we replace each occurrence of P by
an instantiation of P . More precisely, for each auxiliary variable x that appears



in exactly two constraints, if the pattern created for x in Section 3.1 is P or a
specialisation of P (detected by simple pattern matching), then we replace in
the model the declaration of x and the two constraints in which x appears by
an instantiation of P , obtained by replacing each formal argument of P by the
actual arguments of the two constraints in which x appears. To achieve this,
each argument Ai of PA in the semantics of P is considered together with the
argument ai of the instantiation of PA in which x appears, in order to apply the
following rules, and similarly for each Bi:

– If Ai is X, then variable ai, which is x, is not in the instantiation of P .
– If Ai is Yk, then Yk is instantiated to the variable ai.
– If Ai ∈ {−1, 0, 1, true, false}, then ai is not in the instantiation of P .
– If Ai is Kk, then Kk is instantiated to the constant ai.
– If Ai is an array, then the previous rules are applied to each element of Ai.

For example, consider the pattern P1(Z1, Z2) , (X ≡ 1 ≤ Z1) ∧ (Z2 ∨ X).
Variable x3 of Figure 1b appears in x3 ≡ 1 ≤ z (line 9) and x2 ∨ x3 (line 10).
Then P1 can be instantiated to P1(z, x2) and this constraint replaces lines 6, 9,
and 10 in Figure 1b.

Due to the sorting of the elements for the n-ary Boolean conjunction and
disjunction predicates, some occurrences of a pattern may disappear before their
instantiation. Consider the MiniZinc-level expression z1 > 0∨z2 > 0. Flattening
introduces two auxiliary Boolean variables, say b1 and b2, together with the three
constraints b1 ≡ z1 > 0, b2 ≡ z2 > 0, and b1∨b2. Hence there are two occurrences
of the pattern P (Y1, Y2) , (X ≡ Y1 > 0) ∧ (X ∨ Y2) but only one of them will
actually be replaced, say the one in which X is b1. After replacing it, the model
contains the two constraints P (z1, b2) and b2 ≡ z2 > 0, changing the pattern to
which b2 belongs. This new pattern might be replaced in a later iteration of the
loop in Algorithm 1.

3.3 Indexical Propagator Description Generation and Compilation

The generation of a propagator for a pattern uses our indexical compiler [11]
and performs the following steps:

1. Translation of the pattern into a checker in the indexical syntax.
2. Elimination of the shared variable from the checker.
3. Generation of an indexical propagator description, based on the checker.
4. Compilation [11] of the indexical propagator description into an actual prop-

agator, written in C++ in the case of Gecode.

Step 1 only involves a change of syntax, and Step 4 has already been described
in [11]. Hence, we will focus here on Steps 2 and 3.

Let X be the variable to eliminate in Step 2. Here, variable elimination can
take two forms. First, if X is constrained to be equal to some expression φ in one
of the two conjuncts, i.e., if the checker can be written as P (. . . , X, . . . )∧X = φ
for some predicate P , then all occurrences of X in the checker are replaced by



φ, i.e., the checker becomes P (. . . , φ, . . . ). As Boolean variables are considered
a special case of integer variables in the indexical compiler, this rule also covers
the case of X being a Boolean variable constrained to be equivalent to a Boolean
expression. Second, if both conjuncts are disjunctions, one involving a Boolean
variable X and the other ¬X, i.e., if the checker can be written as (δ1 ∨ X) ∧
(δ2 ∨ ¬X) for some Boolean expressions δ1 and δ2, then applying the resolution
rule yields a single disjunction without X, i.e., the checker becomes δ1 ∨ δ2.

The generation in Step 3 of an indexical propagator description from a
checker works by syntactic transformation: rewriting rules are recursively applied
to the checker expression and its subexpressions in order to create progressively
a collection of indexical expressions. The whole transformation has more than
250 rules. We limit our presentation to the most representative ones.

