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.ieAbstra
t. We identify an important 
lass of symmetries in 
onstraintprogramming, arising from matri
es of de
ision variables where rowsand 
olumns 
an be swapped. Whilst lexi
ographi
ally ordering the rows(
olumns) breaks all the row (
olumn) symmetries, lexi
ographi
ally or-dering both the rows and the 
olumns fails to break all the 
ompositionsof the row and 
olumn symmetries. Nevertheless, our experimental re-sults show that this is e�e
tive at dealing with these 
ompositions ofsymmetries. We extend these results to 
ope with symmetries in anynumber of dimensions, with partial symmetries, and with symmetri
values. Finally, we identify spe
ial 
ases where all 
ompositions of therow and 
olumn symmetries 
an be eliminated by the addition of only alinear number of symmetry-breaking 
onstraints.1 Introdu
tionModelling is one of the most diÆ
ult parts of 
onstraint programming. Freuderhas identi�ed it as the \last frontier" [9℄. One sour
e of diÆ
ulty is dealingwith symmetry eÆ
iently and e�e
tively. Symmetry o

urs in many assignment,s
heduling, 
on�guration, and design problems. Identi
al ma
hines in a fa
tory,repeat orders, equivalent time periods and equally skilled workers are just a fewof the items likely to introdu
e symmetry into a 
onstraint satisfa
tion problem(CSP). If we ignore symmetry, a 
onstraint solver will waste time 
onsideringsymmetri
 but essentially equivalent assignments. As there are often a (super)exponential number of symmetri
 solutions, this 
an be very 
ostly. To helpta
kle this problem, we identify an important 
lass of symmetries that o

urfrequently in CSPs. These symmetries o

ur when we have a matrix of de
isionvariables in whi
h rows and/or 
olumns 
an be swapped. We show how simplelexi
ographi
al ordering 
onstraints 
an be added to su
h models to break thesesymmetries. Whilst su
h ordering 
onstraints break all the row (or 
olumn)



symmetry when the matrix is symmetri
 in one dimension, they do not break allrow and 
olumn symmetry when the matrix is symmetri
 in both dimensions.Nevertheless, our experimental results show that they are e�e
tive at eliminatingmu
h of the symmetry. We extend these results to deal with matri
es with morethan two dimensions, with partial symmetries and with symmetri
 values. Wealso dis
uss how to eliminate all symmetry in some spe
ial 
ases.2 Matrix Models and SymmetryA matrix model is a 
onstraint program that 
ontains one or more matri
es ofde
ision variables. For example, a natural model of the round robin tournaments
heduling problem (prob026 in CSPlib, at www.
splib.org) has a 2-dimensional(2-d) matrix of variables, ea
h of whi
h is assigned a value 
orresponding to themat
h played in a given week and period [21℄. In this 
ase, the matrix is obviousin the modelling of the problem: we need a table of �xtures. However, manyother problems that are less obviously de�ned in terms of matri
es of variables
an be e�e
tively represented and eÆ
iently solved using matrix models [6℄. Forexample, the ra
k 
on�guration problem (prob031) 
an be modelled with a 2-d0/1 matrix representing whi
h 
ards go into whi
h ra
ks (a model with a 3-dmatrix is given in [13℄).Symmetry is an important aspe
t of matrix models. Symmetry often o

ursbe
ause groups of obje
ts within a matrix are indistinguishable. For example,in the round robin tournament s
heduling problem, weeks and periods are in-distinguishable. We 
an therefore permute any two weeks or any two periods inthe s
hedule. That is, we 
an permute any two rows or any two 
olumns of theasso
iated matrix, whose index sets are the weeks and periods. A symmetry is abije
tion on de
ision variables that preserves solutions and non-solutions. Twovariables are indistinguishable if some symmetry inter
hanges their rôles in allsolutions and non-solutions.Two 
ommon types of symmetry in matri
es are row symmetries and 
ol-umn symmetries. The two examples above have row and 
olumn symmetries. Arow (
olumn) symmetry of a 2-d matrix is a bije
tion between the variables oftwo of its rows (
olumns) that preserves solutions and non-solutions. Two rows(
olumns) are indistinguishable if their variables are pairwise indistinguishabledue to a row (
olumn) symmetry. Note that the rotational symmetries of a ma-trix are neither row nor 
olumn symmetries. A matrix model has row (
olumn)symmetry i� all the rows (
olumns) of one of its matri
es are indistinguishable. Amatrix model has partial row (
olumn) symmetry i� stri
t subset(s) of the rows(
olumns) of one of its matri
es are indistinguishable. All these de�nitions 
anbe extended to matri
es with any number of dimensions. A symmetry 
lass is anequivalen
e 
lass of assignments, where two assignments are equivalent if there issome symmetry mapping one assignment into the other. (In group theory, su
hequivalen
e 
lasses are referred to as orbits.)Many row and 
olumn symmetries have been observed [6℄, su
h as in matrixmodels for the balan
ed in
omplete blo
k design problem (prob028 in CSPlib),2



