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Abstract. We reconsider the idea of structural symmetry breaking (S8B
constraint satisfaction problems (CSPs). We show that yin@amic dominance
checks used in symmetry breaking by dominance-detectiartiséor CSPs with
piecewise variabland value symmetries have a static counterpart: there exists
a set of constraints that can be posted at the root node antrtfaksall these
symmetries. The amount of these symmetry-breaking congrs linear in

the size of the problem, but they possibly remove a supeofexutial number of
symmetries on both values and variables. Moreover, statidgnamic structural
symmetry breaking coincide for static variable and valudedngs.

1 Introduction

Symmetry breaking has been the topic of intense researchcent years. Substan-
tial progress was achieved in many directions, often ekhipsignificant speedups for
complex real-life problems arising, say, in configuration ametwork design. One of
the interesting recent developments has been the desigmefa symmetry-breaking
schemes such as symmetry breaking by dominance detec&{5and symmetry

breaking during search (SBDS). SBDD [1, 2] is particulaghpealing as it combines
low memory requirements with a number of dominance checlkselt node linearly

proportional to the depth of the search tree. It then becangal to study which classes
of symmetries for CSPs admit polynomial-time dominanceeting algorithms. This

issue was first studied in [9], where symmetry breaking faiotes classes of value
symmetries was shown to take constant time and space (8<@Hisr an elegant gen-

eralization to all value symmetries). It was revisited f@Fs with piecewise variable
and value symmetry in [8], where a polynomial-time domirexbecking algorithm

was given and the name ‘structural symmetry breaking’ (S&&)j coined. In parallel,

researchers have investigated for many years (e.qg., pi} symmetry breaking, which
consists in adding constraints to the CSP in order to remywereetries.

In this paper, after reviewing the basic concepts in Se@jowe show in Section 3
that the polynomial-time dominance-checking algorithni8dthas a static counterpart,
namely that there exists a static set of constraints for G8tPspiecewise symmetric
variables and values that, when added to the CSP, resultsymmetry-free search
tree. The amount of symmetry-breaking constraintsiear in the size of the problem,
but possibly removes a super-exponential number of synesetn both values and
variables. In Section 4, we establish a clear link betweatics(SSSB) and dynamic
structural symmetry breaking (DSSB) by showing that theinietd SSSB scheme ex-
plores the same tree as DSSB [8] whenever the variable and vatierings are fixed.



2 Basic Concepts

Definition 1 (CSP, Assignment, Solution)A constraint satisfaction problem (CSR)
atriplet (V, D, C), whereV denotes the set of variableb, denotes the set of possible
values for these variables and is called théomain andC : (V — D) — Bool is a
constraint that specifies which assignments of values teahables are solutions. An
assignmentor a CSPP = (V, D, C) is a functiona : V' — D. A partial assignment
fora CSPP = (V, D, C) is a functiona : W — D, whereWW C V. Thescopeof «,
denoted bycope(«), is W. Asolutionto a CSPP = (V, D, C) is an assignment for

P such thatC'(o) = true. The set of all solutions to a C3Pis denoted bysol(P).

Definition 2 (Partition, Piecewise Bijection).Given a setS and a set of set® =
{P1,...,P,} such thatS = J, P; and theP; are pairwise non-overlapping, we say
that P is apartitionof S and that eachP; is acomponentand we writeS = Y. P;. A
bijectiond : S — S is apiecewise bijectiomver . P; iff {b(e) | e € P;} = P.

Definition 3 (Piecewise Symmetric CSPACSPP = (3>, Vi, >, D,, C) is apiece-
wise symmetric CSHf, for each solutionx € Sol(P), each piecewise bijectionover
> D¢, and each piecewise bijectienover), Vi, we haver o a o o € Sol(P).

Definition 4 (Dominance Detection).Given two partial assignments and 3 for a
piecewise symmetric CSP= (3, Vi.,>, D,, C), we say thatr dominates? iff there
exist piecewise bijectionsover), V;, andr over)_, D, such thatv(v) = 7ofoc(v)
for all v € scope(a).

Dominance detection constitutes the core operation of sstmybreaking by dom-
inance detection (SBDD) [1, 2], and its tractability immegiy implies that we can
efficiently limit ourselves to the exploration of symmefrge search trees only. For
piecewise symmetric CSPs, [8] showed that dominance detdsttractable.

