
Incremental Algorithms for Local Search

from Existential Second-Order Logic

Magnus Ågren, Pierre Flener, and Justin Pearson

Department of Information Technology
Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

{agren,pierref,justin}@it.uu.se

Abstract. Local search is a powerful and well-established method for
solving hard combinatorial problems. Yet, until recently, it has provided
very little user support, leading to time-consuming and error-prone im-
plementation tasks. We introduce a scheme that, from a high-level de-
scription of a constraint in existential second-order logic with counting,
automatically synthesises incremental penalty calculation algorithms.
The performance of the scheme is demonstrated by solving real-life in-
stances of a financial portfolio design problem that seem unsolvable in
reasonable time by complete search.

1 Introduction

Local search is a powerful and well-established method for solving hard combi-
natorial problems [1]. Yet, until recently, it has provided very little user support,
leading to time-consuming and error-prone implementation tasks. The recent
emergence of languages and systems for local search, sometimes based on novel
abstractions, has alleviated the user of much of this burden [10, 16, 12, 11].

However, if a problem cannot readily be modelled using the primitive con-
straints of such a local search system, then the user has to perform some of those
time-consuming and error-prone tasks. These include the design of algorithms
for the calculation of penalties of user-defined constraints. These algorithms are
called very often in the innermost loop of local search and thus need to be im-
plemented particularly efficiently: incrementality is crucial. Would it thus not be
nice if also this task could be performed fully automatically and satisfactorily
by a local search system? In this paper, we design a scheme for doing just that,
based on an extension of the idea of combinators [15] to quantifiers. Our key
contributions are as follows:

– We propose the usage of existential second-order logic with counting as a
high-level modelling language for (user-defined) constraints. It accommodates
set variables and captures at least the complexity class NP.

– We design a scheme for the automated synthesis of incremental penalty cal-
culation algorithms from a description of a (user-defined) constraint in that
language. We have developed an implementation of this scheme.

– We propose a new benchmark problem for local search, with applications in
finance. Using our local search framework, we exactly solve real-life instances
that seem unsolvable in reasonable time by complete search; the performance
is competitive with a fast approximation method based on complete search.

The rest of this paper is organised as follows. In Section 2, we define the back-
ground for this work, namely constraint satisfaction problems over scalar and set
variables as well as local search concepts. The core of this paper are Sections 3
to 6, where we introduce the used modelling language and show how incremen-
tal algorithms for calculating penalties can be automatically synthesised from a
model therein. In Section 7, we demonstrate the performance of this approach
by solving real-life instances of a financial portfolio design problem. Finally, we
summarise our results, discuss related work, and outline future work in Section 8.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈V,D,C〉, where V
is a finite set of variables, D is a finite set of domains, each Dv ∈ D containing
the set of possible values for the corresponding variable v ∈ V , and C is a finite
set of constraints, each c ∈ C being defined on a subset of the variables in V
and specifying their valid combinations of values.

Definition 1 (Set Variable and its Universe). Let P = 〈V,D,C〉 be a CSP.
A variable S ∈ V is a set variable if its corresponding domain DS = 2US , where
US is a finite set of values of some type, called the universe of S.

Without loss of generality, we assume that all the set variables have a common
universe, denoted U . We also assume that all the variables are set variables, and
denote such a set-CSP by 〈V,U , C〉. This is of course a limitation, since many
models contain both set variables and scalar variables. Fortunately, interesting
applications, such as the ones in this paper and in [2], can be modelled using
only set variables.

A constraint program assigns values to the variables one by one, but local
search maintains an (initially arbitrary) assignment of values to all the variables:

Definition 2 (Configuration). Let P = 〈V,U , C〉 be a set-CSP. A configura-
tion for P (or V) is a total function k : V → 2U .

As usual, the notation k |= φ expresses that the open formula φ is satisfied
under the configuration k.

Example 1. Consider a set-CSP P = 〈{S1, S2, S3}, {d1, d2, d3}, {c1, c2}〉. A con-
figuration for P is given by k(S1) = {d3}, k(S2) = {d1, d2}, k(S3) = ∅, or equiv-
alently as the set of mappings {S1 7→ {d3}, S2 7→ {d1, d2}, S3 7→ ∅}. Another
configuration for P is given by k′ = {S1 7→ ∅, S2 7→ {d1, d2, d3}, S3 7→ ∅}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such changes. The configurations thus ex-
amined constitute the neighbourhood of the current configuration:

Definition 3 (Neighbourhood). Let K be the set of all configurations for a
(set-)CSP P and let k ∈ K. A neighbourhood function for P is a function
N : K → 2K . The neighbourhood of P with respect to k and N is the set N (k).

Example 2. Reconsider P and k from Example 1. A neighbourhood of P with
respect to k and some neighbourhood function for P is the set {k1 = {S1 7→
∅, S2 7→ {d1, d2, d3}, S3 7→ ∅}, k2 = {S1 7→ ∅, S2 7→ {d1, d2}, S3 7→ {d3}}. This
neighbourhood function moves the value d3 in S1 to S2 or S3.

The penalty of a CSP is an estimate on how much its constraints are violated:

Definition 4 (Penalty). Let P = 〈V,D,C〉 be a (set-)CSP and let K be the
set of all configurations for P . A penalty function of a constraint c ∈ C is a
function penalty(c) : K → N such that penalty(c)(k) = 0 if and only if c is
satisfied under configuration k. The penalty of a constraint c ∈ C with respect
to a configuration k ∈ K is penalty(c)(k). The penalty of P with respect to a
configuration k ∈ K is the sum

∑

c∈C penalty(c)(k).