the steel mill slab design problem [6℄, the so
ial golfers problem (prob010), thetemplate design problem (prob002), the progressive party problem (prob013),and (as argued above) the ra
k 
on�guration problem (prob031) as well as theround robin tournament s
heduling problem (prob026). One 
ounter-exampleis the warehouse lo
ation problem [22℄ be
ause of the unique set of 
osts ofsupplying ea
h store from ea
h of the possible warehouses.3 Breaking SymmetryThere are a number of ways of dealing with symmetry in 
onstraint programming(see Se
tion 7 for a longer dis
ussion). A popular approa
h is to add 
onstraintsthat break some of the symmetries [16, 3℄.One 
ommon method to break symmetry is to impose a 
onstraint that ordersthe symmetri
 obje
ts. To break all row (
olumn) symmetries, we 
an treat ea
hrow (
olumn) as a ve
tor and order these ve
tors lexi
ographi
ally. The rows(
olumns) in a 2-d matrix are lexi
ographi
ally ordered if ea
h row (
olumn)is lexi
ographi
ally smaller (denoted �lex) than the next (if any), and anti-lexi
ographi
ally ordered if ea
h row (
olumn) is lexi
ographi
ally larger thanthe next (if any). As a lexi
ographi
 ordering is total, adding lexi
ographi
 (oranti-lexi
ographi
) ordering 
onstraints on the rows (
olumns) breaks all row(
olumn) symmetries.Whilst breaking all the row symmetries or all the 
olumn symmetries in amatrix is possible with lexi
ographi
 ordering 
onstraints, breaking both the rowand the 
olumn symmetries seems diÆ
ult sin
e the rows and 
olumns interse
t.Lexi
ographi
ally ordering the rows will tend to put the 
olumns into lexi
o-graphi
 order. However, it does not always order the 
olumns lexi
ographi
ally,and lexi
ographi
ally ordering the 
olumns 
an then disrupt the lexi
ographi
ordering on the rows.Example 1. Consider a 3 � 4 matrix of 0=1 variables, xij , with the 
onstraintsthat Pij xij = 7 and Pi xij � xik � 1 for j 6= k (i.e., the dot produ
t of any tworows is 1 or less). This model has both row and 
olumn symmetry. A solutionwith lexi
ographi
ally ordered rows is:0B� 0 1 00 1 11 0 11 1 01CALexi
ographi
ally ordering the 
olumns now gives the solution:0B� 0 0 10 1 11 1 01 0 11CAHowever, this destroys the lexi
ographi
 ordering on the rows. Reordering thelast two rows gives a solution that is lexi
ographi
ally ordered along both therows and the 
olumns: 0B� 0 0 10 1 11 0 11 1 01CA3



One 
an even 
onstru
t examples that need several sequential rounds of or-dering the rows and then the 
olumns, although the following theorem showsthat this pro
ess always terminates. During sear
h, both the row and 
olumnlexi
ographi
 ordering 
onstraints a
tually work in parallel. The following theo-rem shows that, whether this ordering is done sequentially or in parallel, therealways is a solution with the rows and 
olumns both in lexi
ographi
 order.Theorem 1. For a matrix model with row and 
olumn symmetry in some 2-dmatrix, ea
h symmetry 
lass of assignments has an element where both the rowsand the 
olumns of that matrix are lexi
ographi
ally ordered.Proof: We order 2-d matri
es by lexi
ographi
ally ordering the sequen
esformed by appending their rows together in top-down order. Lexi
ographi
allyordering two rows repla
es a larger row at the front of this sequen
e by a smallerrow from further behind. Hen
e, ordering two rows moves us down the matrixordering. Lexi
ographi
ally ordering two 
olumns also moves us down this ma-trix ordering. Indeed, the two 
olumns have some values (if any) in 
ommon atthe top and swapping the 
olumns thus does not a�e
t the matrix ordering whenjust 
onsidering the 
orresponding top rows; also, in the top-most row (if any)where the two 
olumns di�er, the value in the left 
olumn is then repla
ed by asmaller value from the right 
olumn, as the latter was lexi
ographi
ally smallerthan the left 
olumn, making that row lexi
ographi
ally smaller. This moves usdown the matrix ordering, as the �rst 
hanged row (if any) is repla
ed in thesequen
e by a smaller one. Furthermore, the matrix ordering is �nite, as thereare only a �nite number of permutations of the values in a matrix, and boundedbelow, namely by a matrix whose rows and 
olumns are lexi
ographi
ally or-dered. So we 
annot move down the matrix ordering inde�nitely, and will �nd amatrix in whi
h all the rows and 
olumns are lexi
ographi
ally ordered. �This result shows that we 
an always lexi
ographi
ally order both the rowsand the 
olumns. Dually, we 
an always anti-lexi
ographi
ally order both therows and the 
olumns. However, we 
annot always lexi
ographi
ally order therows and anti-lexi
ographi
ally order the 
olumns. Lexi
ographi
ally orderingthe rows will tend to push the largest values to the bottom-left of the matrix.Anti-lexi
ographi
ally ordering the 
olumns will tend to push the larger valuesto the top-right. For this reason, the two orders 
an 
on
i
t.Example 2. Consider a 2 � 2 matrix of 0=1 variables, xij , with the 
onstraintsthatPi xij = 1 andPj xij = 1 (i.e., every row and 
olumn has a single 1). Thismodel has both row and 
olumn symmetry, and has two symmetri
 solutions:� 0 11 0�; � 1 00 1�The �rst solution has rows and 
olumns that are lexi
ographi
ally ordered, whilstthe se
ond has rows and 
olumns that are anti-lexi
ographi
ally ordered. There isthus no solution in whi
h the rows are lexi
ographi
ally ordered and the 
olumnsare anti-lexi
ographi
ally ordered. 4



