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Abstract We present two heuristics based on constraint technology
that solve the problem of generating air traffic management contingency
plans, which are used in the case of a catastrophic infrastructure failure
within EUROCONTROL, the European Organisation for the Safety of
Air Navigation. Of the heuristics presented, one is based on constraint-
based local search and tabu search, and the other one is a constraint
programming and large neighbourhood search hybrid algorithm. The
heuristics show that it is feasible to automate the development of contin-
gency plans, which is currently done by human experts; this is desirable
for several reasons, for example it would allow the contingency plans
to be generated with an increased frequency. The generated plans were
evaluated, by EUROCONTROL, to be as good as the human-made ones.

1 Air Traffic Management and Contingency Planning

Air traffic management (ATM) at EUROCONTROL, the European Organisa-
tion for the Safety of Air Navigation, is about managing and ensuring a safe,
efficient, and fair flow of air traffic, assuming a negligible amount of side-effects,
such as adverse weather conditions. During normal operation, the Central Flow
Management Unit (CEFMU) of EUROCONTROL uses several stages, each in
increasing detail, to satisfy its operational goals:

1. A strategic stage, taking place several months before the day of operation.

2. A pre-tactical stage that starts six days before the day of operation.

3. An online tactical stage during the day of operation. This stage is called the
air traffic flow and capacity management (ATFCM) stage [2], and has two
main functions:

(a) Calculate the demand of each airspace volume using live flight plan in-
formation.

(b) Adjust the number of allocated departure slots of the involved aero-
dromes, such that they optimise the objectives defined in the pre-tactical
stage. These objectives typically include, but are not limited to, minimis-
ing the total flight delay and air volume overload.

During an average day, the ATFCM unit handles approximately 30000 flights
spread over about 1500 aerodromes.
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Flow identifier|Flow description Time span |Hourly rate
EBBR1 From EBBR 00:00 — 06:00 2
To C EG EI KM 06:00 — 09:00 3
09:00 — 12:00 7
12:00 — 14:00 4
14:00 — 22:00 8
22:00 — 24:00 2
EBBR2 From EBBR 00:00 — 06:00 1
To B EDDH EDDW EE EF EH|06:00 — 17:00 4
EK EN ES 17:00 — 21:00 6
21:00 — 24:00 2

Figure 1. A contingency plan excerpt, which describes the hourly take-off rates
of two flows originating from the aerodrome EBBR (Brussels national airport).

This study will focus on the special case of an ATFCM failure due to any rea-
son, such as downtime of the computer-assisted slot allocation (CASA) system.
In such a situation, where no timely updates from ATFCM are available and the
air controllers of each aerodrome have no idea whether it is proper to release a
flight or not, a safe alternative is necessary. EUROCONTROL addresses this by
a contingency plan, which contains a pre-defined number of allocated departure
slots for each major aerodrome in such a way that certain safety and efficiency
objectives are satisfied, for a maximum duration of one day. During the last
twelve years, such a situation has occurred once, for a few hours.

An excerpt from such a contingency plan can be seen in Figure [1} It de-
fines the number of departure slots that the aerodrome with the International
Ciwvil Aviation Organization (ICAO) identifier EBBR (Brussels national airport,
Belgium) is allowed to release for each hour to each destination aerodrome.
For example, from 09:00 to 12:00, a maximum of 7 flights in the flow EBBR1,
which is defined by the departure aerodrome EBBR and a destination aerodrome
whose ICAO identifier starts with C (Canada), EG (Great Britain), EI (Ireland),
K (United States), or M (Central America and Mexico) are allowed to take off.
Similarly, only 4 flights whose departure and destination aerodrome match the
description of the flow EBBR2 are allowed to take off per hour from 06:00 to
17:00. The current contingency plan can always be downloaded from the CFMU
homepage, in the upper-left corner of https://www.cfmu.eurocontrol.int/
PUBPORTAL/gateway/spec/.