Example 3. Consider once again P from Example 1 and let c1 and c2 be the
constraints S1 ⊆ S2 and d3 ∈ S3 respectively. Let the penalty functions of c1
and c2 be defined by penalty(c1)(k) = |k(S1) \ k(S2)| and penalty(c2)(k) = 0 if
d3 ∈ k(S3) and 1 otherwise. Now, the penalties of P with respect to the config-
urations k1 and k2 from Example 2 are penalty(c1)(k1) + penalty(c2)(k1) = 1
and penalty(c1)(k2) + penalty(c2)(k2) = 0, respectively.

3 Second-Order Logic

We use existential second-order logic (∃SOL) [8], extended with counting, for
modelling the constraints of a set-CSP. ∃SOL is very expressive: it captures the
complexity class NP [5]. Figure 1 shows the BNF grammar for the used language,
which we will refer to as ∃SOL+. Some of the production rules are highlighted
and the reason for this is explained below. The language uses common mathe-
matical and logical notations. Note that its set of relational operators is closed
under negation. A formula in ∃SOL+ is of the form ∃S1 · · · ∃Snφ, i.e., a sequence
of existentially quantified set variables, ranging over the power set of an implicit
common universe U , and constrained by a logical formula φ. The usual prece-
dence rules apply when parentheses are omitted, i.e., ¬ has highest precedence,
∧ has higher precedence than ∨, etc.

Example 4. The constraint S ⊂ T on the set variables S and T may be expressed
in ∃SOL+ by the formula:

∃S∃T ((∀x(x /∈ S ∨ x ∈ T)) ∧ (∃x(x ∈ T ∧ x /∈ S))) (1)

The constraint |S∩T | ≤ m on the set variables S and T and the natural-number
constant m may be expressed in ∃SOL+ by the formula:

∃S∃T∃I((∀x(x ∈ I ↔ x ∈ S ∧ x ∈ T)) ∧ |I| ≤ m) (2)

Note that we used an additional set variable I to represent the intersection S∩T .

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉

〈Formula〉 ::= (〈Formula〉)

| (∀ | ∃)〈x〉 〈Formula〉
| 〈Formula〉 (∧ | ∨ |→ | ↔ |←) 〈Formula〉
| ¬〈Formula〉
| 〈Literal〉

〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉
| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉

| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

Fig. 1. The BNF grammar for the language ∃SOL+ where terminal symbols are un-
derlined. The non-terminal symbol 〈S〉 denotes an identifier for a bound set variable S
such that S ⊆ U , while 〈x〉 and 〈y〉 denote identifiers for bound variables x and y such
that x, y ∈ U , and 〈a〉 denotes a natural number constant. The core subset of ∃SOL+

corresponds to the language given by the non-highlighted production rules.

In Section 4 we will define the penalty of formulas in ∃SOL+. Before we do
this, we define a core subset of this language that will be used in that definition.
This is only due to the way we define the penalty and does not pose any lim-
itations on the expressiveness of the language: Any formula in ∃SOL+ may be
transformed into a formula in that core subset, in a way shown next.

The transformations are standard and are only described briefly. First, given
a formula ∃S1 · · · ∃Snφ in ∃SOL+, we remove its negations by pushing them
downward, all the way to the literals of φ, which are replaced by their negated
counterparts. Assuming that φ is the formula ∀x(¬(x ∈ S ∧ x /∈ S′)), it is
transformed into ∀x(x /∈ S ∨ x ∈ S′). This is possible because the set of rela-
tional operators in ∃SOL+ is closed under negation. Second, equivalences are
transformed into conjunctions of implications, which are in turn transformed
into disjunctions. Assuming that φ is the formula ∀x(x ∈ S1 ↔ x ∈ S2), it is
transformed into ∀x((x /∈ S1 ∨ x ∈ S2) ∧ (x ∈ S1 ∨ x /∈ S2)).

By performing these transformations for φ (and recursively for the sub-
formulas of φ) in any formula ∃S1 · · · ∃Snφ, we end up with the non-highlighted
subset of the language in Figure 1, for which we will define the penalty.

Example 5. (1) is in the core subset of ∃SOL+. The core equivalent of (2) is:

∃S∃T∃I((∀x((x /∈ I ∨x ∈ S ∧x ∈ T)∧ (x ∈ I ∨x /∈ S ∨x /∈ T)))∧ |I| ≤ m) (3)

From now on we assume that any formula said in ∃SOL+ is already in the core
subset of ∃SOL+. The full language just offers convenient shorthand notations.

4 The Penalty of an ∃SOL+ Formula

In order to use (closed) formulas in ∃SOL+ as constraints in our local search
framework, we must define the penalty function of such a formula according

to Definition 4, which is done inductively below. It is important to stress that
this calculation is totally generic and automatable, as it is based only on the
syntax of the formula and the semantics of the quantifiers, connectives, and
relational operators of the ∃SOL+ language, but not on the intended semantics
of the formula. A human might well give a different penalty function to that
formula, and a way of calculating it that better exploits globality, but the scheme
below requires no such user participation.

We need to express the penalty with respect to the values of any bound first-
order variables. We will therefore pass around an (initially empty) environment
Γ in the definition below, where Γ is a total function from the currently bound
first-order variables into the common universe of values.