Lexi
ographi
ally ordering the rows (
olumns) breaks all the row (
olumn)symmetries. However, lexi
ographi
ally ordering both the rows and the 
olumnsdoes not break all the 
ompositions of the row and 
olumn symmetries.Example 3. Consider a 3� 3 matrix of 0=1 variables, xij , with Pj xij � 1 andPij xij = 4. This model has both row and 
olumn symmetry. The following twosymmetri
 solutions have lexi
ographi
ally ordered rows and 
olumns:0� 0 0 10 1 01 0 11A; 0� 0 0 10 1 01 1 01AThese solutions are symmetri
, as one 
an move from one to the other by swap-ping the �rst two rows and the last two 
olumns. Swapping any rows or 
olumnsindividually breaks the lexi
ographi
 ordering. Thus, lexi
ographi
ally orderingboth the rows and the 
olumns does not break all the 
ompositions of the row and
olumn symmetries. However, our experimental results (see Se
tion 6) suggestthat lexi
ographi
ally ordering both the rows and the 
olumns breaks enoughsymmetries to be useful pra
ti
ally.4 ExtensionsWe 
onsider a number of extensions that extend the utility of our results 
on-siderably.4.1 Higher dimensionsMany problems 
an be e�e
tively modelled and eÆ
iently solved using matrixmodels with a matrix of more than two dimensions. For example, the so
ialgolfers problem 
an be modelled with a 3-d 0/1 matrix whose dimensions 
or-respond to weeks, groups, and players [17℄. A variable xijk in this matrix is 1i� in week i player j plays in group k. This matrix model has symmetries alongea
h of the three dimensions: the weeks are indistinguishable, and so are thegroups and players. We now generalise the lexi
ographi
 ordering 
onstraint toany number of dimensions to break some of these symmetries.Consider a 2-d matrix. If we look along a parti
ular dimension, we see 1-d ve
tors at right angles to this axis. To break the symmetries, we order theseve
tors lexi
ographi
ally. Now 
onsider a 3-d matrix. If we look along a parti
ulardimension, we see 2-d sli
es of the matrix that are orthogonal to this axis. Tobreak the symmetries, we need to order these sli
es. One way is to 
atten thesli
es onto ve
tors and lexi
ographi
ally order these. In n dimensions, we seesli
es that are n�1 dimensional hyper
ubes, whi
h 
an be 
ompared by 
atteningonto ve
tors and lexi
ographi
ally ordering these.5



De�nition 1. An n-dimensional matrix X, with n � 1, is multi-dimensionallylexi
ographi
ally ordered i� the following 
onditions hold:8i 
atten(X [i℄[ ℄ : : : [ ℄) �lex 
atten(X [i+ 1℄[ ℄ : : : [ ℄)8j 
atten(X [ ℄[j℄ : : : [ ℄) �lex 
atten(X [ ℄[j + 1℄ : : : [ ℄)� � �8k 
atten(X [ ℄[ ℄ : : : [k℄) �lex 
atten(X [ ℄[ ℄ : : : [k + 1℄)where X [ ℄ : : : [ ℄[i℄[ ℄ : : : [ ℄ denotes the n � 1 dimensional hyper
ube obtainedby taking the sli
e of X at position i in the dimension where [i℄ appears in[ ℄ : : : [ ℄[i℄[ ℄ : : : [ ℄, and where 
atten is used to 
atten a sli
e of a matrix into a1-d ve
tor and is de�ned by:
atten(X [1::m℄) = X [1::m℄
atten(X [1::m℄[ ℄ : : : [ ℄) = append( 
atten(X [1℄[ ℄ : : : [ ℄);: : : ;
atten(X [m℄[ ℄ : : : [ ℄))with append(V1; : : : ; Vn) denoting the left-to-right 
on
atenation of the 1-d ve
-tors V1; : : : ; Vn.As in the 2-d 
ase, we 
an show that this multi-dimensional lexi
ographi
ordering breaks some of the symmetries. Unfortunately, it does not break all thesymmetries as the 2-d 
ounter-examples generalise to other numbers of dimen-sions.Theorem 2. For a matrix model with symmetry along ea
h dimension in somen-dimensional matrix, where n � 1, ea
h symmetry 
lass of assignments has anelement where that matrix is multi-dimensionally lexi
ographi
ally ordered.Proof: A proof for the 3-d 
ase is in [5℄; it generalises to any number ofdimensions. �4.2 Partial symmetryWe may only have partial row or 
olumn symmetry in a matrix model, namelywhen only stri
t subset(s) of the rows or 
olumns of one of its matri
es areindistinguishable. We here show through an example how to address this.Example 4. In a 2-d 0=1 matrix model of the ra
k 
on�guration problem, onlythe 
olumns that 
orrespond to ra
ks of the same type are indistinguishable.Suppose there are 10 ra
ks, where the �rst 4 ra
ks are of a �rst type, the next3 ra
ks are of another type, and the last 3 ra
ks are of a third type. Then thefollowing 
andidate solutions: 6