3 Static SSB for Piecewise Symmetric CSPs

When we assume a total ordering of the varialifes= {v1,...,v,} and the values
D = {dy,...,dn,}, we can break the variable symmetries within each variatfe-c
ponent as usual, by requiring that earlier variables takallsmor equal values. To
break the value symmetries, we resort to structural aligires; so-calledsignatures
which generalize from an exact assignment of values to iasaby quantifying how
often a given value is assigned to variables in each componieet the frequency
k= 1{v, € Vi | vy € scope(a) & a(v,) = d;,}| denote how often each valdg is
taken under partial assignmenty the variables in each variable compongnt For
a partial assignment, we then denote byig,, (dy) := (f},..., f2) the signatureof
dp, undera. Then, for all consecutive valuds, d;, 1 in the same value component, we
require that their signatures are lexicographically nueréasing, i.esig,,(dn) >iex
sig,, (dn+1). So the problem boils down to computing the signatures ofiesleffi-
ciently. Fortunately, this is an easy task when using thstiexj global cardinality con-
straint (gcc) [6]. We thus propose to add the following statt of constraints to a



piecewise symmetric CSB_7_, Vi, 2221 Dy, C) with Vi = {vikys - -+, Vi(e1)—1}
andD, = {dj(g), . ,dj(g+1)_1}:

Vi<k<a:Vik)<h<ik+1)—1:v, <vpt1
V1SkSa:gcc(vi(k)a"'7Ui(k+l)717dl7"'admaf{ea"'afj:],)
VI<E<b:Vj(0) <h <jll+1)=1:(fy, -, f7) Ztew (Fryrs-- - fiisn)

wherei(k) denotes the index ifil, . . ., n} of the first variable i/ of variable compo-
nentVy, with i(a + 1) = n + 1, and;j(¢) denotes the index ifil, ..., m} of the first
value inD of value componenb,, with j(b + 1) = m + 1.

Example. Consider scheduling study groups for two sets of five indjstishable stu-
dents each. There are six identical tables with four seath.daet {vy,...,v5} +
{vs,-..,v10} be the partitioned set of piecewise interchangeable Viasalone for
each student. Let the domdjiny, . . ., s} denote the set of tables, which are fully inter-
changeable. The static structural symmetry-breakingtcainss are:

vy Swvy <wz Swg <ws, v <7 < Vg < V9 < V10,
1 1 2 2
gCC(Ul,...,U5, tl,...,tg, fl?"'vfG)v gCC(UG,...,’Ulo, tl,...,tG, flv"'?fG)v

(f117f12) Zlem (f217f22) Zlem ce Zlem (fﬁlafg)

Consider the assignment = {vy — t1,v2 — t1,v3 — t2,v4 — t2,v5 — t3} U
{vg > t1,v7 — to,v8 > t3,v9 — t4,v10 — t5}. Within each variable component,
the < ordering constraints are satisfied. Having determined bguncies using the
gcc constraints, we observe that the., constraints are satisfied, becay8gel) >,
(2,1) >1ex (1,1) >pez (0,1) >1en (0,1) >4e (0,0). If studentl0 moves from table
5 to table6, producing a symmetrically equivalent assignment bectheséables are
fully interchangeable, the:;.,. constraints are no longer satisfied, beca@se) >,
(27 1) Zlex (17 1) Zlex (07 1) Zlex (050) Zlez (O, 1)

Theorem 1. For every solutiorny to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the static structuralsgtry-breaking constraints.

Proof. (a) We show that there exists at least one symmetric soltitianobeys all the
symmetry-breaking constraints. Denotetdy: {j(¢),...,7({+1)—1} — {j(0),... -
j(¢ + 1) — 1} the function that ranks the values iy according to the signatures over
some solutiony, i.e.,sig,, (d,¢ ) > sig,(d-¢ (1)) forall j(¢) < h < j(0+1) — 1.
We obtain a symmetric solutighwhere we re-order the values in eabhaccording to
Tt Then, when we denote km;f, {i(k),.. ik +1) =1} — {i(k),. .. i(k+1) -1}
the function that ranks the variableslip according tqQ3, |.e.,ﬂ(vgg(h)) < ﬁ(vgg(hﬂ))
foralli(k) < h < i(k+1)—1, we canre-order the variables in edghaccording tcvg,
and we get a new symmetric solutignNote that the re-ordering of the variables within
each component has no effect on the signatures of the valeesig, (d) = sigg(d)
forall d € D. Thus,y obeys all the symmetry-breaking constraints.

(b) Now assume there are two symmetric solutiorend g to the piecewise sym-
metric CSP that both obey all the symmetry-breaking comtgaDenote byr¢ the
re-ordering of the values iP, and denote by* the re-ordering of the variables I1,.
Then, we denote by the piecewise bijection over the values based onrthand byo



the piecewise bijection over the variables based omthesuch that = 7o 3o 0. The
first thing to note is that the application of the piecewigediions on the variables has
no effect on the signatures of the values, s&;(d) = sigg,,(d) foralld € D. Con-
sequently, the total lexicographic ordering constraimt$® signatures of each valde
and its imager(d) require thasigs(d) = sigg(7(d)) = sig,o5(d) = sig 000 (d) =
sig,, (d). Thus, the signatures underandg are identical. However, with the signatures
of all the values fixed and with the ordering on the variabilesre exists exactly one
assignment that gives these signaturesy smd/ must be identical. O

4 Static versus Dynamic SSB for Piecewise Symmetric CSPs

The advantage of a static symmetry-breaking method lieslgnai its ease of use
and its moderate costs per search node. The number of dotstrdded idinear in
the size of the problem, unlike the general method in [5],they may break super-
exponentially many variable and value symmetries. Coimtpgopagation and incre-
mentality are inherited from the existing lex-ordering ged constraints. However, it is
well-known that static symmetry breaking can collide wigmdmic variable and value
orderings, whereas dynamic methods such as SBDD do not &uffe this drawback.