Definition 5 (Penalty of an ∃SOL+ Formula). Let F be a formula in ∃SOL+

of the form ∃S1 · · · ∃Snφ, let k be a configuration for {S1, . . . , Sn}, and let Γ be
an environment. The penalty of F with respect to k and Γ is given by a function
penalty ′ defined by:

(a) penalty ′(Γ)(∃S1 · · · ∃Snφ)(k) = penalty ′(Γ)(φ)(k)
(b) penalty ′ (Γ)(∀xφ)(k) =

∑

u∈U
penalty ′(Γ ∪ {x 7→ u})(φ)(k)

(c) penalty ′ (Γ)(∃xφ)(k) = min{penalty ′(Γ ∪ {x 7→ u})(φ)(k) | u ∈ U}
(d) penalty ′(Γ)(φ ∧ ψ)(k) = penalty ′(Γ)(φ)(k) + penalty ′(Γ)(ψ)(k)
(e) penalty ′ (Γ)(φ ∨ ψ)(k) = min{penalty ′(Γ)(φ)(k), penalty ′(Γ)(ψ)(k)}

(f) penalty ′(Γ)(x ≤ y)(k) =

{

0, if Γ (x) ≤ Γ (y)

1, otherwise

(g) penalty ′(Γ)(|S| ≤ c)(k) =

{

0, if |k(S)| ≤ c

|k(S)| − c, otherwise

(h) penalty ′(Γ)(x ∈ S)(k) =

{

0, if Γ (x) ∈ k(S)

1, otherwise

(i) penalty ′ (Γ)(x /∈ S)(k) =

{

0, if Γ (x) /∈ k(S)

1, otherwise

Now, the penalty function of F is the function penalty(F) = penalty ′(∅)(F).

In the definition above, for (sub)formulas of the form x ♦ y and |S| ♦ c,
where ♦ ∈ {<,≤,=, 6=,≥, >}, we only show the cases where ♦ ∈ {≤}; the other
cases are defined similarly. (The same applies to the algorithms in Section 5.)
The following proposition is a direct consequence of the definition above:

Proposition 1. The penalty of a formula F with respect to a configuration k is
0 if and only if F is satisfied under k: penalty(∃S1 · · · ∃Snφ)(k) = 0 ⇔ k |= φ.

In our experience, the calculated penalties of violated constraints are often
meaningful, as shown in the following example.

Example 6. Let U = {a, b} and let k be the configuration for {S, T } such that
k(S) = k(T) = {a}. Let us calculate penalty(∃S∃Tφ)(k), where ∃S∃Tφ is

the formula (1) The initial call matches case (a) which gives the recursive call
penalty ′(∅)(φ)(k). Since φ is of the form ψ ∧ψ′ this call matches case (d), which
is defined as the sum of the recursive calls on ψ and ψ′. For the first recursive
call, ψ is the formula ∀x(x /∈ S ∨ x ∈ T). Hence it will match case (b), which is
defined as the sum of the recursive calls penalty ′({x 7→ a})(x /∈ S∨x ∈ T)(k) and
penalty ′({x 7→ b})(x /∈ S ∨ x ∈ T)(k) (one for each of the values a and b in U).
Both of these match case (e) which, for the first one, gives the minimum of the
recursive calls penalty ′({x 7→ a})(x /∈ S)(k) and penalty ′({x 7→ a})(x ∈ T)(k).
This value is min{1, 0} = 0 since a ∈ T . A similar reasoning for the second one
gives the value min{0, 1} = 0 as well since b /∈ S. Hence the recursive call on
ψ gives 0 + 0 = 0. This means that ψ is satisfied and should indeed contribute
nothing to the overall penalty. A similar reasoning for the recursive call on ψ′,
which is ∃x(x ∈ T ∧ x /∈ S), gives min{1, 1} = 1. This means that ψ′ is violated:
the calculated contribution of 1 to the overall penalty means that no value of U
belongs to T but not to S. Hence the returned overall penalty is 0 + 1 = 1.

5 Incremental Penalty Maintenance using Penalty Trees

In our local search framework, given a formula F in ∃SOL+, we could use Defini-
tion 5 to calculate the penalty of F with respect to a configuration k, and then
similarly for each configuration k′ in a neighbourhood N (k) to be evaluated.
However, a complete recalculation of the penalty with respect to Definition 5 is
impractical, since N (k) is usually a very large set.

In local search it is crucial to use incremental algorithms when evaluating the
penalty of a constraint with respect to a neighbour k′ to a current configuration
k. We will now present a scheme for incremental maintenance of the penalty of a
formula in ∃SOL+ with respect to Definition 5. This scheme is based on viewing
a formula F in ∃SOL+ as a syntax tree and observing that, given the penalty
with respect to k, only the paths from the leaves that contain variables that are
changed in k′ compared to k to the root node need to be updated to obtain the
penalty with respect to k′.

5.1 The Penalty Tree of a Formula

First, a syntax tree T of a formula F in ∃SOL+ of the form ∃S1 · · · ∃Snφ is
constructed in the usual way. Literals in F of the form x ∈ S, x /∈ S, x ♦ y,
and |S| ♦ k (where ♦ ∈ {<,≤,=, 6=,≥, >}) are leaves in T. Subformulas in F
of the form ψ � ψ′ (where � ∈ {∧,∨}) are subtrees in T with � as parent
node and the trees of ψ and ψ′ as children. When possible, formulas of the form
ψ1 � · · ·� ψm give rise to one parent node with m children. Subformulas in F
of the form ∀xψ (resp. ∃xψ) are subtrees in T with ∀x (resp. ∃x) as parent node
and the tree of ψ as only child. Finally, ∃S1 · · · ∃Sn is the root node of T with
the tree of φ as child. As an example of this, Figure 2 shows the syntax tree
of formula (3). Note that it contains additional information, to be explained in
Section 5.2.