�! ra
ks �!0 0 0 0 0 1 0 0 0 00 0 0 0 1 0 0 0 0 0# 0 1 0 0 0 0 0 0 0 0
ards 1 0 0 0 0 0 0 0 0 0# 0 0 0 0 0 0 0 1 0 01 0 0 0 0 0 0 0 0 0
�! ra
ks �!0 0 0 0 0 1 0 0 0 01 0 0 0 0 0 0 0 0 0# 0 1 0 0 0 0 0 0 0 0
ards 0 0 0 0 1 0 0 0 0 0# 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0are not symmetri
, be
ause the �rst and �fth 
olumns have been swapped al-though they do not pertain to the same ra
k type. We 
annot lexi
ographi
allyorder all the 
olumns in su
h a situation, as that would here amount to requiringthat all the ra
ks are of the same type. However, we 
an use fewer lexi
ographi
ordering 
onstraints to break some of the underlying symmetries: for ea
h subsetof rows (
olumns) that are indistinguishable, we only state lexi
ographi
 ordering
onstraints between these rows (
olumns).We 
an also extend the 0=1 domain of the de
ision variables in the matrix,and add a �rst row for a dummy 
ard that is 
onstrained as follows, say:�! ra
ks �!2 2 2 2 3 3 3 4 4 4: : : : : : : : : :: : : : : : : : : :# : : : : : : : : : :
ards : : : : : : : : : :# : : : : : : : : : :: : : : : : : : : :Lexi
ographi
ally ordering all the 
olumns will now keep the 
olumns pertainingto ra
ks of the same type together and thus only break all the symmetries arisingfrom indistinguishable ra
k types.4.3 Value symmetryWe 
an deal with symmetri
 values using the te
hniques we have developedabove for dealing with symmetri
 variables. A variable x of an n dimensionalmatrix that takes a value from a domain of indistinguishable values v1; : : : ; vm
an be repla
ed by a ve
tor [x1; : : : ; xm℄ of 0/1 variables, with the semanti
sxi = 1 $ vi = x. A set variable x taking a set of values from a similar domainof indistinguishable values 
an also be repla
ed by a ve
tor of 0/1 variables withthe semanti
s (xi = 1$ vi 2 x). Hen
e, we have introdu
ed n�m 0/1 variablesand 
onstraints. In other words, the (set) variable is repla
ed by a 
hara
teristi
fun
tion, whose variables take values that are not indistinguishable. This 
on-verts indistinguishable values into indistinguishable variables, whi
h be
ome anew dimension in the now n+ 1 dimensional matrix.Example 5. Consider a 2-d matrix model of the progressive party problem [19℄.A variable xij in its matrix takes as value the host boat visited by guest i inperiod j. Now, host boats of the same 
apa
ity are indistinguishable. We 
an7



