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Abstract

We prove a new lower bound on the number of shared elements of any

pair of same-sized subsets drawn from a given set.

1 Introduction

Our objective is to determine a lower bound on the number of shared elements of
any two of a number of subsets of the same size drawn from a given set. We first
derive a bound from an existing result in extremal set theory and then establish
a tighter bound, using a double-counting argument. This tighter bound has
yielded crucial improvements in the construction of financial portfolio designs
[2] in the credit derivatives market.

A known application of double counting leads to an optimal lower bound on
the size of a set B from which we can draw v subsets of size r such that any
two of them share at most λ elements. Write these v subsets as V1, . . . , Vv with
λ = max

i6=j
|Vi ∩ Vj |. Then:

Theorem 1 (Corrádi 1969 [1, 4]). Let V1, . . . , Vv be r-element sets and let B

be their union. If |Vi ∩ Vj | ≤ λ for all i 6= j, then

|B| ≥
r2v

r + (v − 1)λ
. (1)

However, we here actually know the set B and are instead interested in the
number λ of shared elements of any two of v subsets of size r drawn from B.
Rearranging (1) and taking |B| = b gives the following lower bound:

λ ≥
r(rv − b)

b(v − 1)
. (2)

This lower bound is not always exact. For example, with v = 9, b = 8, and
r = 3, we obtain λ ≥ 57

64 , hence λ ≥ 1. However, it is not difficult to show [2]
that there are no 9 subsets of size 3 in an 8-element set such that any two of
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them share at most λ = 1 element. In fact, this problem instance is at best
solved with λ = 2; some of the sets of such optimal solutions share only one
element.

Worse, the right-hand-side expression of (2) is negative when b > rv, that
is when more elements are available than needed. This suggests that a tighter
lower-bound expression ought to exist. For example, with v = 2, b = 8, and
r = 3, we obtain λ ≥ − 3

4 , hence λ ≥ 0. Obviously, it is possible to construct
2 subsets of size 3 from an 8-element set that such that any two of them share
at most λ = 0 elements, but a good lower-bound expression should evaluate to
zero for such trivial problem instances.

When x = qy + s denotes a division, with x, y, q, s ∈ Z and 0 ≤ s < y, then
we define mod(x, y) = s.

The rest of this paper is organised as follows. In Section 2, we state and
prove a new lower bound on λ. Finally, in Section 3, we prove that the new
lower bound is both tighter than the one of (2) and that its expression is never
negative.

2 A Tighter Bound

Let V1, . . . , Vv be r-element sets and B be their union, with b = |B|. If |Vi∩Vj | ≤
λ for all i 6= j, then we shall prove (see Theorem 2 below) that

λ ≥

⌈
rv
b

⌉2
mod (rv, b) +

⌊
rv
b

⌋2
(b − mod(rv, b)) − rv

v(v − 1)
. (3)

The proof is structured as follows. We first prove a simple number-theoretic
result in Lemma 1 and then use it to prove Lemma 2, which gives a lower
bound on the sum of the squares of a non-empty sequence of n natural numbers
in terms of their sum and n. Finally, using Lemma 2 and well-known results
(Lemma 3) on replication numbers (Definition 1), we prove (3) in Theorem 2.

Lemma 1. Let x ∈ Z and y ∈ Z
+. Then

x =

⌈
x

y

⌉

mod (x, y) +

⌊
x

y

⌋

(y − mod(x, y)).

Proof. If y | x then trivially the right-hand side is x. Else, letting q and s be
the quotient and remainder of x

y
, the right-hand side is

(q + 1)s + q(y − s) = qy + s = x

thereby establishing the stated equality.

Lemma 2. Let x1, x2, . . . , xn be a non-empty sequence of natural numbers with

n∑

i=1

xi = a. (4)
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Then
n∑

i=1

x2
i ≥

⌈a

n

⌉2

mod (a, n) +
⌊a

n

⌋2

(n − mod(a, n)).