{() 7→ 1(0)} ∃S∃T∃I

{() 7→ 1(0)}∧
{() 7→ 1(0)}

∀x

∧

{(a) 7→ 0,

(b) 7→ 1(0),
(c) 7→ 0}

∨

{(a) 7→ 0,

(b) 7→ 0(0),
(c) 7→ 0}

x /∈ I

{(a) 7→ 1,

(b) 7→ 0,

(c) 7→ 0}

∧

{(a) 7→ 0,

(b) 7→ 0(1),
(c) 7→ 1} x ∈ S

{(a) 7→ 0, (b) 7→ 0, (c) 7→ 1}

x ∈ T

{(a) 7→ 0, (b) 7→ 0(1), (c) 7→ 0}

{(a) 7→ 0,

(b) 7→ 1(0),
(c) 7→ 0}

∨

x ∈ I

{(a) 7→ 0, (b) 7→ 1, (c) 7→ 1}

x /∈ S

{(a) 7→ 1, (b) 7→ 1, (c) 7→ 0}

x /∈ T

{(a) 7→ 1,

(b) 7→ 1(0),
(c) 7→ 1}

{() 7→ 0}|I | ≤ m

Fig. 2. Penalty tree of formula (3).

Assume that T is the syntax tree of a formula F = ∃S1 · · · ∃Snφ. We will now
extend T into a penalty tree in order to obtain incremental penalty maintenance
of F . Given an initial configuration k for {S1, . . . , Sn}, the penalty with respect
to k of the subformula that the tree rooted at node n represents is stored in each
node n of T. This implies that the penalty stored in the root node of T is equal
to penalty(F)(k). When a configuration k′ in the neighbourhood of k is to be
evaluated, the only paths in T that may have changed are those leading from
leaves containing any of the set variables Si that are affected by the change of
k to k′. By starting at each of these leaves l(Si) and updating the penalty with
respect to the change of Si of each node on the path from l to the root node of
T, we can incrementally calculate penalty(F)(k′) given k.

5.2 Initialising the Nodes with Penalties

For the descendants of nodes representing subformulas that introduce bound
variables, we must store the penalty with respect to every possible mapping of
those variables. For example, the child node n of a node for a subformula of the
form ∀xφ will have a penalty stored for each u ∈ U . Generally, the penalty stored
at a node n is a mapping, denoted p(n), from the possible tuples of values of the
bound variables at n to N. Assume, for example, that at n there are two bound
variables x and y (introduced in that order) and that U = {a, b}. Then the
penalty stored at n after initialisation will be the mapping {(a, a) 7→ p1, (a, b) 7→
p2, (b, a) 7→ p3, (b, b) 7→ p4} where {p1, p2, p3, p4} ⊂ N. The first element of each
tuple corresponds to x and the second one to y. If there are no bound variables
at a particular node, then the penalty is a mapping {() 7→ q}, i.e., the empty
tuple mapped to some q ∈ N.

Algorithm 1 Initialises the penalty mappings of a penalty tree.
function initialise(T, Γ,U , k)

match T with

∃S1 · · · ∃Snφ −→ p(T)← {tuple(Γ) 7→ initialise(φ, Γ,U , k)}

| ∀xφ −→ p(T) ← p(T) ∪ {tuple(Γ) 7→
P

u∈U

initialise(φ, Γ ∪ {x 7→ u},U , k)}

| ∃xφ −→
p(T)← p(T) ∪ {tuple(Γ) 7→ min{initialise(φ, Γ ∪ {x 7→ u},U , k) | u ∈ U}}

| φ1 ∧ · · · ∧ φm −→ p(T) ← p(T) ∪ {tuple(Γ) 7→
P

1≤i≤m
initialise(φi, Γ,U , k)}

| φ1 ∨ · · · ∨ φm −→
p(T)← p(T) ∪ {tuple(Γ) 7→ min{initialise(φ, Γ,U , k) | φ ∈ {φ1, . . . , φm}}}

| x ≤ y −→ p(T) ← p(T) ∪

(

tuple(Γ) 7→

(

0, if Γ (x) ≤ Γ (y)

1, otherwise

)

| |S| ≤ m −→ p(T)← p(T) ∪

(

tuple(Γ) 7→

(

0, if |k(S)| ≤ m

|k(S)| −m, otherwise

)

| x ∈ S −→ p(T) ← p(T) ∪

(

tuple(Γ) 7→

(

0, if Γ (x) ∈ k(S)

1, otherwise

)

| x /∈ S −→ p(T) ← p(T) ∪

(

tuple(Γ) 7→

(

0, if Γ (x) /∈ k(S)

1, otherwise

)

end match

return p(T)(tuple(Γ))
function tuple(Γ)

return (Γ (x1), . . . , Γ (xn)) ⊲ {x1, . . . , xn} = domain(Γ), introduced into Γ in that order.