Theorem 2. Given static variable and value orderings, static (SSSB)dmamic SSB
(DSSB) explore identical search trees for piecewise synu&sPs.

Proof. (a) Proof by contradiction. Assume there exists a node irB®8B search tree
that is pruned by DSSB. Without loss of generality, we maysoder the first node in a
depth-first search tree where this occurs. We identify thderwith the assignmept:=
{v1,...,v} — D, and the node that dominat@sis identified with the assignment
a = {vy,...,vs} — D, for somel < s < ¢t < n. By the definition of DSSB,
we have thatv(v;) = G(v;) for all 1 < ¢ < s (since every no-good considered by
SBDD differs in exactly its last variable assignment frora tturrent search node), and
a(vs) < B(vs).

First consides = t. Assume the dominance check betweeand is successful.
Then,sigg(B(vs)) = sig,(a(vs)) = sigg(a(vs)). However, sincex(vs) < B(vs), it
must also hold thatig;(a(vs)) > sigg(B(vs)). Contradiction.

Now considers < t. Since the parent ¢f is not dominated by, asg was chosen
minimally, we know thai; must be interchangeable with somewithp < s < t. Ifwe
denote the componentofby {vg, ..., v, ..., v, }, We can deduce that< s < t < u,
i.e.,vs andv; must belong to the same component. By definition of SSSB, seelalow
thata(vy) < -+ < a(vs) < B(vs) < --- < B(vy). Moreover, we know thas(v,) and
a(v,) must be interchangeable. Consequentlys) and 3(vs) are also interchange-
able. Now, since setting(vs) andg(vs) to vs was not considered symmetric by DSSB,
together with3(vs) > a(vs), we know thasig;(a(vs)) S sig, (a(vs)). It follows that
sig, (a(vs)) 2 sigg(a(vs)) > sigg(B(vs)) (1). Whena(vs) is matched with3(v; ), for
q < i < t, by the successful dominance checkcénd 3, then it must hold that < s
as otherwiseig,, (a(vs)) < sigg(B(vi)) < sigg(B(vs)), which is in conflict with (1).
This implies that3(v,) must be matched with somgv,.) for ¢ < r < s by the suc-
cessful dominance check. Hence all the valuggifv,.), . . ., a(vs), B(vs), . .., B(ve)}



are pairwise interchangeable. But theg,, (a(v,)) < sigg(B(vi)) < sigg(B(vs)) =
sig,, (a(vs)) < sig, (a(v,)). Contradiction.

(b) Assume there exists a node in the DSSB search tree thatirigg by SSSB.
Without loss of generality, we may consider the first node oepth-first search tree
where this occurs. We identify this node with the assignngest {v;,...,v:} — D.

First assume a variable ordering constraint is violated,3(v;) > 5(v;) for some
1 < i < j < twherev; andv; are interchangeable. Consider: {vi,...,v;} — D
such thatv(vy) := B(vg) forall 1 < k < 4, anda(v;) := B(v;). Then, due to the static
variable and value orderingas,is a node that has been fully explored befGreanda
dominates3, which is clear by mapping; to v;. Thus,3 is also pruned by DSSB.

Now assume a lex-ordering constraint on the value signaisisgolated. Denote the
interchangeable values laly andd;, with 1 < ¢ < j. Since$ was chosen minimally,
when we denote the variable component that showssithatd;) < sigs(d;) by Vi, we
know thatsig(d;)[(] = sigg(d;)[¢] for all £ < k andsigg(d:)[k] + 1 = sigg(d;)[k].
With s :== max{p | p <t & PB(vp) = d;}, we seta : {v1,...,vs41} — D with
a(vy) :== B(v,) forall r < s anda(vs41 := d;). Again, due to the static variable and
value orderingsg is a node that has been fully explored beférenda dominatess,
which is clear simply by mapping; to d;. Hence,5 is also pruned by DSSB. a

We conclude that dynamic symmetry breaking draws its sthefigm its ability to
accommodate dynamic variable and value orderings, buesaars unnecessary over-
head when these orderings are fixed. In this case, static symireaking offers a
much more light-weight method that achieves exactly theessymmetry-breaking ef-
fectiveness for piecewise symmetric CSPs. Can we find gecmamditions under which
a static symmetry-breaking method leads to symmetry-feaech trees?
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