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omAbstra
t. We give an approximate and often extremely fast method ofsolving a portfolio optimisation (PO) problem in �nan
ial mathemati
s,whi
h has appli
ations in the 
redit derivatives market. Its 
orrespond-ing satisfa
tion problem is 
losely related to the balan
ed in
ompleteblo
k design (BIBD) problem. However, typi
al PO instan
es are an or-der of magnitude larger than the largest BIBDs solved so far by globalsear
h. Our method is based on embedding sub-instan
es into the origi-nal instan
e. Their determination is itself a CSP. This allows us to solve atypi
al PO instan
e, with over 10746 symmetries. The high quality of ourapproximate solutions 
an be assessed by 
omparison with a tight lowerbound on the 
ost. Also, our solutions suÆ
iently improve the 
urrentlybest ones so as to often make the di�eren
e between having or not havinga feasible transa
tion due to investor and rating-agen
y 
onstraints.1 Introdu
tionThe stru
tured 
redit market has seen two new produ
ts over the last de
ade:
redit derivatives and 
redit default obligations (CDOs). These new produ
tshave 
reated the ability to leverage and transform 
redit risk in ways not possiblethrough the traditional bond and loan markets.CDOs typi
ally 
onsist of a spe
ial purpose vehi
le that has 
redit exposureto around one hundred di�erent issuers. Su
h vehi
les pur
hase bonds and loansand other �nan
ial assets through the issuan
e of notes or obligations with vary-ing levels of risk. In a typi
al stru
ture, 
redit losses in the underlying pool areallo
ated to the most subordinated obligations or notes �rst. A natural progres-sion of the market has been to use notes from existing CDOs as assets into anew generation of CDOs, 
alled CDO Squared or CDO of CDO [9℄.The 
redit derivatives market has allowed a more eÆ
ient me
hanism for
reating CDO Squared. The idea is to use sub-pools of 
redit default swapsinstead of notes. The sub-pools are 
hosen from a 
olle
tion of 
redits with thelevel of liquidity and risk adequate to the potential investors. These transa
tionsare sometimes labelled syntheti
 CDO Squared.



In the 
reation of a syntheti
 CDO, the natural question arises on how tomaximise the diversi�
ation of the sub-pools given a limited universe of previ-ously 
hosen 
redits. In a typi
al CDO Squared, the number of available 
reditsranges from 250 to 500 and the number of sub-pools from 4 to as many as 25.The investment banker arranging for a CDO Squared usually seeks to maximisethe return of the subordinated notes under the 
onstraints imposed by the rat-ing agen
ies and the investors. This is a 
hallenge that typi
ally is only partiallyaddressed, in part due to the diÆ
ulty of pri
ing the underlying assets [5℄.3In this paper, we analyse the already �nan
ially relevant abstra
ted problemof sele
ting the 
redits 
omprising ea
h of the sub-pools with a minimal overlap,or maximum diversi�
ation. The minimisation of the overlap usually results inbetter ratings for the notes, typi
ally resulting in more eÆ
ient stru
tures.The remainder of this paper is organised as follows. In Se
tion 2, we dis
ussthe well-known problem of balan
ed in
omplete blo
k design (BIBD), whi
his related to portfolio optimisation. In Se
tion 3, we formulate the portfoliooptimisation (PO) problem, whi
h is an optimisation problem, and show itsrelationship to the BIBD problem, whi
h is a satisfa
tion problem. Sin
e theknown methods of solving BIBD instan
es by global sear
h do not s
ale for thesolution of typi
al instan
es of the satisfa
tion version of the PO problem, weintrodu
e in Se
tion 4 a method of approximately solving the PO problem, usinga notion of embedding small o

urren
es of an instan
e in a larger one. Finally,in Se
tion 5, we 
on
lude, dis
uss related work, and outline future work.2 Balan
ed In
omplete Blo
k DesignsLet V be any set of v elements, 
alled varieties. Let B = f1; : : : ; bg. A balan
edin
omplete blo
k design (BIBD) is a bag of b subsets Bj � V , 
alled blo
ks, ea
hof size k: 8j 2 B : jBj j = k (1)with 2 � k < v,4 su
h that ea
h pair of distin
t varieties o

urs together inexa
tly � blo
ks. Let Vi be the set of the identi�ers of the blo
ks in whi
hvariety i o

urs: Vi = fj 2 B j i 2 Bjg. The Vi are here 
alled 
o-blo
ks. Theprevious balan
ing 
ondition 
an now be formulated by requiring that any twodistin
t 
o-blo
ks interse
t over exa
tly � elements:8 i1 6= i2 2 V : jVi1 \ Vi2 j = � (2)An implied 
onstraint is that ea
h 
o-blo
k has the same number r of elements,whose value 
an be determined:8i 2 V : jVij = r = � � (v � 1)k � 1 (3)3 There are very few publi
ly a

essible papers we 
an 
ite in this introdu
tion, asmost are 
on�dential due to the potential �nan
ial value of their results.4 If k = v, then it is a 
omplete blo
k design.