turn this partial value symmetry into a partial variable symmetry by 
hannellinginto a new 3-d 0=1 matrix that has no value symmetry. A variable yijk in thisnew matrix is 1 i� the host boat k is visited by guest i in period j. Channelling
onstraints of the form yijk = 1 $ k = xij 
an thus link the two matri
es.The new matrix model has partial symmetry along the third dimension of its3-d matrix. We 
an therefore use lexi
ographi
 ordering 
onstraints to breakthese symmetries. Note that we do not always need to 
hannel between the twomatri
es and 
ould thus repla
e the old matrix by the new one. However, itis quite often the 
ase that some 
onstraints are more easily expressed on theoriginal matrix, and this is the 
ase here.The advantage of this approa
h is that we 
an use the multi-dimensional lex-i
ographi
 ordering to deal simultaneously with symmetri
 variables and sym-metri
 values. An alternative approa
h to breaking value symmetry is des
ribedin [11℄, but this method 
urrently assumes that all values in a domain are sym-metri
al. We 
an also use the te
hniques outlined in the previous sub-se
tion todeal with values that are only partially symmetri
. Freuder addresses the 
aseof inter
hangeable values [8℄, but with respe
t to individual variables as opposedto symmetries that hold globally between values. Again, we 
an support thissituation by ordering sub-rows or sub-
olumns.5 Breaking All the SymmetriesIt is always possible to break all the symmetries. In [3℄, a method is presented foradding a lexi
ographi
 ordering 
onstraint for ea
h symmetry of the problem.Example 6. The set of all 
ompositions of the row and 
olumn symmetries of a3� 2 matrix � x1 x2 x3x4 x5 x6 �
an be broken by the following 11 
onstraints:[x1; x2; x3; x4; x5; x6℄ �lex [x2; x1; x3; x5; x4; x6℄; that is [x1; x4℄ �lex [x2; x5℄[x1; x2; x3; x4; x5; x6℄ �lex [x1; x3; x2; x4; x6; x5℄; that is [x2; x5℄ �lex [x3; x6℄[x1; x2; x3; x4; x5; x6℄ �lex [x4; x5; x6; x1; x2; x3℄; that is [x1; x2; x3℄ �lex [x4; x5; x6℄[x1; x2; x3; x4; x5; x6℄ �lex [x6; x4; x5; x3; x1; x2℄; that is [x1; x2; x3℄ �lex [x6; x4; x5℄[x1; x2; x3; x4; x5; x6℄ �lex [x5; x6; x4; x2; x3; x1℄; that is [x1; x2; x3; x4℄ �lex [x5; x6; x4; x2℄[x1; x2; x3; x4; x5; x6℄ �lex [x4; x6; x5; x1; x3; x2℄; that is [x1; x2; x3℄ �lex [x4; x6; x5℄[x1; x2; x3; x4; x5; x6℄ �lex [x5; x4; x6; x2; x1; x3℄; that is [x1; x2; x3℄ �lex [x5; x4; x6℄[x1; x2; x3; x4; x5; x6℄ �lex [x6; x5; x4; x3; x2; x1℄; that is [x1; x2; x3℄ �lex [x6; x5; x4℄[x1; x2; x3; x4; x5; x6℄ �lex [x3; x2; x1; x6; x5; x4℄; that is [x1; x4℄ �lex [x3; x6℄[x1; x2; x3; x4; x5; x6℄ �lex [x2; x3; x1; x5; x6; x4℄; that is [x1; x2; x4; x5℄ �lex [x2; x3; x5; x6℄[x1; x2; x3; x4; x5; x6℄ �lex [x3; x1; x2; x6; x4; x5℄; that is [x1; x2; x4; x5℄ �lex [x3; x1; x6; x4℄8



The �rst two 
onstraints arise from the indistinguishability of the �rst two
olumns and the last two 
olumns, respe
tively, whereas the third 
onstraintarises from the indistinguishability of the two rows. The remaining 
onstraintsarise from the 
ompositions of these row and 
olumn symmetries. These 
on-straints were obtained by �rst determining the 3! � 2! = 12 permutations of theve
tor [x1; x2; x3; x4; x5; x6℄ obtained by building the 2! 
on
atenations of therow ve
tors for ea
h of the 3! permutations inside the rows. We then 
onstrainedan arbitrary one of these 12 permutations, namely [x1; x2; x3; x4; x5; x6℄, to bethe lexi
ographi
ally smallest one.In general, an m� n matrix has m! � n!� 1 symmetries ex
ept identity, gen-erating thus a super-exponential number of lexi
ographi
 ordering 
onstraints.Hen
e this approa
h is not always pra
ti
al, so we now identify three spe
ial
ases where all 
ompositions of the row and 
olumn symmetries 
an be brokenby a polynomial (and even linear) number of 
onstraints.First 
onsider the 
ase where all the values in the matrix are distin
t. Su
hmatrix models are 
ommon. For example, this happens in the single-round tour-nament s
heduling problem, when the matrix entries are ordered pairs of teams.Theorem 3. If a matrix model with row and 
olumn symmetry in some 2-dmatrix, as well as with a 
onstraint requiring all the values in that matrix tobe distin
t, has a solution, then ea
h symmetry 
lass of solutions has a uniquemember with the largest value pla
ed in the bottom-right 
orner as well as thelast row and the last 
olumn ordered.Proof: Given a solution, the row o

upied by the largest value 
ontains distin
tvalues that 
an be permuted by ordering the 
olumns. By ordering this row,we break all possible 
olumn symmetries and �x the sequen
e of the 
olumns.Similarly, the 
olumn o

upied by the largest value 
ontains distin
t values that
an be permuted by ordering the rows. By now ordering this 
olumn, we breakall possible row symmetries, and �x the sequen
e of the rows, while pla
ing thelargest value in the bottom-right 
orner of the matrix. All the 
ompositions ofthe row and 
olumn symmetries are thus broken, be
ause we have 
onstru
teda unique symmetri
 solution. �It is therefore the symmetries between identi
al values that make it diÆ
ultto break all the 
ompositions of the row and 
olumn symmetries.In fa
t, our proof shows that we break all the symmetries even if the otherrows and 
olumns 
ontain repeated values. Ordering the row and 
olumn withthe largest value will �x all the other values in the matrix in a unique way. So wedo not need every value in the matrix to be distin
t (although this is suÆ
ientto make the row and 
olumn with the largest value 
ontain no repeated values).Next, even when matri
es have repeated values, it is still possible in 
er-tain situations to break all symmetries by means of a polynomial number ofsymmetry-breaking 
onstraints. In parti
ular, this is the 
ase for 2-d 0/1 ma-tri
es with a single 1 in ea
h row. Su
h matrix models are quite 
ommon. Forexample, the 2-d matrix we used in the ra
k 
on�guration problem has this form.9



