
Inferring Variable Conflicts for Local Search?

Magnus Ågren, Pierre Flener, and Justin Pearson

Department of Information Technology, Uppsala University, Sweden
{agren,pierref,justin}@it.uu.se

Abstract. For efficiency reasons, neighbourhoods in local search are of-
ten shrunk by only considering moves modifying variables that actually
contribute to the overall penalty. These are known as conflicting vari-
ables. We propose a new definition for measuring the conflict of a vari-
able in a model and apply it to the set variables of models expressed in
existential second-order logic extended with counting (∃SOL+). Such a
variable conflict can be automatically and incrementally evaluated. Fur-
thermore, this measure is lower-bounded by an intuitive conflict measure,
and upper-bounded by the penalty of the model. We also demonstrate
the usefulness of the approach by replacing a built-in global constraint
by an ∃SOL+ version thereof, while still obtaining competitive results.

1 Introduction

In local search, it is often important to limit the size of the neighbourhood
by only considering moves modifying conflicting variables, i.e., variables that
actually contribute to the overall penalty. See [4, 6, 8], for example.

We address the inference of variable conflicts from a formulation of a con-
straint. After giving necessary background information in Section 2, we propose
in Section 3 a new definition for measuring the conflict of a variable and ap-
ply it to the set variables of models expressed in existential second-order logic
extended with counting (∃SOL+) [5]. Such a variable conflict can be automat-
ically and incrementally evaluated. The calculated value is lower-bounded by
an intuitive target value, namely the maximum penalty decrease of the model
that may be achieved by only changing the given variable, and upper-bounded
by the penalty of the model. We demonstrate the usefulness of the approach
in Section 4 by replacing a built-in constraint by an ∃SOL+ version, while still
obtaining competitive results.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉, where X
is a finite set of variables, D is a finite set of domains, each Dx ∈ D containing
the set of possible values for x ∈ X , and C is a finite set of constraints, each
being defined on a subset of X and specifying their valid combinations of values.
? This research was partially funded by EuroControl project C/1.246/HQ/JC/04.

A variable S ∈ X is a set variable if its corresponding domain DS is 2U ,
where U is a common finite set of values of some type, called the universe.

Local search iteratively makes a small change to a current assignment of val-
ues to all variables (configuration), upon examining the merits of many such
changes, until a solution is found or allocated resources have been exhausted.
The configurations examined constitute the neighbourhood of the current con-
figuration, crucial guidance being provided by penalties and variable conflicts.

Definition 1. Let P = 〈X ,D, C〉 be a CSP. A configuration for P (or X) is a
total function k : X → ⋃

D∈D D. We use K to denote the set of all configurations
for a given CSP or set of variables, depending on the context. A neighbourhood
function for P is a function n : K → 2K. The neighbourhood of P with respect
to (w.r.t.) a configuration k ∈ K and n is the set n(k). The variable neigh-
bourhood for x ∈ X w.r.t. k is the subset of K reachable from k by changing
k(x) only: nx(k) = {` ∈ K | ∀y ∈ X : y 6= x → k(y) = `(y)}. A penalty
function of a constraint c ∈ C is a function penalty(c) : K → N such that (s.t.)
penalty(c)(k) = 0 if and only if (iff) c is satisfied w.r.t. k. The penalty of c w.r.t.
k is penalty(c)(k). A conflict function of c is a function conflict(c) : X ×K → N
s.t. if conflict(c)(x, k) = 0 then ∀` ∈ nx(k) : penalty(c)(k) ≤ penalty(c)(`). The
conflict of x w.r.t. c and k is conflict(c)(x, k).