This 
onstraint and the already mentioned 2 � k < v imply that none of the
o-blo
ks 
an be equal: � < r (4)A further implied 
onstraint is that the 
o-blo
ks and blo
ks have together thesame number of elements: v � r = b � k (5)These implied 
onstraints are insuÆ
ient existen
e 
onditions for a BIBD.A BIBD is thus parameterised by a 5-tuple hv; b; r; k; �i of parameters, anythree of whi
h are independent. Originally intended for the design of statisti
alexperiments, BIBDs also have appli
ations in 
ryptography and other domains.See [1℄, or http://mathworld.wolfram.
om/Blo
kDesign.html, or Problem 28at http://www.
splib.org/ for more information.Blo
ks and 
o-blo
ks are dual: an alternative formulation is that a BIBD isa set of v subsets Vi � B, ea
h of size r, su
h that the pre
eding 
onstraints (1)to (5) hold, where blo
k Bj is then the set of varieties 
omprising it, that isBj = fi 2 V j j 2 Vig.One way of modelling a BIBD is in terms of its in
iden
e matrix, whi
h is av � b matrix, su
h that the entry at the interse
tion of row i and 
olumn j is 1if i 2 Bj (that is j 2 Vi) and 0 otherwise. The �rst three 
onstraints are thenmodelled by requiring, respe
tively, that there are exa
tly k ones (that is a sumof k) for ea
h 
olumn, a s
alar produ
t of exa
tly � for any pair of distin
t rows,and exa
tly r ones (that is a sum of r) for ea
h row.Sin
e the varieties and blo
ks are indistinguishable, any two rows or 
olumnsof the in
iden
e matrix 
an be freely permuted. Breaking all the resulting v! � b!symmetries 
an in theory be performed, for instan
e by v! � b!� 1 (anti-) lexi
o-graphi
al ordering 
onstraints between ve
tors extra
ted from the in
iden
e ma-trix [4, 8℄. In pra
ti
e, stri
tly anti-lexi
ographi
ally ordering (denoted by >lex)the rows (sin
e 
o-blo
ks 
annot be repeated) as well as anti-lexi
ographi
allyordering (denoted by �lex) the 
olumns (sin
e blo
ks 
an be repeated) worksquite �ne, due to the balan
ing 
onstraint (2) [7℄, espe
ially when labelling in arow-wise fashion and trying the value 1 before the value 0. This mu
h improvesthe best previously reported results under global sear
h and allows the solution ofpreviously unsolved instan
es. By simultaneously performing symmetry-breakingduring sear
h in the SBDD style [6℄, but augmenting it with group-theoreti
alinsights and some heuristi
s, improvements of another order of magnitude 
an bea
hieved, but only when 
omputing all the solutions [12℄. The instan
es solvedin [12℄ with 4 � v � 25, whi
h is the range of interest to us, have values of b upto 50, whi
h is an order of magnitude below our range of interest.3 Portfolio OptimisationAfter pre
isely formulating the portfolio optimisation (PO) problem of the in-trodu
tion and exhibiting its relationship to the BIBD problem, we derive animportant implied 
onstraint for the PO problem, before showing how to modelit and how to exa
tly solve sub-real-life-s
ale instan
es thereof.



3.1 FormulationThe portfolio optimisation (PO) problem is formulated as follows. Let V =f1; : : : ; vg and let B = f1; : : : ; bg be a set of 
redits. A portfolio is a set of vsubsets Vi � B, 
alled sub-pools, ea
h of size r:8i 2 V : jVij = r (6)su
h that the maximum interse
tion size of any two distin
t sub-pools is min-imised. A portfolio is thus parameterised by a 3-tuple hv; b; ri of independentparameters. By abuse of language, hv; b; ri denotes even sub-optimal solutions.There is a universe of about 250 � b � 500 
redits. A typi
al portfolio
ontains about 4 � v � 25 sub-pools, ea
h of size r � 100.Note that we have formulated the PO problem using the same notation as forthe BIBD problem. The relationship with the (
o-blo
k formulation of the) BIBDproblem is indeed striking, with 
redits taking the role of the blo
k identi�ers,sub-pools taking the role of the 
o-blo
ks, and the 
o-blo
k size being �xed, asper the related 
onstraints (3) and (6). But the similarity ends there, as the BIBDbalan
ing 
ondition (2) refers to a 
onstant � as the 
o-blo
k interse
tion size,while the maximum 
o-blo
k interse
tion size is to be minimised in a portfolio.In other words, the BIBD problem is a 
onstraint satisfa
tion problem (CSP),while the PO problem is a 
onstraint optimisation problem (COP). Also, thetypi
al value of b for a portfolio is an order of magnitude larger than what hasbeen tried so far with global sear
h for BIBDs [12℄.For synta
ti
 
ontinuity, let us 
all � the maximum of the interse
tion sizesin a portfolio. This gives us the following PO 
onstraint, related to the BIBD
onstraint (2): 8 i1 6= i2 2 V : jVi1 \ Vi2 j � � (7)where � is then the 
ost expression that is to be minimised:minimise � (8)with � � r (note the di�eren
e with the BIBD implied 
onstraint (4)).We parameterise a PO CSP by a 4-tuple hv; b; r; �i of independent parame-ters, where � need not be the minimal value. Note that PO CSPs with � = rare trivial to 
onstru
t, as it suÆ
es to make all 
o-blo
ks equal.3.2 An Implied ConstraintWe now show how to derive a tight lower bound on � for the PO problem,and argue why the PO problem does not (seem to) have a 
ounterpart of theBIBD 
onstraint (1) on the blo
k sizes, and hen
e not a 
ounterpart of the BIBDimplied 
onstraint (5). The following theorem exa
tly �ts the requirements ofthe PO problem, provided all the 
redits are used in the portfolio, whi
h is oftena realisti
 assumption:



Theorem 1 (Corr�adi [2, 10℄). Let V1; : : : ; Vv be r-element sets and B be theirunion. If jVi1 \ Vi2 j � � for all i1 6= i2, thenjBj � r2 � vr + (v � 1) � �Sin
e jBj = b here, we get as a PO implied 
onstraint a tight lower bound on� by rearranging the previous formula and rounding up so that � is a naturalnumber:5 � � �r � (r � v � b)b � (v � 1) � ^ � � 0 (9)The lower bound predi
ted by this 
onstraint is not always exa
t, as shown inthe following example.Example 1. For h10; 8; 3i, we obtain � � d 1112e, hen
e � � 1. For h9; 8; 3i, weobtain � � d 5764e, hen
e � � 1. However, it is not diÆ
ult to show (with themethod to be shown in Se
tion 3.3) that there are no 10 or even 9 subsets ofsize 3 in an 8-element set su
h that they interse
t pairwisely over at most � = 1element. In fa
t, these two instan
es are at best solved with � = 2; some ofthe sets of su
h optimal solutions pairwisely interse
t over only 1 element. (Thisexample will be 
ontinued in Example 2.)It is tempting to think that tight bounds 
an be similarly obtained on theblo
k sizes. Indeed, a portfolio hv; b; ri be
omes a BIBD if b divides v �r and if allthe sub-pools must have pairwise interse
tions of exa
tly (rather than at most)� elements: the integer value k = v�rb is then obtained via the BIBD implied
onstraint (5). In 
ase b does not divide v � r, one may be tempted to adjust theportfolio parameters �rst. However, BIBDs of the size 
onsidered here, namelyfor 250 � b � 500 blo
ks, are about one order of magnitude larger than whathas been tried so far in global sear
h, and our experiments suggest that thosemethods do not s
ale to BIBDs of that size, espe
ially that the BIBD existen
e
onditions are very weak. Also, no PO 
onstraint for
es the 
redits to spread insome manner over the sub-pools, so that neither d v�rb e is an upper bound on k,nor b v�rb 
 is a lower bound on k. Indeed, we have designed portfolios where theblo
k sizes are distributed over the entire 1; : : : ; v range (see Example 2).It is also tempting to think that it is suÆ
ient (and easier) to �nd sub-poolswhose pairwise interse
tions are of size exa
tly �, rather than upper boundedby �. However, there is no solution to h10; 8; 3i where the pairwise interse
tionsizes are all equal to � = 2, whereas Example 1 establishes the existen
e of asolution where the pairwise interse
tion sizes are upper bounded by � = 2.3.3 Modelling and Exa
t SolutionOne way of modelling a portfolio is in terms of its in
iden
e matrix, whi
h is av � b matrix, su
h that the entry at the interse
tion of row i and 
olumn j is5 The same bound 
an be obtained by inje
ting the resolution of the BIBD implied
onstraint (5) for k into the BIBD implied 
onstraint (3) and then resolving for �.



blo
ks/
redits1 1 1 1 0 0 0 0 02 1 1 0 1 0 0 0 03 1 1 0 0 1 0 0 04 1 1 0 0 0 1 0 05 1 1 0 0 0 0 1 06 1 1 0 0 0 0 0 17 1 0 1 1 0 0 0 08 1 0 1 0 1 0 0 09 1 0 1 0 0 1 0 010 1 0 1 0 0 0 1 0Table 1. An optimal solution to h10; 8; 3i, with 
ost � = 2. The rows 
orrespond tothe 
o-blo
ks (sub-pools).1 if j 2 Vi and 0 otherwise. The PO 
onstraints (6) and (7) are then modelledby requiring, respe
tively, that there are exa
tly r ones (that is a sum of r) forea
h row and a s
alar produ
t of at most � for any pair of distin
t rows.The following example gives an optimal portfolio under this model, and uses itto show that the PO problem does not enjoy the optimal sub-stru
ture property.Example 2. (Continuation of Example 1.) An optimal solution to h10; 8; 3i, with
ost � = 2, is given in Table 1. Note that the blo
k sizes are distributed over theentire 1; : : : ; v range, namely one blo
k ea
h of sizes 1, 5, 6, 10, and four blo
ksof size 2. Now, for h8; 8; 3i, we obtain � � d 67e, hen
e � � 1, and it turns outthat there are 8 subsets of size 3 in an 8-element set su
h that they interse
tpairwisely over at most 1 element. We 
an now see why the PO problem doesnot enjoy the optimal sub-stru
ture property, namely that an optimal solutionto an instan
e does not ne
essarily 
ontain optimal solutions to sub-instan
es.Indeed, the optimal solution to h10; 8; 3i in Table 1, with 
ost 2, 
ontains no 8subsets of size 3 in the 8-element set su
h that they interse
t pairwisely over atmost 1 element. Note that the last 4 sets ea
h have pairwise interse
tions of size1 with 4 of the �rst 6 sets, while all other pairwise interse
tions are of size 2.The tight lower bound on the 
ost expression � suggests a (naive) method ofexa
tly solving (small instan
es of) the PO COP as a sequen
e of PO CSPs: set� to some value \
omfortably" above that tight lower bound, and lower it by 1ea
h time that CSP has a solution.The sub-pools are indistinguishable, and we assume (in a �rst approximation)that all the 
redits are indistinguishable. Hen
e any two rows or 
olumns ofthe in
iden
e matrix 
an be freely permuted. Breaking all the resulting v! �b! symmetries 
an in theory be performed, for instan
e by v! � b! � 1 (anti-)lexi
ographi
al ordering 
onstraints [4℄. In pra
ti
e, in the CSP version of thePO problem (where a value for � is given), stri
tly anti-lexi
ographi
ally orderingthe rows (sin
e sub-pools 
annot be repeated in portfolios with � < r) as wellas anti-lexi
ographi
ally ordering the 
olumns (sin
e 
redits 
an appear in the