The rule for a conjunction γ1 ∧ γ2 concatenates the rewriting of γ1 and γ2.
The rule for a disjunction δ1 ∨ δ2 is such that δ2 is propagated only once δ1 can
be shown to be unsatisfiable, and conversely. The rule for an equality φ1 = φ2
creates expressions that force the value of φ1 to belong to the possible values
for φ2, and conversely. If φ1 is a variable, say Y , then the rule creates the
indexical Y in UB(φ2), where UB(φ2) is possibly an over-approximation of the
set containing all possible values of the expression φ2, based on the domains of
the variables appearing in φ2. If φ1 is not a variable but a compound expression,
then it must be recursively decomposed. Consider the case of φ1 being Y1 + Y2:
two indexical expressions are created, namely Y1 in UB(φ2 − Y2) and Y2 in

UB(φ2−Y1). The other rules cover all the other expressions that can appear in a
checker. The function UB(.) is also defined by rules. As an example, UB(φ1−φ2)
is rewritten as UB(φ1) 	 UB(φ2), where 	 is pointwise integer set substraction:
S 	 T = {s− t | s ∈ S ∧ t ∈ T}.

This generation mechanism packaged with our indexical compiler has been
used in [9,17] to prototype propagators rapidly for newly identified constraints,
but it has never been described before. It is very similar to the compilation of
projection constraints in Nicolog [18], but generalised to n-ary constraints.

4 Example: Ship Schedule

To illustrate our approach, we now consider the ship-schedule.cp.mzn model
from the MiniZinc Challenge 2012. The objective of the problem is to find which
boats are sailing and when, in order to satisfy several port constraints, e.g.,
tides, tugboat availability, and berth availability, as well as to maximise the to-
tal weight that can be transported. The FlatZinc model produced by flattening
the MiniZinc model with the 7ShipsMixed.dzn data file, which represents an
instance with 7 boats and 74 time slots, contains 7,187 constraints and 5,978 vari-
ables, among which 4,848 are auxiliary, i.e., 81% of the variables.

When given this flattened model, var-elim-idxs iteratively identifies the
patterns reported in Table 1. Note that pattern P0 is used in pattern P1. The loop
of Algorithm 1 ends upon identifying pattern P4, which occurs less often than
5% of the number of variables and is not instantiated. In total, 4 new constraint



Table 1: Patterns found in ship-schedule.cp.mzn with 7ShipsMixed.dzn

Predicate Definition Frequency

P0(Y1, Y2) , (X ∨ Y1) ∧ X ≡ (Y2 = 0) 892

P1(Y1, Y2, Y3, Y4) , P0(X,Y4) ∧ X ≡ (Y1 ∧ Y2 ∧ Y3) 612

P2(Y1, Y2, Y3, Y4,K1) , (X ∨ ¬(Y1 ∧ Y2 ∧ Y3)) ∧ X ≡ (Y4 = K1) 612

P3(Y1, Y2, Y3,K1) , (X ∨ ¬(Y1 ∧ Y2)) ∧ X ≡ (Y3 = K1) 276

P4(Y1, Y2, Y3, Y4) , (X ∨ Y1) ∧ X ≡ (Y2 ∧ Y3 ∧ Y4) 146

1 def P_1(vint Y_1::Bool, vint Y_2::Bool, vint Y_3, vint Y_4){

2 checker{

3 0==Y_4 or (1 <= Y_1 and 1 <= Y_2 and 1 <= Y_3)

4 }

5 propagator(gen)::DR{

6 once(not 0 memberof dom(Y_4)){

7 Y_1 in 1 .. sup;

8 Y_2 in 1 .. sup;

9 Y_3 in 1 .. sup;

10 }

11 (max(Y_1) < 1 or max(Y_2) < 1 or max(Y_3) < 1) -> Y_4 in {0};

12 }

13 }

Fig. 3: Indexical propagator description generated for pattern P1 of Table 1 from
ship-schedule.cp.mzn with 7ShipsMixed.dzn. Note that the indexical com-
piler treats Boolean variables as a special case of integer variables with domain
{0, 1}, where 1 represents true. For example, 1 <= Y 1 means Y 1 is true.

predicates (P0 to P3) are introduced in the model, eliminating 2,392 variables,
i.e., 40% of the variables. Among those, 222 variables are eliminated thanks to
pattern specialisation, i.e., because the pattern created for such a variable is not
exactly one of the patterns shown in Table 1 but a specialisation of one of those,
for example a specialisation of P2 with K1 = 1.