The generation of ATM contingency plans within the EUROCONTROL Ex-
perimental Centre (EEC) and the CFMU is currently done by two human ex-
perts (using a process described in Section below), who biannually develop
a three-fold plan, namely one for weekdays, one for Saturdays, and one for Sun-
days, with a total development time of two person-months per year. Therefore,
automated contingency planning is desirable. This paper presents two heuristics
that solve the subproblem of finding the optimal hourly numbers of departure
slots for pre-defined flows and time spans (which typically do not change much
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between plans anyway), and is intended as a feasibility study about whether it
is possible to replace the human experts with constraint technology. Other ben-
efits with automating the process are that it could be done at the tactical level
instead of the strategic level, which would increase the quality of the generated
contingency plans.

The rest of this paper is split into five parts, each of which deals with the
problem in increasingly concrete terms. In order of appearance: a formal defini-
tion of the problem (Section , a constraint model that implements the formal
definition (Section7 heuristics that operate on the constraint model (Section,
experimental results (Section [5), and a conclusion (Section @

2 The Contingency Planning Problem

We give a detailed description of the contingency planning problem (CPP), the
current state of the art algorithm, and a comparison with other problems.

2.1 Formal Definition

Each instance of the CPP is defined by the following input and output data,
where identifiers starting with capital letters denote sets, subscripted identifiers
denote constants, identifiers with indices within square brackets denote deci-
sion variables, identifiers that are Greek letters denote parameters, and all time
moments are measured in seconds since some fixed origin:

— A set of flights FF'= {f1,..., fn}, where each flight f; has a departure aero-
drome adep,, a destination aerodrome ades,, an expected take-off time etot,
an expected landing time eldty, and a take-off delay delay[¢]. All later spec-
ified sets of flights are subsets of F.

— A set of flows F = {F1,...,F,}, where each flow F; consists of a set of
flights F'y and a set of span-rate pairs Ry = {r1,...,7,, }, where each span-
rate pair r; consists of a time span span; for when it is active, and an hourly
number of allocated departure slots rate[i]. Further, for any two span-rate
pairs r; and 7, where 7 # j, their spans must not overlap; however, the union
of all spans does not need to be 00:00-24:00. There is also a set Fy C F for
each Fy that contains all flights matching the flow description. For example,
Figure[1| defines two flows EBBR1 and EBBR2, where the flights are defined by
a subset of F' that matches the flow description, and the spans and rates are
defined by the two right-most columns.

— A set of air volumes AV = {av1, ..., av,}, where each air volume av, € AV
has a capacity cap, that limits the hourly number of flights that can enter it
for the duration dur,. There is also a set F, C F for each av, that contains
all flights that pass through the air volume, where each flight f, € F, has
an expected entering time entery,. In the real world, an air volume can
represent either a part of the airspace, or an aerodrome.

Recall that ATM has three operational goals: minimise the cost of the total flight
delay, ensure a safe flow of air traffic, and ensure a fair flow of air traffic. During
a crisis situation, safety is especially important.



Cost of the Total Flight Delay. The take-off delay delay[¢] of flight f; is the
difference between its calculated take-off time ctot[¢] and expected take-off time
etoty, where ctot[l] is calculated using the allocated departure slots as defined
by the rate-span pairs for each flow. These slots are assigned to flights using the
first-scheduled, first-served principle [3]. For example, consider the flow EBBR1
(defined in Figure , where there are two departure slots allocated for each
hour between 00:00 and 06:00; if three flights with an etot, of 03:00, 03:10, and
03:20 were available, then they would get a ctot[¢] of 03:00, 03:30, and 04:00, and
a delay of 0, 1200, and 2400 seconds, respectively. Similarly, each flight f; has
a calculated entering time cnter|a, ] into air volume av,, which is the sum of
enter, ¢ and delay[¢]. The cost of each flight delay is defined as a weight function,
which was suggested to us by our partners at the EEC:

1 if delay[f] < 3600 seconds
10 if 3600 < delay[¢] < 7200 seconds
20 if 7200 < delay[¢] < 10800 seconds

50 otherwise

delayCost[l] =

The weight function scales exponentially because the real-world consequences
do; for example, a flight with a low delay will probably only cause a slight
interruption in the schedule, while a high delay might cause many flights to be
cancelled. The cost of the total flight delay is the sum of all flight delay costs.