Example 1. Let P = 〈{S, T}, {DS , DT }, {S ⊂ T}〉 where DS = DT = 2U and
U = {a, b, c}. A configuration for P is given by k(S) = {a, b} and k(T) = ∅,
or equivalently by k = {S 7→ {a, b}, T 7→ ∅}. The neighbourhood of P w.r.t. k
and the neighbourhood function for P that moves an element from S to T is
the set {ka = {S 7→ {b}, T 7→ {a}}, kb = {S 7→ {a}, T 7→ {b}}. The variable
neighbourhood for S w.r.t. k is the set nS(k) = {k, k1 = {S 7→ ∅, T 7→ ∅}, k2 =
{S 7→ {a}, T 7→ ∅}, k3 = {S 7→ {b}, T 7→ ∅}, k4 = {S 7→ {c}, T 7→ ∅}, k5 = {S 7→
{a, c}, T 7→ ∅}, k6 = {S 7→ {b, c}, T 7→ ∅}, k7 = {S 7→ {a, b, c}, T 7→ ∅}}. Let the
penalty and conflict functions of S ⊂ T be defined by:

penalty(S ⊂ T)(k) = |k(S) \ k(T)|+
(

1, if k(T) ⊆ k(S)

0, otherwise

conflict(S ⊂ T)(Q, k) = |k(S) \ k(T)|+

8
><
>:

1, if Q = T and k(T) ⊆ k(S)

1, if Q = S and k(S) ∩ k(T) 6= ∅
0, otherwise

We have that penalty(S ⊂ T)(k) = 3. Indeed, we may satisfy P w.r.t. k by,
e.g., adding the three values a, b, and c to T . We also have that conflict(S ⊂
T)(S, k) = 2 and conflict(S ⊂ T)(T, k) = 3. Indeed, by removing the values a
and b from S, we may decrease the penalty of P by two. Similarly, by adding
the values a, b, and c to T , we may decrease the penalty of P by three.

We use existential second-order logic extended with counting (∃SOL+) for
modelling set constraints [1]. In the BNF below, the non-terminal symbol 〈S〉
denotes an identifier for a bound set variable S such that S ⊆ U , while 〈x〉 and
〈y〉 denote identifiers for bound variables x and y such that x, y ∈ U , and 〈a〉
denotes a natural number constant:

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉
〈Formula〉 ::= (〈Formula〉) | (∀ | ∃)〈x〉 〈Formula〉

| 〈Formula〉 (∧ | ∨) 〈Formula〉 | 〈Literal〉
〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉

| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉
| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

As a running example, consider the constraint S ⊂ T of Ex. 1. This may be
expressed in ∃SOL+ by Ω = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))∧ (∃x(x ∈ T ∧ x /∈ S))).

We proposed a penalty function for ∃SOL+ formulas in [1], which was inspired
by [9]. For example, the penalty of a literal x ∈ S w.r.t. a configuration k is 0
if k(x) ∈ k(S) and 1, otherwise. The penalty of a conjunction (disjunction) is
the sum (minimum) of the penalties of its conjuncts (disjuncts). The penalty of
a universal (existential) quantification is the sum (minimum) of the penalties of
the quantified formula where the occurrences of the bound variable are replaced
by each value in the universe.

Example 2. Recall k = {S 7→ {a, b}, T 7→ ∅} of Ex. 1. Then penalty(Ω)(k) = 3.

3 Variable Conflicts of an ∃SOL+ Formula

The notion of abstract conflict measures the maximum possible penalty decrease
obtainable by only changing the value of the given variable. It is uniquely deter-
mined by the chosen penalty function:

Definition 2. Let P = 〈X ,D, C〉 be a CSP and let c ∈ C. The abstract conflict
function of c w.r.t. penalty(c) is the function abstractConflict(c) : X × K → N
s.t. abstractConflict(c)(x, k) = max{penalty(c)(k) − penalty(c)(`) | ` ∈ nx(k)}.
The abstract conflict of x ∈ X w.r.t. c and k ∈ K is abstractConflict(c)(x, k).

Example 3. The function conflict(S ⊂ T) of Ex. 1 gives abstract conflicts.

Similarly to our penalty function in [1], it is important to stress that the
calculation of the variable conflict defined next is automatable and feasible in-
crementally [3], as it is based only on the syntax of the formula and the semantics
of the quantifiers, connectives, and relational operators of ∃SOL+, but not on
the intended semantics of the formula.