Theorem 4. If a matrix model with row and 
olumn symmetry in some 2-d0=1 matrix, as well as with a 
onstraint requiring a single 1 in ea
h row ofthat matrix, has a solution, then ea
h symmetry 
lass of solutions has a uniquesolution with the rows ordered lexi
ographi
ally as well as the 
olumns orderedlexi
ographi
ally and by their sums.Proof: Given a solution, by Theorem 1, there is a symmetri
 solution withthe rows and 
olumns lexi
ographi
ally ordered. In that solution, the top-right
orner must 
ontain a 1. Suppose that in the next row down, the 1 o

urs tothe right of where it does in this row. Then the next row is not lexi
ographi
allylarger. Suppose that it o

urs more than one 
olumn a
ross to the left. Thenthe 
olumns in between are not lexi
ographi
ally larger. Hen
e, the 1 in thenext row down must o

ur either dire
tly below or one 
olumn to the left. Theonly freedom is in how many 
onse
utive rows have 1s in the same 
olumn. Thissymmetry is broken by ordering the sums of the 
olumns. All the 
ompositionsof the row and 
olumn symmetries are broken, be
ause we have 
onstru
ted aunique symmetri
 solution. �Note that we 
an have the 
olumn sums in in
reasing or de
reasing order,depending on whi
h is preferable.Finally, all the symmetries 
an be broken with a linear number of 
on-straints when all the rows, seen as multisets, are distin
t. We say that a ve
torv1 is multiset-lexi
ographi
ally smaller than another ve
tor v2 if sort(v1) �lexsort(v2), where sort(v) denotes the ordered permutation of ve
tor v. For in-stan
e, the ve
tor [0; 1; 2; 1; 1℄ is multiset-lexi
ographi
ally smaller than the ve
-tor [0; 3; 1; 1; 1℄ be
ause [0; 1; 1; 1; 2℄ �lex [0; 1; 1; 1; 3℄.Theorem 5. If a matrix model with row and 
olumn symmetry in some 2-dmatrix, as well as with a 
onstraint requiring all the rows of that matrix to bedistin
t as multisets, has a solution, then ea
h symmetry 
lass of solutions has aunique solution with the rows multiset-lexi
ographi
ally ordered and the 
olumnslexi
ographi
ally ordered.Proof: Given a solution, we 
an �rst multiset-lexi
ographi
ally order the rows.Be
ause the rows are distin
t as multisets, this �xes the order of the rows. We
an now order the 
olumns lexi
ographi
ally without 
hanging the multiset ofany row. All the 
ompositions of the row and 
olumn symmetries are broken,be
ause we have 
onstru
ted a unique symmetri
 solution. �6 Experimental ResultsTo test the ability of lexi
ographi
 ordering 
onstraints to break the 
ompositionsof row and 
olumn symmetries, we ran some experiments on balan
ed in
ompleteblo
k design (BIBD) generation. This is a standard 
ombinatorial problem fromdesign theory. It has appli
ations in experimental design and 
ryptography (seeprob028 at www.
splib.org for more details).10



distin
t row & 
ol lex set 1st row & 
ol row lex 
ol lexInstan
e #sol #sol time #sol time #sol time #sol timeh7; 7; 3; 3; 1i 1 1 1:05 216 8 30 3 30 4h6; 10; 5; 3; 2i 1 1 0:95 17; 280 332 60; 480 3; 243 12 2h7; 14; 6; 3; 2i 4 24 10:63 � 90; 448 � � 68; 040 � 465 55h9; 12; 4; 3; 1i 1 8 28:14 � 5; 340 � � 342 � 840 1; 356h8; 14; 7; 4; 3i 4 92 171:00 � 5; 648 � � 2; 588 � � 5; 496 �h6; 20; 10; 3; 4i unknown 21 10:30 � 538; 272 � � 429; 657 � 73 20Table 1. Experimental results on BIBD instan
esA BIBD is an arrangement of v distin
t obje
ts into b blo
ks, su
h thatea
h blo
k 
ontains exa
tly k distin
t obje
ts, ea
h obje
t o