same sub-pools) works quite �ne for values of b up to about 36, due to the
onstraint (7), espe
ially when labelling in a row-wise fashion and trying thevalue 1 before the value 0. However, this is one order of magnitude below thetypi
al value for b in a portfolio. Also, the absen
e of a 
onstraint on the blo
ksizes makes hv; b; r; �i mu
h harder to solve than hv; b; r; k; �i, if su
h a k exists.Hen
e another method than this BIBD-style approa
h is ne
essary, or we needto design approximately optimal portfolios, as dis
ussed next.4 Approximate Solution to Portfolio OptimisationOur method of eÆ
iently �nding possibly approximate solutions to the portfoliooptimisation (PO) problem rests on two key insights, explained �rst.4.1 Under
onstrainednessThe �rst insight 
omes from observing that the typi
al values of v (the numberof sub-pools) are quite small for the typi
al values of b (the number of 
redits)and r (the size of the sub-pools), as shown in the following example.Example 3. The �rst three 
olumns of Table 2 
hart how the lower bound on� evolves with v � 2 a

ording to the PO implied 
onstraint (9) when b = 350and r = 100. The lower bound on � initially grows from 0 for v = 2, to between5 and 26 for the typi
al values of v (whi
h are between 4 and 25), but does notgrow mu
h after that; in fa
t, it never ex
eeds 29, whi
h it rea
hes for v = 127.This e�e
t is exa
erbated for smaller values of b and r, as shown in the fourthand �fth 
olumns of Table 2.While this example illustrates a predi
tion weakness of Theorem 1 for largevalues of v, the main lesson is that there is a range for v in whi
h the lowerbound on � does not 
hange qui
kly for �xed values of b and r. For the rangesof values of v, b, and r that are of interest here, v is within that zone.The 
onsequen
e is that the PO problem instan
es of interest here seemunder
onstrained in the sense that one may get (many) more than the intendedv sub-pools of the same size r from the same universe of b 
redits, without seeingthe maximum interse
tion size of the sub-pools in
rease. Dually, one may drawthe intended v sub-pools of the same size r from a (mu
h) smaller universethan the available b 
redits, without seeing the maximum interse
tion size ofthe sub-pools in
rease. For instan
e, Theorem 1 predi
ts that v = 10 sub-poolsof r = 100 
redits ea
h may be drawn with a maximum interse
tion size of 21from a universe of 347 � b � 357 
redits. Again, this e�e
t is exa
erbated forsmaller values of b and r. This under
onstrainedness may lead to 
onsiderable
ombinatorial explosion. In fa
t, we have been unable to solve any PO CSPinstan
es of the magnitude 
onsidered here with the BIBD-style method outlinedin Se
tion 3.3, even when setting a quite high value for � and allo
ating an entireCPU week. Labelling just one row of the in
iden
e matrix already tends to takea lot of time after the �rst few rows.



b = 350 and r = 100 b = 35 and r = 10unrounded rounded unrounded rounded time ba
ktra
kslower bound lower bound lower bound lower bound to �rst to �rstv on � on � on � on � solution solution2 -42.86 0 -4.286 0 0.01 03 -7.14 0 -0.714 0 0.04 04 4.76 5 0.476 1 0.09 15 10.71 11 1.071 2 0.26 1846 14.28 15 1.428 2 0.74 6587 16.67 17 1.667 2 1.23 9218 18.37 19 1.837 2 4.89 88729 19.64 20 1.964 2 ? + 0.85 ? + 56610 20.63 21 2.063 3 1.40 56711 21.43 22 2.143 3 1.62 56712 22.08 23 2.208 3 2.07 66313 22.62 23 2.262 3 3.01 187814 23.08 24 2.308 3 3.80 203815 23.47 24 2.347 3 4.82 224516 23.81 24 2.381 3 9.94 933117 24.11 25 2.411 3 12.97 10221. . . 25 322 25.17 26 2.517 3 39.59 16078. . . 26 329 26.02 27 2.602 3 117.72 35305. . . 27 347 27.02 28 2.702 3 ? ?. . . 28 3127 28.01 29 2.801 3 ? ?. . . 29 3Table 2. Unrounded and rounded lower bounds on the maximum interse
tion size �for v � 2 
o-blo
ks and b blo
ks of size r, as given by the PO implied 
onstraint (9).4.2 EmbeddingsThe se
ond insight is that 
omputing optimal solutions is not always pra
ti
al.As shown below, we 
an often very eÆ
iently solve real-life PO problem instan
eswith values for � that are within 5% of, if not identi
al to, the lower bound givenby the PO implied 
onstraint (9). Sin
e that lower bound is not always exa
t, andsin
e there is 
urrently no better or faster way of solving real-life PO probleminstan
es, our results are suÆ
ient. Some may even turn out to be optimal. Sowe investigate the approximate solution of real-life PO problem instan
es. Theidea is to embed small PO problem instan
es within a large, real-life one, asillustrated in the following example.Example 4. We 
an embed 10 o