Algorithm 1 shows the function initialise(T, Γ,U , k) that initialises a penalty
tree T of a formula with penalty mappings with respect to an (initially empty)
environment Γ , a universe U , and a configuration k. By abuse of notation, we let
formulas in ∃SOL+ denote their corresponding penalty trees, e.g., ∀xφ denotes
the penalty tree with ∀x as root node and the tree representing φ as only child,
φ1 ∧ · · · ∧ φm denotes the penalty tree with ∧ as root node and the subtrees of
all the φi as children, etc. Note that we use an auxiliary function tuple that,
given an environment Γ , returns the tuple of values with respect to Γ . We also
assume that before initialise is called for a penalty tree T, the penalty mapping
of each node in T is the empty set.

Example 7. Let k = {S 7→ {a, b}, T 7→ {a, b, c}, I 7→ {a}}, let U = {a, b, c}, and
let m = 1. Figure 2 shows the penalty tree T with penalty mappings (dotted
arrows connect nodes to their mappings) after initialise(T, ∅,U , k) has been
called for formula (3). As can be seen at the root node, the initial penalty is 1.
Indeed, there is one value, namely b, that is in S and T but not in I.

5.3 Maintaining the Penalties

We will now present a way of incrementally updating the penalty mappings of a
penalty tree. This is based on the observation that, given an initialised penalty
tree T, a current configuration k, and a configuration to evaluate k′, only the
paths leading from any leaf in T affected by changing k to k′ to the root node
of T need to be updated.

Algorithm 2 shows the function submit(n,n′,A, k, k′) that updates the penalty
mappings of a penalty tree incrementally. It is a recursive function where infor-

Algorithm 2 Updates the penalty mappings of a penalty tree.
function submit(n,n′,A, k, k′)

update(n, n′,A) ⊲ First update n with respect to n
′.

if All children affected by the change of k to k′ are done then

if n is not the root node then

submit(parent(n), n,A ∪ changed(n), k, k′)
changed(n)← ∅

else () ⊲ We are at the root. Done!
else changed(n)← changed(n) ∪ A ⊲ Not all children done. Save tuples and wait.

function update(n, n′,A)
p′(n)← p(n) ⊲ Save the old penalty mapping.
for all t ∈ A|bounds(n) do

match n with

∃S1 · · · ∃Snφ −→ p(n)← p(n)⊕ {() 7→ p(n′)(())}

| ∀xφ −→
for all t′ ∈ A|bounds(n′) s.t. t′|bounds(n) = t do

p(n)← p(n)⊕ {t 7→ p(n)(t) + p(n′)(t′)− p′(n′)(t′)}

| ∃xφ −→
for all t′ ∈ A|bounds(n′) s.t. t′|bounds(n) = t do

Replace the value for t′ in min heap(n, t) with p(n′)(t′)
p(n)← p(n)⊕ {t 7→ min(min heap(n, t))}

| φ1 ∧ · · · ∧ φm −→ p(n)← p(n)⊕ {t 7→ p(n)(t) + p(n′)(t)− p′(n′)(t)}
| φ1 ∨ · · · ∨ φm −→ Replace the value for n

′ in min heap(n, t) with p(n′)(t)
p(n)← p(n)⊕ {t 7→ min(min heap(n, t))}

| x ≤ y −→ error ⊲ Only leaves representing formulas on set variables apply!

| |S| ≤ m −→ p(n)← p(n)⊕

(

t 7→

(

0, if |k′(S)| ≤ m

|k′(S)| −m, otherwise

)

| x ∈ S −→ p(n)← p(n)⊕

(

t 7→

(

0, if t(x) ∈ k′(S)

1, otherwise

)

| x /∈ S −→ p(n)← p(n)⊕

(

t 7→

(

0, if t(x) /∈ k′(S)

1, otherwise

)

end match

mation from the node n′ (void when n is a leaf) is propagated to the node n.
The additional arguments are A (a set of tuples of values that are affected by
changing k to k′ at n), k (the current configuration), and k′ (the configuration
to evaluate). It uses the auxiliary function update(n,n′,A) that performs the
actual update of the penalty mappings of n with respect to (the change of the
penalty mappings of) n′.

The set A depends on the maximum number of bound variables in the penalty
tree, the universe U , and the configurations k and k′. Recall U and k of Example 7
and assume that k′ = {S 7→ {a, b}, T 7→ {a, c}, I 7→ {a}} (b was removed from
k(T)). In this case A would be the singleton set {(b)} since this is the only
tuple affected by the change of k to k′. However, if the maximum number of
bound variables was two (instead of one as in Example 7), A would be the set
{(b, a), (b, b), (b, c), (a, b), (c, b)} since all of these tuples might be affected.

Some of the notation used in Algorithm 2 needs explanation: Given a set A of
tuples, each of arity n, we use A|m to denote the set of tuples in A projected on
their first m ≤ n positions. For example, if A = {(a, a), (a, b), (a, c), (b, a), (c, a)},
then A|1 = {(a), (b), (c)}. We use a similar notation for projecting a particular
tuple: if t = (a, b, c) then t|2 denotes the tuple (a, b). We also use t(x) to denote
the value of the position of x in t. For example, if x was the second introduced

bound variable, then t(x) = b for t = (a, b, c). We let changed(n) denote the
set of tuples that has affected n. We let bounds(n) denote the number of bound
variables at node n (which is equal to the number of nodes of the form ∀x or
∃x on the path from n to the root node). We use the operator ⊕ for replacing
the current bindings of a mapping with new ones. For example, the result of
{x 7→ a, y 7→ a, z 7→ b} ⊕ {x 7→ b, y 7→ b} is {x 7→ b, y 7→ b, z 7→ b}. Finally,
we assume that nodes of the form ∃x and ∨ have a data structure min heap for
maintaining the minimum value of each of its penalty mappings.