Air Traffic Safety. The safety of air traffic is determined by how crowded the
air volumes are; for example the air volume av, is capable of handling up to cap,
flights entering per hour, so any flight above this capacity creates an additional
risk. Hence, safety is here defined by the amount that each air volume’s hourly
capacity is exceeded. For each air volume av,, a set T, is defined that contains
the beginning times of all one-hour-long time intervals that fit inside the air
volume’s capacity duration dur, (with a five minute step):

T, = {t € dur, | t + 3600 € dur, At mod 300 = 0}

A demand overload is calculated for each time t € T, as the number of flights,
beyond the air volume capacity, entering the air volume during the right-open
interval [t,¢ + 3600):

overload|a,t] = max (0, |{f; € F, | enter|a,{] € [t,t 4+ 3600)}| — cap,)

The overload cost overloadCost|a,t] of each air volume av, and time ¢ € T,

. . - . load[a,t
is a piecewise linear function of the overload percentage 22¢r0edlatl where a

weight is defined for the overload percentages 0%, 10%, 20%, 36%, and 40%.
An illustration of this function can be seen in Figure 2] Again, the cost scales
exponentially, because a small overload will likely only increase the workload
of the affected ATM personnel slightly, while a large overload might result in a
mistake by the ATM personnel. The cost of the total traffic demand overload is
the sum of the cost for each air volume and time.
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Figure 2. An illustration of the overload cost overloadCost[a, t], for the overload
percentages between 0% and 40%.

Air Traffic Fairness. The fairness of air traffic is here defined by how fairly the
departure slots are allocated among the flows. No formal definition of fairness
will be given at this point, as it is instead handled differently in each of our
heuristics.

The Objective Function. The objective function is a linear combination of
the total delay cost and the total overload cost, where a and [ are parameters:

cost = « - Z delayCost[l] + (3 - Z Z overloadCost[a, t] (1)

LeF a€AV teTqy

Experimental results and feedback from our partners at the EEC suggest that
a = 6 and f = 1 are good for our benchmark instances; however, they can
be changed to reflect a desired balance between a low delay and a low traffic
demand overload, for each problem instance.

2.2 Current State of the Art

The current state of the art, and the only known procedure, to solve the CPP
is the unpublished process used by the CFMU and EEC human experts. It has
been described to us in the following high-level steps:

1. A statistical analysis is performed in order to point out the airspace volumes
with a high demand. The duration and capacity of each air volume are
recorded (there may be several periods per volume).

2. An analysis of departing flows is made:

— For the major European airports (i.e., with more than 2 arrivals or de-
partures per hour on average), the traffic needs to be divided into main
flows, where several destinations are grouped into each flow.



— For the other airports, flows are mainly divided into two categories: do-
mestic flights and international flights. If the number of domestic flights
is low, it seems better that a local flow manager handles this traffic.

Recall that it takes one person-month for two senior human experts to perform
this procedure, and that all this is done twice a year, for weekdays, Saturdays,
and Sundays.

2.3 Comparison with Other Problems

The CPP resembles several well-studied problems, especially scheduling prob-
lems. However, none of the studied problems can be used directly to solve the
CPP. A case study of a few selected problems follows, in order to highlight the
unique aspects of the CPP.

Cumulative Job Shop Scheduling. The cumulative job shop scheduling prob-
lem (CJSSP) is a well-studied multi-machine and multi-stage scheduling prob-
lem, and is proven N’P-hard. An instance is given by a set of activities, a set of
resources AV, and a set of jobs F, where each job consists of a set of activities.
Each activity act, ¢ has a processing time and a demand for each resource to be
executed. Each resource av, € AV has a capacity cap,. A schedule is an assign-
ment to each activity’s starting time, and a schedule is feasible if it satisfies the
capacity constraints for each resource, which requires that no more than cap,
units of each resource are required at once, as defined by the demand of each
running activity.

Comparison with the CPP. With some extensions, such as soft capacities [6], the
CJSSP is very closely related to the CPP. However, it cannot directly solve the
CPP because of the relationship between the flow rates and the flight take-off
delays, which causes the domain of any activity’s starting time to be a function
of all other activities’ starting times (since two activities in the same flow must
correspond to the same rate variable assignment). This complication means none
of the established heuristics for solving the CJSSP can be directly applied to the
CPP.