urren
es of h10; 35; 10i within h10; 350; 100i.A not ne
essarily optimal solution to the PO COP h10; 350; 100i 
an be builtby making 10 
opies of ea
h 
olumn in any possibly optimal solution to the PO



COP h10; 35; 10i. The �fth 
olumn of Table 2 gives � � 3 for the PO COPh10; 35; 10i. Solving the PO CSP h10; 35; 10; 3i with the BIBD-style method out-lined in Se
tion 3.3 is a matter of about one CPU se
ond and 567 ba
ktra
ks,and su
h a portfolio does exist. Sin
e 10 � 3 = 30, this means that we 
an buildfrom it a solution to the PO CSP h10; 350; 100; 30i. Sin
e the third 
olumn ofTable 2 gives � � 21 for the PO COP h10; 350; 100i, the built solution with 
ost� = 30 is quite far above that lower bound and may thus be sub-optimal. (Thisexample will be 
ontinued in Example 6.)This kind of embedding is a standard 
on
ept for BIBDs. Indeed, a BIBDhv; b; r; k; �i is said to be an m-multiple BIBD if hv; bm ; rm ; k; �m i parameterises aBIBD under the 
onstraints (1) to (5) [1℄. In other words, shrinking the numberof blo
ks by a fa
tor m shrinks the sizes of the 
o-blo
ks and their interse
tionsby the same fa
tor m (provided they all divide m). Sin
e there are no exis-ten
e 
onditions for portfolios, whose design is a COP rather than a CSP, the
orresponding 
on
ept for portfolios has an easier de�nition, given next.De�nition 1. A portfolio hv; b; ri is an m-multiple portfolio if m divides bothb and r. We denote this by hv; b; ri = m � hv; bm ; rmi.For the same reason, we 
an only 
ompare the predi
ted lower bounds on themaximum sub-pool interse
tion sizes, rather than the a
tual interse
tion sizes asfor BIBDs. The following property establishes that the same ratio holds betweenthose lower bounds for portfolios and their multiples.Property 1. The PO implied 
onstraint (9) predi
ts � � d�e for hv; b; ri if andonly if it predi
ts � � d �me for hv; bm ; rm i.Example 5. We have h10; 350; 100i= 10 � h10; 35; 10i. Table 2 
on�rms the ratioof 10 between the unrounded lower bounds on � for the two involved instan
es.However, a portfolio is not always an exa
t multiple of another portfolio.Rather than adjusting the size of a desired portfolio so that it be
omes a multipleof another portfolio, we advo
ate generalising the notion of multiples of a designand here do so for portfolios. Let us �rst show the intuition on an example.Example 6. (Continuation of Example 4.) Re
onsider the h10; 350; 100i portfolio.It is not a 12-multiple of any portfolio as 12 does not divide both 350 and100. Sin
e 350 = 12 � 27 + 26 and 100 = 12 � 8 + 4, a not ne
essarily optimalsolution to the PO COP h10; 350; 100i 
an be built by making 12 
opies ofea
h 
olumn in any possibly optimal solution to the PO COP h10; 27; 8i andappending any possibly optimal solution to the PO COP h10; 26; 4i. The POimplied 
onstraint (9) gives � � 2 for the PO COP h10; 27; 8i and � � 1 for thePO COP h10; 26; 4i. Solving the PO CSPs h10; 27; 8; 2i and h10; 26; 4; 1i with theBIBD-style method outlined in Se
tion 3.3 is a matter of about 1 CPU se
ondand 69 ba
ktra
ks total, and su
h portfolios do exist. Sin
e 12 � 2 + 1 = 25, thismeans that we 
an build from them a solution to the PO CSP h10; 350; 100; 25i.Sin
e the third 
olumn of Table 2 gives � � 21 for the PO COP h10; 350; 100i,the built solution with 
ost � = 25 is still a bit above that lower bound and maythus be sub-optimal. (This example will be 
ontinued in Example 7.)