The final model contains 3,586 variables, of which 2,456 are auxiliary, and
4,795 constraints, of which 1,780 use the generated propagators. Many auxil-
iary variables are not eliminated because either they appear in more than two
constraints, or they appear in too infrequent patterns, such as P4 in Table 1,
or they appear in constraints that are not handled by var-elim-idxs, such as
n-ary constraints with n ≥ 5, the multiplication constraint, and the bool2int

constraint in the case explained in Section 3.1.

The new constraint predicates are handled by the indexical compiler to spec-
ify their checkers, generate indexical propagator descriptions, and compile the
latter into Gecode propagators. Figure 3 shows the generated indexical propaga-
tor description for pattern P1 of Table 1. It is interesting to note that the auxil-
iary variable X eliminated by instantiating P1 represents the truth of Y1∧Y2∧Y3.



Hence the propagator for X ≡ (Y1∧Y2∧Y3) in the original flattened model needs
to watch both when all conjuncts become true to set X to true and when some
conjunct becomes false to set X to false. In contrast, the propagator of Figure 3
is only interested in the falsity of the conjuncts to restrict Y4 to 0. The generated
C++ code of the indexical-based propagators for Gecode is 579 lines long.

While the unmodified Gecode-FlatZinc interpreter solves the flattened model
in 111.5 seconds, var-elim-idxs solves it in 89.1 seconds, divided into 4.9 sec-
onds of preprocessing and 84.2 seconds of actual solving.

5 Experimental Evaluation

We implemented the preprocessing step of var-elim-idxs1 in Scala, using our
indexical compiler2 and the FlatZinc parser of the OscaR project3 as that parser
is written in Scala as well. For the experiments, we used Gecode 4.4.04 and the
MiniZinc flattener 2.0.1.5 The experiments were carried out inside a VirtualBox
virtual machine running Ubuntu 14.04 LTS 32-bit, with access to one core of a
64-bit Intel Core i7 at 3 GHz and 1 GB of RAM.

We tested var-elim-idxs on 489 of the 500 FlatZinc instances from the
MiniZinc Challenges 2010 to 2014. We excluded 11 instances that could not be
flattened, for lack of memory or because of a syntax error.6 We ran both Gecode
and var-elim-idxs once on each instance with a time-out of 10 minutes per
instance. Unless otherwise noted, ‘Gecode’ refers here to running an unmodified
version of Gecode and ‘var-elim-idxs’ refers to running our preprocessing step
followed by running the extended version of Gecode.

For 94 instances, the preprocessing is not run at all because the grep com-
mand detects that there are too few auxiliary variables: the behaviour of Gecode
and var-elim-idxs is identical as the time spent by grep is negligible. For 172
instances, the preprocessing is run but does not identify any frequent enough
pattern: the behaviour of Gecode and var-elim-idxs is identical except for the
extra time spent on preprocessing, discussed in the last paragraph of this section.

Table 2 reports the results, aggregated per MiniZinc model, on the 223 in-
stances in which the preprocessing identifies frequent patterns. We refer to those
instances as modified instances. The bottom of the table presents the aggre-
gated results over all modified instances for which the total time of Gecode is
respectively more than 1 and 60 seconds. The node rate ratio for an instance
is computed as rv/rg, where rx = nx/tx with nx being the number of nodes
of the search tree visited before time-out, and tx being the total time in the
column ratio total and the search time in the column ratio search; the subscript

1 https://bitbucket.org/jmonette/var-elim-idxs
2 https://bitbucket.org/jmonette/indexicals
3 http://www.oscarlib.org
4 http://www.gecode.org/
5 http://www.minizinc.org/2.0/
6 The sugiyama model could not be parsed by MiniZinc 2.0.1. It could be parsed by

MiniZinc 1.6, and the problem is corrected in the development version of MiniZinc.

https://bitbucket.org/jmonette/var-elim-idxs
https://bitbucket.org/jmonette/indexicals
http://www.oscarlib.org
http://www.gecode.org/
http://www.minizinc.org/2.0/


Table 2: Results for the 223 modified instances, aggregated per MiniZinc model,
with the following columns: name of the model; number of instances; mean and
standard deviation of the percentage of auxiliary variables; mean and standard
deviation of the percentage of variables eliminated by var-elim-idxs (over all
variables of the model); geometric mean and geometric standard deviation of the
node rate ratio including preprocessing; as well as geometric mean and geometric
standard deviation of the node rate ratio excluding preprocessing. The models
are ordered by decreasing ratio excluding preprocessing (column ‘ratio search’).