Multi-Commodity Flow. The multi-commodity flow problem (MCF) is a net-
work flow problem, which given a graph G = (V, E), a set of sources S C V,
a set of sinks T' C V, and a set of commodities C';, minimises some cost as
the commodities C' flow over the network from source vertices to sink vertices.
Since the MCF is a network flow problem, many well-studied extensions such as
limited commodity quantities, restricted commodity flow paths, edge capacities,
and dynamic flows (for modelling a notion of time) can be applied.

Comparison with the CPP. All state of the art solutions to the MCF are based
on linear programming. This poses a problem since the objectives of the CPP
are non-linear, and while rewriting them to linear expressions might be possible,
no further investigation of the MCF as a modelling tool has been done yet.



3 The Constraint Model

Our constraint model implements the formal definition of the CPP using con-
straint technology. The model consists of five main parts: the decision variables
and their domains, the problem constraints, the channelling constraints between
the contingency plan and the flight delays, the channelling constraints between
the flight delays and the air volume overloads, and the objective function.

3.1 The Decision Variables and their Domains

Recall that the decision variables of the model are the identifiers that use square
brackets rather than subscripts. In most cases, the domains of the decision vari-
ables can be derived from their definition; however, the following decision vari-
ables have explicitly defined domains:

— Vfy € F: delay[f] € N (a smaller domain is calculated from Section

— VFy € F, r; € Ry : rate[i] € [1, demandy;], where demandy; is the max-
imum number of flights that are planned to depart in flow F; during the
time span span,, and T; is defined like Ty, but for span; instead of dur,:

demandy; = max {fe € Fy | ctot[f] € [t,t+ 3600)}|

3.2 Problem Constraints

The following problem constraints for any flight f; and air volume av,:

ctot[l] = etoty + delay[¥]
enter|a, £] = enterq o + delay[¢]

establish the relationships between computed and expected times.

3.3 Channelling between Contingency Plan and Flight Delays

The channelling between the contingency plan and the flight delays is defined by

the mappings 7y € Ay — Dj for each flow Fy, where Ay C N(l)Rfl is the Cartesian

product of the flow rate decision variable domains, and Dy C NIOFf | are the take-
off delays according to each element in Af. For example, consider the flow Fy,
where Ry = {r1,72}, dom(rate[l]) = {1,2}, and dom(rate[2]) = {3}; therefore
Ay ={(1,3),(2,3)} and Ty = {(1,3) — (...),(2,3) — (...)}, where the actual
take-off delays as calculated by rate[l], rate[2] := 1,3 or rate[l], rate[2] := 2,3
have been omitted for space reasons.

In classical CP (by complete tree search interleaved with propagation at
every node), each mapping 7; can be implemented by a table constraint, such
that each row corresponds to one map = — y in some 7. In constraint-based
local search (CBLS), 7f can instead be used as a look-up table for the take-off
delays whenever a rate decision variable changes. Further details, which have
been omitted for space reasons, can be found in [7].



3.4 Channelling between Flight Delays and Air Volume Overloads

The channelling between the flight delays and the air volume overloads is mod-
elled as a cumulative job shop scheduling problem (CJSSP) with a time step of
five minutes, where each air volume av, is a resource, each flight f; a job, and
the activities are defined by the air volumes each flight passes through. Each
such activity act, ¢ has the following parameters:

— resource[acty ] = a

start[acty ¢] = cnterla, £]—cnter[a, £] mod 300 (this is the calculated entering
time rounded down to the closest five minute tick)

duration]act, ¢] = 3600 seconds (since capacity is defined hourly)
endlacty o] = start[acty ] + duration[act, ]

— demand|act, ] = 1 unit

The capacity of each resource av, is cap,. Further, as the time set T, of an air
volume av, might not cover the entire day, one must make sure any overload
that occurs during a time not in 7T, does not contribute to the air volume cost.
There are multiple ways of doing this: the chosen method is to add at most
two activities for each day, namely one starting at the beginning of the day
and ending at min (dur,) (provided it is not empty), and the other starting at
max (dur,) and ending at the end of the day (provided it is not empty), both
with a demand of —|F,|. Since the worst-case scenario is that all flights are in
the one-hour interval starting at the same ¢, adding an activity with a demand
of —|F,| ensures that overload[a,t] = 0.