Now, given a change to a current configuration k, resulting in k′, assume that
{Si} is the set of affected set variables in a formula F with an initialised penalty
tree T. The call submit(n, void ,A, k, k′) must now be made for each leaf n of T
that represents a subformula stated on Si, where A is the set of affected tuples.

Example 8. Recall k = {S 7→ {a, b}, T 7→ {a, b, c}, I 7→ {a}} and m = 1 of
Example 7, and keep the initialised tree T in Figure 2 in mind. Let k′ = {S 7→
{a, b}, T 7→ {a, c}, I 7→ {a}}, i.e., b was removed from k(T). The function submit
will now be called twice, once for each leaf in T containing T .

Starting with the leaf n11 representing the formula x ∈ T , submit is called
with submit(n11, void , {(b)}, k, k′). This gives the call update(n11, void , {(b)})
which replaces the binding of (b) in p(n11) with (b) 7→ 1 (since b is no longer in
T). Since a leaf node has no children and n11 is not the root node, submit(n12,
n11, {(b)}, k, k′) is called where n12 = parent(n11). Since n12 is an ∧-node,
update(n12,n11, {b}) implies that the binding of (b) in p(n12) is updated with
the difference p(n11)− p′(n11) (which is 1 in this case). Hence, the new value of
p(n12)(b) is 1. Since there are no other affected children of n12 and n12 is not the
root node, submit(n13,n12, {(b)}, k, k′) is called where n13 = parent(n12). Since
n13 is an ∨-node, update(n13,n12, {b}) gives that the binding of (b) in p(n13) is
updated with the minimum of p(n12)(b) and the values of p(n)(b) for any other
child n of n13. Since the only other child of n13 gives a 0 for this value, p(n13)(b)
remains 0. Now, call submit(n3,n13, {(b)}, k, k′) where n3 = parent(n13). The
call update(n3,n13, {b}) gives that p(n3)(b) is unchanged (since p(n13)(b) was
unchanged). Now, not all possibly affected children of n3 are done since the leaf
n21 representing the formula x /∈ T has not yet been propagated. By following
a similar reasoning for the nodes n21 and n22 = parent(n21) we will see that
the value of p(n22)(b) changes from 1 to 0 (since b is now in T). When this is
propagated to n3 by submit(n3,n22, {(b)}, k, k′), the value of p(n3)(b) will also
change from 1 to 0. A similar reasoning for parent(n3), parent(parent(n3)) and
the root node gives the same changes to their penalty mappings consisting of
only () 7→ 1. This will lead to an overall penalty decrease of 1 and hence, the
penalty of formula (3) with respect to k′ is 0, meaning that (3) is satisfied under
k′. The values of the changed penalty mappings with respect to k′ of T are
shown in parentheses in Figure 2.

6 Neighbourhood Selection

When solving a problem with local search, it is often crucial to restrict the
initial configuration and the neighbourhood function used so that not all the
constraints need to be stated explicitly. It is sometimes hard by local search
alone to satisfy a constraint that can easily be guaranteed by using a restricted
initial configuration and neighbourhood function. For example, if a set must have
a fixed cardinality, then, by defining an initial configuration that respects this
and by using a neighbourhood function that keeps the cardinality constant (for
example by swapping values in the set with values in its complement), an explicit
cardinality constraint need not be stated. Neighbourhoods are often designed in
such an ad-hoc fashion. With the framework of ∃SOL+, it becomes possible to
reason about neighbourhoods and invariants:

Definition 6. Let formula φ model a CSP P , let K be the set of all config-
urations for P , and let formula ψ be such that k |= φ implies k |= ψ for all
configurations k ∈ K. A neighbourhood function N : K → 2K is invariant for ψ
if k |= ψ implies k′ |= ψ for all k′ ∈ N (k).

Intuitively, the formula ψ is implied by φ and all possible moves take a
configuration satisfying ψ to another configuration satisfying ψ. The challenge
then is to find a suitable neighbourhood function for a formula φ.

Sometimes (as we will see in Section 7), given formulas φ and ψ satisfying
Definition 6, it is possible to find a formula δ such that φ is logically equivalent
to δ ∧ ψ. If the formula δ is smaller than φ, then the speed of the local search
algorithm can be greatly increased since the incremental penalty maintenance is
faster on smaller penalty trees.

7 Application: A Financial Portfolio Problem

After formulating a financial portfolio optimisation problem, we show how to
exactly solve real-life instances thereof in our local search framework. This is
impossible with the best-known complete search algorithm and competitive with
a fast approximation method based on complete search.

7.1 Formulation

The synthetic-CDO-Squared portfolio optimisation problem in financial mathe-
matics has practical applications in the credit derivatives market [7]. Abstracting
the finance away and assuming (not unrealistically) interchangeability of all the
involved credits, it can be formulated as follows.1 Let V = {1, . . . , v} and let
B = {1, . . . , b} be a set of credits. An optimal portfolio is a set of v subsets
Bi ⊆ B, called baskets, each of size r (with 0 ≤ r ≤ b), such that the maximum
intersection size of any two distinct baskets is minimised.