Let us now formalise all the intuitions from this example.De�nition 2. A portfolio hv; b; ri embeds m o

urren
es of a portfolio hv; b1; r1iand 1 o

urren
e of a portfolio hv; b2; r2i, whi
h is denoted by hv; b; ri = m �hv; b1; r1i+ hv; b2; r2i, if the following three 
onstraints hold:b = m � b1 + b2 (10)r = m � r1 + r2 (11)0 � ri � bi � 1 for i = 1; 2 (12)The 
onstraints (10) and (11) ensure that the embedding is exa
t. The 
on-straint (12) ensures that the sub-pools 
an be subsets of the set of 
redits, forea
h of the two embedded portfolios. It also eliminates the two 
ases (bi = 0)where the PO implied 
onstraint (9) 
annot be evaluated.Note that this embedding by verti
al division of the in
iden
e matrix is pos-sible be
ause of the full 
olumn symmetry of the latter and be
ause no PO 
on-straint works against it. However, an embedding by horizontal division of thein
iden
e matrix will lead to identi
al rows, that is worst-
ase solutions (� = r).An upper bound on the 
ost of an embedding portfolio 
an be 
omputedfrom the 
osts of its embedded portfolios, as shown next.Property 2. The 
ost � of a portfolio embedding m o

urren
es of a portfoliohv; b1; r1i of 
ost �1 and one o

urren
e of a portfolio hv; b2; r2i of 
ost �2 satis�esthe inequality � � m � �1 + �2.The reason why there may be a stri
t inequality is that the 
ost of a portfoliois the maximum of its sub-pool interse
tion sizes. Consider v = 3 and m = 1:the �rst embedded portfolio may have 1; 1; 2 as interse
tion sizes, and the se
ondembedded portfolio may have 1; 2; 1 as interse
tion sizes, both with a maximumof 2, giving 1 + 1; 1 + 2; 2 + 1 as interse
tion sizes for the embedding portfolio,with a maximum of 3 < 1 � 2 + 2 = 4. For this reason, the 
al
ulated 
ost 25 ofthe embedding portfolio in Example 6 is in fa
t an upper bound, rather than theexa
t 
ost as stated there. Hen
e it is in general better to observe the a
tual 
ostof the embedding portfolio than to use the upper bound given by Property 2. Inthis 
ase, observation establishes that the 
ost is 25.4.3 Approximate SolutionThe issue now be
omes how to 
onstru
t suitable portfolio embeddings, so thatnear-optimal, if not optimal, real-life-s
ale portfolios 
an be designed. We advo-
ate solving the CSP versions of the two embedded instan
es, setting as � therounded lower bound given by the PO implied 
onstraint (9).Our method takes as additional input a 
ost � that we are trying to under
ut,say be
ause it is the 
ost of the 
urrently best portfolio (or the upper bound onthat 
ost, as determined by Property 2).



Two heuristi
 
onstraints on m; v; b; r; b1; r1; b2; r2 in addition to the three
onstraints of De�nition 2 be
ome ne
essary in order to make the method prag-mati
. Let �i be the rounded lower bounds given for the two embedded portfolioshv; bi; rii by the PO implied 
onstraint (9). The additional 
onstraints are justi-�ed and given in the following.First, we must restri
t the fo
us to the pairs of embedded portfolios thathave a 
han
e of leading to a portfolio whose 
ombined 
ost is lower than �:m � �1 + �2 < � (13)Indeed, the left-hand side is by Property 2 the upper bound on the 
ost of theembedding portfolio built from solutions, if they exist, to the two hv; bi; ri; �ii POCSPs. In pra
ti
e, it is usually equal to the 
ost of su
h an embedding portfolio,hen
e this 
onstraint. Note that this 
onstraint implies that m < �.Se
ond, knowing that PO CSPs with values of b up to about 36 
an often besolved (quite qui
kly) using the BIBD-style method outlined in Se
tion 3.3, theobje
tive in 
hoosing the parameters of the embedding is to have both embeddedinstan
es within that range for b:bi � 36 for i = 1; 2 (14)Note that the determination of 
andidate embeddings, whi
h are pairs ofCSPs, is thus itself a CSP.There is no guarantee that all PO CSPs with b � 36 
an be solved suÆ
ientlyqui
kly. For instan
e, the sixth and seventh 
olumns of Table 2 
hart the CPUtimes in se
onds and ba
ktra
ks for hv; 35; 10; �i for v � 2 and � equal to therounded lower bound in the �fth 
olumn. The experiments were 
ondu
ted ona Sun SPARC Ultra Station 10 in our SICStus Prolog 3.10.1 implementationof the BIBD-style method outlined in Se
tion 3.3. A question mark means thatwe stopped the solution pro
ess after a CPU hour. The entry in the row v = 9means that h9; 35; 10; 2i timed out (in fa
t, it takes about 25 CPU hours andabout 537 � 106 ba
ktra
ks to fail6), while h9; 35; 10; 3i takes only 0:85 CPU se
-onds and 566 ba
ktra
ks to su

eed. We observe that for the range of values ofv where the rounded lower bound on � remains the same, the runtimes in
reasewith v. In other words, they in
rease when the rounding distan
e for the lowerbound on � de
reases. This may not always be the 
ase. The same pattern 
anbe observed for the number of ba
ktra
ks. The rounding distan
e seems to bea good indi
ator of the 
onstrainedness of a PO CSP. A good heuristi
 thenseems to be that we should favour embeddings where both embedded instan
eshave not too small rounding distan
es. In our observation, for the typi
al val-ues of v, instan
es with rounding distan
es below 0:15 are often problemati
.Hen
e we also advo
ate ordering the embedded instan
e pairs that satisfy the6 Amazingly, these �gures were obtained on the same hardware in our OPL imple-mentation under OPL Studio 3.0.2, whi
h performs no symmetry breaking for la
kof a lexi
ographi
al ordering 
onstraint! We aborted our SICStus Prolog 3.10.1 im-plementation after several CPU days, both with and without symmetry breaking.