Unfortunately, practice has shown that it is impossible, and sometimes un-
desirable, to find a solution that satisfies such a cumulatives constraint, i.e., the
problem is often over-constrained. The chosen method is to use a soft cumula-
tive constraint (inspired by [6]), which calculates the cost of each air volume av,
and time ¢ either by using a sweep-line algorithm [I], or by explicitly defining a
decision variable for each air volume and time. Which of the two approaches is
better depends on the circumstances: an explicit definition allows constant-time
updates of the cost when all values are fixed (and is therefore used in the CBLS
heuristic described in Section , but the sweep line provides reduced memory
use (and is therefore used in the large neighbourhood search heuristic described

in Section .

3.5 The Objective Function

The objective function of our model, to be minimised, is (1f).

4 Local Search Heuristics

Our local search heuristics operate on the model, and based on their current
state try to modify their rate decision variables in such a way that the objec-
tive function is minimised. Two such heuristics have been devised, namely: (i)



apply penalty

Figure 3. To the left, the generalised local search machine (GLSM) [5] of our
tabu search heuristic (nodes are described in Section [4.1). To the right, the
GLSM of our LNS heuristic (nodes are described in Section .

a tabu search heuristic, and (ii) a large neighbourhood search (LNS) heuristic
that uses classical constraint programming (CP) to search its neighbourhood.
Both heuristics are described in detail in their respective sub-section, and their
generalised local search machines (GLSM) can be seen in Figure 3| A GLSM [5]
is a state machine that describes a local search heuristic by breaking it down
into smaller algorithms, such that each state represents an individual algorithm
and the edges represent the conditions for switching between these algorithms.

4.1 Tabu Search

Our first heuristic uses a tabu search as the core. It uses a slightly modified ob-
jective function, which adds a penalty term to in order to guide the heuristic
toward a fair traffic flow, where Penalty is a set of integer invariants:

cost = - Z delayCost[l] + 3 - Z Z overloadCostla, t] + Z D

leF a€AV teT, p€ Penalty

The heuristic can be summarised in the following steps, where each step and
new terminology will be described in further details later:

1. Restart the search by assigning each rate[i] a random value in its domain.
2. Hill-climb the current solution, until a local minimum has been reached.
3. Do a single iteration of tabu search, and then:

(a) Pick a random real number u € [0,1]; if u < 0.05, then pick a rate[i]
decision variable with an unfair value, add its penalty to Penalty, and
go to Step 3; otherwise, do nothing and go to Step 3b.

(b) If more than 200 iterations have gone by since the last improvement,
then go to Step 1. Otherwise, repeat Step 3.



The main source of diversity is Step 1, the main source of intensification is Step 2,
and Step 3 performs mix of both.

The Restart Mechanism. The restart mechanism is the main source of diver-
sity in the heuristic. It completely restarts the search by assigning each rateli]
decision variable a random value in its domain. It also clears the tabu list.

Hill-climbing. The hill climbing algorithm is a non-greedy algorithm. During
each iteration, it picks the first (rate[i],v) move such that the objective function
is decreased, until no such move can be found, i.e., a local minimum has been
reached. The method used to find this assignment is through the use of a meta-
neighbourhood, which is a circular list of neighbourhoods {Ny, ..., N,}, where ¢
is the number of rate decision variables, that are searched in successive order until
an improving assignment is found, where each neighbourhood N; corresponds to
all variable-value pairs in {rate[i]} x dom(ratei]). The algorithm terminates once
a cycle has been completed with no improving assignment found.

Tabu Search. The tabu search is the core of the heuristic. While it is the main
contributor of neither intensity nor diversity, it ensures that the tabu search
neighbourhood of a local minimum has been properly explored and no improve-
ments have been missed. During each iteration, it searches a neighbourhood (to
be defined later) for a best non-taboo move (rate[i],v) and, after making the in-
verse move taboo for the number of iterations defined by the tabu tenure, it does
the assignment rate[i] := v. The only exception to this process is the aspiration
criterion, which kicks in if the candidate solution is better than any solution
found so far. If this is the case, then the move is performed even if it is in the
tabu list. The current implementation uses a tabu tenure of 7 = 8.

