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Abstract. We reconsider the idea of structural symmetry breaking (SSB) for
constraint satisfaction problems (CSPs). We show that the dynamic dominance
checks used in symmetry breaking by dominance-detection search for CSPs with
piecewise variableand value symmetries have a static counterpart: there exists
a set of constraints that can be posted at the root node and that breaksall these
symmetries. The amount of these symmetry-breaking constraints is linear in
the size of the problem, but they possibly remove a super-exponential number of
symmetries on both values and variables. Moreover, static and dynamic structural
symmetry breaking coincide for static variable and value orderings.

1 Introduction

Symmetry breaking has been the topic of intense research in recent years. Substan-
tial progress was achieved in many directions, often exhibiting significant speedups for
complex real-life problems arising, say, in configuration and network design. One of
the interesting recent developments has been the design of general symmetry-breaking
schemes such as symmetry breaking by dominance detection (SBDD) and symmetry
breaking during search (SBDS). SBDD [1, 2] is particularly appealing as it combines
low memory requirements with a number of dominance checks ateach node linearly
proportional to the depth of the search tree. It then became natural to study which classes
of symmetries for CSPs admit polynomial-time dominance-checking algorithms. This
issue was first studied in [9], where symmetry breaking for various classes of value
symmetries was shown to take constant time and space (see also [7] for an elegant gen-
eralization to all value symmetries). It was revisited for CSPs with piecewise variable
and value symmetry in [8], where a polynomial-time dominance-checking algorithm
was given and the name ‘structural symmetry breaking’ (SSB)was coined. In parallel,
researchers have investigated for many years (e.g., [4]) static symmetry breaking, which
consists in adding constraints to the CSP in order to remove symmetries.

In this paper, after reviewing the basic concepts in Section2, we show in Section 3
that the polynomial-time dominance-checking algorithm of[8] has a static counterpart,
namely that there exists a static set of constraints for CSPswith piecewise symmetric
variables and values that, when added to the CSP, results in asymmetry-free search
tree. The amount of symmetry-breaking constraints islinear in the size of the problem,
but possibly removes a super-exponential number of symmetries on both values and
variables. In Section 4, we establish a clear link between static (SSSB) and dynamic
structural symmetry breaking (DSSB) by showing that the obtained SSSB scheme ex-
plores the same tree as DSSB [8] whenever the variable and value orderings are fixed.



2 Basic Concepts

Definition 1 (CSP, Assignment, Solution).A constraint satisfaction problem (CSP)is
a triplet 〈V, D, C〉, whereV denotes the set of variables,D denotes the set of possible
values for these variables and is called theirdomain, andC : (V → D) → Bool is a
constraint that specifies which assignments of values to thevariables are solutions. An
assignmentfor a CSPP = 〈V, D, C〉 is a functionα : V → D. A partial assignment
for a CSPP = 〈V, D, C〉 is a functionα : W → D, whereW ⊆ V . Thescopeof α,
denoted byscope(α), is W . A solutionto a CSPP = 〈V, D, C〉 is an assignmentσ for
P such thatC(σ) = true. The set of all solutions to a CSPP is denoted bySol(P).

Definition 2 (Partition, Piecewise Bijection).Given a setS and a set of setsP =
{P1, . . . , Pn} such thatS =

⋃
i Pi and thePi are pairwise non-overlapping, we say

thatP is a partitionof S and that eachPi is a component, and we writeS =
∑

i Pi. A
bijectionb : S → S is apiecewise bijectionover

∑
i Pi iff {b(e) | e ∈ Pi} = Pi.

Definition 3 (Piecewise Symmetric CSP).A CSPP = 〈
∑

k Vk,
∑

` D`, C〉 is apiece-
wise symmetric CSPiff, for each solutionα ∈ Sol(P), each piecewise bijectionτ over∑

` D`, and each piecewise bijectionσ over
∑

k Vk, we haveτ ◦ α ◦ σ ∈ Sol(P).