name inst. % aux. % elim. ratio total ratio search

l2p 5 93 (1) 73 (4) 1.27 (1.92) 2.30 (1.12)
amaze3 5 92 (1) 10 (1) 0.71 (1.98) 1.71 (2.83)

league 11 94 (4) 30 (13) 1.37 (1.71) 1.45 (1.64)
openshop 5 96 (1) 96 (1) 0.92 (2.15) 1.35 (1.13)

ship-schedule 15 82 (1) 37 (4) 0.52 (3.07) 1.32 (1.07)
wwtpp-real 10 75 (1) 70 (2) 0.27(14.75) 1.32 (1.39)

radiation 10 64 (1) 32 (1) 1.15 (1.15) 1.22 (1.07)
wwtpp-random 5 75 (0) 62 (0) 0.46 (8.31) 1.21 (1.29)

javarouting 5 88 (1) 82 (1) 1.16 (1.03) 1.18 (1.02)
solbat 30 98 (0) 16 (0) 0.65 (2.56) 1.17 (1.34)
amaze 6 55 (1) 36 (1) 1.12 (1.05) 1.16 (1.01)

project-planning 6 66 (0) 31 (2) 1.12 (1.04) 1.13 (1.04)
open-stacks 5 82 (0) 43 (2) 0.63 (2.69) 1.08 (1.04)

traveling-tppv 5 83 (0) 28 (0) 1.04 (1.01) 1.05 (1.02)
fjsp 3 75 (8) 21 (3) 0.92 (1.23) 1.04 (1.08)
tpp 6 88 (1) 24 (2) 0.97 (1.05) 1.03 (1.01)

smelt 4 72 (3) 9 (2) 1.03 (1.08) 1.03 (1.08)
train 9 53 (1) 23 (2) 1.03 (1.06) 1.03 (1.06)

pattern-set-mining 1 66 (0) 29 (0) 1.02 (1.00) 1.03 (1.00)
mspsp 2 72 (2) 54 (5) 1.02 (1.02) 1.02 (1.02)

on-call-rostering 4 66 (6) 24 (4) 1.01 (1.01) 1.02 (1.02)
carpet-cutting 2 57 (0) 37 (0) 1.01 (1.02) 1.02 (1.02)

jp-encoding 5 92 (0) 20 (0) 1.00 (1.01) 1.01 (1.01)
cyclic-rcpsp 10 91 (3) 75 (5) 1.00 (1.02) 1.00 (1.02)

rcpsp-max 6 97 (1) 96 (1) 0.99 (1.02) 1.00 (1.02)
rcpsp 4 96 (3) 94 (4) 0.99 (1.02) 0.99 (1.02)

elitserien 5 71 (0) 24 (0) 0.94 (1.07) 0.99 (1.02)
liner-sf-repositioning 4 85 (0) 10 (0) 0.97 (1.02) 0.99 (1.02)

rectangle-packing 5 88 (0) 49 (1) 0.97 (1.04) 0.98 (1.05)
stochastic-fjsp 2 81 (0) 5 (0) 0.94 (1.00) 0.98 (1.03)

still-life-wastage 5 87 (1) 5 (0) 0.88 (1.14) 0.97 (1.01)
amaze2 6 93 (0) 28 (10) 0.86 (1.17) 0.87 (1.17)

fillomino 2 94 (0) 6 (0) 0.40 (2.27) 0.86 (1.07)
roster 5 82 (0) 63 (0) 0.78 (1.42) 0.79 (1.41)
mario 10 92 (0) 22 (1) 0.56 (1.87) 0.78 (1.33)

Total 223 83 (13) 38 (26) 0.81 (2.54) 1.12 (1.38)

Total (> 1 s.) 207 83 (14) 38 (26) 1.00 (1.45) 1.12 (1.31)
Total (> 60 s.) 174 83 (14) 40 (26) 1.09 (1.27) 1.11 (1.27)



Table 3: Results for the 172 unmodified instances, with the columns of Table 2

inst. % aux. % elim. ratio total ratio search

Total 172 80 (20) 0 (0) 0.82 (1.80) 1.00 (1.08)
Total (> 1 s.) 159 79 (20) 0 (0) 0.95 (1.13) 1.00 (1.01)

Total (> 60 s.) 110 76 (20) 0 (0) 1.00 (1.02) 1.00 (1.01)

x = ‘g’ refers to Gecode and ‘v’ to var-elim-idxs. We use node rates in or-
der to have a meaningful measure for both the instances that are solved before
time-out and those that are not. This assumes that the explored search trees
are the same, which is discussed in Section 6. A ratio larger than 1 means that
var-elim-idxs is faster than Gecode. We do not consider ratios between 0.97
and 1.03 to represent a significant change.