The tabu search uses an asymmetrical stochastic neighbourhood that is de-
signed to reduce the most severe overloads. It does so by finding the peak of
each air volume demand overload, and then picks one of these peaks to re-
duce at random, where the probability of each peak being picked is proportional
to its overload, hence higher peaks have a higher probability to be reduced.
Once a peak has been determined, all flows F; that contain a flight contribut-
ing to this peak (flights that cannot be anywhere else can be ignored) have all
{rateli]} x dom(rateli]), where r; € Ry, added to the current neighbourhood.

Penalty Invariant. The apply penalty state is the part of the heuristic that
tries to ensure a high level of air traffic fairness. It does so by modifying the
cost function at random points in time, such that the rate variable rate[i] with

.. teli
the minimum -~ eli]

———"_ quotient is deemed unfair and an expression that tries
mandy ;

to guide rate[i] toward a fairer value is added to Penalty. It is an exponential
expression that decreases the higher the value of rate[i]:

rateli]

,.Y . 6_ .dmn,andf.j




where v is a parameter that controls how aggressively the heuristic should be
guided toward fairness; the current implementation uses v = 200, which is only
slightly aggressive.

4.2 Large Neighbourhood Search

Our second heuristic is a hybrid heuristic based on classical constraint program-
ming (CP) and large neighbourhood search (LNS). Given a feasible solution, LNS
works by relazing part of the solution, that is, it picks some decision variables
and restores their domains to their initial values, and uses constraint program-
ming to search the resulting search space for a better solution. Our LNS heuristic
can be summarised in the following steps, where each step and new terminology
will be described in further details later:

1. Set each rate[i] decision variable to the maximum of its domain, and go to
Step 3 in solve mode.

2. If in solve mode, use CP to find a feasible solution; else (in optimise mode)
use CP to find a feasible solution with the minimum cost.

3. Select a rate[i] decision variable from a fixed circular list that contains all

rate decision variables, in an arbitrary order:
(a) If a full circle in the list has gone by with no improvement, then restore

the domains of all rate variables, post a constraint that any next solution
must be better than the current best, and go to Step 2 in solve mode.

(b) If rate[d] is unfair, then post a constraint that rate[i] must be fair, relax
the neighbourhood of rate[i] according to Step 3c, and then go to Step 2
in optimise mode.

(¢) Relax the neighbourhood of rate[i] using an algorithm based on maxi-
mum set coverage, post a constraint that a solution must be better than
the current best, and go to Step 2 in optimise mode.

Constraint Propagation & Search. The CP state uses constraint propaga-
tion and search to find feasible solutions. It can do this in two available modes of
operation: (i) the solve mode, in which it returns the first feasible solution, and
(ii) the optimise mode, in which it exhaustively searches for the best solution
using a depth-first search tree traversal. Which mode it uses depends on which
was requested by the incoming call (edge in Figure ; it does not use any inter-
nal heuristics to determine which is better. The branching heuristic used is to
pick a variable rate[i] at random and the value max (dom(rate[i])). The reason
for this is that when searching a relaxed neighbourhood most of the search is
done using propagation rather than branching, hence even if a more complicated
heuristic were used not much improvement could be found.

Restart Strategy. The restart strategy, which is triggered when all neighbour-
hoods have been searched and no improving move has been found, restores the
domains of all decision variables of all flows. It also removes any constraints
added by the heuristic, except for the constraint that any next solution must be
better than the current best.