m hv; b1; r1; �1i unrounded �1 hv; b2; r2; �2i unrounded �2 m � �1 + �210 h10; 32; 09; 2i 1.812 h10; 30; 10; 3i 2.592 2311 h10; 31; 09; 2i 1.903 h10; 09; 01; 1i 0.012 239 h10; 36; 10; 2i 1.975 h10; 26; 10; 4i 3.162 2218 h10; 18; 05; 1i 0.988 h10; 26; 10; 4i 3.162 2219 h10; 18; 05; 1i 0.988 h10; 08; 05; 3i 2.917 2211 h10; 30; 09; 2i 2.000 h10; 20; 01; 0i -0.056 22Table 3. Embeddings of h10; 350; 100i satisfying the 
onstraints (10) to (14) for � = 25,ordered by de
reasing rounding distan
e for �1.
onstraints (10) to (14) by de
reasing rounding distan
e for �1, so that the ap-parently easier pairs are attempted �rst. Setting a time-limit on ea
h attempt isanother useful re�nement.Let us now illustrate this method.Example 7. (Continuation of Example 6.) Let us try and improve the portfo-lio with 
ost � = 25 previously obtained for h10; 350; 100i = 12 � h10; 27; 8i +h10; 26; 4i. The embeddings satisfying the 
onstraints (10) to (14) are given inTable 3, ordered by de
reasing rounding distan
e for �1. Note that none of theseembeddings has a 
ombined 
ost of � = 21, whi
h is the lower bound given bythe PO implied 
onstraint (9) for h10; 350; 100i. This may be an artifa
t of theway we de�ne embeddings or of the way we heuristi
ally 
onstrain the embed-dings. Setting a time limit of one CPU hour, we attempt to solve the PO CSPsin the se
ond and fourth 
olumns, pro
eeding row by row.The �rst embedding only takes about 13 CPU se
onds and 13; 152 ba
ktra
kstotal to solve its two PO CSPs. Hen
e we 
an build a solution to h10; 350; 100ifrom 10 
opies of the optimal solution (with � = 2) to h10; 32; 9i and one 
opyof the optimal solution (with � = 3) to h10; 30; 10i; it has an observed 
ost ofexa
tly � = 10 � 2 + 3 = 23 > 21.The se
ond embedding takes about 47 CPU minutes and about 4 � 106 ba
k-tra
ks (mostly be
ause of the �rst embedded instan
e, as the se
ond one has�2 = r2 and is thus trivial to solve). We get another solution of (predi
ted andobserved) 
ost 23 = 11 � 2 + 1.The third embedding has a �rst embedded PO CSP that times out, hen
ewe ignore it and move on.The fourth and �fth embeddings both 
ontain h10; 18; 5; 1i, whi
h fails inabout 6 CPU minutes and 345; 595 ba
ktra
ks. Hen
e �1 � 2, and m � �1 + �2is at least 40 for the fourth embedding and at least 41 for the �fth embedding,whi
h are both mu
h worse 
osts than in the 
urrently best solution.The sixth embedding is very interesting. Its �rst embedded PO CSP 
anbe solved as a BIBD with blo
ks of �xed size k = 3, as the unrounded �1 isa natural number and as b1 divides v � r1. This additional 
onstraint (1) onthe blo
k sizes gives very good propagation, and the BIBD method outlined atthe end of Se
tion 2 
an solve this instan
e in about 0:39 CPU se
onds and 23ba
ktra
ks, whereas the BIBD-style method outlined in Se
tion 3.3 timed out



11 
opies of ea
h 
olumn of 1 
opy of ea
h 
olumn ofable 4. Our 
urrently best solution to h10; 350; 100i, built from 11 � h10; 30; 9i +h10; 20; 1i, and of 
ost 11 � 2 + 0 = 22 > 21.on the 
orresponding PO CSP, whi
h does not have that 
onstraint. The se
ondembedded PO CSP is trivial (in the sense that there at least as many 
redits asin the union of the requested sub-pools) sin
e v � r2 � b2 and is solved in about0:21 CPU se
onds and 0 ba
ktra
ks.Hen
e we 
an build a solution, given in Table 4, to h10; 350; 100i from 11
opies of the optimal solution (with � = 2) to h10; 30; 9i and one 
opy of theoptimal solution (with � = 0) to h10; 20; 1i; it has an observed 
ost of exa
tly� = 11�2+0 = 22 > 21. Note that the last 10 
redits are not used in this solution.This solution may a
tually turn out to be optimal, 
onsidering the predi
tionweakness of Theorem 1.5 Con
lusionsSummary. We have given an approximate and often extremely fast method ofsolving a new portfolio optimisation (PO) problem in �nan
ial mathemati
s. Its
orresponding satisfa
tion problem is 
losely related to the balan
ed in
ompleteblo
k design (BIBD) problem. However, typi
al PO instan
es are an order ofmagnitude larger than the largest BIBDs solved so far by global sear
h, andthe PO problem la
ks a 
ounterpart of a 
ru
ial BIBD 
onstraint. Hen
e 
ur-rent BIBD-style solving methods are not suitable for real-life PO instan
es. Ourmethod is based on embedding (multiple 
opies of) independent sub-instan
esinto the original instan
e. Their determination is itself a 
onstraint satisfa
tionproblem. The high quality of our approximate solutions 
an be assessed by 
om-parison with a tight lower bound on the 
ost.Generalisation. The generalisation of the main idea is as follows, in the 
on-text of a large 
onstraint optimisation problem where a (tight) lower bound onits 
ost 
an be somehow 
al
ulated. The idea is to embed several independentsmall problem instan
es Pi within the given large problem instan
e P . A feasiblesolution S to P 
an then be built from possibly optimal feasible solutions Si tothe Pi. The quality of S 
an be assessed against the lower bound on the 
ost of