Definition 4 (Dominance Detection).Given two partial assignmentsα and β for a
piecewise symmetric CSPP = 〈

∑
k Vk,

∑
` D`, C〉, we say thatα dominatesβ iff there

exist piecewise bijectionsσ over
∑

k Vk andτ over
∑

` D` such thatα(v) = τ ◦β◦σ(v)
for all v ∈ scope(α).

Dominance detection constitutes the core operation of symmetry breaking by dom-
inance detection (SBDD) [1, 2], and its tractability immediately implies that we can
efficiently limit ourselves to the exploration of symmetry-free search trees only. For
piecewise symmetric CSPs, [8] showed that dominance detection is tractable.

3 Static SSB for Piecewise Symmetric CSPs

When we assume a total ordering of the variablesV = {v1, . . . , vn} and the values
D = {d1, . . . , dm}, we can break the variable symmetries within each variable com-
ponent as usual, by requiring that earlier variables take smaller or equal values. To
break the value symmetries, we resort to structural abstractions, so-calledsignatures,
which generalize from an exact assignment of values to variables by quantifying how
often a given value is assigned to variables in each component. Let the frequency
fk

h = |{vg ∈ Vk | vg ∈ scope(α) & α(vg) = dh}| denote how often each valuedh is
taken under partial assignmentα by the variables in each variable componentVk. For
a partial assignmentα, we then denote bysigα(dh) := (f1

h , . . . , fa
h ) thesignatureof

dh underα. Then, for all consecutive valuesdh, dh+1 in the same value component, we
require that their signatures are lexicographically non-increasing, i.e.,sigα(dh) ≥lex

sigα(dh+1). So the problem boils down to computing the signatures of values effi-
ciently. Fortunately, this is an easy task when using the existing global cardinality con-
straint (gcc) [6]. We thus propose to add the following static set of constraints to a



piecewise symmetric CSP〈
∑a

k=1 Vk,
∑b

`=1 D`, C〉 with Vk = {vi(k), . . . , vi(k+1)−1}
andD` = {dj(`), . . . , dj(`+1)−1}:

∀ 1 ≤ k ≤ a : ∀ i(k) ≤ h < i(k + 1) − 1 : vh ≤ vh+1

∀ 1 ≤ k ≤ a : gcc(vi(k), . . . , vi(k+1)−1, d1, . . . , dm, fk
1 , . . . , fk

m)
∀ 1 ≤ ` ≤ b : ∀ j(`) ≤ h < j(` + 1) − 1 : (f1

h , . . . , fa
h ) ≥lex (f1

h+1, . . . , f
a
h+1)

wherei(k) denotes the index in{1, . . . , n} of the first variable inV of variable compo-
nentVk, with i(a + 1) = n + 1, andj(`) denotes the index in{1, . . . , m} of the first
value inD of value componentD`, with j(b + 1) = m + 1.

Example. Consider scheduling study groups for two sets of five indistinguishable stu-
dents each. There are six identical tables with four seats each. Let {v1, . . . , v5} +
{v6, . . . , v10} be the partitioned set of piecewise interchangeable variables, one for
each student. Let the domain{t1, . . . , t6} denote the set of tables, which are fully inter-
changeable. The static structural symmetry-breaking constraints are:

v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5, v6 ≤ v7 ≤ v8 ≤ v9 ≤ v10,

gcc(v1, . . . , v5, t1, . . . , t6, f1
1 , . . . , f1

6 ), gcc(v6, . . . , v10, t1, . . . , t6, f2
1 , . . . , f2

6 ),
(f1

1 , f2
1 ) ≥lex (f1

2 , f2
2 ) ≥lex · · · ≥lex (f1

6 , f2
6 )

Consider the assignmentα = {v1 7→ t1, v2 7→ t1, v3 7→ t2, v4 7→ t2, v5 7→ t3} ∪
{v6 7→ t1, v7 7→ t2, v8 7→ t3, v9 7→ t4, v10 7→ t5}. Within each variable component,
the≤ ordering constraints are satisfied. Having determined the frequencies using the
gcc constraints, we observe that the≥lex constraints are satisfied, because(2, 1) ≥lex

(2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 1) ≥lex (0, 0). If student10 moves from table
5 to table6, producing a symmetrically equivalent assignment becausethe tables are
fully interchangeable, the≥lex constraints are no longer satisfied, because(2, 1) ≥lex

(2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 0) 6≥lex (0, 1).