Relaxation. Relaxation is the most important part of the heuristic, as it de-
fines the neighbourhood searched during each iteration. This neighbourhood is
a cyclic list of neighbourhoods {Ni,..., N,}, where each neighbourhood Ny is
designed to relax the decision variables closely interconnected with flow Fy. This
interconnectivity is defined by the number of air volumes that two flows have in
common. In more detail, for each flow F¢, a set Sy is defined that contains all
air volumes that some flight in F'y passes through:

Sy ={av, € AV | F, N Fy # 0} (2)

The interconnectivity of the flows F; and Fj, is then defined as [Sy N S|, the
number of common air volumes that flights in F; and F} pass through. How-
ever, more than one flow with high interconnectivity is necessary for a good
neighbourhood: what is desired is to give F; a certain degree of freedom such
that it can actually change in a meaningful way when relaxed; hence the neigh-
bourhood of a flow F; is defined as the mazimum set coverage (MSC) of the
set Sy and the set collection S\ {S¢}, where S = {S1,...,S,}, with the slight
modification that rather than limiting the number of sets that can be chosen,
as is typically done in the MSC problem, the size of the resulting search space
is instead limited, i.e., [[ycg [Lier, |dom(rate[i])], where S" C S contains Sy
and the selected sets from S, and Ry is the set R such that Sy is V. Luckily,
in practice the interconnectivity between the sets in S seems to be high, hence
this is not a very hard problem to solve. Using a greedy algorithm for solving
MSC problems is sufficient to produce on average over 90% coverage when using
a search space limit of § = 100000 candidate solutions.

During each iteration, the greedy algorithm maintains two auxiliary sets: (i)
U C Sy, which are the still uncovered elements of Sy, and (ii) S” C {S1,..., S},
which are the sets picked as neighbours of Sy. Then, as long as S is not empty, it
picks a set V € S\ S” with the largest intersection with U (i.e., [V NU|), where
ties are broken by the largest intersection with Sy. Then, the auxiliary sets are
updated, such that all elements in V' are removed from U, and V is added to
S’, unless doing so would make the solution space larger than the limit ¢, in
which case V' is instead discarded. Note that the U set can be empty during an
iteration; this is the reason for the lexicographic comparison when selecting a
V € S\ §’. This algorithm can be seen in Algorithm

Returning to the relaxation state, once S’ has been determined, the neigh-
bourhood Ny is defined for all decision variables rate[i], where r; € Ry and
Sy € S’. Then this neighbourhood is relaxed by restoring the domain of each of
the variables in N to its initial value, followed by adding two constraints: (i)
the cost of any next solution must be smaller than the current best, and (ii) for
each air volume, its maximum overload must not be larger than the maximum
overload of the same air volume in the current best solution. The first constraint
is a standard optimisation technique, whereas the second is there to improve
the propagation and to allow proper energy feasibility calculations in the soft
cumulative constraint [6].



Algorithm 1 The greedy maximum set coverage algorithm used to determine
the mazimum set coverage (MSC) of flow F, with a maximum solution space
size §.
1: Calculate the set collection S = {Si,...,S,} according to for each flow in
F=AF,....,Fn}.
0 8" {Sr}

2

3 S S\ {5}

4: U «— Sf

5: while S # () do {Invariant: U C Sy A SN S’ = 0}
6:  Select the set V among S with the maximum (U NV, |Sy N V).
7. 8= S U{V}

8:  if search space size of S” < § then

9: S—S\{V}

10: S — 8"

11: Ue—U\V

12:  else

13: S S\ {V}

14: return S’

Flow fairness. The fix flow fairness state addresses any unfair values assigned
to rate variables. It does this by adding a couple of constraints when a flow that

has a rate variable with an unfair value compared to all other flows is selected
rate|i]

demandy ;

quotient compared to all other flows. A value ¢; is a statistical outlier if:

¢ & [E(q) —std (q), E(q) + std (q)]

for relaxation. A value is unfair if it has a statistically outlying ¢; =

where E(z) is the expected value of the set 2 and std () its standard deviation.
If ¢; is a statistical outlier, then a constraint requiring that E(q) —std (q) < ¢; <
E(q) + std (¢) is added; the neighbourhood of Fy, where r; € Ry, is relaxed as
previously described, and a solution is sought in optimise mode. Note that no
constraint requiring the solution to be better than the current best is added,
because fairness is more important than a low cost.