The percentage of auxiliary variables is generally very high, with an average
of 83%, but on average only 70% of all the variables are auxiliary and appear
in exactly two constraints. The percentage of eliminated variables varies a lot,
from as little as 5% to 96%, effectively eliminating all auxiliary variables in the
case of the openshop model. On average, var-elim-idxs extends Gecode with
2.3 new propagators, with a maximum of 9 propagators for an instance of the
cyclic-rcpsp model.

The column ratio search shows that preprocessing generally either improves
the node rate during search (ratio larger than 1.03) or leaves it almost unchanged
(ratio between 0.97 and 1.03). The node rate can be more than doubled: see the
l2p model. For the four models at the bottom of the table, however, the perfor-
mance is worse after preprocessing. On average, the node rate during search is
1.12 times higher. The geometric standard deviation is generally low, i.e., close to
1.0, for instances of the same MiniZinc model, except when some of the instances
are solved very fast, partly due to measurement errors.

The column ratio total shows that, when also counting the time for prepro-
cessing, the results are still promising. On average, the node rate is 0.81 times
lower using preprocessing. This number is strongly affected by instances that are
solved very fast. If we take into account only the 207 instances that originally
take more than one second to solve, then the node rate of var-elim-idxs is
on average identical to the one of Gecode. If we take into account only the 174
instances that originally take more than one minute to solve, then the node rate
of var-elim-idxs is on average 1.09 times higher.

Interestingly, Table 2 also shows that there is no strong correlation between
the number of eliminated variables and the node rate ratio. For instance, nearly
all auxiliary variables of the rcpsp model are eliminated but the node rate ratio
is close to 1, despite the fact that the number of propagator calls is divided
by two. This probably indicates that the generated indexical-based propagator
suffers from some inefficiencies.

The median preprocessing time for the 223 modified instances is 4.4 seconds,
roughly equally divided between the time spent by our code in Scala and the
time spent by the g++ compiler. The minimum time is 2.9 seconds, of which a



closer analysis shows that more than 2.5 seconds are actually spent in the set-up,
such as loading classes or parsing header files, independently of the size of the
instance or the number of identified patterns. It is important to note that neither
the g++ compiler nor our indexical compiler were developed for such a use-case,
as compilation is usually performed offline. The median preprocessing time for
the 172 instances unmodified by preprocessing is 0.9 seconds. The minimum time
is 0.7 seconds, again mostly spent in loading classes. The largest preprocessing
time observed is 30 seconds, in the case of a very large nmseq instance. Table 3
reports aggregated results for the 172 unmodified instances: the cost of uselessly
running the preprocessing is largely unnoticeable for unmodified instances that
take more than 60 seconds to be solved.

6 Discussion

In the light of the experimental results, this section discusses more thoroughly
the merits and limitations of our approach.

6.1 Related Work

Dealing with the introduction of auxiliary variables is an important challenge
for developers of both solvers and modelling languages.

Variable Views. The initial purpose of variable views [3, 16] and domain
views [19] is to reduce the number of implemented propagators in a solver, but
they can also be used to eliminate some auxiliary variables. A view allows one
to post a constraint on an argument that is a function of a variable instead of
a variable. If a constraint is of the form x = f(y), where x and y are variables,
then one can introduce a view v = f(y) and replace the variable x by the view v.
Compared with our approach, views have the benefits that they are not limited
to variables appearing in two constraints and that they do not require generat-
ing new propagators, hence that they can eliminate variables that appear, for
example, in global constraints. Views are however in general limited to unary
functions, except in [3]. More importantly, to the best of our knowledge, no solver
automatically transforms a flattened constraint into a view.