Theorem 1. For every solutionα to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the static structural symmetry-breaking constraints.

Proof. (a) We show that there exists at least one symmetric solutionthat obeys all the
symmetry-breaking constraints. Denote byτ `

α : {j(`), . . . , j(`+1)−1} → {j(`), . . . ,-
j(` + 1) − 1} the function that ranks the values inD` according to the signatures over
some solutionα, i.e.,sigα(dτ`

α(h)) ≥ sigα(dτ`
α(h+1)) for all j(`) ≤ h < j(` + 1) − 1.

We obtain a symmetric solutionβ where we re-order the values in eachD` according to
τ `
α. Then, when we denote byσk

β : {i(k), . . . , i(k+1)−1} → {i(k), . . . , i(k+1)−1}
the function that ranks the variables inVk according toβ, i.e.,β(vσk

β
(h)) ≤ β(vσk

β
(h+1))

for all i(k) ≤ h < i(k+1)−1, we can re-order the variables in eachVk according toσk
β ,

and we get a new symmetric solutionγ. Note that the re-ordering of the variables within
each component has no effect on the signatures of the values,i.e., sigγ(d) = sigβ(d)
for all d ∈ D. Thus,γ obeys all the symmetry-breaking constraints.

(b) Now assume there are two symmetric solutionsα andβ to the piecewise sym-
metric CSP that both obey all the symmetry-breaking constraints. Denote byτ ` the
re-ordering of the values inD` and denote byσk the re-ordering of the variables inVk.
Then, we denote byτ the piecewise bijection over the values based on theτ `, and byσ



the piecewise bijection over the variables based on theσk, such thatα = τ ◦ β ◦ σ. The
first thing to note is that the application of the piecewise bijectionσ on the variables has
no effect on the signatures of the values, i.e.,sigβ(d) = sigβ◦σ(d) for all d ∈ D. Con-
sequently, the total lexicographic ordering constraints on the signatures of each valued

and its imageτ(d) require thatsigβ(d) = sigβ(τ(d)) = sigτ◦β(d) = sigτ◦β◦σ(d) =
sigα(d). Thus, the signatures underα andβ are identical. However, with the signatures
of all the values fixed and with the ordering on the variables,there exists exactly one
assignment that gives these signatures, soα andβ must be identical. ut

4 Static versus Dynamic SSB for Piecewise Symmetric CSPs

The advantage of a static symmetry-breaking method lies mainly in its ease of use
and its moderate costs per search node. The number of constraints added islinear in
the size of the problem, unlike the general method in [5], butthey may break super-
exponentially many variable and value symmetries. Constraint propagation and incre-
mentality are inherited from the existing lex-ordering andgcc constraints. However, it is
well-known that static symmetry breaking can collide with dynamic variable and value
orderings, whereas dynamic methods such as SBDD do not suffer from this drawback.

Theorem 2. Given static variable and value orderings, static (SSSB) and dynamic SSB
(DSSB) explore identical search trees for piecewise symmetric CSPs.

Proof. (a) Proof by contradiction. Assume there exists a node in theSSSB search tree
that is pruned by DSSB. Without loss of generality, we may consider the first node in a
depth-first search tree where this occurs. We identify this node with the assignmentβ :=
{v1, . . . , vt} → D, and the node that dominatesβ is identified with the assignment
α := {v1, . . . , vs} → D, for some1 ≤ s ≤ t ≤ n. By the definition of DSSB,
we have thatα(vi) = β(vi) for all 1 ≤ i < s (since every no-good considered by
SBDD differs in exactly its last variable assignment from the current search node), and
α(vs) < β(vs).