urs in exa
tly rdi�erent blo
ks, and every two distin
t obje
ts o

ur together in exa
tly � blo
ks.A BIBD instan
e is thus determined by its parameters hv; b; r; k; �i. One way ofmodelling a BIBD is in terms of its in
iden
e matrix, whi
h is a b�v 0/1 matrixwith exa
tly r ones per row, k ones per 
olumn, and with a s
alar produ
t of� between any pair of distin
t rows [6℄. This matrix model has row and 
olumnsymmetry sin
e we 
an permute any rows or 
olumns freely without a�e
ting anyof the 
onstraints. This kind of symmetry is often partially broken by setting the�rst row and the �rst 
olumn, as this is a 
heap but e�e
tive method. However,this breaks less symmetry than lexi
ographi
ally ordering both the rows and the
olumns, as shown next.Table 1 shows our experimental results on some BIBD instan
es. We usedthe ECLIPSE toolkit as it has a lexi
ographi
 ordering 
onstraint. The instan
esin this table are also used in [14, 15℄. We only present a representative sampleof our experiments. We enfor
ed a lexi
ographi
 ordering between neighbouringpairs of rows and 
olumns (row & 
ol lex). We also in
lude the results whenwe set the �rst row and the �rst 
olumn (set 1st row & 
ol), as well as whenwe impose lexi
ographi
 ordering 
onstraints only on the rows (row lex) or onlyon the 
olumns (
ol lex). For ea
h instan
e, we show the number of distin
tsolutions (distin
t #sol), the number of symmetri
 solutions being always inex
ess of 2:5 million, as well as the total number of solutions found (#sol) andthe run-times (time, in se
onds, or a \�" whenever 1 
lo
k hour was ex
eeded,in whi
h 
ase we report the number of solutions found at that moment) for ea
hof the four symmetry-breaking te
hniques listed above.With the row and 
olumn lexi
ographi
 ordering 
onstraints, we labelledalong one row and then down one 
olumn, and so on, as this is more eÆ
ientthan labelling just along the rows or just down the 
olumns, on these instan
es.However, there are some instan
es (not shown in the table) where labelling alongthe rows is mu
h more eÆ
ient than labelling along the rows and 
olumns. Withthe �rst row and 
olumn set, the best labelling strategy varies from instan
eto instan
e; we report the best results a
hieved among the three strategies.Indeed, the obje
tive was to get, within reasonable amounts of time, numbersof solutions that 
an be 
ompared, rather than to 
ompare the times needed11



to do so. The times are only indi
ated to reveal that our symmetry-breakingte
hniques are 
ost-e�e
tive 
ompared to an existing one. With row lexi
ographi
ordering 
onstraints, the best strategy is to label the 
olumns, and with 
olumnlexi
ographi
 ordering 
onstraints, the best strategy is to label the rows.The table reveals that the 
olumn lexi
ographi
 ordering 
onstraints are mu
hmore eÆ
ient than the row ones. This is true for many other instan
es (that arenot shown in the table). We 
onje
ture that the s
alar produ
t 
onstraint sotightly 
onstrains the rows that little work is left to be done by the row lexi
o-graphi
 ordering 
onstraints. The 
olumn lexi
ographi
 ordering 
onstraints a
torthogonally and so are more 
onstraining. The results also 
on�rm that lexi
o-graphi
ally ordering the rows and 
olumns 
an break most of the 
ompositionsof the row and 
olumn symmetries.In [15℄, a binary CSP model en
oded in SAT that breaks symmetries in adi�erent way was proposed to solve several BIBD instan
es using SATZ, WSAT,and CLS. All its instan
es 
ould be solved fast enough with our 2-d 0/1 matrixmodel using row and 
olumn lexi
ographi
 ordering 
onstraints. For example,our model solves the instan
e h8; 14; 7; 4; 3i in 171 se
onds, while this instan
ewas not solved in several hours with any algorithm or en
oding in [15℄.To test the eÆ
a
y of 
hannelling to a 0/1 matrix in order to break valuesymmetry with lexi
ographi
 ordering 
onstraints, we experimented with S
hur'sLemma (prob 015 in CSPlib). The problem is to put n balls, labelled f1,..., ng,into 3 boxes so that for any triple of balls (x; y; z) with x+ y = z, not all are inthe same box. A natural model 
onsists of a one-dimensional matrix of variableswith domain size 3, ea
h element of whi
h 
orresponds to a parti
ular box. Theboxes, and therefore the values, are symmetri
al. We tested this model with nosymmetry breaking and with Gent's method [11℄. A se
ond model 
hannels to a0/1 matrix of balls � boxes. In this model, a row 
orresponds to the 
ontents ofa box. Hen
e, we 
an use lexi
ographi
 row ordering to break the symmetry.Table 2 summarises the results. Both symmetry breaking methods result ina dramati
 redu
tion in the number of solutions dis
overed and sear
h tree size.n No Symmetry Breaking Gent's Method Lexi
ographi
Fails Choi
es Time Solns Fails Choi
es Time Solns Fails Choi
es Time Solns15 7878 25451 0.6s 17574 1313 4241 0.6s 2929 1317 4245 0.2s 292916 10356 25067 0.6s 14712 1726 4177 0.6s 2452 1730 4181 0.2s 245217 11970 24029 0.6s 12060 1995 4004 0.7s 2010 1999 4008 0.2s 201018 11970 19025 0.6s 7056 1995 3170 0.7s 1176 1999 3174 0.2s 117619 12132 16391 0.6s 4260 2022 2731 0.7s 710 2026 2735 0.2s 71020 11976 14117 0.5s 2142 1996 2352 0.8s 357 2000 2356 0.2s 35721 10878 11783 0.5s 906 1813 1963 0.7s 151 1817 1967 0.2s 15122 10206 10397 0.5s 192 1701 1732 0.8s 32 1705 1736 0.2s 3223 9738 9755 0.5s 18 1623 1625 0.8 3 1627 1629 0.2s 324 9072 9071 0.5s 0 1512 1511 0.8 0 1516 1515 0.2s 0Table 2. Experimental results on S
hur's Lemma12