1 We use the notation of the related balanced incomplete block design problem.

c r e d i t s
basket 1 1 1 1 0 0 0 0 0
basket 2 1 1 0 1 0 0 0 0
basket 3 1 1 0 0 1 0 0 0
basket 4 1 1 0 0 0 1 0 0
basket 5 0 0 1 1 1 0 0 0
basket 6 0 0 1 1 0 1 0 0
basket 7 0 0 1 1 0 0 1 0
basket 8 0 0 0 0 1 1 0 1
basket 9 0 0 0 0 1 0 1 1
basket 10 0 0 0 0 0 1 1 1

Table 1. An optimal solution to 〈10, 8, 3, λ〉, with λ = 2.

There is a universe of about 250 ≤ b ≤ 500 credits. A typical portfolio
contains about 4 ≤ v ≤ 25 baskets, each of size r ≈ 100. Such real-life instances
of the portfolio optimisation problem are hard, so we transform it into a CSP by
also providing a targeted value, denoted λ (with λ < r), for the maximum of the
pairwise basket intersection sizes in a portfolio. Hence the following formulation
of the problem:

∀ i ∈ V : |Bi| = r (4)

∀ i1 6= i2 ∈ V : |Bi1 ∩Bi2 | ≤ λ (5)

We parameterise the portfolio CSP by a 4-tuple 〈v, b, r, λ〉 of independent pa-
rameters. The following formula gives an optimal lower bound on λ [13]:2

λ ≥
⌈ rv

b ⌉2(rv mod b) + ⌊ rv
b ⌋2(b − rv mod b) − rv

v(v − 1)
(6)

7.2 Using Complete Search

One way of modelling a portfolio is in terms of its incidence matrix, which is a
v × b matrix, such that the entry at the intersection of row i and column j is
1 if j ∈ Bi and 0 otherwise. The constraints (4) and (5) are then modelled by
requiring, respectively, that there are exactly r ones (that is a sum of r) for each
row and a scalar product of at most λ for any pair of distinct rows. An optimal
solution, under this model, to 〈10, 8, 3, λ〉 is given in Table 1, with λ = 2.

The baskets are indistinguishable, and, as stated above, we assume that all
the credits are indistinguishable. Hence any two rows or columns of the incidence
matrix can be freely permuted. Breaking all the resulting v! · b! symmetries can
in theory be performed, for instance by v! · b! − 1 (anti-)lexicographical order-
ing constraints [4]. In practice, strictly anti-lexicographically ordering the rows
(since baskets cannot be repeated in portfolios) as well as anti-lexicographically

2 It often improves the bound reported in [7] and negatively settles the open question
therein whether the 〈10, 350, 100, 21〉 portfolio exists or not.

ordering the columns (since credits can appear in the same baskets) works quite
fine for values of b up to about 36, due to the constraint (5), especially when
labelling in a row-wise fashion and trying the value 1 before the value 0. How-
ever, this is one order of magnitude below the typical value for b in a portfolio.
In [7], we presented an approximate and often extremely fast method of solv-
ing real-life instances of this problem by complete search, even for values of λ
quite close, if not identical, to the lower bound in (6). It is based on embedding
(multiple copies of) independent sub-instances into the original instance. Their
determination is itself a CSP, based on (6).

7.3 Using Local Search

It is easy to model the portfolio problem in ∃SOL+ using additional set variables.
The problem can be modelled by the following formula:

∃B1, . . . ,∃Bv∃i<jI(i,j) φ1 ∧ φ2 ∧ φ3 (7)

where ∃i<jI(i,j) is a shorthand for the sequence of quantifications ∃I(1,2), . . . , I(i,j),
. . . for all i < j.3 The formula φ1 = |B1| = r ∧ · · · ∧ |Bv| = r states that each
set Bi is of size r. Using similar conventions, the formula φ2 = ∀i < j ∀x(x ∈
I(i,j) ↔ (x ∈ Bi ∧ x ∈ Bj)) states that each set I(i,j) is the intersection of Bi

and Bj . Finally, the formula φ3 = ∀i < j|I(i,j)| ≤ λ states that the intersection
size of any Bi and Bj should be less than or equal to λ.

The local search algorithm can be made more efficient by using the ideas
in Section 6. First, we define a neighbourhood function that is invariant for the
formula φ1. Assuming that the initial configuration for (7) respects φ1, the neigh-
bourhood function that swaps any value in anyBi to any value in its complement
is invariant for φ1. We denote this neighbourhood function by exchange. We may
even extend exchange such that it is invariant also for φ2. In order to do this,
we assume that the initial configuration for (7) respects φ1∧φ2. Now, we extend
exchange in the following way. Given a configuration k and a configuration k′ in
exchange(k) where Bi is the only variable affected by the change of k to k′, the
variables I(i,j) such that there exists a subformula x ∈ I(i,j) ↔ (x ∈ Bi∧x ∈ Bj)
or x ∈ I(j,i) ↔ (x ∈ Bj ∧x ∈ Bi) are all updated (by adding or removing a value
to I(i,j)) so that those formulas still hold.

We use a similar algorithm to the one in [2] for solving the portfolio problem
with local search, i.e., a Tabu-search algorithm with a restarting criterion if no
overall improvement was reported after a certain number of iterations.

7.4 Results

The experiments were run on an Intel 2.4 GHz Linux machine with 512 MB
memory. The local search framework was implemented in OCaml and the com-
plete search algorithm was coded in SICStus Prolog.

3 This shorthand is a purely conservative extension of ∃SOL+ and does not increase
the expressiveness.

The local search algorithm performs well on this problem. For example, the
easy instance 〈10, 35, 11, 3〉 is solved in 0.2 seconds, the slightly harder instance
〈10, 70, 22, 6〉 in 0.6 seconds, and the real-life instance 〈15, 350, 100, 24〉 in 133.9
seconds. Bear in mind that these results were achieved (by our current prototype
implementation) under the assumption that no built-in constraints existed, and
thus that the incremental penalty maintenance algorithms were automatically
generated as described in this paper.