Flattening and Modelling Techniques. Common subexpression elimina-
tion [13, 14] reduces the number of auxiliary variables by merging into a single
variable all variables that represent the same expression. This also has the effect
of increasing the amount of filtering. Hence, as explained in Section 3.1, we do
not eliminate such variables.

Half-reification [5] is a modelling technique that replaces constraints of the
form B ≡ φ by B =⇒ φ, where B is a Boolean variable and φ a Boolean
expression. Although this does not reduce the number of variables, it can reduce
solving time by having simpler constraints. However, there are no half-reified



constraint predicates in FlatZinc. Our approach enables some optimisation in
the spirit of half-reification, as shown in the example of Section 4.

Model globalisation [10] aims at replacing a collection of constraints at the
MiniZinc level by an equivalent global constraint. Such a replacement usually
reduces the number of auxiliary variables and increases the amount of filtering,
provided the global constraint is not decomposed during flattening. Globalisation
may improve solving time much more than our approach but it is an offline and
interactive process, hence orthogonal to our online and automated approach.

Propagator Generation. Our approach uses our indexical compiler to gen-
erate propagators. The generation of stateless propagators [8] is an alternative
that can yield much faster propagators. It is however limited by the size of the
domains, as the constraint is essentially represented extensionally. It is meant to
be used offline, as are other approaches to propagator generation, such as [4].

6.2 Properties and Extensions

Unlike most of the approaches in Section 6.1, our approach is entirely online and
automated. We review here some of its properties and discuss possible extensions.

Search Tree Shape. Given a search strategy and enough time, the search
trees explored by Gecode on the original model and by var-elim-idxs on the
modified model are the same if all the following conditions are respected:

– The search strategy does not depend on the propagation order.
– The search strategy does not need to branch on the auxiliary variables.
– The generated propagators do the same filtering as the replaced propagators.

Except in the case of the roster model, where the search strategy is incompletely
specified, the two first conditions are respected for all the instances we used
in Section 5. The third condition is more difficult to check, but seems generally
respected: out of the 84 modified instances that did not time out, only 7 instances
had a different and always larger search tree, namely one fjsp instance, two league
instances, one roster instance, and three still-life-wastage instances.

Domains. Our approach assumes that the domains of the eliminated variables
are non-constraining because the shared variable X is existentially quantified
without specifying a domain. This is why we restricted ourselves to variables in-
troduced by the MiniZinc flattener, annotated with var is introduced, as the
domains proved to be non-constraining for those variables. However, auxiliary
variables may also be introduced manually to simplify a model. A sound way
to extend our approach to such variables while retaining correctness is to verify
that the domain is non-constraining before considering a variable x for replace-
ment, by only considering how the propagators of the two constraints in which x
appears reduce the domain of x given the domains of their other variables. This
would also let us apply our approach to other modelling languages that do not
have the var is introduced annotation, such as, e.g., XCSP [15].



Instances and Problems. We made a deliberate choice to work at the Flat-
Zinc, rather than MiniZinc, level for two reasons. First, it is much simpler to work
with a flat format than with a rich modelling language. Second, it might not be
clear before or during flattening what the frequent patterns are. This choice led
us to work with individual instances. However, instances from the same Mini-
Zinc model share the same frequent patterns. Hence, when several instances
of the same MiniZinc model must be solved successively, most of the results
of the preprocessing of the first instance can actually be reused to reduce the
preprocessing time of the following ones. In particular, when the preprocessing
does not modify the FlatZinc model, detecting this on small instances saves the
potentially high cost of unnecessarily parsing large instances.

Improved Propagator Generation. As seen in Table 2, var-elim-idxs does
not remove all the auxiliary variables. Partly, this is not a limitation of our ap-
proach but of its implementation. Increasing the reach of our approach amounts
to improving the generation of the propagators in order to handle efficiently more
constraints, including n-ary ones. This can be done by improving our indexical
compiler [11] or by using other techniques such as [8] or [3], but such improve-
ments are orthogonal to this paper. Our experiments show that our approach is
already practical as it is.

Increased Filtering. When identifying patterns, if more than one shared vari-
able is identified, then it is possible to generate propagators achieving more
filtering. Our approach can be extended to multiple shared variables. However,
for it to be worthwhile, it is necessary to ensure that the propagator genera-
tion takes advantage of multiple occurrences of a variable other than X in the
checker. This is currently not the case but an interesting line of future work.