Definition 3. Let F ∈ ∃SOL+, let S ∈ vars(F), and let k be a configuration
for vars(F). The conflict of S w.r.t. F and k is defined by:
(a) conflict(∃S1 · · · ∃Snφ)(S, k) = conflict(φ)(S, k)
(b) conflict(∀xφ)(S, k) =

P
u∈U

conflict(φ)(S, k ∪ {x 7→ u})
(c) conflict(∃xφ)(S, k) =

max{0} ∪ {penalty(∃xφ)(k)−
(penalty(φ)(k ∪ {x 7→ u})− conflict(φ)(S, k ∪ {x 7→ u})) | u ∈ U}

(d) conflict(φ ∧ ψ)(S, k) =
P{conflict(γ)(S, k) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(e) conflict(φ ∨ ψ)(S, k) = max{0} ∪ {penalty(φ ∨ ψ)(k)−
(penalty(γ)(k)− conflict(γ)(S, k)) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(f) conflict(|S| ≤ c)(S, k) = penalty(|S| ≤ c)(k)
(g) conflict(x ∈ S)(S, k) = penalty(x ∈ S)(k)

We only show cases for subformulas of the form |S| ♦ c and x 4 S where
♦ ∈ {≤} and 4 ∈ {∈}. The other cases are defined similarly.

Example 4. Recall once again k = {S 7→ {a, b}, T 7→ ∅} of Ex. 1. According to
Def. 3, we have that conflict(Ω)(S, k) = 2 and conflict(Ω)(T, k) = 3, i.e., the
same values as obtained by the handcrafted conflict(S ⊂ T) of Ex. 1.

The novelty of Def. 3 compared to the one in [8] lies in rules (c) and (e) for
disjunctive formulas, due to the different abstract conflict that we target (see [3]
for more details). The following example clarifies these rules in terms of (e).

Example 5. Consider F = (|S| = 5 ∨ (|T | = 3 ∧ |S| = 6)) and let k1 be a
configuration s.t. |k1(S)| = 6 and |k1(T)| = 4. Then penalty(F)(k1) = 1 and we
have conflict(|S| = 5)(S, k1) = 1 and conflict(|T | = 3 ∧ |S| = 6)(S, k1) = 0.
Rule (e) applies for calculating conflict(F)(S, k1), which, for each disjunct, gives
the maximum possible penalty decrease one may obtain by changing k1(S). This
is 1 for the first disjunct since we may decrease penalty(F)(k1) by 1 by changing
k1(S) as witnessed by penalty(F)(k1) − (penalty(|S| = 5)(k1) − conflict(|S| =
5)(S, k1)) = 1 − (1 − 1) = 1. It is 0 for the second disjunct since we cannot
decrease penalty(F)(k1) by changing k1(S) as witnessed by penalty(F)(k1) −
(penalty(|T | = 3∧|S| = 6)(k1)−conflict(|T | = 3∧|S| = 6)(S, k1) = 1−(1−0) = 0.
The maximum value of these is 1 and hence conflict(F)(S, k1) = 1.

Consider now k2 s.t. |k2(S)| = 4 and |k2(T)| = 4. Then penalty(F)(k2) = 1
and conflict(|T | = 3 ∧ |S| = 6)(T, k2) = 1. The maximum possible penalty
decrease one may obtain by changing k2(T) in the only disjunct for T is −1 as
witnessed by penalty(F)(k2)−(penalty(|T | = 3∧|S| = 6)(k2)−conflict(|T | = 3∧
|S| = 6)(T, k2) = 1−(3−1) = −1. But we may not have a negative conflict, hence
the union with {0} in (e). Indeed, we cannot decrease penalty(F)(k) by changing
k2(T) since even if we satisfy |k2(T) = 3|, the conjunct |k2(S) = 6| implies a
penalty larger than 1 which is the minimum penalty of the two disjuncts.