Proof. Intuitively, if there are xj and xk among the xi with xj < xk − 1, then
replacing them with xj + 1 and xk − 1 keeps the sum of the xi constant, but
decreases the sum of their squares, namely by 2(xk − xj − 1). By Lemma 1, we
can write

n∑

i=1

xi = a =
⌈a

n

⌉

mod (a, n) +
⌊a

n

⌋

(n − mod(a, n)).

Since mod(a, n) + (n − mod(a, n)) = n we can think of mod(a, n) occurrences
of
⌈

a
n

⌉
and n − mod(a, n) occurrences of

⌊
a
n

⌋
as choices for the xi:

n∑

i=1

xi =
⌈a

n

⌉

+ · · · +
⌈a

n

⌉

︸ ︷︷ ︸

mod(a, n) times

+
⌊a

n

⌋

+ · · · +
⌊a

n

⌋

︸ ︷︷ ︸

n − mod(a, n) times

.

With this choice of the variables xi we get

n∑

i=1

x2
i =

⌈a

n

⌉2

mod (a, n) +
⌊a

n

⌋2

(n − mod(a, n))

and we have proved that the stated lower bound is indeed attainable.

Definition 1. The replication number or degree of a point x in a family F ,
denoted by d(x), is the number of members of F containing x.

Lemma 3 ([4], page 16). Let F be a family of subsets of some set X. Then

∑

x∈Y

d(x) =
∑

A∈F

|Y ∩ A| for any Y ⊆ X (5)

∑

x∈X

d(x)2 =
∑

A∈F

∑

x∈A

d(x) (6)

Theorem 2. Let V1, . . . , Vv be r-element sets and B be their union, with b =
|B|. If |Vi ∩ Vj | ≤ λ for all i 6= j, then

λ ≥

⌈
rv
b

⌉2
mod (rv, b) +

⌊
rv
b

⌋2
(b − mod(rv, b)) − rv

v(v − 1)

Proof. The sets V1, . . . , Vv can be thought of as a boolean matrix with v rows
and b columns with a 1 (respectively 0) in row i and column j meaning that
j ∈ Vi (respectively j 6∈ Vi). Using this point of view, d(x) is the sum of the xth

column.
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By (5) of Lemma 3, we have for each i ∈ {1, . . . , v}

∑

x∈Vi

d(x) =
v∑

j=1

|Vi ∩ Vj |

= |Vi| +
∑

j 6=i

|Vi ∩ Vj |

≤ r + (v − 1)λ (7)

where the final inequality comes from the fact that no two subsets share more
than λ elements. Next sum over all the sets Vi to get

v∑

i=1

(r + (v − 1)λ) ≥
v∑

i=1

∑

x∈Vi

d(x)

and use (6) of Lemma 3 to arrive at

v(r + (v − 1)λ) ≥
∑

x∈B

d(x)2

which we reorder to get an expression for λ

λ ≥

∑

x∈B

d(x)2 − rv

v(v − 1)
. (8)

By counting the number of ones in the matrix both column-wise and row-wise,
we get

∑

x∈B

d(x) = rv

and we can then replace the sum in (8) with the lower bound from Lemma 2,
yielding the stated lower bound.

Essentially, the improvement thus comes from the fact that the lower bound
on the sum of the squares of the degrees coming from convexity can be increased
slightly by using the fact that the degrees are all integers.

3 Concluding Remarks

Note that when b | rv the lower bound of Theorem 2 degenerates into the lower
bound of (2).

Even this new lower bound is not always exact. Consider for example v = 9,
b = 8, and r = 3: using (2) we get λ ≥ 0.890625 while Theorem 2 gives
λ ≥ 0.916̄. However, as stated in the introduction, this problem instance can
only be solved with λ ≥ 2. The lower bound of Theorem 2 is thus closer to the
optimum than the one of (2), but there are still cases when it is too low.
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Since inequality (7) degenerates into an equality when v = 2, the lower
bound of Theorem 2 is always sharp in this case, while the lower bound of (2)
is not sharp then. Neither bound is sharp for v = 3.