7 Conclusion

We presented a new approach to eliminate many of the auxiliary variables in-
troduced into a flattened constraint-based model. Our approach adds a pre-
processing step that modifies the flattened model and extends the solver with
propagators generated on the fly for new constraint predicates. This is made
possible through the generation of indexical-based propagators from logical for-
mulas. Experiments with our prototype implementation show that our approach
makes a solver about 9% faster on average, and sometimes more than 2 times
faster, for instances that take more than one minute to solve. This indicates
that our preprocessing should be activated for instances that are difficult to
solve, which are the ones for which it is important to decrease solving time.

Acknowledgements. This work is supported by grants 2011-6133 and 2012-
4908 of the Swedish Research Council (VR). We thank the anonymous reviewers
for their constructive and insightful comments.



References

1. Becket, R.: Specification of FlatZinc. http://www.minizinc.org/downloads/

doc-1.6/flatzinc-spec.pdf

2. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present, and future. Constraints 12(1), 21–62 (March 2007), the catalogue is
at http://sofdem.github.io/gccat

3. Correia, M., Barahona, P.: View-based propagation of decomposable constraints.
Constraints 18(4), 579–608 (2013)

4. Dao, T.B.H., Lallouet, A., Legtchenko, A., Martin, L.: Indexical-based solver learn-
ing. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 541–555. Springer
(2002)

5. Feydy, T., Somogyi, Z., Stuckey, P.: Half-reification and flattening. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 286–301. Springer (2011)

6. Frisch, A.M., Grum, M., Jefferson, C., Martinez Hernandez, B., Miguel, I.: The
design of ESSENCE: A constraint language for specifying combinatorial problems.
In: IJCAI 2007. pp. 80–87. Morgan Kaufmann (2007)

7. Gecode Team: Gecode: A generic constraint development environment (2006),
http://www.gecode.org

8. Gent, I.P., Jefferson, C., Linton, S., Miguel, I., Nightingale, P.: Generating custom
propagators for arbitrary constraints. Artificial Intelligence 211(0), 1–33 (2014)

9. Hassani Bijarbooneh, F.: Constraint Programming for Wireless Sensor Networks.
Ph.D. thesis, Department of Information Technology, Uppsala University, Sweden
(2015), http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-241378

10. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint mod-
els. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 432–447. Springer (2013)

11. Monette, J.N., Flener, P., Pearson, J.: Towards solver-independent propagators.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 544–560. Springer (2012)

12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer (2007), the MiniZinc toolchain is available
at http://www.minizinc.org

13. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically im-
proving constraint models in Savile Row through associative-commutative common
subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
590–605. Springer (2014)

14. Rendl, A., Miguel, I., Gent, I.P., Jefferson, C.: Automatically enhancing constraint
model instances during tailoring. In: Bulitko, V., Beck, J.C. (eds.) SARA 2009.
AAAI Press (2009)

15. Roussel, O., Lecoutre, C.: XML representation of constraint networks: Format
XCSP 2.1. CoRR abs/0902.2362 (2009), http://arxiv.org/abs/0902.2362

16. Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107
(2013)

17. Scott, J.D.: Rapid prototyping of a structured domain through indexical compila-
tion. In: Schaus, P., Monette, J.N. (eds.) Domain Specific Languages in Combina-
torial Optimisation (CoSpeL workshop at CP 2013) (2013), http://cp2013.a4cp.
org/workshops/cospel

18. Sidebottom, G., Havens, W.S.: Nicolog: A simple yet powerful cc(FD) language.
Journal of Automated Reasoning 17, 371–403 (1996)

http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://sofdem.github.io/gccat
http://www.gecode.org
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-241378
http://www.minizinc.org
http://arxiv.org/abs/0902.2362
http://cp2013.a4cp.org/workshops/cospel
http://cp2013.a4cp.org/workshops/cospel


19. Van Hentenryck, P., Michel, L.: Domain views for constraint programming. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 705–720. Springer (2014)

20. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). Tech. Rep. CS-93-02, Brown University,
Providence, USA (January 1993), revised version in Journal of Logic Programming
37(1–3):293–316, 1998. Based on the unpublished manuscript Constraint Process-
ing in cc(FD), 1991.


	Automated Auxiliary Variable Elimination through On-the-Fly Propagator Generation