For comparison, the complete search approach without embeddings needs 0.6
seconds for finding a first solution of 〈10, 35, 11, 3〉, 929.8 seconds for 〈10, 70, 22, 6〉,
and does not terminate within several hours of CPU time for 〈15, 350, 100, 24〉.

Using the extended implementation [13] of the embedding method of [7]
for the real-life instance 〈15, 350, 100, 24〉, two embeddings were constructed but
both timed out after 100 seconds. Hence, local search approaches can outperform
even this approximation method.

8 Conclusion

Summary. In the context of local search, we have introduced a scheme that,
from a high-level problem model in existential second-order logic with counting
(∃SOL+), automatically synthesises incremental penalty calculation algorithms.
This bears significant benefits when ad hoc constraints are necessary for a par-
ticular problem, as no adaptation by the user of the modelling part of the local
search system is then required. The performance of the scheme has been demon-
strated by solving real-life instances of a financial portfolio design problem that
seem unsolvable in reasonable time by complete search.
Related Work. The usage of existential second-order logic (∃SOL) as a mod-
elling language has also been advocated in [9]. The motivation there was rather
that any automated reasoning about constraint models must necessarily first
be studied on this simple core language before moving on to extensions thereof.
Modern, declarative constraint modelling languages, such as NP-SPEC [3], OPL
[14], and ESRA [6], are extensions of ∃SOL. In contrast, our motivation for ∃SOL
is that it is a sufficient language for our purpose, especially if extended (only)
with counting.

The adaptation of the traditional combinators of constraint programming for
local search was pioneered in [15]. The combinators there include logical con-
nectives (such as ∧ and ∨), cardinality operators (such as exactly and atmost),
reification, and expressions over variables. We extend these ideas here to the
logical quantifiers (∀ and ∃). This is not just a matter of simply generalising
the arities and penalty calculations of the ∧ and ∨ connectives, respectively, but
made necessary by our handling of set variables over which one would like to
iterate, unlike the scalar variables of [11, 15].
Future Work. We have made several simplifying assumptions in order to re-
strict this paper to its fundamental ideas. For instance, the handling of both
scalar variables and set variables requires special care in the calculation of penal-
ties, and has been left as future work. Also, many more shorthand notations than

the ones used in this paper could be added for the user’s convenience, such as
quantification bounded over a set rather than the entire universe. Furthermore,
it would be useful if appropriate neighbourhood functions that are invariant for
some of the constraints could automatically be generated from an ∃SOL+ model.
Conclusion. Our first computational results are encouraging and warrant fur-
ther research into the automatic synthesis of local search algorithms.
Acknowledgements. This research was partially funded by Project C/1.246/
HQ/JC/04 of EuroControl. We thank Olof Sivertsson for his contributions to
the experiments on the financial portfolio problem, as well as the referees for
their useful comments.

References

1. E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

2. M. Ågren, P. Flener, and J. Pearson. Set variables and local search. In R. Barták
and M. Milano, editors, Proceedings of CP-AI-OR’05, volume 3524 of LNCS, pages
19–33. Springer-Verlag, 2005.

3. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NPSPEC: An executable speci-
fication language for solving all problems in NP. In G. Gupta, editor, Proceedings

of PADL’99, volume 1551 of LNCS, pages 16–30. Springer-Verlag, 1999.
4. J. M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predi-

cates for search problems. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors,
Proceedings of KR’96, pages 148–159. Morgan Kaufmann, 1996.

5. R. Fagin. Contributions to the Model Theory of Finite Structures. PhD thesis, UC
Berkeley, California, USA, 1973.

6. P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a relational language
for modelling combinatorial problems. In M. Bruynooghe, editor, LOPSTR’03:

Revised Selected Papers, volume 3018 of LNCS, pages 214–232. Springer-Verlag,
2004.

7. P. Flener, J. Pearson, and L. G. Reyna. Financial portfolio optimisation. In
M. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages 227–241.
Springer-Verlag, 2004.

8. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
9. T. Mancini. Declarative Constraint Modelling and Specification-Level Reasoning.

PhD thesis, Università degli Studi di Roma “La Sapienza”, Italy, 2004.
10. L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.

In G. Smolka, editor, Proceedings of CP’97, volume 1330 of LNCS, pages 237–251.
Springer-Verlag, 1997.

11. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.
ACM SIGPLAN Notices, 37(11):101–110, 2002. Proceedings of OOPSLA’02.

12. A. Nareyek. Using global constraints for local search. In E. Freuder and R. Wallace,
editors, Constraint Programming and Large Scale Discrete Optimization, volume 57
of DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
pages 9–28. American Mathematical Society, 2001.

13. O. Sivertsson. Construction of synthetic CDO squared. Master’s thesis, Comput-
ing Science, Department of Information Technology, Uppsala University, Sweden,
December 2005. Available as Technical Report 2005-042 at http://www.it.uu.

se/research/reports/2005-042/.

14. P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

15. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-based combinators for local
search. In M. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages
47–61. Springer-Verlag, 2004.

16. J. P. Walser. Integer Optimization by Local Search: A Domain-Independent Ap-

proach, volume 1637 of LNCS. Springer-Verlag, 1999.