the optimal solution to P . If there is a relationship between the 
osts of S andthe Si, then this relationship 
an be used to determine the Pi via a CSP, usingthe lower bounds on their 
osts. For PO, this relationship is given by Property 2.Related Work. The idea of exploiting independent sub-problems also underliesTree-Based Russian Doll Sear
h [11℄. The idea of embedding (multiple 
opies of)sub-problem instan
es into a larger problem instan
e is related to the 
on
eptof abstra
t lo
al sear
h [3℄, where a 
on
rete solution is built from a solutionto an abstra
tion of the original problem instan
e and then analysed for 
awsso as to infer a new abstra
t solution. This works well if the 
on
retisation andanalysis steps are tra
table and if the abstra
tion is optimality preserving, inthe sense that optimal 
on
rete solutions 
an be built from abstra
t solutions.Our embedded problem instan
es 
an indeed be jointly seen as an abstra
tion ofthe original problem instan
e. For instan
e, entire bundles of 
redits are here ab-stra
ted into single super-
redits. We have been unable so far to prove optimalitypreservation of su
h portfolio abstra
tions, or to �nd 
onditions for it. As alsoobserved in [3℄, this is not problemati
 for hard problem instan
es, su
h as thetypi
al PO problem instan
es 
onsidered here, where the utility of abstra
tions
an only be assessed by 
omparison with other te
hniques. In any 
ase, we haveseen that our portfolio abstra
tions lead to solutions that are extremely 
lose toa tight lower bound on the 
ost.Also, we have found only one paper taking a 
onstraint programming ap-proa
h to portfolio sele
tion [13℄, but the ta
kled problem there is a
tually dif-ferent from ours and is limited to portfolios 
onsisting of just one sub-pool.Future Work. Our notion of embeddings 
an be generalised to any linear 
om-bination of several sub-instan
es. Indeed, De�nition 2 is restri
ted to embeddingsof always two sub-instan
es, with 
oeÆ
ients m and 1, respe
tively. The pri
eto pay for this restri
tion may have been that a solution of 
ost 21 eluded usin Example 7, though it may also be that no su
h solution exists and that oursolution of 
ost 22 is in fa
t optimal.Some additional abstra
tion may redu
e the 1; : : : ; v range of observed blo
ksizes. Indeed, a 
ounterpart of the BIBD 
onstraint (1) might enormously speedup the solution pro
ess. The fa
ts that some PO instan
es (su
h as h9; 35; 10; 2i)take CPU days to fail while in
reasing their � (to obtain h9; 35; 10; 3i here)then leads to quasi instantaneous su

ess, and that other PO instan
es (su
has h10; 30; 9; 2i) take CPU hours to su

eed while the 
orresponding BIBD in-stan
es, if any (h10; 30; 9; 3; 2i here), quasi instantaneously su

eed, show thatthere is still mu
h spa
e for improving our method. Su
h an additional abstra
-tion might only 
ome at the pri
e of losing optimal solutions, though.The run-times and ba
ktra
k 
ounts of our implementation of the BIBD-stylemethod outlined in Se
tion 4 
an be improved with the additional symmetry-breaking te
hniques of STAB [12℄.Finally, it would be interesting to 
ompare our results with those obtainedby other 
omplete-sear
h te
hniques as well as by lo
al-sear
h te
hniques.Con
lusion and Finan
ial Relevan
e. Our optimisation has eliminated theneed for ad ho
 manual permutations. On average, we have found that the over-



lap in a given portfolio 
an be de
reased anywhere from 2% to 4% by using the
urrent formulation. Even though this may not sound like a dramati
 improve-ment, the ability to redu
e the maximum overlap from 25% to 22%, say, maymake the di�eren
e between having or not having a feasible transa
tion due toinvestor and rating-agen
y 
onstraints.It should be pointed out that it is easy to redu
e the overlap by in
reasingthe number of available 
redits. However, su
h new 
redits tend to be less knownand thus more diÆ
ult to analyse, resulting in less than eÆ
ient portfolios.In pra
ti
e, the 
redits are not all indistinguishable. A 
lient might havepersonal preferen
es for or against some 
redits, de
lare some 
redits as mutuallyex
lusive, and so on. The advantage of our deployment of 
onstraint te
hnologyis that su
h spe
i�
 needs 
an be neatly added without having to devise newportfolio optimisation algorithms from s
rat
h ea
h time. However, su
h side
onstraints may break some of the full 
olumn symmetry, so partial symmetrybreaking has to be deployed instead. Work in this dire
tion has begun.Challenge. We 
hallenge the reader to answer the open question whether ah10; 350; 100i portfolio with optimal 
ost 21 exists or not.A
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