Gent's method appears to propagate slightly before the lexi
ographi
 approa
h,hen
e the (negligible) di�eren
e in terms of fails and 
hoi
es. Given three boxes,we require just two lexi
ographi
 ordering 
onstraints between adja
ent rows ofthe 0/1 matrix. Although Gent's method requires fewer extra variables than thelexi
ographi
 approa
h, ea
h has a relatively large domain. This 
oupled withO(n) extra 
onstraints results in the gap in overall performan
e.7 Related WorkThere is 
urrently mu
h interest in symmetry in 
onstraint satisfa
tion problems.The existing approa
hes 
an be broadly 
ategorised into �ve types.The �rst approa
h, deployed here, adds symmetry-breaking 
onstraints tothe model in an attempt to remove some symmetries before sear
h starts [16, 3℄.A se
ond method breaks adds symmetry-breaking 
onstraints during sear
hto prune symmetri
 bran
hes (e.g., [1℄, the global 
ut framework (GCF) [7℄, andsymmetry-breaking during sear
h (SBDS) [12℄). A disadvantage of methods likeSBDS is that, at ea
h node in the sear
h tree, a 
onstraint for ea
h symmetryis added, but that, for matrix models, there is a super-exponential number ofsymmetries that have to be treated. Re
ently, promising results on 
ombiningthe dynami
 SBDS with our stati
 pre-sear
h approa
h [5℄ have been reportedfor matrix models [20℄, espe
ially for 
ombined methods that break some of thesymmetries using row sum ordering and 
olumn lexi
ographi
 ordering.Third, in symmetry-breaking via dominan
e dete
tion (SBDD) [4℄, the sear
hpro
edure is modi�ed by adding a dominan
e 
he
k that 
he
ks if the 
urrentassignment is symmetri
 to a previously en
ountered assignment. Su
h a domi-nan
e 
he
k is problem-spe
i�
.A fourth approa
h is to break symmetry by means of a heuristi
 variable-ordering that dire
ts the sear
h towards subspa
es with a high density of non-symmetri
 solutions (e.g., [14℄).Lastly, it is sometimes possible to remodel a problem to remove some sym-metries, for example via the use of set variables. However, this 
an produ
e amore 
omplex model [18℄.All of these approa
hes would bene�t from an eÆ
ient means of automati
symmetry dete
tion. However, symmetry dete
tion has been shown to be graph-isomorphism 
omplete in the general 
ase [2℄. Therefore, it is often assumed thatthe symmetries are known by the user. Sin
e matri
es of de
ision variables are
ommon in 
onstraint programs [6℄, and sin
e rows and 
olumns in su
h matri
esare often indistinguishable, making matri
es �rst-
lass obje
ts in the modellinglanguage would give a heuristi
 symmetry-dete
tion te
hnique obvious 
lues asto where to look.8 Con
lusionsWe have identi�ed an important 
lass of symmetries in 
onstraint models: rowand 
olumn symmetries. We have shown that we 
an lexi
ographi
ally order13



both the rows and the 
olumns to break some of these symmetries. Whilst lexi-
ographi
ally ordering the rows breaks all the row symmetries and lexi
ograph-i
ally ordering the 
olumns breaks all the 
olumn symmetries, lexi
ographi
allyordering both the rows and the 
olumns fails to break all the 
ompositions ofthese symmetries. Nevertheless, our experimental results show that this 
an bee�e
tive at dealing with these 
ompositions of the row and 
olumn symmetries.We have extended these results to 
ope with symmetries in any number of di-mensions, with partial symmetries, and with symmetri
 values. Finally, we haveidenti�ed a number of spe
ial 
ases where all 
ompositions of the row and 
ol-umn symmetries 
an be broken by means of adding only a linear number of
onstraints.Having established the utility of lexi
ographi
 ordering, there is a 
lear needfor eÆ
ient methods for establishing generalised ar
 
onsisten
y on 
onstraintsthat impose this ordering. A �rst step is to 
onsider lexi
ographi
 ordering be-tween a pair of ve
tors, whi
h is our 
urrent fo
us [10℄. We 
an then 
onsiderenfor
ing generalised ar
 
onsisten
y on sets of su
h 
onstraints. Furthermore, inExample 6 the 
hoi
e of whi
h permutation is to be the lexi
ographi
ally small-est is arbitrary, but the performan
e of the variable-and-value-ordering dependson this 
hoi
e. Work on this topi
 is in progress.In other future work, we intend to �nd ways of dete
ting the row and 
ol-umn symmetries automati
ally. Also, given several matri
es with symmetry andwith 
hannelling 
onstraints in-between them, it is not 
lear how lexi
ographi
orderings on the matri
es intera
t. Finally, we will investigate ways of dete
t-ing redundan
ies among the super-exponential number of lexi
ographi
 ordering
onstraints that are ne
essary for breaking all the symmetries. For instan
e, inExample 6, the last three 
onstraints are logi
ally redundant.A
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