5 Experimental Results

EUROCONTROL maintains two yearly timetables, one for the summer and one
for the winter. Further, in each timetable weekdays, Saturdays, and Sundays
have distinct traffic patterns. We have been provided, by the EEC, three real-
life problem instances from the summer 2008 timetable that represent worst case
scenarios for each distinct traffic pattern and are comparable to those used by
EUROCONTROL when generating the official contingency plans:

— A Friday (June): 261 flows (320 rates), 36 161 flights, 348 air volumes.
— A Saturday (August): 256 flows (387 rates), 29 842 flights, 348 air volumes.



|Contingency Plan [ E(delay[f]) [ pos (delay[f]) [ E(overload) [ pos (overload) ‘

EEC 2008-06-27 645.6 sec 2340.0 sec 29% 100%
EEC 2008-08-30 528.1 sec 1800.0 sec 23% 61%
EEC 2008-08-31 407.0 sec 1500.0 sec 29% 68%
tabu 2008-06-27 310.2 sec 1200.0 sec 27% 72%
tabu 2008-08-30 316.1 sec 1200.0 sec 22% 56%
tabu 2008-08-31 345.9 sec 1264.5 sec 24% 57%
LNS 2008-06-27 535.5 sec 2185.0 sec 29% 100%
LNS 2008-08-30 512.1 sec 1800.0 sec 23% 60%
LNS 2008-08-31 504.1 sec 1628.0 sec 34% 100%

Table 1. The experimental results of the different algorithms.

— A Sunday (August): 259 flows (397 rates), 31024 flights, 348 air volumes.

When translated into a constrained optimisation problem, each instance yields
approximately 150 000 constraints and 50 000 decision variables. All experimen-
tal results were done on a Linux x86-64 dual-core laptop with 4GB of primary
memory, 2MB of L2 cache, and a CPU frequency of 2.2GHz. The tabu search
heuristic have been implemented in Comet [§] version 2.0.1, and the LNS heuris-
tic using Gecode [4] version 3.3.1. The tabu search usually terminated after
approximately three CPU hours, while the LNS heuristic was interrupted after
one CPU week (details below).

A comparison between our heuristics and a few contingency plans gener-
ated by the EUROCONTROL human experts (denoted by EEC) can be seen in
Table[I} where the cost is presented as the expected take-off delay, the 95th per-
centile of the take-off delay, the expected air volume overload percentage (where
overloads equal to zero have been omitted), and the 95th percentile of the air
volume overload percentages (where overloads equal to zero have been omitted).

The first observation that can be made is that our heuristics decrease both
the take-off delay and the air volume overload of the contingency plans gener-
ated by the EUROCONTROL human experts; this was expected, due to the
similarities between the CPP and scheduling problems, which have been solved
successfully using constraint technology for decades. However, the observation
that our tabu search heuristic performs better than our LNS heuristic was un-
expected, because the neighbourhood of the tabu search is a subset of the LNS
neighbourhood, and should therefore perform at least as well as the tabu search
heuristic. This performance difference has been attributed to the lack of runtime
for the LNS heuristic, which was interrupted before reaching a local minimum,
even after one week of runtime; further, this lack of runtime can probably be
attributed to an inefficient implementation rather than a fault in our heuris-
tic. However, regardless of the difference in performance between our heuristics,
they show the feasibility of solving the CPP using constraint technology. The
relative performance of our heuristics has been reproduced by the EEC, using
their internal validation tool COSAAC and one of the current human planners.



They compared our and their contingency plans on realistic test flight plans (not
given to us), though not according to the objective function we used during the
optimisation, but more realistically according to a CASA-style slot allocation,
as if CASA was actually not down.

6 Conclusion

This work is intended as a feasibility study about whether it is possible to auto-
mate the development of contingency plans for EUROCONTROL, the Furopean
Organisation for the Safety of Air Navigation. Based on the experimental re-
sults, it seems to be possible efficiently with constraint technology. Recall that
this paper addresses the subproblem of finding the optimal number of allocated
departure slots for predefined flows and time spans. The latter have been pro-
duced by human experts, and do not change much from one year to another.
However, the dependency on predefined flows and time spans must be elimi-
nated. Currently, this is our most important issue; ideally the search for the
optimal set of flows and time spans could be integrated into our heuristics.
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