We now prove that the new lower bound of Theorem 2 satisfies our two
requirements: it is tighter than the old lower bound of (2) and its expression is
never negative. It is an open question whether there is a tighter lower bound
that is easy to compute.

Proposition 1. The lower bound of Theorem 2 is tighter than the lower bound
of (2).

Proof. We can apply Jensen’s inequality

b∑

i=1

x2
i ≥

1

b

(
b∑

i=1

xi

)2

to the sum of squares in Theorem 2 to get

λ ≥

⌈
rv
b

⌉2
mod (rv, b) +

⌊
rv
b

⌋2
(b − mod(rv, b)) − rv

v(v − 1)

≥
1
b

(⌈
rv
b

⌉
mod (rv, b) +

⌊
rv
b

⌋
(b − mod(rv, b))

)2
− rv

v(v − 1)

Now use Lemma 1 to rewrite this as

λ ≥
(rv)2

b
− rv

v(v − 1)
=

r(rv − b)

b(v − 1)
.

So the right hand side of Theorem 2 is at least as large as the one of (2).
Now consider for example v = 10, b = 350, and r = 100: Theorem 2 gives

λ ≥ 21.1̄ (and a solution does exist with λ = 22, see [2]) whereas the bound
of (2) only gives λ ≥ 20.63. Hence the new bound is sometimes strictly tighter
and we can now be sure no solution with λ = 21 exists, which is a claim that
required a separate proof previously [3].

We next establish that the new lower bound satisfies our second requirement,
namely that its expression is never negative.

Proposition 2. The expression of the lower bound of Theorem 2 is never neg-
ative.

Proof. By Lemma 1 we have
⌈rv

b

⌉

mod (rv, b) +
⌊rv

b

⌋

(b − mod(rv, b)) = rv.

Consider the left-hand side above as a summation of b terms, with mod(rv, b)
ceilings and b − mod(rv, b) floors. Since these terms and coefficients are all
non-negative integers, squaring the terms results in a larger or equal sum:

⌈rv

b

⌉2

mod (rv, b) +
⌊rv

b

⌋2

(b − mod(rv, b)) ≥ rv.
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Hence the numerator of the bound of Theorem 2 is non-negative, and since its
denominator v(v − 1) is positive, the fraction is never negative.

The difference between the right-hand-side expressions of (2) and (3) can get
arbitrarily large, especially since the one of (2) keeps decreasing into negative
values when b > rv.

By choosing all subsets of size λ + 1 from each row (keeping the previous
matrix analogy), which contains r elements, and comparing this with choosing
all subsets, also of size λ + 1, from the whole set B we arrive at

v

(
r

λ + 1

)

≤

(
b

λ + 1

)

which holds because no two chosen subsets are equal since by definition no two
subsets overlap by more than λ elements. (So we could have used subsets of any
size λ + i ≤ r but that would result in a weaker bound below.) We can rewrite
this as

v ≤
b(b − 1) · · · (b − λ)

r(r − 1) · · · (r − λ)

≤

(
b − λ

r − λ

)λ+1

= e(λ+1) ln b−λ

r−λ

Since ln(1 + x) ≤ x we can use this to get

v ≤ e(λ+1) b−λ

r−λ

which results in

λ ≥
r ln v − b + r

ln v + b − r

It turns out that this bound seems better than the one of Theorem 2 when
v becomes closer to its maximum value

(
b
r

)
. For example, when b = 350 and

r = 100, this bound is better than the one of Theorem 2 when v is larger than

roughly
√
(
350
100

)
, but more work and comparisons should be made. It should also

be investigated if the large approximations in the steps to retrieve this bound
could be limited to smaller approximations to get a better bound.
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