First considers = t. Assume the dominance check betweenα andβ is successful.
Then,sigβ(β(vs)) = sigα(α(vs)) 	 sigβ(α(vs)). However, sinceα(vs) < β(vs), it
must also hold thatsigβ(α(vs)) ≥ sigβ(β(vs)). Contradiction.

Now considers < t. Since the parent ofβ is not dominated byα, asβ was chosen
minimally, we know thatvt must be interchangeable with somevp with p ≤ s < t. If we
denote the component ofvt by{vq, . . . , vt, . . . , vu}, we can deduce thatq ≤ s < t ≤ u,
i.e.,vs andvt must belong to the same component. By definition of SSSB, we also know
thatα(vq) ≤ · · · ≤ α(vs) < β(vs) ≤ · · · ≤ β(vt). Moreover, we know thatβ(vt) and
α(vp) must be interchangeable. Consequently,α(vs) andβ(vs) are also interchange-
able. Now, since settingα(vs) andβ(vs) to vs was not considered symmetric by DSSB,
together withβ(vs) > α(vs), we know thatsigβ(α(vs)) � sigα(α(vs)). It follows that
sigα(α(vs)) 	 sigβ(α(vs)) ≥ sigβ(β(vs)) (1). Whenα(vs) is matched withβ(vi), for
q ≤ i ≤ t, by the successful dominance check ofα andβ, then it must hold thati < s

as otherwisesigα(α(vs)) ≤ sigβ(β(vi)) ≤ sigβ(β(vs)), which is in conflict with (1).
This implies thatβ(vt) must be matched with someα(vr) for q ≤ r < s by the suc-
cessful dominance check. Hence all the values in{α(vr), . . . , α(vs), β(vs), . . . , β(vt)}



are pairwise interchangeable. But thensigα(α(vr)) ≤ sigβ(β(vt)) ≤ sigβ(β(vs)) �
sigα(α(vs)) ≤ sigα(α(vr)). Contradiction.

(b) Assume there exists a node in the DSSB search tree that is pruned by SSSB.
Without loss of generality, we may consider the first node in adepth-first search tree
where this occurs. We identify this node with the assignmentβ := {v1, . . . , vt} → D.

First assume a variable ordering constraint is violated, i.e.,β(vj) > β(vi) for some
1 ≤ i < j ≤ t wherevi andvj are interchangeable. Considerα : {v1, . . . , vi} → D

such thatα(vk) := β(vk) for all 1 ≤ k < i, andα(vi) := β(vj). Then, due to the static
variable and value orderings,α is a node that has been fully explored beforeβ, andα

dominatesβ, which is clear by mappingvi to vj . Thus,β is also pruned by DSSB.
Now assume a lex-ordering constraint on the value signatures is violated. Denote the

interchangeable values bydi anddj , with 1 ≤ i < j. Sinceβ was chosen minimally,
when we denote the variable component that shows thatsigβ(di) < sigβ(dj) by Vk, we
know thatsigβ(di)[`] = sigβ(dj)[`] for all ` < k andsigβ(di)[k] + 1 = sigβ(dj)[k].
With s := max{p | p < t & β(vp) = di}, we setα : {v1, . . . , vs+1} → D with
α(vr) := β(vr) for all r ≤ s andα(vs+1 := di). Again, due to the static variable and
value orderings,α is a node that has been fully explored beforeβ, andα dominatesβ,
which is clear simply by mappingdi to dj . Hence,β is also pruned by DSSB. ut

We conclude that dynamic symmetry breaking draws its strength from its ability to
accommodate dynamic variable and value orderings, but causes an unnecessary over-
head when these orderings are fixed. In this case, static symmetry breaking offers a
much more light-weight method that achieves exactly the same symmetry-breaking ef-
fectiveness for piecewise symmetric CSPs. Can we find general conditions under which
a static symmetry-breaking method leads to symmetry-free search trees?
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