We now state some properties of variable conflicts compared to the abstract
conflict of Def. 2 and the formula penalty [1]. The proofs can be found in [3].

Proposition 1. Let F ∈ ∃SOL+, let k be a configuration for vars(F), and let
S ∈ vars(F). Then abstractConflict(F)(S, k) ≤ conflict(F)(S, k) ≤ penalty(F)(k).

Corollary 1. The function induced by Def. 3 is a conflict function w.r.t. Def. 1.

4 Practical Results and Conclusion

The progressive party problem [7] is about timetabling a party at a yacht club,
where the crews of certain boats (the guest boats) party at other boats (the
host boats) over a number of periods. The crew of a guest boat must party at
some host boat in each period. The spare capacity of a host boat is never to
be exceeded. The crew of a guest boat may visit a particular host boat at most
once. The crews of two distinct guest boats may meet at most once.

We use the same set-based model and local search algorithm as we did in [2].
The model includes AllDisjoint(X)(k) constraints that hold iff no two distinct
set variables in X = {S1, . . . , Sn} overlap. Assuming that this global constraint
is not built-in, we may use the following ∃SOL+ version instead:

∃S1 · · · ∃Sn∀x ((x /∈ S1 ∨ (x /∈ S2 ∧ · · · ∧ x /∈ Sn)) ∧
(x /∈ S2 ∨ (x /∈ S3 ∧ · · · ∧ x /∈ Sn)) ∧ · · · ∧ (x /∈ Sn−1 ∨ x /∈ Sn))

We have run the same classical instances as we did in [2], on a 2.4GHz/512MB
Linux machine. The following table shows the results for the ∃SOL+ and built-in
versions of the AllDisjoint constraint (mean run time in seconds of successful
runs out of 100 and the number of unsuccessful runs, if any, in parentheses).

∃SOL+ AllDisjoint Built-in AllDisjoint

H/periods (fails) 6 7 8 9 10 6 7 8 9 10

1-12,16 1.3 3.5 42.0 1.2 2.3 21.0
1-13 16.5 239.3 7.0 90.5
1,3-13,19 18.9 273.2 (3) 7.2 128.4 (4)
3-13,25,26 36.5 405.5 (16) 13.9 170.0 (17)
1-11,19,21 19.8 186.7 10.3 83.0 (1)
1-9,16-19 32.2 320.0 (12) 18.2 160.6 (22)

The run times for the ∃SOL+ version are only 2 to 3 times higher, though it
must be noted that efforts such as designing penalty and conflict functions as
well as incremental maintenance algorithms for AllDisjoint were not necessary.
Note also that the robustness of the local search algorithm does not degrade for
the ∃SOL+ version, as witnessed by the number of solved instances.

To conclude, we proposed a new definition for inferring the conflict of a vari-
able in a model and proved that any inferred variable conflict is lower-bounded
by the targeted value, and upper-bounded by the inferred penalty. The search is
indeed directed towards interesting neighbourhoods, as a built-in constraint can
be replaced without too high losses in run-time, nor any losses in robustness.

References

1. M. Ågren, P. Flener, and J. Pearson. Incremental algorithms for local search from
existential second-order logic. Proceedings of CP’05. Springer-Verlag, 2005.

2. M. Ågren, P. Flener, and J. Pearson. Set variables and local search. Proceedings of
CP-AI-OR’05. Springer-Verlag, 2005.

3. M. Ågren, P. Flener, and J. Pearson. Inferring variable conflicts for local search.
Tech. Rep. 2006-005, Dept. of Information Technology, Uppsala University, 2006.

4. P. Galinier and J.-K. Hao. A general approach for constraint solving by local search.
Proceedings of CP-AI-OR’00, 2000.

5. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
6. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.

Proceedings of OOPSLA’02, 2002.
7. B. M. Smith et al. The progressive party problem: Integer linear programming and

constraint programming compared. Constraints, 1:119–138, 1996.
8. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, 2005.
9. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-based combinators for local

search. Proceedings of CP’04. Springer-Verlag, 2004.

